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THIS SUPPLEMENT IS ORGANIZED AS FOLLOWS. Section A.1 reviews various
potential applications of our test. Section A.2 establishes Assumption 2 for
ARCH(1) and GARCH(1�1) models with normal errors. Section A.3 derives
the expression and asymptotic distribution of our tests for Hamilton’s model.
Corresponding critical values are given in Section A.4. Section A.5 gives the es-
timates of Hamilton’s model for U.S. real GNP. Appendix B defines the tensor
notations used to derive the fourth-order expansion of the likelihood. These
notations are interesting in their own right, as they could be used in other
econometric problems involving higher-order expansions. Appendix C collects
the proofs of Theorems 3.1, 3.2, and 4.1. Appendix D collects the proofs of
the remaining results of Sections 4 and 5. Section D.4 gives Lemma D.9, which
establishes necessary and sufficient conditions for expTS to have power in the
context of an autoregressive model.

APPENDIX A: EXAMPLES

A.1. Review of Applications

Various extensions of Example 3.4 have been applied in macroeconomics
and finance.

EXAMPLE A.1—Markov Switching GARCH Model: Markov switching
GARCH models are increasingly used in finance; see Hamilton and Susmel
(1994), Dueker (1997), Gray (1996), Haas, Mittnik, and Paolella (2004), among
others. Consider the model{εt = ztσt�

σ2
t = α0(St)+ α1(St)ε

2
t−1 +β1(St)σ

2
t−1�

zt ∼ i�i�d�N (0�1)�

where St is a homogeneous Markov chain with k-dimensional state space.
Then, ϑt = St is bounded, Markov of order 1, and geometric ergodic provided
its transition probabilities belong to (0�1). The estimation of this model is par-
ticularly tedious. This model has been successfully tested in Hu and Shin (2008)
using our test procedure.
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EXAMPLE A.2—State Space Model: Assume that the dynamic of an observ-
able vector yt can be described as

yt =A′xt +H ′ξt +wt�

ξt+1 = Fξt + vt+1�

where vt and wt are uncorrelated white noises and xt is a vector of exogenous
or predetermined variables.

The state vector ξt is not observable. The state space models are very pop-
ular because they can be easily estimated by Kalman filter. To simplify our
discussion, assume that ξt is scalar. A way to test the null hypothesis that ξt is
constant H0 :ξt = ξ0 is to test that the variance of vt (σ2, say) is equal to zero.
Various difficulties arise. First, the parameter of interest (σ2) is on the bound-
ary of the parameter space under the null. Second, the coefficient F is not
identified under H0. Hence, testing H0 :σ2 = 0 is nonstandard. These issues
are addressed in Andrews (1999, 2001).

EXAMPLE A.3—Non-Markov Random Coefficient Model: Consider a sto-
chastic volatility model⎧⎪⎪⎨⎪⎪⎩

yt = μ+ θyt−1 + ztσt�

σt = exp(vt)�
vt = α+βvt−1 + et + δet−1�

zt ∼ i�i�d�N (0�1)�

where zt and et are independent and et is i�i�d� (0� τ2). ϑt = (vt� et)
′ is Markov,

geometric ergodic provided |β| < 1, and et has positive density around 0 al-
though σt itself is not Markov. This model is easy to estimate under the null
hypothesis where σt is constant.

A.2. Assumption 2 for ARCH and GARCH Models

To apply our test to a Markov switching GARCH model as described in Ex-
ample A.1, we need to make sure that Assumption 2 is satisfied for such a
model. First, we give a detailed proof that Assumption 2 is satisfied for the
ARCH(1) model. Second, we give a sketch of the proof for the GARCH(1�1)
model.

We consider an ARCH(1) model with normal error:{
yt = σtzt�

σ2
t =ω+ αy2

t−1�
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where α > 0, ω > 0, and zt i�i�d� N (0�1). Let θ = (α�ω)′ and θ0 be the true
value of the parameter vector. The conditional log-density is given by

lt(θ)= −1
2

(
lnσ2

t (θ)+ y2
t

σ2
t (θ)

)
�

where σ2
t (θ)=ω+ αy2

t−1. We can compute the kth derivatives of lt recursively
(see, for instance, Jensen and Rahbek (2004a)):

∂klt(θ)

∂αk
= (−1)k(k− 1)!

2

(
1 − k

y2
t

σ2
t (θ)

)
y2k
t−1

σ2k
t (θ)

� k= 1�2� � � � �

∂klt(θ)

∂ωk
= (−1)k(k− 1)!

2

(
1 − k

y2
t

σ2
t (θ)

)
1

σ2k
t (θ)

� k= 1�2� � � � �

Consider a neighborhood of θ0, denoted by N , such that 0<ωl <ω<ωu and
0<αl < α< αu. Observe that, for θ ∈N , we have

y2
t

σ2
t (θ)

= σ2
t (θ0)z

2
t

σ2
t (θ)

= (ω0 + α0y
2
t−1)z

2
t

ω+ αy2
t−1

≤
(
ω0

ωl

+ α0

αl

)
z2
t �

y2k
t−1

σ2k
t (θ)

= y2k
t−1

(ω+ αy2
t−1)

k
≤

(
1
αl

)k

�

1
σ2k
t (θ)

≤
(

1
ωl

)k

�

It follows that, for k= 1�2� � � � �5,

E sup
θ∈N

∣∣∣∣∂klt(θ)∂αk

∣∣∣∣20

<∞�

E sup
θ∈N

∣∣∣∣∂klt(θ)∂ωk

∣∣∣∣20

<∞�

Hence, Assumption 2 holds.
Consider a GARCH(1�1) model with normal error:{

yt =
√
ht(θ)zt�

ht(θ)=ω+ αy2
t−1 +βht−1(θ)�
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where zt i�i�d� N (0�1). Following Jensen and Rahbek (2004b), the initial vari-
ance h0(θ) is parameterized as γ = h0(θ). Let θ = (α�β�ω�γ)′, where all the
parameters are positive. The true value of the parameter vector is denoted θ0.
The conditional log-density is given by

lt(θ)= lnht(θ)+ y2
t

ht(θ)
�

The derivative of lt with respect to θi, the ith component of θ, is

∂lt(θ)

∂θi
=

(
1 − y2

t

ht(θ)

)
∂ht(θ)/∂θi

ht(θ)
�

The higher-order derivatives are functions of y2
t /ht(θ) and ∂kht(θ)/∂θki /ht(θ).

Observe that

y2
t

ht(θ)
= ht(θ0)

ht(θ)
z2
t =

(
ω0 + α0y

2
t−1 +β0ht−1(θ0)

ω+ αy2
t−1 +βht−1(θ)

)
z2
t

≤
(
ω0

ωl

+ α0

αl
+ β0ht−1(θ0)

βlht−1(θ)

)
z2
t �

Replacing recursively ht−1(θ0)/ht−1(θ) by ht−2(θ0)/ht−2(θ), etc., we obtain an
upperbound for y2

t /ht(θ) which is a function of θ0, θl, and z2
t � z

2
t−1� � � � . Upper-

bounds for terms ∂kht(θ)/∂θki /ht(θ) are given in Jensen and Rahbek (2004b);
see, for instance, Lemmas 3 and 9 for the derivatives with respect to β. These
upperbounds imply that Assumption 2 is satisfied.

Note that the proofs above hold true for stationary and nonstationary yt .

A.3. Test and Asymptotic Distribution for Hamilton’s Model

We give the detailed calculation of the test statistic and its asymptotic distri-
bution in Hamilton’s model given in Example 3.4.

Under H0 :μ1 = 0, the log-likelihood function is simply

logLt = lt

= − log
√

2π − 1
2

log
(
σ2

)

−

(
yt −μ

(
1 −

r∑
i=1

φi

)
−

r∑
i=1

φiyt−i

)2

2σ2
�
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The associated first and second derivatives of the log-likelihood function are
as follows:

∂lt

∂μ
= et

σ2

(
1 −

r∑
i=1

φi

)
�

∂lt

∂φi

= et

σ2
(yt−i −μ)�

∂lt

∂σ2
= − 1

2σ2
+ e2

t

2σ4
�

∂2lt

∂μ2
= − 1

σ2

(
1 −

r∑
i=1

φi

)2

�

∂2lt

∂μ∂φi

= − et

σ2
− yt−i −μ

σ2

(
1 −

r∑
i=1

φi

)
�

∂2
t lt

∂μ∂σ2
= − et

σ4

(
1 −

r∑
i=1

φi

)
�

∂2lt

∂φi ∂φj

= − 1
σ2
(yt−i −μ)(yt−j −μ)�

∂2lt

∂φi ∂σ2
= − et

σ4
(yt−i −μ)�

∂2lt

∂σ4
= 1

2σ4
− e2

t

σ6
�

where et = yt −μ(1 −∑r

i=1φi)−∑r

i=1φiyt−i.
To test for μ1 = 0, the implied ηt is (μ1St 0 0)′ following our notation. As a

consequence,

trace
((
l(2)t + l(1)t l

(1)′
t

)
E
(
ηtη

′
t

)) = c2 (e
2
t − σ2)

σ4

(
1 −

r∑
i=1

φi

)2

�

∑
s<t

trace
(
l(1)t l

(1)′
s E

(
ηtη

′
s

)) =
c2

(
1 −

r∑
i=1

φi

)2

σ4

∑
s<t

ρt−setes�
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and

μ∗
2�t(β�θ0)=

(
1 −

r∑
i=1

φi

)2

2σ4

((
e2
t − σ2

)+ 2
∑
s<t

ρt−setes

)
�

To implement the test, we first estimate the MLE of parameters θ=(μ�φ1� � � � �

φr�σ
2)′ under H0, denoted as θ̂. Then we regress μ2�t(β� θ̂) on l(1)t (θ̂) to obtain

the residuals. Note that
∑

t(ê
2
t − σ̂2)= 0, so that

∑
t

μ∗
2t(β� θ̂)=

(
1 −

4∑
i=1

φ̂i

)2

2σ̂4

∑
s<t

ρt−sêt ês�

The asymptotic distribution can be computed using Theorem 4.3, namely,
the asymptotic distribution of

∑
t μ

∗
2t(β� θ̂)/

√
T can be deducted from that of∑

t(μ
∗
2t(β�θ0) − d∗′l(1)t (θ0))/

√
T , where d∗ = I(θ0)

−1 cov(μ∗
2t(β�θ0)� l

(1)
t (θ0)).

We derive this asymptotic distribution in two special cases where r = 0 and
r = 1, respectively.

No AR Term

In this case, the formulas given above hold with ut = et and φ1 =φ2 = · · · =
φr = 0:

d∗ = I−1 cov
(
μ∗

2�t(θ0)� l
(1)
t (θ0)

)
= 1

2σ4

[
σ2 0
0 2σ4

]
·
[

0
1

]
=

[
0
1

]
�

Therefore,

Γ ∗
T

d= 1√
Tσ4

∑
t

∑
s<t

ρt−sutus�

It follows from Andrews and Ploberger (1996) that, under H0, Γ ∗
T converges

weakly to a linear combination of Gaussian processes:

Γ ∗
T ⇒

∞∑
i=1

ρiZi�(A.1)
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where Zi are i.i.d. standard Gaussian variables. Moreover, 1
T

∑
ε̂∗2
t converges

to Var(
∑∞

i=1 ρ
iZi)= ρ2/(1 − ρ2). Hence,

Γ ∗
T√

1
T

∑
ε̂∗2
t

⇒

√
1 − ρ2

∞∑
i=1

ρiZi

|ρ| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
√

1 − ρ2

∞∑
i=0

ρiZi� if ρ > 0,

−√
1 − ρ2

∞∑
i=0

ρiZi� if ρ < 0.

Note that, for ρ = 0, TS converges to 0 and hence supTS converges to 0
and expTS converges to 1. LetK denote the process sign(ρ)

√
1 − ρ2

∑∞
i=0 ρ

iZi,
where sign(ρ)= 1 if ρ > 0, = 0 if ρ= 0, and = −1 if ρ < 0. Then,

supTS ⇒ sup
{ρ:ρ<ρ<ρ̄}

1
2
(
max(0�K)

)2
�(A.2)

and

expTS = avg
ρ≤ρ≤ρ

Ψ(ρ) with(A.3)

Ψ(ρ)⇒
⎧⎨⎩

√
2π exp

[
1
2
(K − 1)2

]
�(K − 1)� for ρ 
= 0,

1� for ρ= 0.
(A.4)

From the continuous mapping theorem, we obtain the asymptotic distribu-
tion of expTS under H0.

Case of an AR(1)

Now r = 1. Let us compute d∗:

E

(
μ∗

2t

∂lt

∂μ

)
= 0�

E

(
μ∗

2t

∂lt

∂φ

)
= (1 −φ)2

σ6

∑
s<t

ρt−sE
(
e2
t ut−1es

)
�

Using the fact that ut =φtu0 +φt−1e1 + · · · + et , we have E(ut−1es)=φt−1−sσ2

and hence

E

(
μ∗

2t

∂lt

∂φ

)
= (1 −φ)2

σ2

∑
s<t

ρt−sφt−1−s

= (1 −φ)2

σ2φ

∑
s<t

(ρφ)t−s



8 M. CARRASCO, L. HU, AND W. PLOBERGER

= ρ(1 −φ)2

σ2(1 − ρφ)
�

E

(
μ∗

2t

∂lt

∂σ2

)
= (1 −φ)2

4σ8
E
((
e2
t − σ2

)2)
= (1 −φ)2

2σ4
�

The information matrix is given by

I = −E
(
∂2 logL
∂θ∂θ′

)
=

[ (1 −φ)2/σ2 0 0
0 1/

(
1 −φ2

)
0

0 0 1/
(
2σ4

)
]
�

so that

d∗ =
(

0�
ρ(1 −φ2)(1 −φ)2

σ2(1 − ρφ)
� (1 −φ)2

)′
�

μ∗
2t − d∗′l(1)t = (1 −φ)2

σ4

∑
s<t

ρt−setes

− ρ(1 −φ2)(1 −φ)2

σ4(1 − ρφ)

∑
s<t

φt−s−1etes

= (1 −φ)2

σ4

[
ρ
∑
s<t

ρt−s−1etes − ρ(1 −φ2)

(1 − ρφ)

∑
s<t

φt−s−1etes

]
�

and from Andrews and Ploberger (1996), we have, under H0,

1√
T

∑
t

(
μ∗

2t − d∗′l(1)t
) ⇒ (1 −φ)2ρ

σ2

[ ∞∑
i=0

ρiZi − (1 −φ2)

(1 − ρφ)

∞∑
i=0

φiZi

]
�

where Zi are i.i.d. standard normal random variables. Moreover, under H0:

ε̂∗′ε̂∗

T

P→ (1 −φ)4ρ2

σ4

[
1

1 − ρ2
− (1 −φ2)

(1 − ρφ)2

]
= (1 −φ)4ρ2

σ4

(ρ−φ)2

(1 − ρ2)(1 − ρφ)2
�
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We see that the variance is zero for φ = ρ and for ρ = 0. So for ρ 
= 0 and
φ 
= ρ, we have

Γ ∗
T√

1
T

∑
ε̂∗2
t

⇒
√

1 − ρ2|1 − ρφ|
|ρ−φ|

[ ∞∑
i=0

ρiZi − (1 −φ2)

(1 − ρφ)

∞∑
i=0

φiZi

]
�

A.4. Asymptotic Critical Values for Model (6.1)

Garcia’s model, given in (6.1), corresponds to Hamilton’s model with r = 0.
The asymptotic distributions for supTS and expTS are given in (A.2) and (A.3).
Now, we use 100,000 replications to tabulate the asymptotic critical values. We
approximate the infinite sum in (A.1) and (A.3) by the finite sum truncated at
TR= 500. A grid search of ρ is over the interval [−0�7�0�7] and [−0�98�0�98]
with increment 0�01.1 We also report the corresponding empirical critical val-
ues calculated for T = 500 with 10,000 iterations. See Table A-I.

The empirical critical values are very close to the asymptotic ones for both
supTS and expTS tests, especially when ρ ∈ [−0�7�0�7]. Note that the asymp-
totic critical values of supTS are much lower than those provided by Garcia
and are also smaller than the cut-off points given by a χ2(1), the distribution
obtained in the standard case.

A.5. Estimation of Hamilton’s Model

We estimate Hamilton’s model given in Example 3.4 with r = 4 using Hamil-
ton’s original data set on U.S. GNP growth from 1952Q2 to 1984Q4, but also
an extended series from 1952Q2 to 2010Q4.2 The estimation under H0 of lin-
earity is as in Table A-II.

It is shown in Section D.4 below that the tests for H0 :μ1 = 0 may lack power
if ρ takes some specific values. To assess the power of our tests, we need to
check the polynomial

ρ4 − 0�310ρ3 − 0�127ρ2 + 0�121ρ+ 0�089 = 0�

The roots to this polynomial are 0�524 ± 0�415i and −0�369 ± 0�251i. This im-
plies that we cannot write μ2�t as a linear combination of the first-order deriva-
tives of the log-likelihood; consequently, our test has power. Similar results are
obtained for the extended series, where all the roots are complex, too.

Using the extended series, we estimate the model under the alternative of
an AR(4) with switching mean and variance and obtain Table A-III.

1Since ρ= p+ q− 1, the interval [−0�7�0�7] for ρ corresponds to p�q ∈ [0�15�0�85] and the
interval [−0�98�0�98] for ρ corresponds to p�q ∈ [0�01�0�99].

2The real GNP series is downloaded from St. Louis Fed’s FRED database with id GNPC96.
The variable used for y is 100 times the change in the log of real GNP.
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TABLE A-I

EMPIRICAL AND ASYMPTOTIC CRITICAL VALUES OF SUPTS AND EXPTS

supTS expTS

Percentile/c.v. Asymptotic Empirical Asymptotic Empirical

ρ ∈ [−0�7�0�7]
99% 3�96 3�99 4�17 4�24
95% 2�45 2�51 1�82 1�87
90% 1�82 1�81 1�35 1�33
80% 1�21 1�19 1�04 1�02
70% 0�86 0�85 0�90 0�89
50% 0�45 0�43 0�76 0�75
10% 0�04 0�04 0�59 0�58
5% 0�01 0�01 0�55 0�55
1% 0�00 0�00 0�50 0�50

ρ ∈ [−0�98�0�98]
99% 4�52 4�19 3�83 3�81
95% 2�99 2�78 1�82 1�76
90% 2�32 2�09 1�38 1�31
80% 1�65 1�44 1�07 1�02
70% 1�25 1�07 0�93 0�89
50% 0�74 0�60 0�78 0�74
10% 0�11 0�07 0�57 0�56
5% 0�05 0�03 0�54 0�52
1% 0�00 0�00 0�48 0�47

TABLE A-II

ML ESTIMATION OF GAUSSIAN AR(4) MODEL, U.S. REAL GNP

1952Q2 to 1984Q4 1952Q2 to 2010Q4

Parameters Estimates Standard Error Estimates Standard Error

μ 0�720 0.112 0�763 0.083
φ1 0�310 0.085 0�335 0.076
φ2 0�127 0.095 0�124 0.082
φ3 −0�121 0.087 −0�083 0.074
φ4 −0�089 0.090 −0�074 0.074
σ 0�983 0.061 0�883 0.056

T 131 235
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TABLE A-III

ML ESTIMATION OF TWO-STATE MARKOV SWITCHING AR(4)
MODEL, U.S. REAL GNP

1952Q2 to 2010Q4

Parameters Estimates S.E.

μ 0�713 0.172
μ1 0�099 0.232
φ1 0�305 0.083
φ2 0�210 0.083
φ3 −0�120 0.077
φ4 −0�053 0.064
σ 1�105 0.090
σ1 0�421 0.056
p 0�956 0.031
q 0�967 0.031

L 279�142

APPENDIX B: NOTATIONS

B.1. Multilinear Forms

Central to the proofs in this paper are Taylor series expansions to the fourth
order. We will have to organize and manipulate expressions involving multi-
variate derivatives of higher orders. We therefore will be careful with our no-
tation. Clearly, it would be possible to use partial derivatives, but then our
expressions would get really complicated. Hence we will adopt some elements
from multilinear algebra, which will facilitate our computations.

Key to our analysis is the concept of a multilinear form. Consider vector
spaces V , F . Then a multilinear form (or “form,” for short) of order p from V
into F is a mapping M from V × · · · × V (where we take the product p times)
to F , which is linear in each of the arguments. So

λM
(
x(1)� x(2)� � � � � x(i)1 � � � � � x

(p)
)+μM

(
x(1)� x(2)� � � � � x(i)2 � � � � � x

(p)
)

(B.1)

=M
(
x(1)� x(2)� � � � � λx(i)1 +μx(i)2 � � � � � x

(p)
)
�(B.2)

The first important concept we need to discuss is the definition of a deriva-
tive. Essentially, we will follow the differential calculus outlined in Lang (1993,
p. 331 ff). Let f be a function defined on an open set O of the finite-
dimensional vector space V into the finite-dimensional space F . Then f is said
to be differentiable if, for all x ∈O, there exists a linear mapping Df =Df(x)
from V to F so that

lim
r→0

sup
‖h‖=r

∥∥f (x+ h)− f (x)−Df(x)(h)
∥∥/r → 0�(B.3)
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The above expression should not be misinterpreted. Df(x) attaches to each
x ∈O a linear mapping, soDf(x)(h) is, for each h ∈ V , an element of F .Df(x)
is called a Frechet derivative. It is, in a way, a formalization of the well-known
“differential” in elementary calculus. So Df(x) is a linear mapping between V
and F . The space of all linear mappings between V and F , denoted by L(V �F)
is a finite-dimensional vector space again. Hence we can consider the mapping

x→Df(x)�

which maps O into L(V �F), so we may use the concept of Frechet differen-
tiability again and differentiate Df . We then get the second derivative D2f (x).
This second derivative at a point is a linear mapping from V to L(V �F) (an
element from L(V �L(V �F))). That means that, for each h ∈ V , D2f (x)(h) is
an element of L(V �F), so for k ∈ V , D2f (x)(h)(k) is an element of F . More-
over, by construction, the expression D2f (x)(h)(k) is linear in h and k. Hence
D2f (x) maps each pair (h�k) into F and is linear in each of the arguments, so
we can think of D2f (x) as a bilinear form from V × V into F .

When f has enough “derivatives,” we can iterate this process and define the
nth derivative Dnf as derivative of Dn−1f ,

Dnf =D
(
Dn−1f

)
�

Again we can interpret Dnf as an element of L(V �L(V � � � �L(V �F))) or as a
multilinear mapping from V × V × V × V × · · · × V into F . This means that
Dnf(x) attaches to each n-tuple (x1� � � � � xn) of elements of V an element of
F , in such a way that the mapping is linear in each of its arguments. More
importantly, we have again a Taylor expansion

f (x+ h)= f (x)+Df(x)(h)+ 1
2
D2f (x)(h�h)+ · · ·

+ 1
n!D

nf(x)(h� � � � �h)+Rn�

with

Rn = 1
n!

∫ 1

0
(1 − t)nDn+1f (x+ th)(h� � � � �h)dt�(B.4)

if f is at least n+ 1 times continuously differentiable.
Furthermore, provided that f is n times continuously differentiable, Dnf is

symmetric, that is,

Dnf(x)(h1� � � � �hn)=Dnf(x)(hπ(1)� � � � �hπ(n))(B.5)

for every permutation π.
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Moreover, let us consider, for fixed x, h, the function g(t)= f (x+ ht) for t
in a neighborhood of 0, and let g(n) be the nth derivative of g. Then

g(n)(0)=Dnf(x)(h� � � � �h)�(B.6)

It is now an elementary, but tedious, exercise to show that, due to the sym-
metry (B.5), the multilinear form Dnf(x) is uniquely defined by its values
Dnf(x)(h� � � � �h). (As an example, notice that, for a scalar bilinear form B,
we have

B(h�k)+B(k�h)= 1
4
(
B(h+ k�h+ k)−B(h− k�h− k)

)
�

Symmetry implies that the left hand side of the above equation equals
2B(h�k)= 2B(k�h).)

This result allows us to “translate” all the well-known results from elemen-
tary calculus to our formalism. Clearly the derivative is linear, we have a prod-
uct rule—if f and g are scalar functions, then D(fg)= f ·Dg+ (Df) · g, and
more importantly, we have a chain rule. If we compose functions f , g, we have
D(f ◦ g) = Df(Dg). The algebra of multilinear forms is often treated as a
special case of tensor algebra. Although this branch of mathematics is well de-
veloped, it is rarely used in econometrics. Furthermore, many of the advanced
concepts are of no use to us. Hence we will stay with multilinear forms, and
only define the operations and concepts we need. The experts will see that
they are special cases of tensor algebra. Our key simplification will be that we
fix our reference space and the coordinate system once and for all—we simply
forbid the use of other coordinate systems and spaces.

We are in a rather advantageous position:
• We are mostly interested in manipulating the derivatives of a scalar func-

tion, namely, the logarithm of the likelihood function.
• Working independently of a coordinate system is not a priority for us (con-

trary to theoretical physics, where gauge invariance plays a major role).
• We are analyzing derivatives, so most of our multilinear forms are sym-

metric.
Assume that our reference, finite-dimensional vector space V is k-dimen-

sional and that b1� � � � � bk is a basis for this space. Although the basis is arbi-
trary, we will from now on assume this basis to be fixed. It is essential for our
approach that we fix the underlying vector space and the basis, since all of our
definitions relate in one way or another to our chosen basis. It should be noted
that we follow this approach not out of necessity—coordinate independent def-
initions of tensors are commonplace in differential geometry and mathematical
physics—but purely out of convenience. For example, we do not need to distin-
guish between co- and contravariant tensors, so we do not have to distinguish
between “upper” and “lower” indices.
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With the help of our basis, any vector x can uniquely be written as

x=
k∑
i=1

xibi�

We will now mainly work with scalar multilinear forms (i.e., the values of the
form are real numbers). Hence we will assume—except when explicitly stated
otherwise—that multilinear forms are scalar. Let now M be such a multilinear
form. Then, using linearity, we have

M
(
x(1)� x(2)� � � � � x(p)

) =
∑

M(bi1� � � � � bip)x
(1)
i1
x(2)i2 · · ·x(p)ip

�(B.7)

where the sum symbol corresponds to p sums extending over all values of
i1� � � � � ip between 1 and k. There is a one-to-one correspondence between
the kp numbers M(bi1� � � � � bip) and the multilinear forms. For each set of
numbers, we define a uniquely determined multilinear form, and for each
multilinear form, we can find coefficients. Hence, having fixed the coordi-
nate system, we can identify the multilinear form M with its coordinates
M(bi1� � � � � bip). Multilinear forms (with the usual operations) of order p form
a finite-dimensional vector space. The only difference to a “usual” vector space
is the enumeration of the coordinates. We do not index them by the numbers
of 1� � � � �K, but our index set consists of the p-tuples (1� � � � �1)� (2�1� � � �)� � � � �
(k�k� � � � �k). Note that bilinear forms (forms of order 2) are k× k-matrices.

This way, we can work with multilinear forms and related mathematical ob-
jects without having to discuss tensor algebra:

1. Multilinear forms form a vector space, and the mapping attaching each
multilinear form to its coordinates is an isomorphism. Hence we do not need
to distinguish between multilinear forms and kp numbers indexed by a multi-
index (i1� � � � � ip).

2. Let us call a multilinear form C defined by coordinates (ci1�����ip) sym-
metrical if and only if, for all (i1� � � � � ip) and all permutations π of numbers
between 1 and k,

ci1�����ip = cπ(i1)�����π(ip)�

This property is equivalent to our definition above, (B.5). For a form C defined
by coordinates (ci1�����ip), define its symmetrization C(S) by(

C(S)
)
i1�����ip

= 1
k!

∑
all permutation π of {1�����k}

cπ(i1)�����π(ip)�

Then C(S) is symmetrical. Moreover, for all h ∈ V ,

C(h� � � � �h)= C(S)(h� � � � �h)�(B.8)

and, for any form C, C(S) is the only symmetrical form with the property (B.8).
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3. Another special case of multilinear forms are our derivatives of scalar
functions defined on open subsets of our space V . The coordinates Dnf can be
calculated in the following way. Define the function g by

g(x1� � � � � xp)= f
(∑

xibi
)
�(B.9)

where the bi are our fixed basis vectors. Then the corresponding coordinates
of the derivative are given by ( ∂ng

∂xi1 ∂xi2 ···∂xin )(i1�����in).
4. There is also another technique for computing Dnf , which we will use

below. Define, for fixed x and h ∈ V , the function

gh(t)= f (x+ th)�

Then, it follows from (B.6) that Dnf(h�h� � � � �h) = g(n)h (0), where g(n)h is the
usual nth derivative. Now suppose we can find a form C so that, for all h,

C(h� � � � �h)= g(n)h (0)�

Then, due to (B.8) and the symmetry of the derivative, Dnf = C(S).
5. Apart from the usual operations, we also can define the tensor product

between multilinear forms. Let A and B be forms of order p and q with coor-
dinates (a(i1�����ip)) and (b(i1�����iq)), respectively. Then the tensor product A⊗ B
is a multilinear form of order p+ q with coordinates

a(i1�����ip)b(ip+1�����ip+q)�(B.10)

Although the definition of the tensor product looks similar to the Kronecker
product, these two concepts should not be confused. A Kronecker product of
two matrices is again a matrix. In contrast, the tensor product of two forms of
order 2 is a form of order 4. It is interesting to consider the properties of the
corresponding multilinear forms:

(A⊗B)(h1� � � � �hp+q)=A(h1� � � � �hp)B(hp+1� � � � �hp+q)�(B.11)

The tensor product of symmetric forms, however, may not be symmetric.
6. We can define the scalar product 〈·� ·〉 in the usual way. Let us assume

that T represents a form with coordinates (ti1�����ip), and C is a form with coor-
dinates (ci1�����ip); we have

〈T�C〉 =
∑

ti1�����ipci1�����ip �(B.12)

7. This scalar product is useful in computing the expectation of multilinear
forms with random arguments. First of all, let us observe that each vector h ∈ V
has exactly k coordinates. Since (B.7) defines, for each set of coordinates, a
form, we can identify h with a 1-form (i.e., a linear form with one argument).
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We will use the same symbol h for this form. Now let h1� � � � �hp ∈ V . Then
we can use (B.10) to define h1 ⊗ · · · ⊗ hp. Now suppose we want to compute
the value of the multilinear form T(h1� � � � �hp). Then we can see from (B.7),
(B.12) that T(h1� � � � �hp) equals 〈T�h1 ⊗ · · ·⊗hp〉. Let H1� � � � �Hp be random
variables with values in our reference space V , and T be a multilinear form,
which is fixed or exogenous. Suppose we want to compute the expectation of

T(H1� � � � �Hp)�

Since T(H1� � � � �Hp)= 〈T�H1 ⊗ · · · ⊗Hp〉, and since T is independent of the
Hi, we can have

E
(
T(H1 ⊗ · · · ⊗Hp)

) = 〈
T�E(H1 ⊗ · · · ⊗Hp)

〉
�(B.13)

provided the expectations exist. (A sufficient condition is, e.g., E‖H1‖ · · ·
‖Hp‖ < ∞: H1 ⊗ · · · ⊗ Hp is a multilinear form, and, as already mentioned
above, the forms of order p form a vector space. Hence we should not have
any conceptual difficulties with expectations.) Moreover, (B.13) is valid for
conditional expectations, too. In the sequel, we will use these types of iden-
tities rather freely.

8. Most of our proof will involve the expectation of multilinear forms rep-
resenting derivatives. The notation using the bracket 〈·� ·〉 would be rather
clumsy. So we propose to use a more suggestive notation. Instead of 〈T�C〉,
we will use T(C), that is, we use the form C as an argument. With this nota-
tion, we can write (B.13) as

E
(
T(H1 ⊗ · · · ⊗Hp)

) = T
(
E(H1 ⊗ · · · ⊗Hp)

)
�

Furthermore, when evaluating these kinds of expressions, we will use the usual
linearity properties of scalar products without further notice.

9. If A is symmetrical, then, for every T ,

T(A)= T (S)(A)�(B.14)

In particular, if we have an arbitrary random vector H (with sufficiently many
moments), then E(H ⊗ · · · ⊗H) is symmetrical, hence (B.14) implies that, for
all forms T ,

T
(
E(H ⊗ · · · ⊗H)

) = T (S)
(
E(H ⊗ · · · ⊗H)

)
�

10. As we already stated, the multilinear forms form a finite-dimensional
vector space. Hence all norms are equivalent, in the sense that the ratio be-
tween two norms is (for all elements of the reference space with the exception
of 0) bounded from above and bounded from below with a bound strictly big-
ger than zero. Hence convergence properties of sequences are the same for
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different norms, and we do not need to care about which norm we use. Of
particular interest, however, is the norm

‖T‖ =
√∑

t2
i1�����ip

�

where the ti1�����ip are the coordinates of T . The Cauchy–Schwarz inequality and
(B.12) imply that, for all T , C,∣∣T(C)∣∣ ≤ ‖T‖‖C‖�
Estimates for the norms of tensor products are more difficult; we will discuss
them later on when they appear.

B.2. Other Notations

The sample is split into blocks in the following way:

t = 1�2� � � � �T1︸ ︷︷ ︸
1st block

�T1 + 1� � � � �T2︸ ︷︷ ︸
2nd block

� � � � �

Ti−1 + 1� � � � � Ti︸ ︷︷ ︸
ith block

� � � � �TBN−1 + 1� � � � �TBN︸ ︷︷ ︸
BN th block

�

There are BN blocks and each block has BL or BL −1 elements. i is the index
for the block with i = 1� � � � �BN . We use the convention T0 = 0 and TBN = T .
In the sequel, we will decompose the sum as follows:

T∑
t=1

=
BN∑
i=1

Ti∑
t=Ti−1+1

�

In the proofs, we choose BL so that some terms become negligible.

DEFINITION B.1: Define Hi�T as the σ-algebra generated by (ϑTi�ϑTi−1� � � � �
ϑ1� yT � � � � � y1), where ϑt was introduced in Assumption 3.

Then H0�T is the σ-algebra generated by the data (yT � � � � � y1) only.
Our analysis is based on the derivatives of the logarithm of the likelihood

function. Recall that the conditional densities are denoted by ft = ft(θT ), and
the conditional log-likelihood functions by lt . We also defined Dklt = l(k)t .

First, we need to derive the tensorized forms of well-known Bartlett identi-
ties (Bartlett (1953a, 1953b)). Let us define, for an arbitrary, but fixed, h, the
function

�t(u)= log ft(θT + uh)�
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Let f = ft(θT ) and f ′� f (2)� � � � denote the derivatives of ft(θT + uh) with
respect to u. When differentiating �t , one obtains:

1st derivative: �(1)t = f ′

f
�

2nd derivative: �(2)t = f (2)

f
− f ′

f 2
f ′�

3rd derivative: �(3)t = f (3)

f
− f (2)

f 2
f ′ − 2f ′f (2)

f 2
+ 2

f ′2

f 3
f ′�

4th derivative: �(4)t = f (4)

f
− f (3)

f 2
f ′ − 3f (3)f ′ + 3f (2)f (2)

f 2
+ 6

f (2)f ′

f 3
f ′

+ 6
f ′2

f 3
f (2) − 6

f ′3

f 4
f ′�

According to the formalism outlined previously, we can conclude that �(k)t =
l(k)t (h� � � � �h) and that f (k) =Dkf(h� � � � �h). Taking into account our charac-
terization of the tensor product (B.11), and the techniques described above,
we can conclude that

l(1)t = (1/ft)Dft�

1
ft
D2ft = l(2)t + l(1)t ⊗ l(1)t �(B.15)

1
ft
D3ft =

(
l(3)t + 3l(2)t ⊗ l(1)t + l(1)t ⊗ l(1)t ⊗ l(1)t

)(S)
�

1
ft
D4ft =

(
l(4)t + 6l(2)t ⊗ l(1)t ⊗ l(1)t + 4l(3)t ⊗ l(1)t

+ 3l(2)t ⊗ l(2)t + l(1)t ⊗ l(1)t ⊗ l(1)t ⊗ l(1)t
)(S)
�

There is no need to symmetrize (B.15) since the form on the right hand side is
symmetrical. Moreover, for k≤ 4, we have, for arbitrary h, E( 1

ft
Dkft(h� � � � �h)|

H0�t−1) = ∫
1
ft
Dkft(h� � � � �h)ft dμ(yt) = ∫

Dkft(h� � � � �h)dμ(yt), where μ is
the dominating measure defined in Section 2. Since we assumed ft to be at
least five times differentiable (and the fifth derivative to be uniformly inte-
grable), it follows from Bartle (1966, Corollary 5.9) that we can interchange
integral and differentiation, and conclude that

∫
Dkft(h� � � � �h)dμ(yt) =

Dk(
∫
ft dμ(yt))(h� � � � �h) = 0, since all the ft , as conditional densities, in-

tegrate to 1. It follows that E( 1
ft
Dkft(h� � � � �h)|H0�t−1) = 0. This property

is referred to as the kth Bartlett identity. Note that as a consequence,
1
ft
Dkft(h� � � � �h) is a martingale difference sequence with respect to H0�t .
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APPENDIX C: PROOFS

C.1. Proofs of Theorems 3.1 and 3.2

The proof of Theorem 3.1 uses the following lemma.

LEMMA C.1: We have

1
T

∑
t

∂μ2�t(β�θ0)

∂θ
= − 1

T

∑
t

μ2�t(β�θ0)
∂lt(θ0)

∂θ
+ op(1)�

uniformly in β.

PROOF: The proof consists in some manipulations of the derivatives of μ2�t

with respect to θ. To make our formulas more readable, we omit all the argu-
ments like E(ηt ⊗ηs) or similar moments of ηt . They only depend on β, so all
differentiation with respect to θ will leave them unchanged. Let us first rewrite
∂μ2�t
∂θk

. We have

μ2�t = 1
2

(
l(2)t + l(1)t ⊗ l(1)t + 2

∑
s>0

l(1)t ⊗ l(1)t−s

)

and

∂

∂θk

(
l(2)t + l(1)t ⊗ l(1)t

) = ∂

∂θk

(
∂2lt

∂θi ∂θj
+ ∂lt

∂θi

∂lt

∂θj

)
= ∂3lt

∂θk ∂θi ∂θj
+ ∂2lt

∂θk ∂θi

∂lt

∂θj
+ ∂lt

∂θi

∂2lt

∂θk ∂θj
�

From the third Bartlett identity,

m3�t = ∂3lt

∂θk ∂θi ∂θj
+ ∂lt

∂θj

∂2lt

∂θk ∂θi
+ ∂lt

∂θi

∂2lt

∂θk ∂θj

+ ∂lt

∂θk

∂2lt

∂θi ∂θj
+ ∂lt

∂θi

∂lt

∂θj

∂lt

∂θk

is a martingale difference sequence (m.d.s.) and therefore 1
T

∑T

t=1m3�t = op(1).
Of course, m3�t is still a function of β. But this parameter only appears in the
arguments of the linear forms on the right hand side, which are moments of ηt .
Since we assumed the ηt to be uniformly bounded and exponentially mixing,
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we can conclude that this relationship holds uniformly in β. We can use the
same argument in all of the convergence results in this proof:

∂

∂θk

1
T

T∑
t=1

(
l(2)t + l(1)t ⊗ l(1)t

)
= 1
T

T∑
t=1

m3�t − 1
T

T∑
t=1

[
∂2lt

∂θi ∂θj
+ ∂lt

∂θi

∂lt

∂θj

]
∂lt

∂θk

= op(1)− 1
T

T∑
t=1

[
∂2lt

∂θi ∂θj
+ ∂lt

∂θi

∂lt

∂θj

]
∂lt

∂θk
�

∂

∂θk

2
T

T∑
t=1

∑
s>0

∂lt

∂θi

∂lt−s
∂θj

= 2
T

T∑
t=1

∑
s>0

[
∂2lt

∂θk ∂θi

∂lt−s
∂θj

+ ∂lt

∂θi

∂2lt−s
∂θk ∂θj

]

= 2
T

T∑
t=1

∑
s>0

[
∂2lt

∂θk ∂θi
+ ∂lt

∂θk

∂lt

∂θi

]
∂lt−s
∂θj

+ 2
T

T∑
t=1

∑
s>0

∂lt

∂θi

∂2lt−s
∂θk ∂θj

− 2
T

T∑
t=1

∑
s>0

∂lt

∂θi

∂lt

∂θj

∂lt−s
∂θk

= op(1)− 2
T

T∑
t=1

∑
s>0

∂lt

∂θi

∂lt

∂θj

∂lt−s
∂θk

�

because ∂2lt
∂θk ∂θi

+ ∂lt
∂θk

∂lt
∂θi

and ∂lt
∂θi

are m.d.s. Therefore, we have

1
T

T∑
t=1

∂μ2�t

∂θk

= − 1
2T

T∑
t=1

[
∂2lt

∂θi ∂θj
+ ∂lt

∂θi

∂lt

∂θj
+ 2
T

T∑
t=1

∑
s>0

∂lt

∂θi

∂lt−s
∂θj

]
∂lt

∂θk
+ oP(1)

= −ĉov
(
μ2�t �

∂lt

∂θk

)
+ oP(1)

where ĉov denotes the empirical covariance. Moreover, we have ĉov(μ2�t �
∂lt
∂θk
)→ cov(μ2�t �

∂lt
∂θk
). Q.E.D.
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PROOF OF THEOREM 3.1: First let us observe that because θ̂ is the MLE,∑
l(1)t (θ̂) = 0. Hence ΓT can be rewritten as 1√

T

∑
(μ2�t(β� θ̂)− d′l(1)t (θ̂)). De-

note

νT (β�θ)= 1√
T

∑
t

(
μ2�t(β�θ)− d′l(1)t (θ)

)
�(C.1)

To show point (i) of Theorem 3.1, we need to establish that (a) νT (β� θ̂) −
νT (β�θ0) converges to zero in probability uniformly in β, and (b) νT (β�θ0)
converges to N(β) as a process indexed by β.

(a) A second-order Taylor expansion of νT (β� θ̂) around θ0 gives

νT (β� θ̂)= νT (β�θ0)+ 1√
T

∂

∂θ
νT (β�θ0)

√
T(θ̂− θ0)

+ 1
2
(θ̂− θ0)

′ 1√
T

∂2

∂θ∂θ′ νT (β� θ̄)
√
T(θ̂− θ0)�

where θ̄ = λθ0 + (1 − λ)θ̂ for some 0 < λ < 1. Assumption 2 guarantees the
uniform convergence (in θ) of 1√

T

∂2

∂θ∂θ′ νT (β�θ) to Eθ0( 1√
T

∂2

∂θ∂θ′ νT (β�θ)), which
is a constant. As

√
T(θ̂− θ0)=Op(1), it is sufficient to show that

∂

∂θ

(
1
T

T∑
t=1

μ2�t(β�θ)− 1
T

T∑
t=1

d′l(1)t (θ)

)
→ 0�(C.2)

in probability uniformly in β. To establish (C.2), we have to show that

1
T

∑
t

∂μ2�t(β�θ0)

∂θ
− 1
T

T∑
t=1

d′l(2)t (θ0)
P→ 0�

uniformly in β. The average of the second derivatives converges to the negative
Information matrix,

1
T

T∑
t=1

l(2)t (θ0)
P→ −I(θ0)�

and from Lemma C.1, it follows that

1
T

∑
t

∂μ2�t

∂θ

P→ − cov
(
μ2�t �

∂lt

∂θ

)
�

Then (C.2) follows from the definition of d in (3.1).
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(b) By Pollard (1990), νT converges weakly to a process ν if (i) B is totally
bounded, (ii) the finite-dimensional distributions of νT converge to those of ν,
and (iii) {νT (θ0� ·) :T ≥ 1} is stochastic equicontinuous, that is, for all ε > 0,
there exists δ > 0 such that

limT→∞P
(

sup
‖β1−β2‖≤δ

∣∣νT (θ0�β1)− νT (θ0�β2)
∣∣> ε)< ε�

Condition (i) holds because B is a compact. Condition (ii) holds by the central
limit theorem of martingale difference sequences. We now establish (iii). The
process 1√

T

∑
t μ2�t(θ�β) can be approximated by

1√
T

∑
t

μ̃2�t(θ�β)= 1

2
√
T

T∑
t=1

tr

(((
l(2)t + l(1)t l

(1)′
t

)
Eβ

(
ηtη

′
t

))
+ 2

t−1∑
s=−∞

(
l(1)t l

(1)′
s Eβ

(
ηtη

′
s

)))

= 1
2

tr

(
Eβ

(
ηtη

′
t

) 1√
T

T∑
t=1

(
l(2)t + l(1)t l

(1)′
t

)
+ 2

∞∑
k=1

Eβ
(
ηtη

′
t−k

) 1√
T

∑
t

(
l(1)t l

(1)′
t−k

))

= 1
2

tr
(
Eβ

(
ηtη

′
t

)
m0

)+ tr

( ∞∑
k=1

Eβ
(
ηtη

′
t−k

)
mk

)
�

where m0 = 1√
T

∑T

t=1(l
(2)
t + l(1)t l

(1)′
t ) and mk = 1√

T

∑
t(l

(1)
t l

(1)′
t−k) are both Op(1).

Let us denote by sT the term 1√
T

∑
t l
(1)
t (θ0). We can approximate νT (θ0� ·) by

ν̃T (β)= 1
2

tr
(
Eβ

(
ηtη

′
t

)
m0

)+ tr

( ∞∑
k=1

Eβ
(
ηtη

′
t−k

)
mk

)
− d′(β)sT �

We have

E sup
β∈B

∣∣νT (β)− ν̃T (β)
∣∣ ≤ E sup

β∈B

∣∣∣∣∣ 1√
T

T∑
t=1

0∑
s=−∞

tr
(
l(1)t l

(1)′
s Eβ

(
ηtη

′
s

))∣∣∣∣∣
≤ 1√

T

T∑
t=1

0∑
s=−∞

E sup
β∈B

∣∣tr(l(1)t l(1)′s Eβ
(
ηtη

′
s

))∣∣
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≤ 1√
T

T∑
t=1

0∑
s=−∞

E
(∣∣l(1)t ∣∣∣∣l(1)s ∣∣′) sup

β∈B

∣∣Eβ
(
ηtη

′
s

)∣∣
≤ E

(
l(1)t l

(1)′
t

) 1√
T

T∑
t=1

0∑
s=−∞

sup
β∈B

∣∣Eβ
(
ηtη

′
s

)∣∣
≤ E

(
l(1)t l

(1)′
t

) 1√
T

T∑
t=1

0∑
s=−∞

λt−s sup
β∈B

Cβ�

with 0 < λ < 1, where the first inequality follows from Cauchy–Schwarz and
the second follows from Assumption 3 (geometric ergodicity of ηt). Moreover,
since Cβ is some moment of ηt , it is necessarily finite by Assumption 3. There-
fore, E supβ∈B |νT (β)− ν̃T (β)| converges to zero. Thus, it suffices to establish
the stochastic equicontinuity of {̃νT (·) :T ≥ 1}. We have

∣∣̃νT (β1)− ν̃T (β2)
∣∣ ≤

∣∣∣∣∣tr
((
Eβ1

(
ηtη

′
t

)−Eβ2
(
ηtη

′
t

))m0

2

)

+ tr

( ∞∑
k=1

(
Eβ1

(
ηtη

′
t−k

) −Eβ2
(
ηtη

′
t−k

))
mk

)

− (
d(β1)− d(β2)

)′
sT

∣∣∣∣∣
≤ p

∥∥∥∥((Eβ1
(
ηtη

′
t

) −Eβ2
(
ηtη

′
t

))m0

2

)∥∥∥∥
+p

∥∥∥∥∥
∞∑
k=1

(
Eβ1

(
ηtη

′
t−k

)−Eβ2
(
ηtη

′
t−k

))
mk

∥∥∥∥∥
+ ∣∣(d(β1)− d(β2)

)′
sT
∣∣�

The second term is split into two sums so that∥∥∥∥∥
∞∑
k=1

(
Eβ1

(
ηtη

′
t−k

)−Eβ2
(
ηtη

′
t−k

))
mk

∥∥∥∥∥
≤

∥∥∥∥∥
k0−1∑
k=1

(
Eβ1

(
ηtη

′
t−k

)−Eβ2
(
ηtη

′
t−k

))
mk

∥∥∥∥∥
+

∥∥∥∥∥
∞∑

k=k0

(
Eβ1

(
ηtη

′
t−k

)−Eβ2
(
ηtη

′
t−k

))
mk

∥∥∥∥∥�
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Assumption 3 implies that the second term is of order λk0 and hence can be
made as small as we want by choosing k0 sufficiently large. Finally, the stochas-
tic equicontinuity follows from the continuity of Eβ(ηtη

′
t−k), k = 0�1� � � � and

of d(β) and the application of the Markov theorem.
Point (ii) of Theorem 3.1. Let

d̂ = d̂(β)=
(

1
T

T∑
t=1

l(1)t (θ̂)l
(1)′
t (θ̂)

)−1(
1
T

T∑
t=1

μ2�t(θ̂�β)l
(1)
t (θ̂)

)
�

Assumption 2 guarantees the uniform convergence in θ of 1
T

∑T

t=1 l
(1)
t (θ)l

(1)′
t (θ)

to E(l(1)t (θ)l
(1)′
t (θ)). Similarly, it can be shown that 1

T

∑T

t=1μ2�t(θ�β)l
(1)
t (θ)

converges uniformly in β and θ to E(μ2�t(θ�β)l
(1)
t (θ)). Then, by the consis-

tency of the ML estimator, it follows that d̂(β) converges to d(β) in proba-
bility uniformly in β. Denote yt = μ2�t(θ̂), xt = l(1)t (θ̂), y = (y1� � � � � yT )

′, and
X = (x′

1� � � � � x
′
T )

′. Using these notations, d̂ = (X ′X)−1X ′y and

1
T

∑
t

[
μ2�t(θ̂�β)

]2 − d̂′Î(θ̂)d̂/T

= (
y ′y − y ′X

(
X ′X

)−1
X ′y

)
/T

= y ′[I −X
(
X ′X

)−1
X ′]y/T

= y ′MXMXy/T

= ̂ε(β)
′
̂ε(β)/T�

where MX = I −X(X ′X)−1X ′ is idempotent. Consequently,

1
2T

̂ε(β)
′
̂ε(β)→ 1

2
Eμ2�t(θ0�β)

2 − 1
2
d′I(θ0)d

= 1
2
E
[(
μ2�t(θ0�β)− d′l(1)t (θ0)

)2]
�

in probability uniformly in β.
Point (iii) of Theorem 3.1 is an immediate consequence of points (i) and

(ii) and the continuous mapping theorem. This concludes the proof of Theo-
rem 3.1. Q.E.D.

PROOF OF THEOREM 3.2: First of all, let us state some high-level sufficient
conditions.

CONDITION A: For each θ0 and ε > 0, we can find an M(ε) so that there
exist random variables W1� � � � �WM(ε) with the following properties:



OPTIMAL TEST FOR MARKOV SWITCHING PARAMETERS 25

A1. There exists a continuous function f so that

Pθ0+h/√T
[∣∣TS − f (W1� � � � �WM(ε))

∣∣> ε]< ε�
uniformly on all bounded subsets of h.

A2. For T → ∞, (W1� � � � �WM(ε)� log
dP

θ0+h/√T
dPθ0

)′ converges in distribution un-
der Pθ0 to a Gaussian distribution with mean 0 and covariance(

Σ 0
0 Ω

)
�

where Σ is the asymptotic covariance of (W1� � � � �WM(ε))
′ and Ω the covariance

matrix of log
dP

θ0+h/√T
dPθ0

.

Condition A1 stipulates that the test statistic, TS, can be approximated by
a sequence of random variables. Condition A2 stipulates that the joint distri-
bution of these random variables and the log-likelihood ratio is asymptotically
normal with correlation equal to zero.

THEOREM C.2: Consider any test that satisfies Conditions A1 and A2. The crit-
ical values obtained using data drawn from the distribution Pθ̂ are asymptotically
the same as those obtained from data drawn from the distribution Pθ0 .

PROOF: We apply Le Cam’s third lemma (van der Vaart (1998, p. 90)) on
Condition A2. It implies that, under PθT , (W1� � � � �WM(ε))

′ converges in distri-
bution to a Gaussian distribution with mean 0 and covariance Σ. So the dis-
tribution is the same under the null and the local alternative. If we draw the
observations in Pθ̂, the corresponding critical values will be asymptotically the
same as if the observations were drawn in Pθ0 . Q.E.D.

PROOF OF THEOREM 3.2—Continued: We have to verify both Conditions
A1 and A2 for our test statistic. First of all, let us observe that we are es-
tablishing some kind of pivotal property of our test statistic. TST (β� θ̂) is a
function of the data alone, so its distribution is determined by the underlying
distribution of the data. We established in the proof of Theorem 3.1 that, un-
der Pθ0 , the processes TST (·� θ̂) converge for T → ∞ in distribution. Hence
their probability distributions remain uniformly tight. For every ε > 0, we can
find a compact set C(ε) of continuous functions so that the probabilities of
TST (·� θ̂) being in C(ε) are at least 1 − ε. The Arzela–Ascoli theorem char-
acterizes the elements of compact sets to be equicontinuous. Equicontinuity
implies that we can approximate (in the sense that, for all ε > 0, the probabil-
ity of the difference being larger than ε becoming arbitrarily small) the inte-
grals

∫
exp(TST (β� θ̂))dν(β�d) by finite sums

∑
νi exp(TST (βi� θ̂)). An anal-
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ogous result holds true for the supremum statistic: Equicontinuity implies that
sup(TST (β� θ̂)) can be approximated by max(TST (βi� θ̂)).

Hence it is sufficient to show that the joint distributions of the finite-
dimensional vectors (TST (βi� θ̂) : 1 ≤ i ≤N) are asymptotically the same nor-
mal distribution for all Pθ with θ such that ‖θ− θ0‖ ≤M/

√
T for arbitrary M .

Condition A1 shows that, asymptotically, the density between probabilities cor-
responding to parameters θ0 + h/

√
T and θ0 + k/

√
T is lognormal with mean

O(‖h − k‖) and variance O(‖h − k‖2). Hence compactness guarantees that,
for every ε > 0, we can find finitely many parameter values, say h1� � � � �hj , in-
dependent of T , so that, for every h with ‖h‖ ≤M , there is an hi such that the
total variation of the difference of the probability distributions corresponding
to parameters θ0 + h/

√
T and θ0 + hi/

√
T is smaller than ε. Hence it is suf-

ficient to show that the distributions of (TST (βi� θ̂) : 1 ≤ i ≤ N) are the same
when the data are generated by θ0 + hi/

√
T .

To show this, we can apply Theorem 3.1. Under Pθ0 , the TST (βi� θ̂) are nor-
malized sums of martingale-differences (plus constants), and elementary cal-
culations establish that

log
dPθ0+hi/

√
T

dPθ0

− 1√
T

T∑
t=1

h′
il
(1)
t (θT )+ 1

2
E
(
h′
il
(1)
t (θT )

)2 → 0�

Hence the multivariate CLT implies that the joint distribution of TST (βi� θ̂)
and the logarithm of the densities is a multivariate normal distribution. More-
over, as TST (βi� θ̂) involves a projection on the space orthogonal to l(1)t , it is
asymptotically uncorrelated and hence independent from the logarithm of the
densities. This proves Condition A2. The consistency of fractiles follows from
the fact that TSs are i.i.d. across s, conditional on the observations. Q.E.D.

C.2. Proof of Theorem 4.1: Preliminary

Uniform convergence: The statement of the theorem involves some uniform
convergence in probability of a parameterized family of random variables. First
assume the theorem would not be true. There would exist a compact subset
K ⊆ Θ× B so that we do not have uniform convergence in probability on K.
Then there exists a sequence (θT �βT ) ∈K and an ε > 0 so that

PθT

([∣∣∣∣∣�βTT (θT )/exp

(
1√
T

T∑
t=1

μ2�t(θT �βT )

− 1
2
E
(
μ2�t(θT �βT )

2
))− 1

∣∣∣∣∣ ≥ ε

])
≥ ε�
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Since the (θT �βT ) are elements of a compact subset, there exists a convergent
subsequence. Hence, to prove Theorem 4.1, it is sufficient to show that, for
every (θT �βT )→ (θ0�β0),

PθT

([∣∣∣∣∣�βTT (θT )/exp

(
1√
T

T∑
t=1

μ2�t(θT �βT )

− 1
2
E
(
μ2�t(θT �βT )

2
))− 1

∣∣∣∣∣ ≥ ε

])
→ 0

or

�βTT (θT )
/

exp

(
1√
T

T∑
t=1

μ2�t(θT �βT )− 1
2
E
(
μ2�t(θT �βT )

2
)) → 1�

in probability with respect to PθT .
In the sequel, we will prove this relationship. To simplify our notation, how-

ever, we suppress the parameters (θT �βT ) and (θ0�β0). When analyzing ex-
pressions related to a sample of length T , we simply write E and P instead
of EθT and PθT . Moreover, we also drop the argument from expressions like
lt(θT ), and simply use lt . The proper argument should be evident from the
context. This simplification of notation brings significant advantages for our
calculations of derivatives: When we are using arguments in connection with
derivatives, then they are meant to be arguments of the corresponding multi-
linear form. As an example, the expression l(2)t denotes the second derivative of
lt at θT , which is a bilinear form, and l(2)t (h�k) is the evaluation of this bilinear
form with the arguments h and k.
Reference spaces: In our construction of the alternative, we did assume that
the parameters ϑt are strictly exogenous. Assume our random variables
(y1� y2� � � � � yT �ϑ1� � � � �ϑT ) are defined on the product space

Π =ΩT ×ΞT(C.3)

with σ-algebras

H0�T × σ(ϑ1� � � � �ϑT )�

and H0�T is defined in Definition B.1. Moreover, under the null hypothesis, the
probability measures on H0�T and σ(ϑ1� � � � �ϑT ) are independent by construc-
tion (see Assumption 1). Hence

P = P|H0�T × P|σ(ϑ1�����ϑT )�

where P|· denotes the restriction of the measure to the σ-algebra. Remark
that this independence is not true under the alternative. However, this does
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not matter because we only analyze the properties of the likelihood under the
null. Since all our computations only involve the observations and functions of
ϑt , we can, without limitation of generality, assume that all random variables
are defined on the space Π as in (C.3).
Steps of the Proof : Theorem 4.1 is proved in three steps.

Denote TET the Taylor expansion of
∑

t(lt(θT + ηt/T
1/4)− lt(θT )) around

θT :

TET =
T∑
t=1

[
1

4
√
T
l(1)t (ηt)+ 1

2
√
T
l(2)t (ηt�ηt)

+ 1

6 4
√
T 3
l(3)t (ηt�ηt�ηt)+ 1

24T
l(4)t (ηt�ηt�ηt�ηt)

]
�

where l(1)t � � � � � l
(4)
t are function of θT .

Denote

T̃ST (β�θ)= 1√
T

∑
t

μ2�t(β�θ)− 1
2T

∑
t

[
μ2�t(β�θ)

]2
�

Step 1. Show that

�
βT
T (θT )

E[exp(TET ) |H0�T ]
P→ 1�(C.4)

Step 2. Show that there exists some H0�T -measurable ZT such that

limE
(
exp(TET −ZT) |H0�T

) = 1�(C.5)

Step 3. Show that

ZT − T̃ST (βT �θT )= op(1)�(C.6)

The following lemmas are used in the proof of Theorem 4.1.

LEMMA C.3: Assume that, for any ε > 0, we can find 1 − ε ≤ fT
f ∗
T

≤ 1 + ε on
some set Aε

T so that limT→∞ P(Aε
T )= 1, where Aε

T is H0�T -measurable and inde-

pendent of β. Then E(fT |H0�T )

E(f ∗
T |H0�T )

P→ 1.

Note that a sufficient condition for Lemma C.3 is∣∣∣∣fTf ∗
T

∣∣∣∣ ≤ 1 +CT�

where CT is H0�T -measurable and independent of β and CT
p→ 0.
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PROOF OF LEMMA C.3: Let η be an arbitrary positive number and 0< ε <
η:

E(fT |H0�T )= E

(
fT

f ∗
T

f ∗
T

∣∣H0�T

)
= IAεT E

(
fT

f ∗
T

f ∗
T

∣∣H0�T

)
+ I(AεT )cE

(
fT

f ∗
T

f ∗
T

∣∣H0�T

)
�

Under the assumptions of the lemma,

IAεT (1 − ε)E
(
f ∗
T |H0�T

)+ I(AεT )cE(fT |H0�T )

≤E(fT |H0�T )

≤ IAεT (1 + ε)E
(
f ∗
T |H0�T

)+ I(AεT )cE(fT |H0�T )�

To simplify the notation, we denote E(fT |H0�T )

E(f ∗
T |H0�T )

by XT ; then we get

IAεT (1 − ε)+ I(AεT )cXT ≤XT ≤ IAεT (1 + ε)+ I(AεT )cXT �

We have

P
(|XT − 1|<η)
= P(1 −η<XT < 1 +η)

≥ P
[(
IAεT (1 + ε)+ I(AεT )cXT < 1 +η

)
∩ (
IAεT (1 − ε)+ I(AεT )cXT > 1 −η

)]
= P

(
Aε

T

)+ P
((
Aε

T

)c)
P(1 −η<XT < 1 +η)

≥ P
(
Aε

T

) → 1�

where the last equality follows from the law of total probability. Hence
XT

p→ 1. Q.E.D.

LEMMA C.4: Let xi�T be Hi�T -measurable random variables and let Δi�T =
E(xi�T |Hi−1�T ). Assume there are bounds CT → 0 and DT → 0 H0�T -measurable
and independent of β such that∣∣∣∣∣

BN∑
i=1

Δi�T

∣∣∣∣∣ ≤ CT(C.7)

and
BN∑
i=1

Δ2
i�T ≤DT�(C.8)
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Then

E

[
BN∏
i=1

(1 + xi�T )
∣∣∣H0�T

]
P→ 1�(C.9)

PROOF: Using a Taylor expansion, we see that Conditions (C.7) and (C.8)
imply that

BN∑
i=1

ln(1 +Δi�T )=
BN∑
i=1

Δi�T −

BN∑
i=1

Δ2
i�T

2
+ o

(
BN∑
i=1

Δ2
i�T

)
P→ 0�

or, more precisely,

1 − ε≤
BN∏
i=1

(1 +Δi�T )≤ 1 + ε

for any ε > 0 on a set Aε
T H0�T -measurable and independent of β such that

P(Aε
T )→ 1.

Using iterated expectations and the definition of Δi�T , we obtain

E

⎡⎢⎢⎢⎢⎢⎣
BN∏
i=1

(1 + xi�T )

BN∏
i=1

(1 +Δi�T )

∣∣∣∣∣H0�T

⎤⎥⎥⎥⎥⎥⎦ = 1�

Hence we have

1
1 + ε

E

[
BN∏
i=1

(1 + xi�T )
∣∣∣H0�T

]
≤ 1 ≤ 1

1 − ε
E

[
BN∏
i=1

(1 + xi�T )
∣∣∣H0�T

]
�

or, equivalently,

1 − ε≤E

[
BN∏
i=1

(1 + xi�T )
∣∣∣H0�T

]
≤ 1 + ε�

As P(Aε
T )→ 1, it follows that |E[∏BN

i=1(1 + xi�T ) |H0�T ] − 1| P→ 0. Q.E.D.
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LEMMA C.5: Let a1� a2� � � � � aN be a sequence of numbers for some integer
N ≥ 1. Then(

N∑
i=1

|ai|
)l

≤Nl−1
N∑
i=1

|ai|l� l= 1�2� � � � �

PROOF: Let pi = |ai|/∑N

i=1 |ai|. The problem consists in solving
minpi

∑N

i=1p
l
i subject to

∑N

i=1pi = 1. The solution is
∑N

i=1p
l
i = 1/Nl−1. Q.E.D.

C.3. Step 1 of the Proof of Theorem 4.1

Using a Taylor expansion, we obtain∣∣∣∣∣
T∑
t=1

(
lt
(
θT +ηt/T

1/4
)− lt(θT )

)− TET

∣∣∣∣∣
≤

T∑
t=1

∥∥l(5)t (θT )∥∥ ·M5 · 1

T
4
√
T

= 1
T

T∑
t=1

∥∥l(5)t (θT )∥∥ ·M5 · 1
4
√
T

= op(1)

because

1
T

T∑
t=1

E
∥∥l(5)t (θT )∥∥ ≤ sup

θ∈N
E
(∥∥l(5)t (θ)∥∥)<∞

by Assumption 2. Then (C.4) follows directly from Lemma C.3.

C.4. Step 2 of the Proof of Theorem 4.1

Our primary objective is the computation of the conditional expectation
E(exp(TET ) | H0�T ), or equivalently, to show that, for some H0�T -measurable
ZT , limE(exp(TET − ZT) | H0�T ) = 1. Let us assume that the ith block lies
between Ti−1 + 1 and Ti. Define

L(1)
i =

Ti∑
t=Ti−1+1

l(1)t (ηt)�

L(2)
i =

Ti∑
t=Ti−1+1

l(2)t (ηt�ηt)�
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L(3)
i =

Ti∑
t=Ti−1+1

l(3)t (ηt�ηt�ηt)�

L(4)
i =

Ti∑
t=Ti−1+1

l(4)t (ηt�ηt�ηt�ηt)�

Hence we can write (C.5) as

limE

(
exp

(
BN∑
i=1

(
1

4
√
T
L(1)
i + 1

2
√
T
L(2)
i

+ 1

6 4
√
T 3
L(3)
i + 1

24T
L(4)
i

)
−ZT

) ∣∣∣H0�T

)
= 1�

Let Ri be a sequence of Hi�T -measurable random variables. Then define
RBN+1 =R0 = 0. Let the function Γi(R) be defined as

Γi(R)=E(Ri+1 |Hi�T )−E(Ri+1 |H0�T )−E(Ri |Hi−1�T )(C.10)

(i.e., Γi is an Hi�T -measurable random variable defined by the arguments Ri).
Define

M(1)
i =L(1)

i + Γi
(
L(1)

)
�

M(2)
i =L(2)

i + Γi
(
L(2)

)+ Γi
((
M(1)

)2)
�

M(3)
i =L(3)

i + Γi
(
L(3)

)+ Γi
((
M(1)

)3)+ Γi
(
3M(1)M(2)

)
�

M(4)
i =L(4)

i + Γi
(
L(4)

)+ Γi
((
M(1)

)4)+ Γi
(
3
(
M(2)

)2)
+ Γi

(
6
(
M(1)

)2
M(2)

)+ Γi
(
4M(1)M(3)

)
�

where we use the convention that L(k)
T+1 = L(k)

0 = 0, H−1�T = H0�T . For each
sequence Ri of Hi�T -measurable random variables, we have

BN∑
i=1

Γi(R)+
BN∑
i=1

E(Ri |H0�T )= 0�(C.11)

Now, we define

ZT = 1
4
√
T

BN∑
i=1

E
(
L(1)
i |H0�T

)
(C.12)

+ 1

2
√
T

BN∑
i=1

E
((
M(1)

i

)2 +L(2)
i |H0�T

)
(C.13)
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+ 1

6 4
√
T 3

BN∑
i=1

E
((
M(1)

i

)3 +L(3)
i + 3M(1)

i M
(2)
i |H0�T

)
(C.14)

+ 1
24T

BN∑
i=1

E
((
M(1)

i

)4 +L(4)
i + 4M(1)

i M
(3)
i(C.15)

+ 6
(
M(1)

i

)2
M(2)

i + 3
(
M(2)

i

)2 |H0�T

)
�

So, using the definition of the M ’s and (C.11), we have

BN∑
i=1

(
1

4
√
T
M(1)

i + 1

2
√
T
M(2)

i + 1

6 4
√
T 3
M(3)

i + 1
24T

M(4)
i

)

=
BN∑
i=1

(
1

4
√
T
L(1)
i + 1

2
√
T
L(2)
i + 1

6 4
√
T 3
L(3)
i + 1

24T
L(4)
i

)
−ZT �

Hence, to prove (C.5), it is sufficient to show that

limE

(
exp

(
BN∑
i=1

(
1

4
√
T
M(1)

i + 1

2
√
T
M(2)

i(C.16)

+ 1

6 4
√
T 3
M(3)

i + 1
24T

M(4)
i

)) ∣∣∣H0�T

)
= 1�

Before establishing (C.16), we need some preliminary results.

LEMMA C.6: Each M(k)
i , k= 1� � � � �4 can be written as a finite (the number of

terms is independent of T ) sum of expressions of the form∑
t1

· · ·
∑
tm

(
l
(k1)
t1

⊗ · · · ⊗ l(km)tm

)
(αt1�����tm)�(C.17)

where αt1�����tm is a (random) multivariate form measurable with respect to the σ-
algebra generated by ϑTi−1�ϑTi−1+1� � � � �ϑTi denoted Ai and

‖αt1�����tm‖ ≤M
∑
ki �(C.18)

where M and ϑt are defined in Assumption 3. Moreover,

m≤ k and(C.19) ∑
ki = k�
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Note that, for reasons of simplicity, we suppressed the range of summation of
t1� � � � � tm; tj varies between Ti−1+s + 1 and Ti+s, with s equal to either 0�1�2�3,
or 4, so each summation extends over BL terms.

DEFINITION C.7: Let us define the “order” of the expression (C.17) to be k.

REMARK 1: l(kr )tr (r = 1� � � � �4) do not need to be different. This way, we can
obtain power functions of the l(kr)tr .

PROOF OF LEMMA C.6: First of all, let us observe that all the L(k)
i , L(k)

i−1 can
be written in the form of (C.17). Let us prove the lemma by induction with
respect to k. The lemma holds for k = 1 by Assumption 3. Suppose now that
we have shown our lemma for all k ≤ p. Then we have to show that it holds
true for k = p+ 1. For this purpose, observe that M(p+1)

i is constructed from
the M(p)

i , M(p−1)
i by the following operations:

• multiplying M(p)
i �M

(p−1)
i � � � � �L

(p+1)
i �L

(p)
i−1� � � � so that the order of the re-

sulting tensor remains equal to p+ 1
• adding or subtracting these products
• taking conditional expectation with respect to Hi�T or Hi−1�T .
Therefore, we only need to show that the class of processes described by

sums of terms of the structure of (C.17) is closed under these three operations.
So let us begin with the first point. It is sufficient to show that the product of two
sums of terms given by (C.17) of orders k and h gives us a sum of terms (C.17)
with order k+ h (for products with more than two factors, simply iterate the
procedure). Using the distributive law, we simply have to show that a product
of two terms, say

V1 =
∑
t1

· · ·
∑
tm

(
l
(k1)
t1

⊗ · · · ⊗ l(km)tm

)
(αt1�����tm)

and

V2 =
∑
s1

· · ·
∑
sq

(
l(h1)
s1

⊗ · · · ⊗ l
(hq)
sq

)
(βs1�����sq)�

is again of the form (C.17). But this is an immediate consequence of the dis-
tributive law and the definition of the tensor product:

V1V2 =
∑

t1�t2�����tm

∑
s1�s2�����sq

(
l
(k1)
t1

⊗ · · · ⊗ l(km)tm
⊗ l(h1)

s1
⊗ · · ·

⊗ l
(hq)
sq

)
(αt1�����tm ⊗βs1�����sq)�

It follows that the order of V1V2 equals
∑
kj + ∑

hj = k + h. Our class is,
by construction, closed under linear operations like addition and subtraction
of terms (C.17). Therefore, it remains to show that the class is closed under
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conditional expectations with respect to Hi−1�T and Hi�T . So let us consider a
term of the form

V =
∑
t1

· · ·
∑
tm

(
l
(k1)
t1

⊗ · · · ⊗ l(km)tm

)
(αt1�����tm)�

Since l(k1)
t1
� � � � � l(km)tm are H0�T -measurable, we have, for j = i� i− 1,

E(V |Hj�T )=
∑
t1

· · ·
∑
tm

(
l
(k1)
t1

⊗ · · · ⊗ l(km)tm

)
E(αt1�����tm |Hj�T )�

Hence, it is sufficient to show that E(αt1�����tm | Hj�T ) is measurable with re-
spect to the σ-algebra Ai if it is true for αt1�����tm . Note that Hj�T is the σ-
algebra generated by H0�T and σ(ϑTj �ϑTj−1� � � � �ϑ1) (the σ-algebra generated
by (ϑTj �ϑTj−1� � � � �ϑ1)) and, moreover, σ(ϑTj �ϑTj−1� � � � �ϑ1) and H0�T are in-
dependent σ-algebras, hence

E(αt1�����tm |Hj�T )=E
(
αt1�����tm | σ(ϑTj �ϑTj−1� � � � �ϑ1)

)
because αt1�����tm is Ai-measurable and hence σ(ϑTj �ϑTj−1� � � � �ϑ1)measurable.
Moreover, we did assume that the process ϑt is Markov. Hence, E(αt1�����tm |
σ(ϑTj �ϑTj−1� � � � �ϑ1))=E(αt1�����tm |ϑTj) and therefore, E(αt1�����tm |Hj�T ) is Ai-
measurable. This completes the proof of Lemma C.6. Q.E.D.

DEFINITION C.8: Define Λi by

Λi = max
k=1�2�3�4

Ti∑
Ti−1+1

∥∥l(k)t

∥∥�
It follows from Lemma C.6 that M(k)

i can be written as a finite sum of K
elements of the form (C.17) so that

M(k)
i =

K∑
p=1

∑
t1(p)

· · ·
∑

tm(p)(p)

(
l
(k1(p))
t1(p)

⊗ · · · ⊗ l
(km(p))
tm(p)(p)

)
(αt1(p)�����tm(p)(p))�

Then we have

∣∣M(k)
i

∣∣ ≤
K∑
p=1

(∑
t1(p)

∥∥l(k1(p))
t1(p)

∥∥ · · ·
∑

tm(p)(p)

∥∥l(km(p))tm(p)(p)

∥∥)‖αt1(p)�����tm(p)(p)‖

≤ Const
K∑
p=1

Λj1(p) · · · · ·Λjm(p)(p)�

Hence, we can state the following corollary.
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COROLLARY C.9: There exist constants Const and K so that, for all i, k,

∣∣M(k)
i

∣∣ ≤ Const
K∑
p=1

Λj1(p) · · · · ·Λjm(p)(p)�(C.20)

where, for each index p in the sum on the right hand side of inequality (C.20),

m(p)≤ 4�

j1(p)� � � � � jm(p)= i� i+ 1� � � � �or i+ 4�

Let us return to our goal, which is the proof of (C.16). We will establish
(C.16) by showing that there exist H0�T -measurable random variables BT and
events AT ∈H0�T so that P(AT)→ 1 and BT → 0 with

Si = 1
4
√
T
M(1)

i + 1

2
√
T
M(2)

i + 1

6 4
√
T 3
M(3)

i + 1
24T

M(4)
i �(C.21)

BN∑
i=1

∣∣E(
exp(Si) |Hi−1�T

) − 1
∣∣IAT ≤ BT �(C.22)

For this to guarantee (C.16), define xi�T = (exp(Si) − 1)IAT I[BT≤1] and apply
Lemma C.4. We can set CT = BT , and since xi�T = 0 if BT > 1, and the event
[BT > 1] is H0�T -measurable, we can conclude that

E(xi�T |Hi−1�T )= IAT I[BT≤1]E
((

exp(Si)− 1
) |Hi−1�T

)
(≡ Δi�T )

and it follows from (C.22) that
∑BN

i=1 |Δi�T | ≤ BT , hence
∑BN

i=1Δ
2
i�T ≤ ∑BN

i=1 |Δi�T | ≤
BT , so we can set DT = BT . Then Lemma C.4 allows us to conclude that

E

[
BN∏
i=1

(
1 + (

exp(Si)− 1
)
IAT I[BT≤1]

) ∣∣∣H0�T

]
P→ 1�

But as AT and [BT ≤ 1] are H0�T -measurable, we have

E

[
BN∏
i=1

(
1 + (

exp(Si)− 1
)
IAT I[BT≤1]

) ∣∣∣H0�T

]

=E

[
BN∏
i=1

(
1 + (

exp(Si)− 1
)) ∣∣∣H0�T

]
IAT I[BT≤1] + (1 − IAT I[BT≤1])�

Since IAT I[BT≤1] → 1, this implies (C.16).
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Now, we focus on proving (C.22). Each Hi−1�T ⊇ H0�T , and since L(k)
j =∑

t l
(k)
t (ηt� � � � �ηt), where the l(k)t are H0�T -measurable and the ηt are bounded,

conditional expectations like E(exp(Si) |Hi−1�T ) exist.
We will show (C.22) in two steps:
First of all, we will show that there exist events A(1)

T ∈H0�T with P(A(1)
T )→ 1

and H0�T -measurable random variables B(1)T with B(1)T → 0 such that

BN∑
i=1

∣∣∣∣E(
exp(Si) |Hi−1�T

)
(C.23)

−E

(
1 + Si + 1

2
S2
i + 1

6
S3
i + 1

24
S4
i

∣∣Hi−1�T

)∣∣∣∣IA(1)T ≤ B(1)T �

Second, we will show the existence of events A(2)
T ∈H0�T with P(A(2)

T )→ 1 and
H0�T -measurable random variables B(2)T with B(2)T → 0 such that

BN∑
i=1

∣∣∣∣E(
Si + 1

2
S2
i + 1

6
S3
i + 1

24
S4
i

∣∣Hi−1�T

)∣∣∣∣IA(2)T ≤ B(2)T �(C.24)

PROOF OF (C.23): First observe that the Si are linear combinations of the
M(k)

i with coefficients 1/ 4
√
Tk. Hence we may conclude from Corollary C.9 that

there exist constants K′, Const′ so that

|Si| ≤ 1
4
√
T

Const′
K′∑
p=1

Λj1 · · · · ·Λjm�

where (we suppress the dependence of m and j on p in the above and all
subsequent formulas for simplicity)

m≤ 4�(C.25)

j1� � � � � jm = i� i+ 1� � � � �or i+ 4�(C.26)

Hence

|Si|5 ≤ 1
4
√
T 5

Const′5K′4
K′∑
p=1

(Λj1)
5 · · · · · (Λjm)

5

≤ 1
4
√
T 5

Const′′
K′∑
p=1

(
(Λj1)

5m + · · · + (Λjm)
5m
)
�
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with some other constant Const′′, where the m and j satisfy (C.25) and (C.26).
The first inequality follows from Lemma C.5 and the second inequality follows
from the geometric-arithmetic mean inequality, which states that

|a1 · · ·am| = m
√|a1|m · · · |am|m ≤ 1

m

(|a1|m + · · · + |am|m)�(C.27)

Each Λ(k)
j is a maximum of sums of BL terms of the form ‖l(k)t ‖. Hence, by

Lemma C.5,

(Λj)
5m ≤ max

k

(
B5m−1
L

Tj∑
t=Tj−1+1

∥∥l(k)t

∥∥5m

)
�

Since m≤ 4, we have 5m≤ 20. Let us now define the random variable Bndi by

Bndi = Const′′
K′∑
p=1

( Tj1∑
t=Tj1−1+1

∥∥l(k1)
t

∥∥5m + · · · +
Tjm∑

t=Tjm−1+1

∥∥l(km)t

∥∥5m

)
;

we have

|Si|5 ≤ 1
4
√
T 5
B19
L Bndi�

therefore,

BN∑
i=1

|Si|5 ≤ 1
4
√
T 5
B19
L

BN∑
i=1

Bndi�(C.28)

Under Assumption 2, we have

sup
θ

E
∥∥l(k)t

∥∥20
<∞

(which implies that supE‖l(k)t ‖15 < ∞, supE‖l(k)t ‖10 < ∞, supE‖l(k)t ‖5 < ∞,
too). Assume

B76
L

T
→ 0�(C.29)

Then we have

E

(
1

4
√
T 5
B19
L

BN∑
i=1

Bndi

)
= B19

L

4
√
T

1
T
E

(
BN∑
i=1

Bndi

)
�
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As B19
L /

4
√
T converges to zero and 1

T
E(

∑BN
i=1 Bndi) ≤ 1

T
BN · maxE(Bndi) ≤

1
T
BN · Const′′ · K · BL · 4 · sup{supE‖l(k)t ‖20� supE‖l(k)t ‖15� supE‖l(k)t ‖10�

supE‖l(k)t ‖5} remains bounded, we have

E

(
1

4
√
T 5
B19
L

BN∑
i=1

Bndi

)
→ 0�(C.30)

So, let us now come back to our original task, namely, to prove (C.23). De-
fine, for an arbitrary ε > 0,

A(1)
T =

[
1

4
√
T 5
B19
L

BN∑
i=1

Bndi ≤ ε

]
�

Then (C.30) implies that

P
(
A(1)

T

) → 1�

To show (C.23), it is sufficient to dominate

BN∑
i=1

∣∣∣∣E(
exp(Si) |Hi−1�T

)
−E

(
1 + Si + 1

2
S2
i + 1

6
S3
i + 1

24
S4
i

∣∣Hi−1�T

)∣∣∣∣IA(1)T �
As A(1)

T ∈H0�T , A(1)
T ∈Hi−1�T , too. Hence∣∣∣∣E(

exp(Si) |Hi−1�T

)−E

(
1 + Si + 1

2
S2
i + 1

6
S3
i + 1

24
S4
i

∣∣Hi−1�T

)∣∣∣∣IA(1)T
≤E

(∣∣∣∣exp(Si)−
(

1 + Si + 1
2
S2
i + 1

6
S3
i + 1

24
S4
i

)∣∣∣∣ ∣∣Hi−1�T

)
I
A
(1)
T

=E

(∣∣∣∣exp(Si)−
(

1 + Si + 1
2
S2
i + 1

6
S3
i + 1

24
S4
i

)∣∣∣∣IA(1)T ∣∣Hi−1�T

)
�

Using a Taylor expansion and the fact that the fifth derivative of the exponen-
tial is the exponential itself, we see that∣∣∣∣exp(Si)−

(
1 + Si + 1

2
S2
i + 1

6
S3
i + 1

24
S4
i

)∣∣∣∣IA(1)T
≤ 1

120
|Si|5 exp

(|Si|)IA(1)T �
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Hence, in order to show (C.23), it is sufficient to dominate

E

BN∑
i=1

|Si|5 exp
(|Si|)IA(1)T �

Inequality (C.28), however, implies that

A(1)
T ⊆

[
BN∑
i=1

|Si|5 ≤ ε

]
�

hence

BN∑
i=1

|Si|5 exp
(|Si|)IA(1)T =

(
BN∑
i=1

|Si|5 exp
(|Si|)I[∑BN

i=1 |Si |5≤ε]IA(1)T

)

≤
BN∑
i=1

|Si|5 exp
(

5
√
ε
)
�

Therefore, we only have to dominate
∑BN

i=1 |Si|5. This can be accomplished by
setting

B(1)T = 1
4
√
T 5
B19
L

BN∑
i=1

Bndi�

By construction, B(1)T is H0�T -measurable. Equation (C.28) demonstrates that it
dominates

∑BN
i=1 |Si|5. Equation (C.30) shows that B(1)T converges to zero, which

implies (C.23). Q.E.D.

PROOF OF (C.24): Define A(2)
T to be trivial (i.e., the whole space).

From (C.21), we can see that Sri , r = 1�2�3�4 is (independently of i) a finite
sum of products of normalizing factors 1/ 4

√
T�1/

√
T , 1/ 4

√
T 3�1/T� � � � . and up

to four terms, which must be chosen among M(1)
i , M(2)

i , M(3)
i , M(4)

i . So we have,
for some constant U ,

Si + 1
2
S2
i + 1

6
S3
i + 1

24
S4
i =

U∑
p=1

1

(
4
√
T)q(p)

M
(r1(p))
i � � �M

(rB(p))
i �(C.31)
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where B = B(p)≤ 4. Now split up the sum on the right hand side of (C.31) in
two parts, depending on whether the normalizing factor is smaller than 1

(
4√
T)5

or not. Define

D1�i =
∑

p∈{1�����U}�q(p)≥5

1

(
4
√
T)q(p)

M
(r1(p))
i � � �M

(rB(p))
i(C.32)

and

D2�i =
∑

p∈{1�����U}�q(p)≤4

1

(
4
√
T)q(p)

M
(r1(p))
i � � �M

(rB(p))
i �(C.33)

Obviously, D1�i +D2�i = Si + 1
2S

2
i + 1

6S
3
i + 1

24S
4
i . So we can prove (C.24) by con-

structing H0�T -measurable B(2�1)T and B(2�2)T , both converging to 0, so that

BN∑
i=1

∣∣E(D1�i |Hi−1�T )
∣∣I
A
(2)
T

≤ B(2�1)T(C.34)

and

BN∑
i=1

∣∣E(D2�i |Hi−1�T )
∣∣I
A
(2)
T

≤ B(2�2)T �

Let us first analyze D1�i. It follows from Corollary C.9 that M(k)
i can be dom-

inated by a finite (where the number of summands does not depend on T )
sum of products of Λj1 · · ·Λjm , where we have at most four factors. We can
use this fact to bound the products M(r1(p))

i � � �M
(rB(p))
i in the right hand side of

(C.32). This product is smaller than a constant times a sum of products of 16
factors Λj . We constructed D1�i so that, for each term, the normalizing factor
is smaller than or equal to 1/ 4

√
T 5. Since the number of summands is smaller

than U (and therefore uniformly bounded), we can conclude that

|D1�i| ≤
(
1/ 4

√
T 5

)
Const′

K′∑
p=1

Λj1 · · ·Λjm�

where m =m(p) ≤ 16 and j1 = j1(p)� � � � , jm = jm(p) = i� i + 1� � � � �or i + 4.
Now define

bi =
(
1/ 4

√
T 5

)
Const′

K′∑
p=1

Λj1 · · ·Λjm
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and

B(2�1)T =
BN∑
i=1

bi�

Obviously, B(2�1)T satisfies (C.34) (since bi is H0�T -measurable, and bi ≥ |D1�i|,
|E(D1�i | Hi−1�T )| ≤ bi). It remains to show that EB(2�1)T → 0. To establish this
result, observe that

Ebi =
(
1/ 4

√
T 5

)
Const′

K′∑
p=1

E(Λj1 · · · · ·Λjm)

≤ (
1/ 4

√
T 5

)
Const′′

K′∑
p=1

{
E(Λj1)

m + · · · +E(Λjm)
m
}

≤ (
1/ 4

√
T 5

)
Const′′′ max

m∈{1�2�����16}
E(Λj)

m�

So we need to give a bound for the moments of Λj . It follows from Defini-
tion C.8 and Lemma C.5 that

E(Λj)
m ≤ BmL max

k
E
∥∥l(k)t

∥∥m�
Since our assumptions imply that the moments of order 16 exist for the norms
of l(k)t , the second factor remains bounded and we can conclude that

Ebi ≤ Const(IV)(1/ 4
√
T 5

)
B16
L �

Hence we have

EB(2�1)T =
BN∑
i=1

Ebi ≤ Const(IV)(1/ 4
√
T 5

)
B16
L BN = Const(IV)B15

L /
4
√
T�

which converges to zero, as B60
L = o(T).

It now remains to analyze D2�i. By definition,

D2�i = 1
4
√
T
M(1)

i + 1

2
√
T

((
M(1)

i

)2 +M2

)
+ 1

6 4
√
T 3

((
M(1)

i

)3 + 3
(
M(1)

i

)2
M(2)

i +M(3)
i

)
+ 1

24T
((
M(1)

i

)4 + 4M(1)
i M

(3)
i

+ 6
(
M(1)

i

)2
M(2)

i + 3
(
M(2)

i

)2 +M(4)
i

)
�
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In order to compute E(D2�i | Hi−1�T ), we will analyze E(M(1)
i | Hi−1�T ),

E((M(1)
i )

2 + M2 | Hi−1�T ), E((M(1)
i )

3 + 3(M(1)
i )

2M(2)
i + M(3)

i | Hi−1�T ),
E((M(1)

i )
4 + 4M(1)

i M
(3)
i + 6(M(1)

i )
2M(2)

i + 3(M(2)
i )

2 +M(4)
i |Hi−1�T ) separately.

A consequence of (C.10) is that, for every Hi�T -measurable sequence Ri, we
have

E
(
Ri + Γi(R) |Hi−1�T

) =E(Ri+1 |Hi−1�T )−E(Ri+1 |H0�T )�(C.35)

Using (C.35) and the definitions of M(1)
i , M(2)

i , M(3)
i , and M(4)

i , we have

E
(
M(1)

i |Hi−1�T

) =E
(
L(1)
i+1 |Hi−1�T

)−E
(
L(1)
i+1 |H0�T

)
�(C.36)

E
((
M(1)

i

)2 +M(2)
i |Hi−1�T

)
(C.37)

=E
(
L(2)
i+1 |Hi−1�T

)−E
(
L(2)
i+1 |H0�T

)
+E

((
M(1)

i+1

)2 |Hi−1�T

)−E
((
M(1)

i+1

)2 |H0�T

)
�

E
((
M(1)

i

)3 + 3
(
M(1)

i

)2
M(2)

i +M(3)
i |Hi−1�T

)
(C.38)

=E
(
L(3)
i+1 |Hi−1�T

)−E
(
L(3)
i+1 |H0�T

)
+ 3

(
E
((
M(1)

i+1

)2
M(2)

i+1 |Hi−1�T

)−E
((
M(1)

i+1

)2
M(2)

i+1 |H0�T

))
+E

((
M(1)

i+1

)3 |Hi−1�T

)−E
((
M(1)

i+1

)3 |H0�T

)
�

E
((
M(1)

i

)4 + 4M(1)
i M

(3)
i + 6

(
M(1)

i

)2
M(2)

i + 3
(
M(2)

i

)2 +M(4)
i |Hi−1�T

)
(C.39)

=E
(
L(4)
i+1 |Hi−1�T

)−E
(
L(4)
i+1 |H0�T

)
+E

(
4M(1)

i+1M
(3)
i+1 |Hi−1�T

)−E
(
4M(1)

i+1M
(3)
i+1 |H0�T

)
+E

(
6
(
M(1)

i+1

)2
M(2)

i+1 |Hi−1�T

)−E
(
6
(
M(1)

i+1

)2
M(2)

i+1 |H0�T

)
+E

(
3
(
M(2)

i+1

)2 |Hi−1�T

) −E
(
3
(
M(2)

i+1

)2 |H0�T

)
+E

((
M(1)

i+1

)4 |Hi−1�T

)−E
((
M(1)

i+1

)4 |H0�T

)
�

We observe a pattern: all our expressions are of the form E(Ri | Hi−1�T ) −
E(Ri |H0�T ), where the Ri are products consisting of at most four factors from
the L(k)

i+1, M(k)
i+1, k= 1� � � � �4. This motivates the following definition.

DEFINITION C.10: A sequence Ri is called a “nice” sequence if each of the
Ri can be written as a product of at most four factors from L(k)

i+1, M(k)
i+1, k =

1� � � � �4.

REMARK 2: It will be important that we use products with factors L(k)
i+1, M(k)

i+1
for the construction of Ri; the index i+ 1 is essential.
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LEMMA C.11: For all nice sequences Ri, there exist H0�T -measurable random
variables B(R)T so that B(R)T → 0 and

BN∑
i=1

∣∣E(Ri |Hi−1�T )−E(Ri |H0�T )
∣∣ ≤ B(R)T �

Then, (C.24) is an immediate consequence of Lemma C.11. It suffices to
take as B(2�2)T the sum of all B(R)T corresponding to the terms on the right hand
side of (C.36), (C.37), (C.38), and (C.39). This completes the proof of Step 2
of Theorem 4.1. Q.E.D.

PROOF OF LEMMA C.11: Since the sequence Ri is nice, we can write it as a
product of at most four factors fromL(k)

i+1,M(k)
i+1, k= 1� � � � �4. We will now apply

Lemma C.6. Trivially, the lemma also applies to L(k)
i+1 (simply use only one fac-

tor in the formula of the lemma). Furthermore, the reader should take notice
that here we evaluate the (i+ 1)th terms instead of the ith. Then, Lemma C.6
guarantees that each M(k)

i+1, L(k)
i+1, k = 1� � � � �4 is the sum of expressions which

can be written as a finite (the number of terms is independent of T ) sum of
expressions of the form∑

t1

· · ·
∑
tm

(
l
(k1)
t1

⊗ · · · ⊗ l(km)tm

)
(αt1�����tm)�(C.40)

where αt1�����tm is Ai+1-measurable. Since every factor making up Ri can be writ-
ten as a sum of these terms, we can use the distributive law and write Ri as a
finite sum of products consisting of up to four factors of the form (C.40). So
we have

Ri =
K∑
j=1

F
(j)
1�i F

(j)
2�i F

(j)
3�i F

(j)
4�i �

where each F(j)
·�i is either 1 (if we have fewer than four factors) or has the form

(C.40). Since K is finite, we can prove Lemma C.11 if we can show that, for all
j, there exists an H0�T -measurable b(j)T so that

BN∑
i=1

∣∣E(
F
(j)
1�i F

(j)
2�i F

(j)
3�i F

(j)
4�i |Hi−1�T

)−E
(
F
(j)
1�i F

(j)
2�i F

(j)
3�i F

(j)
4�i |H0�T

)∣∣ ≤ b
(j)
T(C.41)

and b(j)T → 0.
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Since F(j)
·�i has the form (C.40), we can apply the distributive law and use the

tensor notation to write the product as

F
(j)
1�i F

(j)
2�i F

(j)
3�i F

(j)
4�i =

∑
t1

· · ·
∑
tp

(
l
(k1)
t1

⊗ · · · ⊗ l
(kp)
tp

)
(βt1�����tp)�

Since we compute a product of at most four factors, and each is constructed
from a tensor product with order of 4 factors, we can conclude that

∑
kj ≤ 16.

We suppressed the range of summation for the tk; tk varies between Ti+s + 1
and Ti+1+s, with s equal to either 0�1�2�3, or 4, so that each summation ex-
tends over BL terms. βt1�����tp is now the tensor product of the arguments αt1�����tm
for each of the F(j)

1�i � F
(j)
2�i � � � � . The αt1�����tm (and the analogous expressions for

F
(j)
2�i , F

(j)
3�i , F

(j)
4�i ) are bounded by (C.18) and Ai+1-measurable. Obviously, both

properties carry over to βt1�����tp . It will be bounded by Mp ≤ (M + 1)16. So we
have

‖βt1�����tp‖ ≤ (M + 1)16�

Moreover βt1�����tp are Ai+1-measurable.
Now we will exploit Assumption 3. We define

b
(j)
T = Const(1 +M)16

BN∑
i=1

(∑
t1

· · ·
∑
tp

(∥∥l(k1)
t1

∥∥ · · ·∥∥l(kp)tp

∥∥))λBL�(C.42)

where Const is a constant which we will determine later on. We show that this
b
(j)
T satisfies (C.41).
First, observe that

E
(
F
(j)
1�i F

(j)
2�i F

(j)
3�i F

(j)
4�i |Hi−1�T

)−E
(
F
(j)
1�i F

(j)
2�i F

(j)
3�i F

(j)
4�i |H0�T

)
=E

(∑
t1

· · ·
∑
tp

(
l
(k1)
t1

⊗ · · · ⊗ l
(kp)
tp

)
(βt1�����tp)

∣∣Hi−1�T

)

−E

(∑
t1

· · ·
∑
tp

(
l
(k1)
t1

⊗ · · · ⊗ l
(kp)
tp

)
(βt1�����tp)

∣∣H0�T

)

=
∑
t1

· · ·
∑
tp

(
l
(k1)
t1

⊗ · · · ⊗ l
(kp)
tp

)
× (

E
(
(βt1�����tp) |Hi−1�T

)−E
(
(βt1�����tp) |H0�T

))
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and ∣∣∣∣∑
t1

· · ·
∑
tp

(
l
(k1)
t1

⊗ · · · ⊗ l
(kp)
tp

)
× (

E
(
(βt1�����tp) |Hi−1�T

)−E
(
(βt1�����tp) |H0�T

))∣∣∣∣
≤

∥∥∥∥∑
t1

· · ·
∑
tp

(
l
(k1)
t1

⊗ · · · ⊗ l
(kp)
tp

)∥∥∥∥
× ∥∥E(

(βt1�����tp) |Hi−1�T

) −E
(
(βt1�����tp) |H0�T

)∥∥
≤

∑
t1

· · ·
∑
tp

(∥∥l(k1)
t1

∥∥ · · ·∥∥l(kp)tp

∥∥)
× ∥∥E(

(βt1�����tp) |Hi−1�T

) −E
(
(βt1�����tp) |H0�T

)∥∥�
So it suffices to show that∥∥E(

(βt1�����tp) |Hi−1�T

) −E
(
(βt1�����tp) |H0�T

)∥∥ ≤ Const(1 +M)16λBL�

where Const is a constant and M and λ are defined in Assumption 3. For
a proof, let us first have a look at βt1�����tp . Tensors are elements of a finite-
dimensional vector space. Let bj be basis elements of this space. Then we can
write

βt1�����tp =
∑

β
(j)
t1�����tp

bj�

with some (scalar) random variables β(j)t1�����tp . We then have∥∥E(
(βt1�����tp) |Hi−1�T

) −E
(
(βt1�����tp) |H0�T

)∥∥
≤

(∑
j

∣∣E((
β
(j)
t1�����tp

) |Hi−1�T

)−E
((
β
(j)
t1�����tp

) |H0�T

)∣∣)(
max
j

‖bj‖
)
�

Since the sum consists only of finitely many terms, it is sufficient to show that∣∣E((
β
(j)
t1�����tp

) |Hi−1�T

)−E
((
β
(j)
t1�����tp

) |H0�T

)∣∣ ≤ Const(1 +M)16λBL�(C.43)

where Const may be another constant than the one in (C.43). We can choose
bj so that∣∣β(j)t1�����tp∣∣ ≤ (1 +M)16�

Furthermore, β(j)t1�����tp is Ai+1-measurable. The result then immediately follows
from the geometric ergodicity; see Assumption 3.
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Now we go back to (C.42). By (C.27), we have∥∥l(k1)
t1

∥∥ · · ·∥∥l(kp)tp

∥∥ ≤ Const
(∥∥l(k1)

t1

∥∥p + · · · + ∥∥l(kp)tp

∥∥p)�
and since p≤ 16,

Eb
(j)
T ≤ BN · Const ·B16

L ·
(

16 max
p∈{1�2�����16}

E
∥∥l(k)t

∥∥p) · λBL�

Note that BN ·B16
L ·λBL = TB15

L λ
BL → 0 whenBL satisfies (C.29). This completes

the proof of Lemma C.11. Q.E.D.

C.5. Step 3 of the Proof of Theorem 4.1

In this section, we prove (C.6). We examine the terms (C.12) to (C.15) of ZT

successively.

C.5.1. First Order Term (C.12)

E
(
L(1)
i |H0�T

) =
Ti∑

t=Ti−1+1

l(1)t E(ηt)= 0

because E(ηt)= 0.

C.5.2. Second Order Term (C.13)

Recall

M(1)
i =L(1)

i + Γi
(
L(1)

)
�

By definition,

Γi
(
L(1)

) =E
(
L(1)
i+1 |Hi�T

)−E
(
L(1)
i+1 |H0�T

)−E
(
L(1)
i |Hi−1�T

)
�

However, E(L(1)
i+1 |H0�T )= 0. Hence

M(1)
i =L(1)

i −E
(
L(1)
i |Hi−1�T

)+E
(
L(1)
i+1 |Hi�T

)
and

M(1)2
i = (

L(1)
i −E

(
L(1)
i |Hi−1�T

))2 + [
E
(
L(1)
i+1 |Hi�T

)]2

+ 2(L(1)
i −E

(
L(1)
i |Hi−1�T

) ·E(
L(1)
i+1 |Hi�T

)
�
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We decompose ηt in the following manner:

ηt = ξt + αt�

ξt = ηt −E(ηt |Hi−1�T )�

αt =E(ηt |Hi−1�T )�

Then, the conditional expectation of M(1)2
i is as follows:

E
(
M(1)2

i |H0�T

) =
Ti∑

t�s=Ti−1+1

l(1)t ⊗ l(1)s E(ξt ⊗ ξs |H0�T )(C.44)

+
Ti+1∑

t�s=Ti+1

l(1)t ⊗ l(1)s E(αt ⊗ αs |H0�T )

+ 2
Ti∑

t=Ti−1+1

Ti+1∑
s=Ti+1

l(1)t ⊗ l(1)s E(ξt ⊗ αs |H0�T )�

In fact, with the definition of the blocks, we have

BN∑
i=0

Ti+1∑
t�s=Ti+1

=
BN+1∑
i=1

Ti∑
t�s=Ti−1+1

=
BN∑
i=1

Ti∑
t�s=Ti−1+1

�

Thus, taking the summation of the first two terms in (C.44) over the blocks
yields

BN∑
i=1

Ti∑
t�s=Ti−1+1

l(1)t ⊗ l(1)s
[
E(ξt ⊗ ξs |H0�T )+E(αt ⊗ αs |H0�T )

]
�

Meanwhile, the cross-product term has the following property:

Ti∑
t�s=Ti−1+1

l(1)t ⊗ l(1)s E(ξt ⊗ αs |H0�T )= 0�

which is a direct consequence of E(ξt | Hi−1�T )= 0. This, in turn, implies that
the sum of the first two terms is equal to

Ti∑
t=Ti−1+1

l(1)t ⊗ l(1)t E(ηt ⊗ηt |H0�T )�
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Now we look at the summation over blocks of the third term in (C.44),

1√
T

BN∑
i=1

Ti∑
t=Ti−1+1

Ti+1∑
s=Ti+1

l(1)t ⊗ l(1)s E(ξt ⊗ αs |H0�T )�

Notice that l(1)t ⊗l(1)s is a m.d.s.; therefore, all the terms l(1)t ⊗l(1)s E(ξt⊗αs |H0�T )

are uncorrelated. Its variance can be bounded in the following way:

1
T

BN∑
i=1

Ti∑
t=Ti−1+1

Ti+1∑
s=Ti+1

E
[
l(1)t ⊗ l(1)s E(ξt ⊗ αs |H0�T )

]2

≤ 1
T

BN∑
i=1

Ti∑
t=Ti−1+1

Ti+1∑
s=Ti+1

√
E
(
l(1)t

)4 ·
√
E
(
l(1)s

)4 ·
√
E
[
E(ξt ⊗ αs |H0�T )

]4

≤ 1
T

BN∑
i=1

Ti∑
t=Ti−1+1

Ti+1∑
s=Ti+1

√
E
(
l(1)t

)4 ·
√
E
(
l(1)s

)4

·
√
E
[
E
(‖ξt ⊗ αs‖4 |H0�T

)]
= 1
T

BN∑
i=1

Ti∑
t=Ti−1+1

Ti+1∑
s=Ti+1

√
E
(
l(1)t

)4 ·
√
E
(
l(1)s

)4 ·
√
E
(‖ξt ⊗ αs‖4

)

= 1
T

BN∑
i=1

Ti∑
t=Ti−1+1

Ti+1∑
s=Ti+1

Const ·
√
E‖ξt ⊗ αs‖4

≤ 1
T

BN∑
i=1

Ti∑
t=Ti−1+1

Ti+1∑
s=Ti+1

Const · λ2(s−t)

= 1
T

Const ·
BN∑
i=1

Ti∑
t=Ti−1+1

λ−2tλ2(Ti+1)
BL∑
u=0

λ2u

≤ 1
T

Const ·
BN∑
i=1

Ti∑
t=Ti−1+1

λ−2tλ2(Ti+1) 1
1 − λ2

= 1
T

Const · 1
1 − λ2

·
BN∑
i=1

BL∑
u=1

λ2u
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≤ 1
T

Const · 1
1 − λ2

·
BN∑
i=1

λ2

1 − λ2

= BN

T
Const · 1

1 − λ2
· λ2

1 − λ2
→ 0�

where the first inequality follows from the Cauchy–Schwarz inequality and
the second inequality is from Jensen’s inequality. Therefore, the third term
in (C.44) converges in mean square to 0 and is therefore negligible. This ap-
proach will be used very often in the following context.

At the same time, we have

E
(
L(2)
i |H0�T

) =
Ti∑

t�s=Ti−1+1

l(2)t E(ηt ⊗ηs |H0�T )�

Thus, we have

E

(
1√
T

BN∑
i=1

(
M(1)2

i +L(2)
i

) ∣∣∣H0�T

)
(C.45)

= 1√
T

T∑
t=1

(
l(2)t + l(1)t ⊗ l(1)t

)
E(ηt ⊗ηt)

+ 2√
T

∑
t<s

l(1)t ⊗ l(1)s E(ηt ⊗ηs)+ op(1)

= 1√
T

T∑
t=1

μ2�t + op(1)�

C.5.3. Third Order Term (C.14)

First, the third order Bartlett identity implies that every coefficient of

l(3)t + (
l(1)t ⊗ l(1)t ⊗ l(1)t

)(S) + 3
(
l(1)t ⊗ l(2)t

)(S)
(C.46)

is a m.d.s. To evaluate the third order term, we will need to evaluate a lot of
expressions as in (C.46). In most of the cases, however, the arguments of the
forms are simply ηt . To simplify our expressions, we will suppress the argument
l(1)t (ηt)

3 and simply write (l(1)t )3. So instead of(
l(3)t + (

l(1)t ⊗ l(1)t ⊗ l(1)t
)(S) + 3

(
l(1)t ⊗ l(2)t

)(S))
(ηt�ηt�ηt)�

we can write

l(3)t + l(1)3t + 3l(1)t l
(2)
t �
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Because of the property of third-order Bartlett identity mentioned above,
these terms are uncorrelated. Moreover, Assumption 2 and the boundedness
of ηt guarantee that the variances of these terms are bounded. Hence,

1/ 4
√
T 3E

(∣∣∣∣∣
T∑
t=1

(
l(3)t + l(1)3t + 3l(1)t l

(2)
t

)∣∣∣∣∣
)

→ 0�

since the expectation of the square of the sum will be O(T). Therefore, we
have

1
4
√
T 3

BN∑
i=1

L(3)
i = − 1

4
√
T 3

T∑
t=1

l(1)3t − 3
4
√
T 3

T∑
t=1

l(1)t l
(2)
t + rT �(C.47)

where E|rT | → 0.
Moreover,

−
T∑
t=1

l(1)3t = −
(

T∑
t=1

l(1)t

)3

+ 3
T∑
t=1

l(1)2t

∑
s<t

l(1)s + 3
T∑
t=1

l(1)t
∑
s�k<t

l(1)s l
(1)
k

= −
(

BN∑
i=1

L(1)
i

)3

+ 3
T∑
t=1

l(1)2t

∑
s<t

l(1)s + 3
T∑
t=1

l(1)t
∑
s�k<t

l(1)s l
(1)
k �

Again, the first order Bartlett condition guarantees that the conditional ex-
pectation of the derivatives of the log-likelihood function are m.d.s. Hence
the l(1)t

∑
s�k<t l

(1)
s l

(1)
k are (as a product of a m.d.s. with terms determined in the

“past”) m.d.s. Therefore, these terms are uncorrelated, and, again, our As-
sumption 3 guarantees that the variance of each term is bounded by Const ·B4

L.
Hence E((1/ 4

√
T 3

∑
l(1)t

∑
s�k<t l

(1)
s l

(1)
k )

2) = O(T−1�5 · BN · B4
L) = O(T−1/2B3

L), so
it converges to zero. Therefore,

E

(∣∣∣∣1/ 4
√
T 3

∑
l(1)t

∑
s�k<t

l(1)s l
(1)
k

∣∣∣∣) → 0�

As a consequence, we have

E

(∣∣∣∣∣ 1
4
√
T 3

BN∑
i=1

L(3)
i −

(
− 1

4
√
T 3

(
BN∑
i=1

L(1)
i

)3

(C.48)

+ 3
4
√
T 3

T∑
t=1

l(1)2t

∑
s<t

l(1)s − 3
4
√
T 3

T∑
t=1

l(1)t l
(2)
t

)∣∣∣∣∣
)

→ 0�
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Meanwhile, we have(
BN∑
i=1

M(1)
i

)3

=
BN∑
i=1

(
M(1)3

i + 3M(1)2
i

∑
j<i

M(1)
j + 3M(1)

i

∑
j�k<i

M(1)
j M

(1)
k

)
�

We can rearrange the terms and obtain

BN∑
i=1

M(1)3
i =

(
BN∑
i=1

M(1)
i

)3

− 3
BN∑
i=1

M(1)2
i

∑
j<i

M(1)
j(C.49)

− 3
BN∑
i=1

M(1)
i

∑
j�k<i

M(1)
j M

(1)
k �

First of all, let us analyze M(1)
i

∑
j�k<i M

(1)
j M

(1)
k . We have

E

(
M(1)

i

∑
j�k<i

M(1)
j M

(1)
k

∣∣H0�T

)
(C.50)

=E

(
E
(
M(1)

i |Hi−1�T

)∑
j�k<i

M(1)
j M

(1)
k

∣∣H0�T

)
�

Using Equation (C.36), we have

E
(
M(1)

i |Hi−1�T

) =E
(
L(1)
i+1 |Hi−1�T

)−E
(
L(1)
i+1 |H0�T

)
�

From geometric ergodicity, we have√
E
(∣∣E(

M(1)
i |Hi−1�T

)∣∣2) ≤ C · λBL ·BL�(C.51)

which implies that we can derive a bound for (C.50) using the Cauchy–Schwarz
inequality, namely,

E

∣∣∣∣(E(
M(1)

i |Hi−1�T

)∑
j�k<i

M(1)
j M

(1)
k

∣∣H0�T

)∣∣∣∣
≤ C · λBL ·BL ·

√√√√E

(∑
j�k<i

M(1)
j M

(1)
k

)2

≤ CλBLB2
LB

2
N = CλBLT 2�

Since BL/ logT → ∞, CλBLT 2 → 0. Hence we have shown that

E

(∣∣∣∣∣
BN∑
i=1

M(1)3
i −

((
BN∑
i=1

M(1)
i

)3

− 3
BN∑
i=1

M(1)2
i

∑
j<i

M(1)
j

)∣∣∣∣∣
)

→ 0�(C.52)
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Moreover, from the definition of M(1)
i , we have

BN∑
i=1

M(1)
i =

BN∑
i=1

L(1)
i +

BN∑
i=1

Γi
(
L(1)

)
�

Using Equation (C.11), we have

BN∑
i=1

Γi
(
L(1)

) = −
BN∑
i=1

E
(
L(1)
i |H0�T

) = 0�

which implies that

BN∑
i=1

M(1)
i =

BN∑
i=1

L(1)
i �(C.53)

Now let us rewrite the third order term (C.14) using (C.48), (C.52), (C.53):

1
4
√
T 3

BN∑
i=1

((
M(1)

i

)3 +L(3)
i + 3M(1)

i M
(2)
i

)
= 1

4
√
T 3

(
BN∑
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(
−3M(1)2

i

∑
j<i

M(1)
j + 3M(1)

i M
(2)
i

)
(C.54)

+ 3
T∑
t=1

(
l(1)2t

∑
s<t

l(1)s − l(1)t l
(2)
t

))
+ rT

= 1
4
√
T 3

BN∑
i=1

(
−3M(1)2

i

∑
j<i

M(1)
j − 3M(1)3

i + 3l(1)2t

∑
s<t

l(1)s + 3l(1)3t

)
(C.55)

+ 1
4
√
T 3

BN∑
i=1

(
3M(1)

i M
(2)
i + 3M(1)3

i − 3l(1)t l
(2)
t − 3l(1)3t

)+ rT �(C.56)

with E|rT | → 0.
The last transformation results from a simple rearrangement of the terms as

well as a trivial algebraic operation. We added the terms −3M(1)3
i and 3l(1)3t in

(C.55) and subtracted them in (C.56). Hence it is sufficient to show that

E

(
1

4
√
T 3

BN∑
i=1

(
−3M(1)2

i

∑
j<i

M(1)
j − 3M(1)3

i(C.57)

+ 3l(1)2t

∑
s<t

l(1)s + 3l(1)3t

) ∣∣∣H0�T

)
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+E

(
1

4
√
T 3

BN∑
i=1

(
3M(1)

i M
(2)
i + 3M(1)3

i − 3l(1)t l
(2)
t − 3l(1)3t

) ∣∣∣H0�T

)
(C.58)

→ 0�

The following algebraic identities describing the discrete analog to partial
integration (sometimes called “partial summation”) will prove to be useful.
For arbitrary Xi�Yi, we have

XiYi +Xi

∑
j<i

Yj +Yi
∑
j<i

Xj =
∑
j≤i
Xj

∑
j≤i
Yj −

∑
j≤i−1

Xj

∑
j≤i−1

Yj�(C.59)

Computing the sum over the index i in (C.59) gives

BN∑
i=1

(
XiYi +Xi

∑
j<i

Yj +Yi
∑
j<i

Xj

)
=

BN∑
i=1

Xj

BN∑
j=1

Yj�(C.60)

Let us first analyze (C.57). Using (C.60) twice shows that the sum in (C.57)
equals

1
4
√
T 3

BN∑
i=1

E

(
3M(1)

i

∑
j<i

M(1)2
j − 3
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)
(C.61)

− 1
4
√
T 3

T∑
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E

(
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∑
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l(1)2s − 3
T∑
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l(1)t

T∑
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∣∣∣H0�T

)
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Note that∣∣∣∣E(
M(1)

i

∑
j<i

M(1)2
j

∣∣H0�T

)∣∣∣∣ ≤
∑
j<i

∣∣E(
M(1)2

j E
(
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) |H0�T

)∣∣�(C.62)

Then using the Cauchy–Schwarz inequality, (C.51), and the fact that EM(1)4
j ≤

C ·B4
L (by our assumptions on the moments of the log-likelihood), we obtain∣∣∣∣E(

M(1)
i

∑
j<i

M(1)2
j

∣∣H0�T

)∣∣∣∣ ≤ C · λBL ·BN ·B5
L�(C.63)

So

E

∣∣∣∣∣1/ 4
√
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E

(
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i

∑
j<i

M(1)2
j

∣∣H0�T
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Analogously, we can see that the first order Bartlett identity implies that the
random variables

E

(
l(1)t

∑
s<t

l(1)2s

∣∣H0�T

)
(C.64)

are uncorrelated (they are linear combinations of products of the coefficients
of l(1)t with terms dependent on “past” data, so they are even m.d.s.). Moreover,
it follows from our assumptions regarding the existence of moments of l(1)t as
well as the mixing condition of the ηt that the variance of

E

(
l(1)t

∑
s<t

l(1)2s

∣∣H0�T

)
=

∑
s<t

E
(
l(1)t l

(1)2
s |H0�T

)
is of order 1 (our condition on exponential mixing guarantees the convergence
of the series on the right hand side). Hence,

E

(
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E

(
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∑
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l(1)2s
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))2

=O(T)

and therefore,
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∣∣H0�T
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Therefore, we can simplify (C.61) and conclude that the difference of the terms
in (C.57) and

1
4
√
T 3

BN∑
i=1

E

(
−3
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i

)(
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)
(C.65)

+ 3
1

4
√
T 3

T∑
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l(1)t

T∑
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l(1)2t

∣∣∣H0�T

)
converges to zero in probability.

Now we will analyze (C.58). Applying again the “partial summation” (C.59)
and (C.60), we can conclude that the terms from (C.58) are equal to
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E
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−
BN∑
i=1

E
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Perfectly analogous to our analysis of (C.57), we can see that
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and
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(
l(2)s + l(1)2s

) ∣∣∣H0�T

)

converge to zero. The second Bartlett identity guarantees that all coefficients
of l(2)s + l(1)2s are m.d.s. Hence the random variables

E

(((
l(2)t + l(1)2t

)∑
s<t

l(1)s

) ∣∣H0�T

)

are uncorrelated. Our assumptions about the existence of moments and the ex-
ponential mixing condition immediately allow to uniformly bound the variance
of these expressions. Hence,
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E

(((
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and therefore,
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Immediately from the definition of M(2)
i , we can see from (C.37) that

E
(
E
((
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i +M(1)2
i

) |Hi−1�T

))2 ≤ Const · λBL�
Analogously to (C.62), (C.63), we can show that
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So instead of (C.58), we only need to consider
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(C.66)
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)) ∣∣∣H0�T

)}
�

The first terms, (C.57), have been simplified to (C.65). We have to show that
the sum of (C.65) and (C.66) converges to zero.

So we have to show that
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converges to zero. We have the following simplification:
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where the second equality is a straight consequence of (C.53) and the third
equality holds by definition.
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Note that (C.11) implies
∑BN

i=1(Γi(L
(2))+ Γi(M

(1)2)) is H0�T -measurable. So
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which is what we wanted to prove. In conclusion, (C.14) = op(1).

C.5.4. Fourth Order Term (C.15)

To deal with the fourth order term, we use the following lemma.

LEMMA C.12:
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PROOF: Denote
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�(C.67)

In the sequel, we use the notation
∑

t for
∑Ti

t=Ti−1+1. We have
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Now we rewrite (C.67) as
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∑
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+ 6
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Moreover, we rewrite (C.68) as
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After replacing (C.68) and (C.69) by their expressions and rearranging the
terms, we obtain
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∑
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where we notice the first line corresponds to the fourth order Bartlett iden-
tity; therefore, we have 1

T

∑BN
i=1(RHS of (C.71))= op(1). To deal with the other

terms of Zil, we will use the following reasoning. Let b(l(1)t � � � � � l
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Moreover, the existence of the variance follows from the geometric ergodicity
of ηt . So we will rewrite

∑
i Zil as a sum of those terms. Notice the following

relationship:

4
∑
t

l(1)3t

∑
s 
=t
l(1)s + 4

∑
t 
=s
l(1)t l

(3)
s + 12

∑
t

l(1)t
∑
s 
=t
l(1)s l

(2)
s

= 4
∑
t

l(1)t
∑
s 
=t
l(1)3s + 4

∑
t

l(1)t
∑
s 
=t
l(3)s + 12

∑
t

l(1)t
∑
s 
=t
l(1)s l

(2)
s

= 4
∑
t

l(1)t

(∑
s 
=t
l(1)3s +

∑
s 
=t
l(3)s + 3

∑
s 
=t
l(1)s l

(2)
s

)
= 4

∑
t

l(1)t
∑
s 
=t

(
l(1)3s + l(3)s + 3l(1)s l

(2)
s

)
= 4

∑
t

l(1)t
∑
s<t

(
l(1)3s + l(3)s + 3l(1)s l

(2)
s

)
+ 4

∑
t

(
l(1)3t + l(3)t + 3l(1)t l

(2)
t

)∑
s<t

l(1)s �
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This term is negligible after taking the conditional expectation, summing over
all i’s, and dividing by T .

The remaining terms in Zil are

6
∑
t

l(1)2t

∑
s 
=j 
=t

l(1)s l
(1)
j(C.72)

+ 3
∑
t

l(1)2t

∑
s 
=t
l(1)2s(C.73)

+
∑

t 
=s 
=j 
=k
l(1)t l

(1)
s l

(1)
j l

(1)
k(C.74)

+ 6
∑
t

l(1)2t

∑
s 
=t
l(2)s(C.75)

+ 6
∑
t 
=s 
=j

l(1)t l
(1)
s l

(2)
j(C.76)

+ 3
(∑

s 
=t
l(2)t l

(2)
s

)
�(C.77)

Term (C.74) is equal to 24
∑

t>s>j>k l
(1)
t l

(1)
s l

(1)
j l

(1)
k , which is a m.d.s.; therefore,

E[1/T∑BN
i=1

∑
t 
=s 
=j 
=k l

(1)
t l

(1)
s l

(1)
j l

(1)
k | H0�T ] is negligible. The sum of terms (C.72)

and (C.76) gives 6
∑

t(l
(1)2
t + l(2)t )

∑
s 
=j 
=t l

(1)
s l

(1)
j ; notice that∑

t

(
l(1)2t + l(2)t

) ∑
s 
=j 
=t

l(1)s l
(1)
j

= 2
∑
t

(
l(1)2t + l(2)t

) ∑
s<j� 
=t

l(1)s l
(1)
j �

Hence, E[1/T∑
i

∑
t(l

(1)2
t + l(2)t )

∑
s 
=j 
=t l

(1)
s l

(1)
j |H0�T ] is negligible.

The sum of terms (C.73), (C.75), and (C.77) gives

3
∑
t

l(1)2t

∑
s 
=t

(
l(1)2s + l(2)s

)+ 3
∑
t

l(2)t
∑
s 
=t

(
l(1)2s + l(2)s

)
= 3

∑
t

(
l(1)2t + l(2)t

)∑
s 
=t

(
l(1)2s + l(2)s

)
= 6

∑
t

(
l(1)2t + l(2)t

)∑
s<t

(
l(1)2s + l(2)s

)
�

which is a m.d.s.; again it is negligible after taking the expectation, summing,
and rescaling. This completes the proof of Lemma C.12. Q.E.D.
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We return to our goal, namely, proving that (C.15) converges to −E(μ2
2�t)/2.

Before we start, notice that (C.15) contains M(j)
i , where j = 1�2�3�4. But

recall

Γi(R)=E(Ri+1 |Hi�T )−E(Ri+1 |H0�T )−E(Ri |Hi−1�T )�

where we can subtract and add the term E(Ri |H0�T ). We obtain

Γi(R)= E(Ri+1 |Hi�T )−E(Ri+1 |H0�T )

−E(Ri |Hi−1�T )+E(Ri |H0�T )

−E(Ri |H0�T )

≡D(Ri)−E(Ri |H0�T )�

Note that D(Ri) has the following properties:
∑BN

i=1D(Ri) = 0 and E(D(Ri) |
H0�T )= 0. Using (C.60), we can see that, for an arbitrary μi, we have

1
T

BN∑
i=1

D(Ri)μi = − 1
T

BN∑
i=1

D(Ri)
∑
j<i

μj − 1
T

BN∑
i=1

μi
∑
j<i

D(Rj)�(C.78)

Hence, if μi is a m.d.s. adapted to the Hi�T , we obtain

1
T

BN∑
i=1

E
(
D(Ri)μi |H0�T

) = op(1)�(C.79)

This property is used to eliminate terms in (C.15).
In the following, we use the compact notation Δ(j)i for the elements such that

M
(j)
i =L

(j)
i +Δ

(j)
i for j = 1�2�3�4�

Replacing the M(j)
i by their expressions and grouping the terms, we obtain(

M(1)
i

)4 +L(4)
i + 4M(1)

i M
(3)
i + 6

(
M(1)

i

)2
M(2)

i + 3
(
M(2)

i

)2

=L(4)
i + (

L(1)
i

)4 + 4L(1)
i L

(3)
i + 6

(
L(1)
i

)2
L(2)
i + 3

(
L(2)
i

)2
(C.80)

+ 4Δ(1)i
(
L(3)
i + (

L(1)
i

)3 + 3L(1)
i L

(2)
i

)
(C.81)

+ 6
((
Δ(1)i

)2 +Δ(2)i
)((
L(1)
i

)2 +L(2)
i

)
(C.82)

+ (
Δ(1)i

)4 + 4Δ(1)i Δ
(3)
i + 6

(
Δ(1)i

)2
Δ(2)i + 3

(
Δ(2)i

)2
(C.83)

+ 4L(1)
i

(
Δ(3)i + 3Δ(1)i Δ

(2)
i + (

Δ(1)i
)3)
�(C.84)
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The term in (C.80) once rescaled goes to zero by Lemma C.12. The term
(C.81) once rescaled also goes to zero because Δ(1)i =D(1)

i and (C.79) applies.
Now, we study (C.82). Note that

Δ(2)i = Δi
((
M(1)

i

)2 +L(2)
i

)
= Δi

((
L(1)
i

)2 +L(2)
i + 2L(1)

i D
(1)
i + (

D(1)
i

)2)
= −E((

L(1)
i

)2 +L(2)
i + 2L(1)

i D
(1)
i + (

D(1)
i

)2 |H0�T

)+D2i�

where D2i ≡D((L(1)
i )

2 +L(2)
i + 2L(1)

i D
(1)
i + (D(1)

i )
2). Moreover,

1
T

BN∑
i=1

E
[
D2i

((
L(1)
i

)2 +L(2)
i

) |H0�T

] = op(1)

as a result of (C.79) and

1
T

BN∑
i=1

E
[(
D(1)
i

)2((
L(1)
i

)2 +L(2)
i

) |H0�T

] = op(1)

for the following reason. The second order and first order Bartlett conditions
imply that μi = (L(1)

i )
2 +L(2)

i is a m.d.s. So we have

1
T

BN∑
i=1

(
D(1)
i

)2
μi = 1

T

BN∑
i=1

(
D(1)
i

)2
BN∑
i=1

μi − 1
T

BN∑
i=1

(
D(1)
i

)2 ∑
j<i

μj

− 1
T

BN∑
i=1

μi
∑
j<i

(
D(1)
j

)2
�

Taking conditional expectation with respect to H0�T , the second and third terms
of the sum are negligible. The sums are over different blocks and hence, due
to our assumption about exponential mixing, the covariance between (D(1)

i )
2

and μj converges to zero sufficiently fast. We examine more carefully the first
term:

1
T

BN∑
i=1

(
D(1)
i

)2
BN∑
i=1

μi = 1√
T

BN∑
i=1

(
D(1)
i

)2 1√
T

BN∑
i=1

μi�

As μi is a m.d.s. with finite variance, we have

E

(
1√
T

BN∑
i=1

μi

)2

=Op(1)
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and

1√
T

BN∑
i=1

(
D(1)
i

)2

= 1√
T

BN∑
i=1

(
Ti+1∑
t=Ti+1

l(1)t E(ηt |Hi�T )−
Ti∑

s=Ti−1+1

l(1)s E(ηs |Hi−1�T )

)2

= 1√
T

BN∑
i=1

(
Ti+1∑
t=Ti+1

l(1)t E(ηt |Hi�T )

)2

(C.85)

+ 1√
T

BN∑
i=1

(
Ti∑

s=Ti−1+1

l(1)s E(ηs |Hi−1�T )

)2

(C.86)

− 2√
T

BN∑
i=1

Ti+1∑
t=Ti+1

l(1)t E(ηt |Hi�T )

Ti∑
s=Ti−1+1

l(1)s E(ηs |Hi−1�T )�(C.87)

The three terms (C.85), (C.86), and (C.87) can be treated in the same manner.
We will examine only (C.85):

1√
T

BN∑
i=1

(
Ti+1∑
t=Ti+1

l(1)t E(ηt |Hi�T )

)2

= 1√
T

BN∑
i=1

Ti+1∑
t=Ti+1

l(1)2t E(ηt |Hi�T )
2

+ 2√
T

BN∑
i=1

Ti+1∑
t=Ti+1

∑
s<t

l(1)t l
(1)
s E(ηt |Hi�T )E(ηs |Hi�T )�

Note that

Ti+1∑
t=Ti+1

l(1)2t E(ηt |Hi�T )
2 ≤

Ti+1∑
t=Ti+1

l(1)2t λ2(t−Ti)g(ηt)2 ≤ C�

where g is some bounded function of ηt by the geometric ergodicity of ηt and
C is a constant. Hence,

1√
T

BN∑
i=1

Ti+1∑
t=Ti+1

l(1)2t E(ηt |Hi�T )
2 ≤ 1√

T

BN∑
i=1

C = C
BN√
T

= op(1)�
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It follows that

1
T
E

∣∣∣∣∣
BN∑
i=1

(
D(1)
i

)2
BN∑
i=1

μi

∣∣∣∣∣ = op(1)�

and

1
T

BN∑
i=1

6E
[((
Δ(1)i

)2 +Δ(2)i
)((
L(1)
i

)2 +L(2)
i

) |H0�T

]
= − 6

T

BN∑
i=1

E
((
L(1)
i

)2 +L(2)
i + 2L(1)

i D
(1)
i + (

D(1)
i

)2 |H0�T

)
×E

((
L(1)
i

)2 +L(2)
i |H0�T

)
+ op(1)

= − 6
T

BN∑
i=1

E
((
L(1)
i

)2 +L(2)
i |H0�T

)2
(C.88)

− 6
T

BN∑
i=1

E
(
2L(1)

i D
(1)
i + (

D(1)
i

)2 |H0�T

)
E
((
L(1)
i

)2 +L(2)
i |H0�T

)
(C.89)

+ op(1)�

Now, we turn our attention to (C.83).
Using (C.78), we can show

1
T

BN∑
i=1

E
(
Δ(1)i Δ

(3)
i |H0�T

) = 1
T

BN∑
i=1

E
(
D(1)
i Δ

(3)
i |H0�T

) = op(1)�

By the geometric ergodicity of ϑt , we have

1
T

BN∑
i=1

E
(
Δ(1)4i |H0�T

) = op(1)�

The remaining terms of (C.83) are

6
(
Δ(1)i

)2
Δ(2)i + 3

(
Δ(2)i

)2

= 6
(
D(1)
i

)2[−E((
L(1)
i

)2 +L(2)
i + 2L(1)

i D
(1)
i + (

D(1)
i

)2 |H0�T

)+D2i

]
+ 3

[−E((
L(1)
i

)2 +L(2)
i + 2L(1)

i D
(1)
i + (

D(1)
i

)2 |H0�T

)+D2i

]2
�
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Rearranging the terms yields

6
(
Δ(1)i

)2
Δ(2)i + 3

(
Δ(2)i

)2

= 3E
((
L(1)
i

)2 +L(2)
i |H0�T

)2
(C.90)

+ 3E
(
2L(1)

i D
(1)
i + (

D(1)
i

)2 |H0�T

)2
(C.91)

+ 6E
(
2L(1)

i D
(1)
i + (

D(1)
i

)2 |H0�T

)
E
((
L(1)
i

)2 +L(2)
i |H0�T

)
(C.92)

− 6
(
D(1)2
i +D2i

)
E
((
L(1)
i

)2 +L(2)
i + 2L(1)

i D
(1)
i + (

D(1)
i

)2 |H0�T

)
(C.93)

+ 3D2
2i + 6D(1)2

i D2i�(C.94)

After rescaling and summing, the terms (C.91), (C.93), and (C.94) are op(1).
The term (C.92) simplifies with (C.89). Hence, the terms (C.82) and (C.83)
simplify to give

−3
1
T

BN∑
i=1

E
((
L(1)
i

)2 +L(2)
i |H0�T

)2 + op(1)�

Now consider (C.84):

4L(1)
i

(
Δ(3)i + 3Δ(1)i Δ

(2)
i + (

Δ(1)i
)3)

= −4L(1)
i E

(
L(3)
i + 3M(1)

i M
(2)
i + (

M(1)
i

)3 |H0�T

)
(C.95)

+ 4L(1)
i D

(
L(3)
i + 3M(1)

i M
(2)
i + (

M(1)
i

)3)
+ 4L(1)

i

(
D(1)
i

)3

− 12L(1)
i D

(1)
i E

((
M(1)

i

)2 +L(2)
i |H0�T

)
+ 12L(1)

i D
(1)
i D

((
M(1)

i

)2 +L(2)
i

)
�

Note that E((C.95) |H0�T )= 0 because E(L(1)
i |H0�T )= 0. We obtain

1
T

BN∑
i=1

E
(
(C.84) |H0�T

) = op(1)�

In conclusion, we have

(C.15) = − 1
8T

BN∑
i=1

E
((
L(1)
i

)2 +L(2)
i |H0�T

)2 + op(1)�



OPTIMAL TEST FOR MARKOV SWITCHING PARAMETERS 67

Finally, note that

− 1
8T

BN∑
i=1

E
((
L(1)
i

)2 +L(2)
i |H0�T

)2 p→ −1
2
E
(
μ2

2�t

)
�

This completes the proof of Theorem 4.1. Q.E.D.

APPENDIX D: OPTIMALITY AND POWER

In this section, we prove all the results of Sections 4 and 5, except for The-
orem 4.1, which has already been proved. In Section D.4, we investigate the
power of our test in autoregressive models with switching mean.

D.1. Contiguity—Proof of Corollary 4.2

Define sequences θT such that

N � θT → θ0 ∈N �(D.1)

We establish the following intermediate result.

COROLLARY D.1: For every sequence θT satisfying (D.1) and any β, the PθT �β
is contiguous with respect to PθT .

PROOF: By Le Cam’s first lemma (see Lemma 6.4 in van der Vaart (1998)),

contiguity holds if �βT (θT )= dPθT �β/dPθT
d→U under PθT with E(U)= 1. From

Theorem 4.1, we have

dPθT �β

dPθT

/
exp

(
1√
T

T∑
t=1

μ2�t(β�θT )− 1
2
E
(
μ2�t(β�θT )

2
)) P→ 1

under PθT . It follows from (2.5) that μ2�t(β�θ0) is a stationary and ergodic mar-
tingale difference sequence; hence the central limit theorem applies. We have

1√
T

T∑
t=1

μ2�t(β�θT )
d→N(β)

under PθT , where N(β) is a Gaussian process with mean zero and variance
E(μ2�t(β�θT )

2) ≡ c(β�β). Using the expression of the moment generating
function of a normal distribution, we have

E[U] = exp
(
c(β�β)

2

)
exp

(
−c(β�β)

2

)
= 1� Q.E.D.
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PROOF OF COROLLARY 4.2: Denote

�T (θ0 − d/
√
T)≡ dPθ0−d/√T

dPθ0

=

T∏
t=1

ft(θ0 − d/
√
T)

T∏
t=1

ft(θ0)

= exp

{
T∑
t=1

(
lt(θ0 − d/

√
T)− lt(θ0)

)}
�

Using a second order Taylor expansion around θ0 − d√
T

, we obtain the following
result:

For all θ0 ∈N , and for all vectors d,

�T

(
θ0 − d√

T

)/
exp

(
− 1√

T

T∑
t=1

d′l(1)t

(
θ0 − d√

T

)

+ 1
2
Eθ0

(
d′l(1)t

(
θ0 − d√

T

))2
)

→ 1

uniformly (in d on all compacts) in probability.
Our regularity conditions guarantee the convergence of 1√

T

∑T

t=1 d
′l(1)t (θ0) to

a normal distribution with mean zero and variance E[(d′l(1)t (θ0))
2]; hence we

can conclude that Pθ0−d/√T is contiguous with respect to Pθ0 . Since contiguity
is a transitive relationship, we may conclude from Corollary D.1 that, for all
vectors d, Pθ0−d/√T�β is contiguous with respect to Pθ0 . This concludes the proof
of Corollary 4.2. Q.E.D.

D.2. Definitions and Preliminary Results on Optimality

Denote

�T

(
θ0 − d√

T

)
≡ dPθ0−d/√T

dPθ0

=

T∏
t=1

ft(θ0 − d/
√
T)

T∏
t=1

ft(θ0)

= exp

{
T∑
t=1

(
lt(θ0 − d/

√
T)− lt(θ0)

)}
�

Using a second order Taylor expansion around θ0 − d√
T

, we obtain the following
lemma.
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LEMMA D.2: For all θ0 ∈N , and for all vectors d,

�T

(
θ0 − d√

T

)/
exp

(
− 1√

T

T∑
t=1

d′l(1)t

(
θ0 − d√

T

)

+ 1
2
Eθ0

(
d′l(1)t

(
θ0 − d√

T

))2
)

→ 1

uniformly (in d on all compacts) in probability.

Again, our regularity conditions guarantee the convergence of (1/
√
T)×∑T

t=1 d
′l(1)t (θ0) to a normal distribution with mean zero and variance

E[(d′l(1)t (θ0))
2]; hence we can conclude that Pθ0−d/√T are contiguous with re-

spect to Pθ0 . Since contiguity is a transitive relationship, we may conclude that,
for all vectors d, Pθ0−d/√T�β is contiguous with respect to Pθ0 . From

dPθT �β

dPθ0

= dPθT �β

dPθT

dPθT
dPθ0

�

we can conclude that with

θT = θ0 − d√
T
�(D.2)

dPθT �β

dPθ0

/
exp

(
1√
T

T∑
t=1

μ2�t(β�θT )− 1
2
Eθ0

(
μ2�t(β�θT )

2
)

− 1√
T

T∑
t=1

d′l(1)t (θT )+ 1
2
Eθ0

((
d′l(1)t (θT )

)2))
→ 1�

where the convergence is—again—uniform in probability with respect to Pθ0 .
Now, we can proceed to construct optimal tests ofH0(θ0) against the alterna-

tives H1T (θT ). First assume that we know θ0 ∈Θ. Then contiguous alternatives
to H0(θ0) are described by the probability measures

PθT �β�

where θT is given by (D.2). We now want to compare tests with respect to their
powers against these alternatives. In particular, we want to characterize tests by
optimality properties. We start with a sequence of tests ψT and then show that
there does not exist another sequence of tests ϕT that is asymptotically “bet-
ter” for the null and all the contiguous alternatives. So let us formally define
“better” tests.
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DEFINITION D.3: A sequence ϕT of tests is asymptotically better than ψT at
θ0 if it is “better” under the null

lim sup
∫
ϕT dPθ0 ≤ lim inf

∫
ψT dPθ0

and “better” under the alternatives, that is, for all θT and β,

lim inf
∫
ϕT dPθT �β ≥ lim sup

∫
ψT dPθT �β�

This definition is essentially the same as that used by Andrews and Ploberger
(1994) and a bit different from the one in Strasser (1995). Although the latter
can be very useful when analyzing the asymptotic behavior of possible power
functions for testing problems, our definition turns out to be more practical
in econometric analysis because it directly deals with the asymptotic behavior
of tests. Our definition here is, however, close enough to the one in Strasser
(1995) so that we can use the standard proofs of optimality.

DEFINITION D.4: A test ψT is said to be admissible if there exists no asymp-
totically better test.

Let ϕT be some test statistic that has asymptotic level α (i.e., lim
∫
ϕT dPθ0 =

α) and asymptotic power function (i.e., lim
∫
ϕT dPθT �β exists). Let K ≥ 0 be an

arbitrary constant, and ν be an arbitrary, but finite measure concentrated on
a compact subset of B × Rp. Without limitation of generality, we can assume
that ν(B× Rp)= 1. Then let us define the loss function as

L(ϕT)=K

∫
ϕT dPθ0 −

∫ (∫
ϕT dPθ0−d/√T�β

)
dν(β�d)�(D.3)

By Fubini’s theorem, we have

L(ϕT)=
∫ (

K − dPθ0−d/√T�β
dPθ0

)
ϕT dPθ0 dν(β�d)(D.4)

=
∫ (

K −
{∫

dPθ0−d/√T�β
dPθ0

dν(β�d)

})
ϕT dPθ0 �

It follows from (D.4) that, for fixed K, L(ϕT) is minimized by the tests ψT ,
which satisfy

ψT =

⎧⎪⎪⎨⎪⎪⎩
1 if

{∫
dPθ0−d/√T�β

dPθ0

dν(β�d)

}
>K

0 if
{∫

dPθ0−d/√T�β
dPθ0

dν(β�d)

}
<K

⎫⎪⎪⎬⎪⎪⎭ �(D.5)
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So the minimal loss only depends on the distributions of the{∫
dPθ0−d/√T�β

dPθ0

dν(β�d)

}
�

Moreover, the measures
∫
Pθ0−d/√T�β dν(β�d) are contiguous with respect to

Pθ0 , too. Hence the minimal loss equals

−
∫ ({∫

dPθ0−d/√T�β
dPθ0

dν(β�d)

}
−K

)(+)
dPθ0�

where, for an arbitrary real number x, x(+) denotes the positive part of x.
Let us now assume that we have a competing sequence of tests ϕT . Note that

(D.5) does not uniquely determine a test. Indeed, the behavior of the test on

the event [{∫ dP
θ0−d/√T�β
dPθ0

dν(β�d)} = K] does not matter. Hence the following
definition will be useful.

DEFINITION D.5: The tests ϕT and ϕ′
T are asymptotically equivalent (with

respect to the loss function L) if and only if, for all ε > 0,

limEθ0

∣∣ϕT −ϕ′
T

∣∣I[∣∣∣∣{∫ dPθ0−d/√T�β
dPθ0

dν(β�d)

}
−K

∣∣∣∣> ε] = 0�

So, heuristically speaking, ϕT and ϕ′
T give us the same decision provided the

test statistic
∫ dP

θ0−d/√T�β
dPθ0

dν(β�d) is different from the critical value K. More-
over, we have the following result.

THEOREM D.6: Let ψT be defined by (D.5) and ϕT be an arbitrary test.
(i) If ϕT and ψT are asymptotically equivalent in the sense of Definition D.5,

then

lim
(
L(ψT)−L(ϕT)

) = 0�(D.6)

(ii) If ϕT and ψT are not asymptotically equivalent, then

lim inf
(
L(ψT)−L(ϕT)

)
< 0�(D.7)

Hence (D.6) implies that ψT and ϕT are asymptotically equivalent.

We conclude from Theorem D.6 that the tests ψT and all asymptotically
equivalent sequences of tests are admissible. Any tests with genuinely better
power functions would have smaller loss, which is impossible. Hence, we have
to show that our test is asymptotically equivalent to tests ψT .
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PROOF OF THEOREM D.6: It follows from (D.4) that

L(ψT)−L(ϕT)

=
∫ (

K −
{∫

dPθ0−d/√T�β
dPθ0

dν(β�d)

})
(ψT −ϕT)dPθ0 �

The construction of ψT and the fact that 0 ≤ ϕT ≤ 1 imply that the integrand is
nonpositive. Let ε > 0 be arbitrary. Let us define

r =K −
{∫

dPθ0−d/√T�β
dPθ0

dν(β�d)

}
�

Then

L(ψT)−L(ϕT)=
∫
rI

[|r|> ε](ψT −ϕT)dPθ0(D.8)

+
∫
rI

[|r| ≤ ε
]
(ψT −ϕT)dPθ0 �

Since |ψT −ϕT | ≤ 1, we have∣∣∣∣∫ rI
[|r| ≤ ε

]
(ψT −ϕT)dPθ0

∣∣∣∣ ≤ ε�(D.9)

The construction of ψT guarantees that r(ψT −ϕT)≤ 0. Hence, for asymptot-
ically equivalent tests, we have∫

rI
[|r|> ε](ψT −ϕT)dPθ0 = −

∫
|r|I[|r|> ε]|ψT −ϕT |dPθ0

<−ε
∫
I
[|r|> ε]|ψT −ϕT |dPθ0 → 0�

This proves (D.6). For (D.7), observe that if ϕT and ψT are not asymptotically
equivalent, then there exists an η> 0 so that

lim supEθ0 |ϕT −ψT |I
[∣∣∣∣{∫ dPθ0−d/√T�β

dPθ0

dν(β�d)

}
−K

∣∣∣∣>η]> 0�

As r(ψT − ϕT) ≤ 0, we have rI[|r| > ε](ψT − ϕT) ≤ rI[|r| > η](ψT − ϕT) =
−|ϕT −ψT ||r|I[|r|>η] if η≥ ε; hence, for all ε small enough,

lim inf
∫
rI

[|r|> ε](ψT −ϕT)dPθ0

<−η lim supEθ0 |ϕT −ψT |
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× I

[∣∣∣∣{∫ dPθ0−d/√T�β
dPθ0

dν(β�d)

}
−K

∣∣∣∣>η]
< 0�

and together with (D.8) and (D.9), this proves Theorem D.6. Q.E.D.

Assume ν to be a probability measure on the product space of β and Rp.

DEFINITION D.7: Define φT as the tests that reject when
∫

exp(ZT(β�
θT ))dν(β�d) >K and accept when

∫
exp(ZT(β�θT ))dν(β�d) <K.

We now want to show that the tests ψT andφT are asymptotically equivalent.
A sufficient condition for asymptotic equivalence is∫

exp
(
ZT(β�θT )

)
dν(β�d)

/∫
dPθ0−d/√T�β

dPθ0

dν(β�d)→ 1�(D.10)

We know that, for all finite sets βi, di,

exp
(
ZT(βi� θ0 − di/

√
T)

)/dPθ0−di/
√
T�βi

dPθ0

→ 1�(D.11)

So suppose that, for all ε > 0 and η> 0, we could find a partition S1� � � � � SK so
that with probability greater than 1 − ε for all i, (β�d)� (γ� e) ∈ Si, |ZT(β�θ0 −
d/

√
T) − ZT(γ�θ0 − e/

√
T)| < η, | dPθ0−d/√T�β

dPθ0
− dP

θ0−e/√T�γ
dPθ0

| < η. Then, (D.10)
will be an easy consequence of (D.11).

The existence of such a partition for the ZT is an immediate consequence of
the uniform tightness of the distribution of ZT . According to our assumptions,

the difference between theZT and the log of the densities
dP

θ0−di/
√
T�βi

dPθ0
converges

to zero uniformly in probability. Hence the density process is uniformly tight,
too, which immediately guarantees the existence of the partition.

Then, the tests φT are asymptotically equivalent to the tests ψT . Conse-
quently, we have the following result.

THEOREM D.8: Let ϕT be a sequence of tests that is asymptotically better (in
the sense of Definition D.3) than φT . Then ϕT is asymptotically equivalent to φT .

PROOF: Theorem D.6 shows that, if the φT are equivalent to the ψT , then

lim
(
L(φT)−L(ψT)

) = 0�(D.12)

Since ψT are the tests with minimal loss function, we also have

lim inf
(
L(ϕT)−L(φT)

) ≥ 0�(D.13)
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If δ is an arbitrary, finite measure and hn measurable functions with |hn| ≤
M for some M , then it is an easy consequence of Fatou’s lemma that∫

lim infhn dδ≤ lim inf
∫
hn dδ. Definition D.3 guarantees that

lim inf
(∫

ϕT dPθT �β −
∫
φT dPθT �β

)
≥ 0

and

lim sup
(∫

ϕT dPθ0 −
∫
φT dPθ0

)
≤ 0�

Since

L(ϕT)−L(φT)

=K

(∫
ϕT dPθ0 −

∫
φT dPθ0

)
−

∫ ((∫
ϕT dPθ0−d/√T�β

)
−

(∫
φT dPθ0−d/√T�β

))
dν(β�d)�

we can conclude that

lim sup
(
L(ϕT)−L(φT)

) ≤ 0�(D.14)

Equations (D.13) and (D.14) allow us to conclude that lim(L(ϕT) −
L(φT)) = 0; hence, (D.12) also implies that lim(L(ϕT) − L(ψT)) = 0. Then
Theorem D.6 implies that ϕT and ψT are asymptotically equivalent. Since
we did show that the φT are equivalent to the ψT , this proves Theorem D.8.

Q.E.D.

D.3. Proofs of Theorems 4.3, 5.1, and 5.2

PROOF OF THEOREM 4.3: 1. Proof of (4.4):
We have to analyze the difference between ZT(β�θT ), where θT = θ −

d/
√
T , and

TST (β� θ̂)= 1√
T

∑
μ2�t(β� θ̂)− 1

2T
ε̂(β)′̂ε(β)�

where ε̂(β) is the residual from the OLS regression of μ2�t(β� θ̂) on l(1)t (θ̂).
In the theorem, we are only interested in integrals with respect to the mea-

sure J. Moreover, this measure has compact support. Hence we can assume
that the variable β is restricted to a compact set.
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Terms − 1
2E(μ2�t(β�θT )

2)+ 1
2E((d

′l(1)t (θT ))2) are continuous functions of θ,
converging uniformly in β to

−1
2
E
(
μ2�t(β�θ0)

2
)+ 1

2
E
((
d′l(1)t (θ0)

)2)
�

By Point (ii) of Theorem 3.1,

1
2T

̂ε(β)
′
̂ε(β)

P→ 1
2
E
(
μ2�t(β�θ0)

2
)− 1

2
d′I(θ0)d�

Hence it is sufficient for us to show that

1√
T

T∑
t=1

μ2�t(β�θT )− 1√
T

T∑
t=1

d′l(1)t (θT )− 1√
T

T∑
t=1

μ2�t(β� θ̂)

= 1√
T

T∑
t=1

μ2�t(β�θT )− 1√
T

T∑
t=1

d′l(1)t (θT )

−
(

1√
T

T∑
t=1

μ2�t(β� θ̂)− 1√
T

T∑
t=1

d′l(1)t (θ̂)

)

converges (uniformly in β) to 0. Observe that our conditions guarantee that
the ML estimator is

√
T consistent. Hence it is sufficient to show that, for all

M ,

sup
β�‖θ−θ0‖≤M/√T

∣∣νT (β�θ)− νT (β�θ0)
∣∣ → 0�(D.15)

where νT was defined in (C.1). Equation (D.15) can be shown using a proof
similar to that of Point (i) of Theorem 3.1.

2. Validity of the asymptotic critical values:
The validity of asymptotic critical values obtained by plugging in θ̂ instead

of θ can be established using Theorem C.2 and the same proof as for Theo-
rem 3.2.

3. Admissibility:
From

dPθT �β

dPθ0

= dPθT �β

dPθT

dPθT
dPθ0

and Theorem 4.1, we can conclude that(
dPθT �β

dPθ0

)/
exp

(
ZT(β�θT )

) → 1�
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where the convergence is—again—uniform in probability with respect to Pθ0 .
Then, the admissibility of expTS follows from Theorem D.6.

We now have shown Theorem 4.3. Q.E.D.

PROOF OF THEOREM 5.1: Using the same argument as in the proof of Theo-
rem 3.1, we can show that the joint distribution of (TST (β� θ̂)� log

dPθT �β

dPθ0
)′ con-

verges under Pθ0 to a normal distribution with mean (− 1
2k(β�β)�0) and co-

variance (
k(β�β) k(β�β)

k(β�β) k(β�β)

)
�

It follows from Le Cam’s third lemma (van der Vaart (1998)) that TST (β� θ̂)
converges in distribution under PθT �β to a normal distribution with mean
k(β�β)− 1

2k(β�β)= 1
2k(β�β) and variance k(β�β). The same can be shown

for any sequence of βi : 1 ≤ i≤N , yielding the desired result. Q.E.D.

PROOF OF THEOREM 5.2: First of all, let us observe that

μ2�t(β�θ)= c2

2
h′
[(

∂2lt

∂θ∂θ′ +
(
∂lt

∂θ

)(
∂lt

∂θ

)′)
+ 2

∑
s<t

ρ(t−s)
(
∂lt

∂θ

)(
∂ls

∂θ

)′]
h�

Let us assume that, for one h, there exist infinitely many values of ρ, so that
(5.1) is fulfilled. We see that μ2�t(β�θ), and hence d, are analytic functions of
ρ. Therefore, Eθ0((μ2�t(β�θ0)− d′l(1)t (θ0))

2) must be an analytic function, too.
We did assume that this function has infinitely many zeros in a finite interval;
hence it must be identically zero. Hence,

c2h′
[(

∂2lt

∂θ∂θ′ +
(
∂lt

∂θ

)(
∂lt

∂θ

)′)
+ 2

∑
s<t

ρ(t−s)
(
∂lt

∂θ

)(
∂ls

∂θ

)′]
h

= d(c�h�ρ)′
(
∂lt

∂θ

)
for all ρ. Since both sides of the equation are analytic functions, their deriva-
tives (with respect to ρ) must be also equal. Evaluating the derivative of order
t − s at ρ= 0 yields

2c2h′
(
∂lt

∂θ

)(
∂ls

∂θ

)′
h= d′

t−s

(
∂lt

∂θ

)
�
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where d′
t−s is the coefficient of ρ(t−s−1) in the derivative of d(·� ·� ·) with respect

to ρ. In the case where c2 
= 0, this contradicts our assumption. Q.E.D.

D.4. Power of ExpTS Test for Autoregressive Models

In Section 5, we established that, under certain circumstances, even local
alternatives shrinking with T−1/4 cannot be detected. Here we give a detailed
description of this case when the model under the null is an autoregressive
process with unknown mean. Consider the model

yt = μt + ut�(D.16)

ϕ(L)ut = et� et ∼ i�i�d�N
(
0�σ2

)
�

with ϕ(L)= 1 −φ1L−φ2L
2 − · · · −φpL

r . We assume that the covariance of
ηt is such that

Cov(ηt�ηs)= Constρ|t−s|�(D.17)

LEMMA D.9: Consider the model (D.16) and (D.17); expTS test for testing
H0 :μt = μ has power under the local alternatives H1T :μt = μ+ ηt/T

1/4 if and
only if 1/ρ is not a root of the characteristic equation of the AR model, that is,

φr(1/ρ)r +φr−1(1/ρ)r−1 +φr−2(1/ρ)r−2 + · · · +φ1(1/ρ)− 1 
= 0�

We see that if the roots of the characteristic equation are all complex, then
this condition is necessarily satisfied. On the other hand, if 1/ρ is a root of
the characteristic equation, our test does not have power against alternative
of order 1/T 1/4. Moreover, it is impossible to construct a test that would have
such power.

PROOF OF LEMMA D.9: First of all, let us define the notation Const as a
constant (i.e., nonrandom) function of the parameters, not necessarily always
the same. So when Const occurs twice in a formula, it does not necessarily
denote the same thing.

Then we have the first order derivatives

∂lt

∂μ
= Const · et�(D.18)

∂lt

∂ϕi
= 1
σ2
et(yt−i −μ)� i= 1� � � � � r�

∂lt

∂(σ2)
= Const

(
e2
t − σ2

)
�
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and the second order derivatives

∂2lt

∂μ2
= Const

(
e2
t − σ2

)
and μ2�t as

μ2�t = Const
(
e2
t − σ2

)+ Const
∑
i≥1

ρitetet−i�(D.19)

The problematic points for our test statistic are these ρ, where μ2�t is a linear
combination of the first order derivatives. So let us assume we have a ρ for
which this is the case:

μ2�t =A1
∂lt

∂μ
+A2

∂lt

∂(σ2)
+

r∑
i=1

Bi
∂lt

∂ϕi
�(D.20)

As et is normal and independent from the past, it is uncorrelated with
μ2�t �

∂lt
∂ϕi
� ∂lt
∂σ2 and we can conclude thatA1 = 0. Moreover, for the same reasons,

∂lt
∂σ2 is uncorrelated with ∂lt

∂ϕi
and etet−i. Now it follows from (D.19) that

μ2�t − Const
∂lt

∂(σ2)
= Const

∑
i≥1

ρietet−i�(D.21)

and from (D.20) (as A1 = 0)

μ2�t − Const
∂lt

∂(σ2)
=

r∑
i=1

Bi
∂lt

∂ϕi
�(D.22)

Taking the difference between (D.21) and (D.22) gives

Const
∂lt

∂(σ2)
= Const

∑
i≥1

ρietet−i −
r∑
i=1

Bi
∂lt

∂ϕi
�(D.23)

As mentioned above, ∂lt
∂σ2 is uncorrelated with all the terms on the right hand

sides of (D.21) and (D.22). Hence, the left hand side of Equation (D.23) equals
0 and we have

Const
∑
i≥1

ρietet−i =
r∑
i=1

Bi
∂lt

∂ϕi
�

The trivial possibility is that the Const on the left hand side equals 0. Then the
right hand side equals zero, too, and this implies from (D.20) that ρ= 0, which
corresponds to white noise ηt . We know that we can do nothing in this case.
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So let us assume that Const differs from 0. Then we can divide by this con-
stant, and use (D.18) to conclude that

∑
i≥1

ρietet−i =
r∑
i=1

biet(yt−i −μ)

or

et
∑
i≥1

ρiet−i = et

r∑
i=1

bi(yt−i −μ)�(D.24)

where the bi are coefficients proportional to the Bi. Now observe that et are
independent from the past. So multiplying both sides of (D.24) with et and
taking the conditional expectation with respect to the past yields

∑
i≥1

ρiet−i =
r∑
i=1

bi(yt−i −μ)�(D.25)

Multiplying both sides with ρL, where L is the lag operator, and subtracting
from (D.25) yields

ρet−1 =
r∑
i=1

bi(yt−i −μ)− ρ

(
r∑
i=1

bi(yt−i−1 −μ)

)
�

or equivalently,

ρet−1 = b1(yt−1 −μ)+ (b2 − ρb1)(yt−2 −μ)+ · · ·
+ (br − ρbr−1)(yt−r −μ)− ρbr(yt−r−1 −μ)�

From (D.16), we can conclude that

et = ϕ(L)(yt −μ)�

Hence,

ρ
(
(yt−1 −μ)−φ1(yt−2 −μ)− · · ·

−φr−1(yt−r −μ)−φr(yt−r−1 −μ)
)

= b1(yt−1 −μ)+ (b2 − ρb1)(yt−2 −μ)+ · · ·
+ (br − ρbr−1)(yt−r −μ)− ρbr(yt−r−1 −μ)�
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Since the yt−i − μ are linearly independent, the coefficients must be equal.
Therefore

ρ= b1�

−ρφi−1 = bi − ρbi−1� i= 2� � � � � r�(D.26)

−ρφr = −ρbr�(D.27)

Then (D.26) allows us to solve for bi, i= 2� � � � � r,

bi = −ρφi−1 + ρbi−1�

so

bi = −ρφi−1 − ρ2φi−2 − · · · − ρi−1φ1 + ρi�

This holds for all i≤ r. So we have

br = −ρφr−1 − ρ2φr−2 − · · · − ρr−1φ1 + ρr�

Equation (D.27), however, requires (as we assumed ρ 
= 0) that br =φr ; hence,

φr = −ρφr−1 − ρ2φr−2 − · · · − ρr−1φ1 + ρr

or

0 =φr + ρφr−1 + ρ2φr−2 + · · · + ρr−1φ1 − ρr�

which is equivalent to

0 =φr(1/ρ)r +φr−1(1/ρ)r−1 +φr−2(1/ρ)r−2 + · · · +φ1(1/ρ)− 1�
Q.E.D.
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