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GIVEN THE LARGE NUMBER OF APPENDICES, there is an unusually heavy de-
mand on mathematical notation in this paper. As a guide for the reader, we
follow three rules. First, within the body of the text, we use a consistent set
of symbols. Second, when the text draws from an appendix, we ensure that the
notation is the same in that appendix and the text. Third, within each appendix,
we use a consistent set of notation. However, some of the same symbols may be
used in different appendices, subject to the constraint imposed by the second
rule.

APPENDIX A: GENERALIZATIONS OF THE THEORETICAL MODEL

In this appendix, we describe three generalizations of the simple model
presented in Section 2. First, we allow for a more general form of inter-
action between firms in technology and product market space (where there
can be overlap), and also consider the N-firm case (rather than the three
firm case). Second, we examine tournament models of R&D (rather than
the non-tournament model in the baseline case). We show, with light mod-
ifications, that the essential insights of our simple model carry through to
these more complex settings. Third, we allow the patenting decision to be
an endogenous choice for the firm (rather than simply having patents as
an empirical indicator of successfully produced knowledge from R&D). Al-
though our main model predictions are robust, the extension to endogenous
patenting implies that the partial derivative of patenting with respect to prod-
uct market rivals’ R&D (SPILLSIC) will be nonzero (it is zero in the basic
model).

A.1. General Form of Interactions in Technology and Product Market Space

We begin with the general expression for flow profit
(A.l) ’7Ti=7T*(r,', r_,»),

where r_; is the vector of R&D for all firms other than i. In this formulation, the
elements of r_; captures both technology and product market spillover effects.
To separate these components, we assume that (A.1) can be expressed as

(Az) 77[ = 7T(ri7ri7,rim)7
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where

(A3)  r,=Y TECH;r;,
J#i

(A.4) Vim = Z SIC,-jrij,
J#L

and the partial derivatives are m > 0,7, > 0,7 <0, 7, 2 0, 73 2 0, and
7y 2 0. The technology spillover effect is m, > 0, and the business stealing
effect is 773 < 0. We do not constrain the effect of technology and product mar-
ket spillovers on the marginal profitability of own R&D. Note that own R&D
and product market spillovers are strategic substitutes if 73 < 0 and strategic
complements if 73 > 0.

Equation (A.2) imposes constraints on (A.1) by partitioning the total effect
of the R&D by each firm j # i into technology spillovers r;, and product market
rivalry spillovers r;,, and by assuming that the marginal contribution of firm j
to each pool is proportional to its “distance” in technology and product market
space, as summarized by TECH; and SIC;; (i.e., we assume that ‘% can be

summarized in the form m;TECH ; + miSIC;; for each j # i).
Firm i chooses R&D to maximize net value

max\V; = mw(r;, iz Yim) — 1.
Ti

Optimal R&D r} satisfies the first-order condition
(AS5) i (rf, rinrim) —1=0.

We want to study how (exogenous) variations in r;, and r;, affect opti-
mal R&D. To do this, we choose an arbitrary subset of firms, S, and make
compensating changes in their R&D such that either r;, or r;, is held con-
stant. This allows us to isolate the impact of the spillover pool we are
interested in. Consider a subset of firms denoted by s € S, where s # i,
and a set of changes in their R&D levels, {dr,}, that satisfy the constraint
drim =7 ,.¢SIC;;dr, = 0. These changes imply some change in the technology
spillovers dr;, = )" _ TECH ; dr,, which, in general, will differ from zero (it
can be either positive or negative depending on the TECH and SIC weights).
Now totally differentiate the first-order condition, allowing only 7, for s € S to
change.' This gives

mldr,-—|—lezTECHA.drS—|—7713ZSIC,~SdrS =0.

seS seS

!'We assume that the changes in R&D do not violate the restriction r, > 0.
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But the third summation is zero by construction (dr;,, = 0), and the second
summation is just dr;,. So we get

(A6) L _Me

Vir T

By similar derivation, we obtain

(A7) j’f __

Vim T

Equation (A.6) says that if we make compensating changes in the R&D such
that the pool of product market spillovers is constant, the effect of the resulting
change in technology spillovers has the same sign as 7ry,. This can be either pos-
itive or negative depending on how technology spillovers affect the marginal
productivity of own R&D. Equation (A.7) says that if we make compensating
changes in the R&D such that the pool of technology spillovers is constant, the
effect of the resulting change in product market spillovers has the same sign as
r3—the sign depends on whether R&D by product market rivals is a strategic
substitute or complement for the firm’s own R&D.

Using the envelope theorem, the effects of ;. and r;, on the firm’s market
value are

v

: :7T2203
ﬁrir
v

—=m <0
(9r,-m

These equations say that an increase in technology spillovers raises the firm’s
market value, and an increase in product market rivals’ R&D reduces it.

One remark is in order. There are multiple (infinite) different ways to
change R&D in a subset of firms so as to ensure that the constraint dr;, =0
is satisfied. Each of the combinations {dr,} that do this will imply a different
value of dr;, =) _ TECH , dr,. Thus the discrete impact of such changes will
depend on the precise combination of changes made, but the marginal impact
of a change in dr;, does not depend on that choice.

A.2. Tournament Model of R&D Competition With Technology Spillovers

In this subsection, we analyze a stochastic patent race model with spillovers.
We do not distinguish between competing firms in the technology and product
markets because the distinction does not make sense in a simple patent race
(where the winner alone gets profit). For generality, we assume that n firms
compete for the patent.
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Stage 2. Firm 0 has profit function 7 (ky, xo, X,,). As before, we allow inno-
vation output k, to have a direct effect on profits, as well as an indirect (strate-
gic) effect working through x. In stage 1, n firms compete in a patent race
(i.e., there are n — 1 firms in the set m). If firm 0 wins the patent, k, = 1; other-
wise, ko = 0. The best response function is given by x; = argmax w(xo, X, k).
Thus, second stage profit for firm 0, if it wins the patent race, is 7(x{, x};
ko =1); otherwise, it is 7(x§, x%; ko = 0).

We can write the second stage Nash decision for firm 0 as xj = f(ko, k,,)
and the first stage profit as I1(ko, k,,) = 7(ky, x, x,). If there is no strategic
interaction in the product market, 7' does not vary with x;, and thus x} and
I1' do not depend directly on k;. Recall that in the context of a patent race,
however, only one firm gets the patent: if k; = 1, then k; = 0. Thus II’ depends
indirectly on k; in this sense. The patent race corresponds to an (extreme)
example where dI1'(k;, k;)/dk; < 0.

Stage 1. We consider a symmetric patent race between n firms with a fixed
prize (patent value) A = #°(f(1,0), f(0,1); ko = 1) — @°(f(0, 1), f(1,0);
ko = 0). The expected value of firm 1 can be expressed as

h(ry, (n = Dr)A —r

0 —
Y ) G 1= D) + (1= Dh(ry, (1= Dy + 1) + R

where R is the interest rate, r,, is the R&D spending of each of firm 0’s rivals,
and h(ry, (n — 1)r,,) is the probability that firm 0 gets the patent at each point
of time given that it has not done so before (hazard rate). We assume that
h(ry, (n — D)r,,) is increasing and concave in both arguments. It is rising in r,,
because of spillovers. We also assume that 24 — R > 0 (expected benefits per
period exceed the opportunity cost of funds).

The best response is r; = argmax V°(ry, r,,,). Using the first-order condition
for the maximization of V°(ry, r,,), imposing symmetry and doing comparative
statics, we obtain

sign(%) =sign{h(hA(n —1) +rA = R) + {hi(n — 1)(h,A — 1)}

m

—{ha(n = D(hA = R)} = by (n = DA — 11},

where subscripts on / denote partial (and cross) derivatives.

We assume /4, > 0 (spillovers do not reduce the marginal product of a firm’s
R&D) and h;A — 1 > 0 (expected net benefit of own R&D is nonnegative).
These assumptions imply that the first three bracketed terms are positive.
Thus, a sufficient condition for strategic complementarity in the R&D game
(% > 0) is that (n — 1)h,A — 1 < 0. This requires that spillovers not be “too
large.” If firm O increases R&D by one unit, this raises the probability that
one of its rivals wins the patent race by (n — 1)h,. The condition says that the
expected gain for its rivals must be less than the marginal R&D cost to firm 0.
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Using the envelope theorem, we get % < 0. The intuition is that a rise in
r, increases the probability that firm m wins the patent. While it may also
generate spillovers that raise the win probability for firm 0, we assume that the

direct effect is larger than the spillover effect. For the same reason, % =0.As

. 0 . . .
in the non-tournament case, jrﬂ > 0 and % < 0. The difference is that with a
m m
. 0 . .
simple patent race, % is zero rather than negative because firms only race for
m
a single patent.’

A.3. Endogenizing the Decision to Patent

We generalize the basic non-tournament model to include an endogenous
decision to patent. We study a two stage game. In stage 1, firms make two
decisions: (1) the level of R&D spending, and (2) the “propensity to patent.”
The firm produces knowledge with its own R&D and the R&D by technology
rivals. The firm also chooses the fraction of this knowledge that it protects by
patenting. Let p € [0, 1] denote this patent propensity and let A > 1 denote
patent effectiveness, that is, the rents earned from a given innovation if it is
patented relative to the rents if it is not patented. Thus A — 1 represents the
patent premium and 6k is the rent associated with knowledge k, where 6 =
pA+ (1 — p). There is a fixed cost of patenting each unit of knowledge, c.

As in the basic model at stage 2, firms compete in some variable, x, condi-
tional on their knowledge levels k. There are three firms, labeled 0, 7, and m.
Firms 0 and 7 interact only in technology space but not in the product market;
firms 0 and m compete only in the product market.

Stage 2. Firm 0’s profit function is 7(xo, X,,, 6oko). We assume that the func-
tion 7 is common to all firms. Innovation output k, may have a direct effect
on profits, as well as an indirect (strategic) effect working through x.

The best response for firms 0 and m is given by x§ = argmax m(xo, X,,, 6oko)
and x* = argmax 7(x,,, Xo, 0,,k,,), respectively. Solving for second stage Nash
decisions yields x; = f(6oko, 6,,k,») and x7, = f(0,,k .., Ooko). First stage profit
for firm 0 is I1(6oko, 0,nkm) = w(0oko, x§, x%,), and similarly for firm m. If there
is no strategic interaction in the product market, 7(6yko, xj, x},) does not vary
with x,, and thus IT° do not depend on 6,,k,,. We assume that IT(60,ko, 0,.k,,)
is increasing in 6,k,, decreasing in 6,,k,,, and concave.

Stage 1. Firm 0’s knowledge production function remains as

(AS) k0=¢(r0,r7),

2In this analysis, we have assumed that k& = 0 initially, so, ex post, the winner has k = 1 and the
losers k = 0. The same qualitative results hold if we allow for positive initial k.



6 N. BLOOM, M. SCHANKERMAN, AND J. VAN REENEN

where we assume that ¢ (-) is non-decreasing and concave in both arguments
and common to all firms. Firm 0 solves the following problem:

(A'9) maXVO = H(e[)d)(r[)’ r7)7 Gmkm) — Iy — Cp0¢(r05 rT)'
10, P0

The first-order conditions are
(AlO) VQZ(H?HO—Cpo)(b?—l:O,
(A11)  po: IV (A —1) —cd’ =0,

where the subscripts denote partial derivatives and superscripts denote the
firm. Comparative statics on equations (A.10) and (A.11) yield the following
results for comparison with the baseline model®:

ar: VosVir — VoV,

A.12 — POPO " TOTT 070 " POPT > 0
(A-12) ar, —-A =
2
where 1, = jm—'é, etc.,and A=V, Voo — Vri 5, > 0 by the second order con-

ditions.
As in the basic model, the sign of j% depends on sign{¢,} and the magnitude
of I1,;. We also obtain:

oy V. Vi =V, V. . .

(A.13) (9:0 = 2% Op'"_A 2% PP >0  depending on sign{l1;,},
ap; V, I/r mo vV, 7 vV, 7 . .

(A.14) %o _ ZromoTrorm — Zeoro oot =0 depending on sign{I1;,}.

orp, —A

In signing the above results, we use the fact that V,,, <0,V, , <0,V,, >0

roro > 7 POPO > 7 poro
(provided I1;; is “sufficiently small”) and the other cross partials which are:

I/rgr-r = % + 93‘1’?‘!’317117 I/rorm = 000m¢(1)¢1n17127 I/rnp-r = 07 I/rop,-,, = ()‘ - 1) X
0ok 125 Vyr, = (A — 1)OokoPIT115 Vo = (A — D0, 71125 V. = 0;
and I/POPm = ()\ — 1)2k0kmd)(2)H12.

The basic results of the simpler model go through. First, an increase in tech-
nology spillovers (7,) has an ambiguous sign on own R&D spending (equation
(A.12)). Second, after some algebra, we can show that sign{%} = sign{l1,}
provided that I1y; is “sufficiently small.” An increase in product market rivals’
R&D raises own R&D if they are strategic complements (conversely for strate-
gic substitutes) (equation (A.13)). Third, from the knowledge production func-
tion (A.8), it follows that technology spillovers raise firm 0’s knowledge stock,

ak

7‘*) > (0, and product market rivals’ R&D has no effect on it, % = 0. Finally,

3This is not a full list of the comparative statics results.
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the impacts on the value of the firm follow immediately by applying the enve-

lope theorem to the value equation (A.9): namely, : <0.
The new result here is that an increase in the R&D by firm 0 s product mar-
ket rivals will affect the firm’s propensr[y to patent, — (equation (A.14)). After

some algebra, we can show that sign Fm = sign Il,, provided that I1;; is “suf-
ficiently small.” Thus, if there is strategic complementarity (I, > 0), an in-
crease in product market rivals’ R&D raises the firm’s propensity to patent (the
opposite holds for strategic substitution). The intuition is that, under strate-
gic complementarity, when rivals increase R&D spending (thus their stock of
knowledge), this increases the marginal profitability of firm 0’s R&D and thus
the profitability of patenting (given the fixed cost of doing so). Thus R&D
by product market rivals raises both R&D spending and patent propensity of
firm 0.

’dr

APPENDIX B: DATA APPENDIX
B.1. The Patents and Compustat Databases

The NBER patents database provides detailed patenting and citation infor-
mation for around 2,500 firms (as described in Hall, Jaffe, and Trajtenberg
(2005) and Jaffe and Trajtenberg (2002)). We started by using the NBER’s
match of the Compustat accounting data to the USPTO data between 1970
and 1999,° and kept only patenting firms, leaving a sample size of 1,865. These
firms were then matched into the Compustat Segment (“line of business”)
Data Set, keeping only the 795 firms with data on both sales by four digit in-
dustry and patents, although these need not be concurrent. For example, a firm
that patented in 1985, 1988, and 1989, had Segment data from 1993 to 1997,
and accounting data from 1980 to 1997, would be kept in our data set for the
period 1985 to 1997. The Compustat Segment Database allocates firm sales
into four digit industries each year using firm’s descriptions of their sales by
lines of business. See Villalonga (2004) for a more detailed description.

Finally, this data set was cleaned to remove accounting years with extremely
large jumps in sales, employment, or capital, signaling merger and acquisition
activity. When we removed a year, we treated the firm as a new entity and gave
it a new identifier (and therefore a new fixed effect) even if the firm identi-
fier (CUSIP reference) in Compustat remained the same. This is more general
than including a full set of firm fixed effects, as we are allowing the fixed effect
to change over time. We also removed firms with less than four consecutive
years of data. This left a final sample of 715 firms to estimate the model on,

4Since product market rivals’ R&D does not affect knowledge production by firm 0, this result
for the propensity to patent also applies to the number of patents taken out by firm 0.
SWe dropped pre-1970 data as being too outdated for our 1980s and 1990s accounts data.
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with accounting data for at least some of the period 1980 to 2001 and patent-
ing data for at least some of the period between 1970 and 1999. The panel is
unbalanced, as we keep new entrants and exiters in the sample.

The main variables we use are as follows (Compustat mnemonics are in
parentheses). The book value of capital is the net stock of property, plant,
and equipment (PPENT) and employment is the number of employees (EMP).
R&D (XRD) is used to create R&D capital stocks following inter alia Hall,
Jaffe, and Trajtenberg (2005). This uses a perpetual inventory method with
a depreciation rate (8) of 15%. So the R&D stock, G, in year t is G, =
R, + (1 — 6)G,_4, where R is the R&D flow expenditure in year ¢ and 6 =
0.15. For the first year we observe a firm, we assume it is in steady state,
so Gy = Ry/(6 + g) where g = the steady stage growth rate of the R&D
stock, G. We use sales as our output measure (SALE), but also compare
this with value added specifications. Industry price deflators were taken from
Bartelsman, Becker, and Gray (2000) until 1996 and then the BEA four digit
NAICS Shipment Price Deflators thereafter. For Tobin’s Q, firm value is the
sum of the values of common stock, preferred stock, and total debt net of cur-
rent assets (MKVAF, PSTK, DT, and ACT). The book value of capital includes
net plant, property and equipment, inventories, investments in unconsolidated
subsidiaries, and intangibles other than R&D (PPENT, INVT,IVAEQ, IVAO,
and INTAN). Tobin’s Q was winsorized by setting it to 0.1 for values below 0.1
and at 20 for values above 20 (see Lanjouw and Schankerman (2004)).

B.2. Other Variables

The construction of the spillover variables is described in detail in Section 3
of the main paper. About 80% of the variance of SPILLTECH and SPILLSIC
is between firm and 20% is within firm. When we include fixed effects, we are,
of course, relying on the within firm time series variation for identification.
Industry sales were constructed from total sales of the Compustat database by
four digit industry code and year, and merged to the firm level in our panel
using each firm’s distribution of sales across four digit industry codes.

B.3. Using the Tax Treatment of R&D to Construct Instrumental Variables
B.3.1. Methodology

To fix ideas, consider our basic model for firm productivity and abstract away
from all other variables except own R&D and the technology spillover term.
Similar issues arise for the other three equations, subject to additional compli-
cations noted below:

(B.l) In }][[ = Bl ln(Z TECH,]R]t_l) + Uj.
j#i
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We are concerned that E[u;, In(}_ i TECH ;Rj,_1)] # 0,s0 OLS is inconsistent,
and consider instrumental variable techniques. Note that R&D spillovers are
entered lagged at least one period and that fixed effects and other covariates
are also included. Given these considerations, the existing literature has argued
that the bias on a weakly exogenous variable is likely to be small.

We consider two candidate instrumental variables (z) based on R&D-
specific supply side shocks: firm and state-wide R&D tax credits. The Hall-
Jorgenson user cost of capital for firm i, pY, is

(1 —Diz)[ AP:]
B.2 V-2 o +6 - == ,
( ) Pi (1—7y) ' P

where D, is the discounted value of tax credits and depreciation allowances, 7,
(which is shorthand for 7,,,) is the rate of corporation tax (which has a state as
well as a federal component), I, is the real interest rate, 8 is the depreciation
rate of R&D capital, and % is the growth of the R&D asset price. Since

[I,+06— %] does not vary between firms, we focus on the tax price component

of the user cost, pf, = ((1]_13 o,
s

We decompose the variation of pf, into two broad channels: “firm level,” pf,
based on firm-level interactions with the federal tax rules, and “state level,” p5.
We use the state-by-year R&D tax-price data from Wilson (2009), who quanti-
fied the impact of state-level tax credits, depreciation allowances, and corpora-
tion taxes. The firms in our data benefit differentially from these state credits
depending on in which state their R&D is located. Tax credits are for R&D
performed within the state that can be offset against state-level corporation
tax liabilities. State-level corporation tax liabilities are calculated on total firm
profits allocated across states according to a weighted combination of the lo-
cation of firm sales, employment, and property. Hence, any firm with an R&D
lab within the state is likely to be both liable for state corporation tax (due to
its employees and property in the state) and eligible for an offsetting R&D tax
credit. Hence, inventor location appears to provide a good proxy for eligibility
for state-level R&D tax credits.

We estimate the spatial distribution of a firm’s inventors from the USPTO
patents file. The state component of the tax price is therefore

(B.3) p?l = Z eistpft’

“State-level R&D tax credits can be generous, and vary differentially over states and time.
For example, the five largest R&D-doing states had the following tax credit histories: California
introduced an 8% credit in 1987, raised to 11%, 12%, and 15% in 1997, 1999, and 2000, respec-
tively; Massachusetts, New Jersey, and Texas introduced 10%, 10%, and 4% rates in 1991, 1994,
and 2000, respectively; while Michigan has never introduced an R&D tax credit.
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where p$ is the state-level tax price and 6, is firm i’s 10-year moving average
share of inventors located in state s.

The second component of the tax price is based solely on federal rules (p})
and is constructed following Hall (1992) and Bloom, Criscuolo, Hall, and Van
Reenen (2008). The “Research and Experimentation” tax credit was first in-
troduced in 1981 and has been in continuous operation and subject to many
rule changes. It has a firm-specific component for several reasons. First, the
amount of tax credit that can be claimed is based on the difference between
actual R&D and a firm-specific “base.” From 1981 to 1989, the base was the
maximum of a rolling average of the previous three years’ R&D. From 1990
onward (except 1995-1996, when the tax credit lapsed), the base was fixed to
be the average of the firm’s R&D to sales ratio between 1984 and 1988, mul-
tiplied by current sales (up to a maximum of 16%). Start-ups were treated
differently, initially with a base of 3%, but modified each year. Second, if the
credit exceeds the taxable profits of the firm, it cannot be fully claimed and
must be carried forward. With discounting, this leads to a lower implicit value
of the credit for tax exhausted firms. Third, these firm-specific components all
interact with changes in the aggregate tax credit rate (25% in 1981, 20% in
1990, 0% in 1995, etc.), deduction rules, and corporate tax rate (which enters
the denominator of equation (B.2)).

We implement the IV approach by first projecting the endogenous vari-
able (R&D) on the instruments in the first stage. Table A.I shows the results
from this estimation and demonstrates that the instruments have considerable
power. Column (1) has the basic results, column (2) adds time dummies, and
column (3) also adds firm dummies. Even in the most general regression of
the final column of Table A.I that is used in the later stages, the F-statistics
are over 16. From this, we calculate the value of R&D predicted by these tax

TABLE A.I
PREDICTING R&D USING FEDERAL AND STATE R&D TAX CREDITS

M (@) ©)

Dependent Variable: In(R&D) In(R&D) In(R&D)
In(State tax credit component —3.828 —4.250 —0.398
of R&D user cost; ;) (0.265) (0.204) (0.174)
In(Federal tax credit component —1.672 —0.387 —0.440
of R&D user cost; ) (0.231) (0.114) (0.085)
Firm fixed effects No Yes Yes
Year dummies No No Yes
Joint F-test of the tax credits 137.15 304.56 16.28
No. observations 14,971 14,971 14,971

Notes: Standard errors (in brackets) are robust to arbitrary heteroskedasticity and
allow for first-order serial correlation using the Newey—West procedure.
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credits, , and then generate the stock of this using the standard perpet-
ual inventory method, G**. For each firm, we then weight up other firms’
tax-credit predicted R&D stocks using SIC and TECH to create the distance
weighted instruments TECHTAX and SICTAX. For example, TECHTAX ;, =
> i TECH ;G . We then use In(TECHTAX) and In(SICTAX) as instrumen-
tal variables for In(SPILLTECH) and In(SPILLSIC) in the final stage regres-
sions as presented in the last columns of Tables III, V, and VI. For the ci-
tation weighted patent regressions, we use a Negative Binomial equation, so
to allow for endogeneity we take a control function approach (e.g., Aghion,
Bloom, Blundell, Griffith, and Howitt (2005)). We estimate the first stages for
In(SPILLTECH) and In(SPILLSIC) and then include a fifth-order series ex-
pansion of each of the residuals from these first stages in the final column of
Table I'V. We correct the standard errors using 1,000 bootstrap replications over
firms.

We also considered an alternative approach of using TECH and SIC
weighted p? and p; as instrumental variables. However, the unbalanced na-
ture of the panel makes this very unattractive, as the value of the instruments
changes as new firms exit and enter the sample. This generates a positive bias
between R&D the user cost of R&D. For example, imagine that a firm j en-
ters a market where firm i, an incumbent, already operates. Then, for some
firm i for which TECH; > 0, there will be a rise in SPILLTECH ;, since there is
now another firm doing R&D in its technology space. But its TECH ; weighted
R&D user cost measure will also rise, since the values of P,S't and pft for firm j

are zero pre-entry (since they are missing) but strictly positive post entry.

TAX
Rit

B.3.2. Exogeneity of R&D Tax Credit Policy Changes

A concern is that changes to the R&D tax credit may be endogenous. Could
states respond to falls in R&D by increasing the tax credit rate, for example?
One check was to conduct experiments lagging the tax credit instruments one
and two periods, which led to qualitatively similar results. But we also inves-
tigated this issue further by reviewing the literature on U.S. state R&D and
corporate tax rates. Three facts are clear from this literature:

(1) State-level tax credits have been gradually introduced across states over
time. The first state R&D tax credit was introduced in Minnesota in 1982 fol-
lowing the introduction of the Federal Tax Credit in 1981, with 31 states having
introduced credits by the end of 2005 (Wilson (2005)), and 38 states by 2010.
The generosity of these credits has also been gradually trending up over time,
rising from 6.25% in 1982 to 7.9% in 2005.

(2) The cross-sectional variation in credit rates is extremely large relative to
the mean and growth rates of the average rate. The cross-sectional standard
deviation of credit rates is more than twice their mean. For example, the credit
rates range from 2.5% in South Carolina and Minnesota to 20% in Arizona
and Hawaii. These rates also change frequently over time within states. For
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example, California changed its rate five times between its introduction in 1987
and 2010.

(3) The level and timing of introduction of the credits—which provides the
empirical identification in our estimation given our firm and time dummies—
seems to be uncorrelated with any observables after controlling for state and
year fixed effects. Papers that have tried to explain the evolution of state-level
corporate tax credits have found that aggregate variables (such as the federal
credit rate) have some explanatory power, but local economic or political vari-
ables do not seem important (e.g., Chirinko and Wilson (2008a, 2008b)). This
partly reflects the long time delays in passing tax credits through state legisla-
ture, and also the fact that the costs of many of these tax credits are small so
that their adoption tends not to be strongly driven by budgetary concerns.

To investigate this issue further, we regressed the rate of the state R&D tax
credit on lagged state R&D expenditures, a full set of state and year dummies,
and the lagged value of the state tax credit (to control for dynamics). Using a
variety of specifications with and without these controls, we could not find any
predictive power for lagged state-level R&D expenditure or GDP per capita
(a crude proxy for productivity) on current R&D tax credits. That is, prior
state-level R&D expenditure does not seem to predict current levels of state
R&D tax credits.

In summary, while state-level R&D tax credits have been rising since the
early 1980s, this has happened at differential rates and levels across states,
with these state-by-year differences in generosity seemingly uncorrelated with
lagged economic or political variables. This suggests that the current level of
R&D tax credits provides pseudo-random variation to identify corporate R&D
expenditure in a regression including firm and year fixed effects.

B.4. Sample Selection Issues

To be in the final regression sample, a firm has to have at least one patent
granted (since 1963) in order to construct our measure of technological close-
ness (which requires patent information), so this does screen out firms who
never patent. However, we do not require that a firm has several lines of busi-
ness, only that it has some data in the Compustat Segment File (CSF), which
contains the breakdown of sales across four digit industry classes. Note that
some firms operate solely in one class and are recorded as such (and we use
their information). Nearly all firms in Compustat which have a patent are also
in the CSE so this is not a source of sample selection.

The main source of selection is that we use the Compustat database that
covers only publicly listed firms. This is because capital investment, R&D, and
other important variables are not required reporting items for privately listed
firms in the US. R&D is heavily concentrated on listed firms, however, so our
sample accounts for a large proportion of the entire R&D in the United States.
For example, in 1995, the sum of R&D expenditures in our sample was $79bn,
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while the total industry R&D in the U.S. was estimated as $130bn by the NSE,
so we cover about 62% of the total.

Of course, it would be ideal to know the exact R&D of every firm, but this
is not necessary for implementation of our technique. As we have shown in
Appendix A.1, our comparative static results hold for any triple of firms. All
we need is the thought experiment of increasing SPILLTECH while holding
SPILLSIC constant (and vice versa).

There could be biases if, for a given firm, we omit a relevant spillover. Cer-
tainly, the absence of other R&D performing firms will mean that we under-
estimate the R&D relevant spillovers for some firms. In general, it is unclear
whether this would bias our estimates systematically in any one direction. If
this generated classical measurement error, with random under-counting of
spillovers, it would cause an attenuation bias toward zero. Thus there is the
possibility that we underestimate the strength of both positive technology and
negative product market spillovers. If this is so, our conclusion that both types
of spillovers operate, one positive and the other negative, is strengthened.

Nonrandom exit relating to unobservables is very difficult to control for with
existing techniques. Evidence from nonparametric control function techniques
to control for selection in production functions suggests that the main form
of bias comes from conditioning on a balanced panel (e.g., Olley and Pakes
(1996)). Since our panel is unbalanced—we keep all entrants and exiters—this
mitigates this problem.

B.5. The Bureau Van Dijk (BVD) Database

As noted in Section 6.3.2, the finance literature has debated the extent to
which the breakdown of firm sales into four digit industries from the Compus-
tat Segment Data Set is reliable. To address this concern, we used an alternative
data source, the BVD (Bureau Van Dijk) database.

B.5.1. Description

The BVD data for the United States is obtained from Dun and Bradstreet
(D&B), which collects the data to provide credit ratings and to sell as a mar-
keting database. These credit ratings are used to open bank accounts, and are
also required for corporate clients by most large companies (e.g., Wal-Mart
and General Electric) and the Federal Government, so almost all multiper-
son establishments in the U.S. are in the D&B database. Since these data are
commercially used and sold for various financial and marketing purposes, they
are regularly quality checked by D&B. In Europe, the BVD data come from
the National Registries of companies (such as Companies House in the U.K.),
which have statutory requirements on reporting for all public and private firms.
We used the primary and secondary four digit industry classes for every sub-
sidiary within a Compustat firm that could be matched to BVD to calculate
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distribution of employment across four digit industries (essentially summing
across all the global subsidiaries) as a proxy for sales by four digit industries.

The U.S. data report one primary four digit industry code and an ordered
set of up to six secondary four digit industry codes. We allocated employment
across sectors for an individual firm by assuming that 75% of activity was in the
primary industry code, 75% of the remainder was in the main secondary code,
75% of this remainder was in the next secondary industry code, and so on, with
the final secondary industry code containing 100% of the ultimate residual. In
the European data, firms report one primary industry code and as many sec-
ondary industry codes as they wish (with some firms reporting over 30) but
without any ordering. Employment was allocated assuming that 75% of em-
ployees were in the primary industry code and the remaining 25% were split
equally among the secondary industry codes. Finally, employment was added
across all industry codes in every enterprise in Europe and the U.S. owned by
the ultimate Compustat parent to compute a four digit industry activity break-
down.

B.5.2. Matching to Compustat

We successfully matched three quarters of the Compustat firms in the orig-
inal sample. The matched firms were larger and more R&D intensive than
the non-matched firms. Consequently, these matched firms accounted for 84%
of all employment and 95% of all R&D in the Compustat sample, so that,
judged by R&D, the coverage of the BVD data of the Compustat sample was
very good. The correlation between the Compustat Segment and BVD Data
Set measures is reasonably high. The correlation between the sales share of
firm i in industry k& between the two data sets is 0.503. The correlation of
In(SPILLSIC) across the two measures is 0.592. The within-firm over-time
variation of In(SPILLSIC), which identifies our empirical results given that we
control for fixed effects, reassuringly rises to 0.737. In terms of average levels,
both measures are similar, with an average SIC of 0.0138 using the Compustat
measure and 0.0132 using the BVD measure. The maximum number of four
digit industries for one of our firms, General Electric, is 213.

As an example of the extent of similarity between the two measures, the
Compustat and BVD SIC correlations for the four firms examined in the Case
Study discussed in Appendix D below are presented in Table A.Il. As can be
seen, the two measures are similar; IBM and Apple (PC manufacturers) are
highly correlated on both measures, and Motorola and Intel (semiconductor
manufacturers) are also highly correlated. But the correlation across these two
pairs is low. There are also some differences; for example, the BVD based
measure of SIC finds that IBM is closer in sales space with Intel and Motorola
(SIC = 0.07) than the Compustat-based measure (SIC = 0.01). This is because
IBM uses many of its own semiconductor chips in its own products, so this
is not included in the sales figures. The BVD based measure picks these up
because IBM’s three chip-making subsidiaries are tracked in BVD’s ICARUS



TECHNOLOGY SPILLOVERS, PRODUCT MARKET RIVALRY 15

TABLE A.Il
AN EXAMPLE OF SPILLTEC AND SPILLSIC FOR FOUR MAJOR FIRMS

Correlation IBM Apple Motorola Intel
IBM SIC Compustat 1 0.65 0.01 0.01
SIC BVD 1 0.55 0.02 0.07
TECH 1 0.64 0.46 0.76
Apple SIC Compustat 1 0.02 0.00
SIC BVD 1 0.01 0.03
TECH 1 0.17 0.47
Motorola SIC Compustat 1 0.34
SIC BVD 1 0.47
TECH 1 0.46
Intel SIC Compustat 1
SIC BVD 1
TECH 1

Notes: The cell entries are the values of SIC;; = (Sl-S}’.)/[(S,-Sl’.)l/z(SjS})l/Z] (in normal script) using the Compustat
Line of Business sales breakdown (“SIC Compustat”) and the Bureau Van Dijk database (“SIC BVD”), and TECH ; =
(T; T;)/[(T,- Tl.’)l/z(Tj T]f)l/z] (in bold italics) between these pairs of firms.

data even if their products are wholly used within IBM’s vertically integrated
chain.

B.5.3. Coverage

The industry coverage was broader in the BVD data than the Compustat
Segment Data Set. The mean number of distinct four digit industry codes per
firm was 13.8 in the BVD data (on average, there were 29.6 enterprises: 18.2 in
Europe and 11.4 in the U.S.) compared to 4.6 in the Compustat Segment files.
This confirms Villalonga’s (2004) finding that the Compustat Segment Data
Set underestimates the number of industries in which a firm operates.

APPENDIX C: ALTERNATIVE DISTANCE METRICS
C.1. Robustness to Aggregation

The standard Jaffe measure, TECH?, differs from the Jaffe covariance (and
Exposure) measure, TECH Y, because it is an (uncentered) correlation,

. F;F!
rather than covariance, between the vectors F; and F;: TECH fj = m
it it

We now show that this normalization has the advantage that it makes the index
less sensitive to the aggregation of technology fields. We refer to this property
as “robustness to aggregation.”
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To see this formally, consider the case where technology fields Y — 1 and Y’
are aggregated, and define the 1 x (Y —1) vector I = (Fiy, ..., Fiy—2, Fiy_1+
Fiy_,). The new TECH"“®" index can be expressed as

F'F/ =FF, + (Fyy_1\Fjy + Fjy_\Fiy) > F;F},

and strict inequality holds if each firm operates in at least one of the two ag-
gregated fields, Y — 1 and Y. This shows that TECH" Y increases as a conse-
quence of aggregation. This is an unattractive property. The standard TECH’
measure mitigates this aggregation bias because it normalizes by the stan-
dard deviations of the vectors F} and F}, which also increase (since F}F}" =
F.F; 4+ 2F;,y_\Fy = F;F)).

Fiy_1Fjy+Fjy_1Fiy 2F; y_1Fiy 2F;y_1Fjy .
Define ¢; = #, bii = ’Fl_F_, =,and ¢; = # Letting as-
J i

terisks denote the index based on the aggregated technology ﬁelds, it follows
immediately that

TECH” = A\TECH’,
TECH" V" = gTECH"*%",

where A = 0 < =1+ ;. That is, aggregation leads to a smaller

(14 1+ )1/
percentage increase in TECH” than in the TECH"“®Y index. This is the sense in
which the Jaffe index is less sensitive to aggregation than the Jaffe covariance
measure.’

Note that it is straightforward to generalize the results in this subsection to
the case where more than two technology fields are aggregated, and to the
case where several subsets of fields are aggregated. An example of the latter is
moving from, say, four digit to three digit classification of fields.

C.2. Mahalanobis

To explain the calculation of the Mahalanobis normed measure we need to
define some notation. First, we let T = [T}, T,, ..., T}] denote the (426, N)
matrix where each column contains a firm’s patent shares in the 426 tech-
nological classes. Second, we define a normalized (426, N) matrix T =
[T, /(T\T)"?, T;/(T,T,)'?, ..., T\, /(TxTy)"?], in which each column is sim-
ply normalized by the firm’s patent share dot product. Third, we define the
(N x N) matrix TECH = T'T. This matrix TECH is just the standard Jaffe

"In general, we cannot know whether A < 1. This depends on the specific distributions of firm
R&D across technology fields. It is possible that aggregation reduces the TECH' index. But we
can say that, if aggregation increases that measure, the increase will be proportionately smaller
than for the TECH"®Y index.
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(1986) uncentered correlation measure between firms i and j, in which each
element is the measure TECH j;, exactly as defined in (3.6) above. Fourth, we

define a (N, 426) matrix X = [T, /(Te.y T - Taag /(T T o))

where T ; is (1, N) and is the ith row of 7. This matrix X is similar to T, ex-
cept it is the normalized patent class shares across firms rather than firm shares

across patent classes. Finally, we can define the (426, 426) matrix 2= X'X in
which each element is the standard Jaffe (1986) uncentered correlation mea-
sure between patent classes (rather than between firms). So, for example, if
patent classes i and j coincide frequently within the same firm, then (2; will be
close to 1 (with £2; = 1), while if they never coincide within the same firm (2;
will be 0.

The Mahalanobis normed technology closeness measure is defined as

TECH" = T'QT. This measure weights the overlap in patent shares between
firms by how close their different patents shares are to each other. The same
patent class in different firms is given a weight of 1, and different patent classes
in different firms are given a weight between 0 and 1, depending on how fre-
quently they overlap within firms across the whole sample. Note that if 2 =1,
then TECH" = TECH. Thus, if no patent class overlaps with any other patent
class within the same firm, then the standard Jaffe (1986) measure is identical
to the Mahalanobis norm measure. On the other hand, if some patent classes
tend to overlap frequently within firms—suggesting they have some kind of
technological spillover—then the overlap between firms sharing these patent
classes will be higher.

APPENDIX D: CASE STUDIES OF PARTICULAR FIRMS

There are numerous case studies in the business literature of how firms can
be differently placed in technology space and product market space. Consider,
first, firms that are close in technology but sometimes far from each other in
product market space (the bottom right hand quadrant of Figure 1). Table A.II
shows IBM, Apple, Motorola, and Intel: four highly innovative firms in our
sample. We show results for SPILLSIC measured both by the Compustat Seg-
ment Database and by the BVD Database. These firms are close to each other
in technology space as revealed by their patenting. IBM, for example, has a
TECH correlation of 0.76 with Intel, 0.64 with Apple, and 0.46 with Motorola
(the overall average TECH correlation in the whole sample is 0.038—see Ta-
ble IX). The technologies that IBM uses for computer hardware are closely
related to those used by all these other companies. If we examine SIC, the
product market closeness variable, however, there are major differences. IBM
and Apple are product market rivals with a SIC of 0.65 (the overall average
SIC correlation in the whole sample is 0.015—see Table IX). They both pro-
duce PC desktops and are competing head to head. Both have presences in
other product markets, of course (in particular, IBM’s consultancy arm is a ma-
jor segment of its business), so the product market correlation is not perfect.
By contrast, IBM (and Apple) have a very low SIC correlation with Intel and
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Motorola (0.01) because the latter firms mainly produce semiconductor chips,
not computer hardware. IBM produces relatively few semiconductor chips, so
is not strongly competing with Intel and Motorola for customers. The SIC cor-
relation between Intel and Motorola is, as expected, rather high (0.34) because
they are both competitors in supplying chips. The picture is very similar when
we look at the measures of SIC based on BVD instead of Compustat, although
there are some small differences. For example, IBM appears closer to Intel
(BVD SIC = 0.07) because IBM produces semiconductor chips for in-house
use. This is largely missed in the Compustat Segment data, but will be picked
up by the BVD data (through IBM’s chip-making affiliates).

At the other end of the diagonal (top left hand corner of Figure 1), there
are many firms that are in the same product market, but use quite different
technologies. One example from our data set is Gillette and Valance Tech-
nologies, which compete in batteries, giving them a product market closeness
measure of 0.33. Gillette owned Duracell but did no R&D in this area (its
R&D was focused mainly on personal care products such as the Mach 3 razor
and Braun electronic products). Valence Technologies used a new phosphate
technology that radically improved the performance of standard lithium ion
battery technologies. As a consequence, the two companies have little overlap
in technology space (TECH = 0.01).

A third example is the high end of the market for hard disks, which are sold
to computer manufacturers. Most firms based their technology on magnetic
technologies, such as the market leader, Segway. Other firms (such as Phillips)
offered hard disks based on newer, holographic technology. These firms draw
their technologies from very different areas, yet competed in the same product
market. R&D done by Phillips is likely to pose a competitive threat to Segway,
but it is unlikely to generate useful knowledge spillovers for Segway.

APPENDIX E: ENDOGENOUS CHOICE OF TECHNOLOGY CLASSES
E.1. The Basic Approach

One way to provide a microfoundation for a distance metric for technolog-
ical closeness is to draw explicitly on the economic geography literature. Sim-
ple economic geography models can show how firms may optimally choose
the geographic location of their plants to benefit from potential spillovers and
natural advantages leading to agglomeration and co-agglomeration patterns.
We draw heavily on this work (in particular, Ellison and Glaeser (1997), Elli-
son, Glaeser, and Kerr (2007, 2010)) to consider a more microfounded model
of our empirical measures of TECH ;. However, rather than choosing which
geographical classes to locate in, we will consider a firm’s choice of which tech-
nological areas to locate in and consider co-location patterns in this dimension.

E.2. Agglomeration and Co-Agglomeration Measures

Consider extending the model in Section 2 to allow for a period 0 where
each firm i chooses to direct its R&D across particular technological classes,
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7=1,...,Y. A firm can choose to invest in one or more technological classes
by establishing some R&D labs (denoted lab /) in these different classes. As-
sume that there is a fixed number of R&D employees in each lab, ¢, When
choosing a technological profile, a firm will consider a number of factors, in-
cluding the underlying technological opportunities in the class (common to all
firms®), R&D lab [’s ability in a particular field, as well as the other labs who
have already located in this area as there are potentially spillovers.

We will model this explicitly below in a firm location model, but we first
define some key indexes. A raw technological concentration measure for firm
iis

Y
Gi = Z(]:T - xT)z’
=1

where T, is the proportion of firm i’s R&D employment (or equivalently, the
proportion of R&D labs) in technology area 7, and x, is the share of total
R&D employment in the economy in technology area 7. Ellison and Glaeser
(1997) suggested an agglomeration measure of the form

Gi/(l—fo) —H,

E.1 P = 5
(E1) 1

where H; is a “Herfindahl Index” reflecting how concentrated are a firm’s
R&D labs.’

Ellison and Glaeser (1997) also suggested a co-agglomeration measure. In
our context, consider a group of / firms, and let w; be firm i’s share of the
group’s total R&D employment. Let 77, ..., Ty be the share of R&D employ-
ment in the group of / firms in each technology area. G is the raw geographic
concentration for the I firm group (G = )_ (T, —x,)?) and H is the Herfindahl
Index of the I-firm group (H =), w?H,). The co-agglomeration measure is

I
G/(l_ZXT2> —H—;y,w?(l—H,)
7 .
1—2:11)142
i=1

(E.2) ¥ =

8Thus the number of potential inventions is higher in some areas (like bio-pharmaceuticals)
than others (like cement).

'H, = >/ e;-)?, where e;, is the employment in lab / in technology class 7 for firm i. Since we
have assumed that all labs are equally sized, H; = Z,(l/L,»)z, where L; is the number of R&D
labs owned by firm i. Obviously, if a firm has only one R&D lab, it will have a high degree of
measured agglomeration, as it can only locate in one class, but this is a rather artificial type of
specialization and the presence of H; in equation (E.1) corrects for this.



20 N. BLOOM, M. SCHANKERMAN, AND J. VAN REENEN

The particular form of this is motivated by relating the index to an explicit
location choice model.

PROPOSITION E.1: In an I-firm probabilistic location choice model, suppose
that the indicator variables {u,.} for whether the Ith lab locates in technological
area 1 satisfy E(u;,) = x, and

| v: iflabs I and I’ both belong to firm i,
Corr(u, urs) = { Yo iflabs [ and I belong to different firms;

then E(y©) = v,.

The value of Proposition E.1 is that, under the given assumptions, the co-
agglomeration index in equation (E.2), based on empirically observable mea-
sures, recovers an estimate of the unobserved “deep parameter,” vy, which is
relevant to the spillover effect.

E.3. A Model of the Choice of Technological Class

To simplify notation, we focus on the case of two firms, so I = 2. In this case,
the co-agglomeration measure y© will be'”

Z(TIT - xT)(TZT - x’T)
E.3 =T
(E3) v -y e

Labs are indexed by / € L U L,, with L, being the labs in firm 1 and L, the labs
in firm 2. Firms choose where to locate labs between Y technology classes.
Spillovers imply that lab /’s profits are a function of the other labs’ location
decisions. If there is a potentially positive spillover between labs / and /', they
will tend to be located in the same technology class.

We follow Ellison and Glaeser (1997), and Ellison, Glaeser, and Kerr (2007)
in considering “all or nothing” spillovers, as this reduces substantially the prob-
lem of multiple equilibria in the lab location game. In particular, define a par-
tition w of L; U L, to be a correspondence w:L; U L, = L; U L, such that
lew()forallland! € w(l) = w(l) = w(I'). Suppose lab location decisions
are the outcome of a game in which the labs choose technology classes in some
exogenously specified order and lab /’s profits from locating in technology area
T are given by

(E4)  In(m,)=In(x,)+ > Iy #7)(=00) + &

l'ew(l)

Note that this will be specific to any given pair of firms (i.c., ¥), but we drop the subscripts
for simplicity.
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The first term on the right hand side of equation (E.4), x,, is the “fecundity”
of the technology area, 7. The middle term reflects spillovers: a spillover exists
between labs / and /' if I’ = w (/) and that, when spillovers exist, they are suffi-
ciently strong to outweigh all other factors in a firm’s decision about whether to
locate a lab in this technology class. The third term is ¢;,, a Weibull distributed
random shock that is independent across labs and locations.

Under these conditions it is possible to prove the following.

PROPOSITION E.2: Consider the model of technological area choice described
above.

() The Perfect Bayesian Equilibrium (PBE) is unique. In equilibrium, each lab
[ chooses technology class T that maximizes In(x,) + &, if no lab with I' € w (1)
has previously chosen a technology class, and chooses the same technology class
of previously located labs if some such labs have chosen this location.

O)YIFO<vys <y, ¥50r0<v5 <¥y5 and 0 <y, <min(1/L,, 1/L,), then
there exist distributions over the set of possible partitions for which:

¥? iflabs | and I' both belong to firm i,

Prob(/' D)=
rob(/'e w (1) {73 if labs I and I' belong to different firms.

(c) If the distribution satisfies the condition in part (b), then, in any PBE of the
model, the agglomeration and co-agglomeration indexes satisfy E(y“) = v and
E(y) = 7,-5 .

For the proof, see Ellison, Glaeser, and Kerr (2007, Appendix A).

The proposition shows the conditions under which calculation of the co-
agglomeration index y© is an unbiased estimate of the deep parameter v;.
Thus, it gives some theoretical foundation of a distance metric that we use
in our empirical work. Proposition E.2 shows that the framework developed
has a degree of robustness to equilibrium selection.

In our context, equation (E.3) becomes

2(7117 - xf)(TjT - xT)
1 —fo ,

which is the alternative distance metric used in Section 6.1.

C _
Yij =

E.4. Extensions

The model is obviously specialized, but can be extended in various dimen-
sions. First, the model can be extended to allow for other reasons for co-
agglomeration patterns, such as “natural advantage.” It is difficult to separately
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identify these from spillovers and, in general, the indexes will capture elements
of both. In the context of our paper, we seek to separate spillovers from com-
mon clusters of technological opportunity by explicitly examining how shocks
to a firm’s R&D differentially affect other firms who are “close neighbors” (as
indicated by y©) relative to those who are more distant. If there are genuine
spillovers, the close neighbors will be more affected (e.g., in the productivity)
than those who are distant. This would not be the case if natural advantage
(clusters of common technological opportunity) were fixed. If these changed
over time, then the identification problem would reappear. This is why we use
tax-policy changes to R&D as instrumental variables, as we argue that these
are orthogonal to such common technology shocks.

A second limitation is that the framework does not allow for product market
rivalry. Section 2 shows how this can be allowed for in later stages of the game.
It is harder to consider a framework for product choice. The Ellison—Glaeser
framework is not well adapted for this, as firms will suffer a negative spillover
and will want to locate away from where firms currently are, in general, rather
than be close as in equation (E.4).

Finally, note that equation (E.4) is quite restrictive. Not only do the errors
take an independent parametric form; we assume all classes are neither com-
plements nor substitutes, so each lab can be seen as making a profit maximizing
decision independent of the identity of the firm which owns the lab. We show
how this can be relaxed in our Mahalanobis measure, which allows differential
degrees of closeness between technology classes. If these were literally geo-
graphic distances, we could use the actual distance in travel times or miles, as
in Duranton and Overman (2005).

APPENDIX F: ECONOMETRIC RESULTS FOR THREE
HIGH-TECH INDUSTRIES

We used both the cross-firm and cross-industry variation (over time) to iden-
tify our two spillover effects. An interesting extension of the methodology out-
lined here is to examine particular industries in much greater detail. This is
difficult to do, given the size of our data set. Nevertheless, it would be worrying
if the basic theory was contradicted in the high-tech sectors, as this would sug-
gest that our results might be due to biases induced by pooling across hetero-
geneous sectors. To investigate this, we examine in more detail the three most
R&D intensive sectors where we have a sufficient number of firms to estimate
our key equations: computer hardware, pharmaceuticals, and telecommuni-
cations equipment. Computer hardware covers SIC 3570 to 3577 (Computer
and Office Equipment (3570), Electronic Computers (3571), Computer Stor-
age Devices (3572), Computer Terminals (3575), Computer Communications
Equipment (3576), and Computer Peripheral Equipment Not Elsewhere Clas-
sified (3577)). Pharmaceuticals includes Pharmaceutical Preparations (2834)
and In Vitro and In Vivo Diagnostic Substances (2835). Telecommunications
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TABLE A.III
ALTERNATIVE CONSTRUCTION OF SPILLOVER VARIABLES

(€] (@] 3) (C)
Dependent Variable: Tobin’s Q Cite-Weighted Patents Real Sales R&D/Sales

A. Baseline (Summarized From Tables I1I-VI)

In(SPILLTECH),_, 0.381 0.468 0.191 0.100
(0.113) (0.080) (0.046) (0.076)
In(SPILLSIC), 4 —0.083 0.056 —0.005 0.083
(0.032) (0.037) (0.011) (0.034)
Observations 9,944 9,023 9,935 8,579
B. Constructing SPILLSIC Based on BVD Industries Instead of Compustat
In(SPILLTECH),_, 0.313 0.482 0.100 0.056
(0.108) (0.093) (0.052) (0.078)
In(SPILLSIC),4 —0.063 0.057 0.000 0.142
(0.034) (0.029) (0.014) (0.034)
Observations 7,269 6,696 7,364 6,445
C. Alternative Based on SPILLTECH (See Thompson and Fox-Kean (2005))
In(SPILLTECH),_, 0.105 0.434 0.059 0.023
(0.062) (0.054) (0.025) (0.029)
In(SPILLSIC), 4 —0.063 0.028 0.002 0.021
(0.033) (0.039) (0.013) (0.019)
Observations 9,848 8,932 9,913 8,386
D. Using Firm Pairs With (S/C < 0.1 and/or TECH < 0.1)
In(SPILLTECH™),_, 0.135 0.416 0.108 0.044
(0.109) (0.070) (0.044) (0.073)
In(SPILLSIC*),_4 —0.060 0.054 0.004 0.093
(0.032) (0.036) (0.012) (0.033)
Observations 9,944 9,023 9,935 8,579

Notes: Value equation in column (1) corresponds to Table III, column (2); the patents equation in column (2)
corresponds to Table IV, column (2); the productivity equation in column (4) corresponds to Table V, column (2), and
the R&D equation in column (3) corresponds to Table VI, column (2). Panel A summarizes results in Tables III-VI.
Panel B uses the alternative method of constructing SPILLSIC based on BVD data (see Appendix B.5). Panel C uses a
more disaggregated version of technology classes, SPILLTECH TFX | as suggested by Thompson and Fox-Kean (2005)).
In Panel D, TECH and SIC are replaced with the value 0 for any pair of firms in which both TECH and SIC are above
0.1. Otherwise all specifications are the same as in Panel A.

Equipment covers Telephone and Telegraph Apparatus (3661), Radio and TV
Broadcasting and Communications Equipment (3663), and Communications
Equipment Not Elsewhere Classified (3669).

Table A.IV summarizes the results from these experiments. The results for
computer hardware (Panel A) are qualitatively similar to the pooled results.
Despite being estimated on a much smaller sample, SPILLTECH has a positive
and significant association with market value and SPILLSIC a negative and
significant association. There is also evidence of technology spillovers in the
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TABLE A.1IV
ECONOMETRIC RESULTS FOR SPECIFIC HIGH-TECH INDUSTRIES

(€] (2 3) )
Dependent Variable: Tobin’s Q Cite-Weighted Patents Real Sales R&D/Sales

A. Computer Hardware

In(SPILLTECH),_, 1.884 0.588 0.398 —0.462
(0.623) (0.300) (0.221) (0.220)
In(SPILLSIC),_, —0.471 0.055 —0.000 0.317
(0.157) (0.813) (0.111) (0.107)
Observations 358 277 343 395
B. Pharmaceuticals
In(SPILLTECH),_; 2.126 1.833 0.981 —0.733
(0.735) (0.861) (0.273) (0.448)
In(SPILLSIC),_, —1.615 —0.050 —0.669 1.266
(0.649) (0.312) (0.329) (0.567)
Observations 334 265 313 381
C. Telecommunications Equipment
In(SPILLTECH),_; 1.509 1.401 0.789 0.721
(0.840) (0.666) (0.292) (0.327)
In(SPILLSIC),_, -0.125 0.016 0.095 —0.006
(0.456) (0.378) (0.169) (0.128)
Observations 405 353 390 450

Notes: Each panel (A, B, C) contains the results from estimating the model on the specified separate industries.
Each column corresponds to a separate equation for the industries specified. The regression specification is the most
general one used in the pooled regressions. Tobin’s Q (column (1)) corresponds to the specification in column (2) of
Table III; Cite-weighted patents (column (2)) correspond to column (2) of Table IV; real sales in column (3) corre-
sponds to column (2) of Table V; R&D/Sales (column (4)) corresponds to column (2) of Table VI.

production function and the patenting equation. SPILLSIC is positive in the
R&D equation, indicating strategic complementarity, and is not significant in
patents or productivity regressions, as our model predicts.

The pattern in pharmaceuticals is very similar, with the parameters being
consistent with the predicted signs from the theory and statistically significant.
Technology spillovers are also found in the production function and the patents
equation, and there is also evidence of strategic complementarity, as indicated
by the large coefficient on SPILLSIC in the R&D equation. We find a much
larger, negative coefficient on SPILLSIC in the market value equation than in
the pooled results, indicating substantial business stealing effects in this sector.

The results are slightly different in the telecommunications equipment in-
dustry. We also observe significant technology spillover effects in the market
value equation and citation-weighted patents equations, but the coefficient on
SPILLTECH is insignificant (although positive) in the productivity equation.
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There is no evidence of significant business stealing or strategic complemen-
tarity of R&D in this sector, however.

Like the pooled sample, these findings on technological spillovers and busi-
ness stealing are robust to treating R&D as endogenous. For example, in the
IV estimation, the coefficients (standard error) on SPILLTECH and SPILLSIC
in the market value equation for computer hardware are 2.314 (0.668) and
—0.512 (0.243), respectively.'!

Overall, the qualitative results from these high-tech sectors indicate that our
main results are broadly present in those R&D intensive industries where we
would expect our theory to have most bite. Technology spillovers are found in
all three sectors, with larger coefficients than in the pooled results, as we would
expect.!”? However, there is also substantial heterogeneity across the sectors.
First, the size of the technology spillover and product market rivalry effects
vary. Second, we find statistically significant product market rivalry effects of
R&D on market value in two of the three industries studied. Finally, there is
evidence of strategic complementarity in R&D for computers and drugs, but
not for telecommunications.

APPENDIX G: COMPUTING PRIVATE AND SOCIAL RETURNS TO R&D
G.1. Roadmap

In this appendix, we show how to compute the private and social returns to
R&D in the analytical framework developed in this paper. Section G.2 pro-
vides some basic notation, following the presentation in the empirical section
of the paper, and derives some “reduced forms” after substituting out all the
interactions operating through the spillover terms. The main results are in Sec-
tion G.3, which calculates the general form of the marginal social and private
returns to R&D to an arbitrary firm.

We define the marginal social return (MSR) to R&D for firm i as the
increase in aggregate output generated by a unit increase in firm i’s R&D
stock (taking into account the induced changes in R&D by other firms). The
marginal private return (MPR) is defined as the increase in firm i’s output gen-
erated by a marginal increase in its R&D stock. In the general case, the rates
of return for individual firms depend on the details of their linkages to other

U These same coefficients (standard errors) on SPILLTEC and SPILLSIC in the market value
equation for pharmaceuticals and telecommunications equipment are 3.139 (1.456) and —1.317
(1.427), and 2.500 (0.696) and —0.113 (0.540), respectively.

2We also examined industry heterogeneity in terms of technology levels, defined as the av-
erage R&D/Sales ratio in the four digit industry. We interacted this with SPILLTECH and
SPILLSIC in each of the Tobin’s Q, patents, productivity, and R&D equations. The coefficients
on spillovers tended to be larger in absolute magnitude, but only one of these eight interactions
was significant at the 5% level (SPILLTECH in the productivity equation, which had a coefficient
(standard error) of 1.035 (0.497)). This is mild evidence for the greater importance of spillovers
in high-tech industries as in Table A.IV
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firms in both the technology and product market spaces. For the computations
presented in the text, we use the general formulas developed here, but we also
show below that the key intuition can be understood by examining the special
case where all firms are symmetric and there is no “amplification” effect (due
to the presence of product market spillovers in the R&D equation). In this
case, the wedge between the social and private returns can be either positive
or negative, as it depends upon the importance of technology spillovers in the
production function (¢;) relative to product market rivalry effects in the mar-
ket value equation (7;). Social returns will be larger when ¢, is larger, and
private returns will be larger as (the absolute value of) +y; rises. Both private
and social returns increase in the effect of R&D on output (¢, ).

G.2. Basic Equations

The empirical specification of the model consists of four equations: R&D,
Tobin’s Q, productivity, and patents. For purposes of evaluating rates of return
to R&D, we do not need the patent equation because there is no feedback
from patents to these other endogenous variables in our model. Thus, for this
analysis, we use only the R&D, market value, and productivity equations.

We examine the long-run effects in the model, setting R;, = R; and Y;, =Y;
forall t, and G, = %, where R is the flow of R&D expenditures, Y is output,
G is the R&D stock, and 6 is the depreciation rate used to construct G. The
model can be written as

(G.1) InR;=aIn) TECH;R;+o;In) SIC;R;+ a,X;;+1nY,

JFL J#
(G2) In(V/A)i=vyiIn(R/A);+ y,In Y TECH;R,
J#i
+ s IHZSICinj + V4 X2,
J#i
(G3) InY;=¢/InRi+@In) TECH;R;+¢;In Y SIC;R; + ¢ X5,
J# J#i

where '/ A is Tobin’s Q, X, X, and X; are vectors of control variables (for
ease of exposition, we treat them as scalars), and the depreciation rate & gets
absorbed by the constant terms in each of the equations (which we suppress
for brevity). We then solve out the cross equation links with Y; by substituting
equation (G.3) into equation (G.1). This yields a new equation for R&D:

J#i J#i
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/o aater o ten I a3tes /o Q4teq
where o) = G=5, o) = G2, o = G55, and o) = G5, The model we use

for the calculations in this appendix is given by equations (G.4), (G.2), and
(G.3).

We take a first-order expansion of In[}_ i TECH;R;] and In[} J LiSIC;R;],
approximating them in terms of InR around some point, say, InR’. Take
first f'=In[y__, TECH;R;] =In[}_,, TECH; exp(In R;)]. Approximating this
nonlinear function of In R,

_ TECH ;R"
i~{nS TECH R’ — %77 )R
/| J

= % \Y_TECH;R)
J#i
TECHR"
+Y | =——-|nR,
= \Y_TECHR),
ki
=a;+ Zb,llnRj,
J#i

where a; reflects the terms in large curly brackets and b; captures the terms in
parentheses in the last terms.

Now consider the term g = In[)_ ., SIC;R;]. By similar steps,

J#i
_ SIC;,;R}

g~ {m > SIC;R) - [41} 1nR;?}

i = LY SIC;RY

J#i
SIC;R®
+> | =——L|nR,
7 \Y_SICyR;,
ki
=¢+ ZdulnR/.
J#i

Using these approximations, we can write the R&D equation (G.4) as
lnR,‘ = /\i + Z 0,']‘ lnR] + aAXli,
J#i

where A; = oja; + a4¢; and 0; = a4b; + ad;;. Let A,InR, and X be N x 1
vectors, and define the N x N matrix

_|1 0 6y
H_[BU 0]
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Then the R&D equation in matrix form is
(G5) IhR=0"2+a0'X,,

where 2 =1—-H.
By a similar derivation, we can write the production function as

InY;=¢;+ ¢ InR; + ZfSi/lnR/ + ¢, X3,
j#i

where ; = ¢,a; + ¢s¢; and 8; = @.b; + @3d;;. Let ¢ be an N x 1 vector and
define the N x N matrix

=[5 %]
Then the production function in matrix form is
(G6) InY=¢+MInR+ ¢, X;.
Finally, the market value equation can be expressed as
In(V/A)i=¢;—yiln A+ yiInR; + »_ w;InR; + v, Xy,
j#i

where ¢; = y,a; + ys¢; and w;; = y,b;; + ysd;;. Letting ¢ be an N x 1 vector
and defining the N x N matrix

F=|" @i
Wi Y1 ’

the value equation in matrix form is
(G7) I(V/A)=¢ —yilnA+T'InR+ v, X,.
The model is summarized by equations (G.5), (G.6), and (G.7).

G.3. Deriving the Private and Social Return to R&D
G.3.1. General Case

To derive the private and social rates of return to R&D, we consider the
effect of a one percent increase in the stock of R&D by firm i. Since, in steady
state, the stock is proportional to the flow of R&D (G = £), we can capture

this effect by setting dIn R; = &, d X;; = 1 and zero for j # i."* Using the R&D

13We scale by 100 here—one percent is taken as 1. In the final calculations, the change in R&D
stock is divided by 100.
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equation (G.5), the absolute changes in R&D levels, after amplification, are
given by the N x 1 vector dR = Br)~'z*, where z* is an N x 1 vector with 1
in the ith position and zeroes elsewhere, and By is an N x N matrix with R; in
the ith diagonal position and zeroes elsewhere. From the production function
(G.6), this induces changes in productivity (output, given the levels of labor
and capital) which are given by dY = By M~'z*, where By denotes an N x N
matrix with Y; in the jth diagonal position (j =1, ..., N) and zeroes elsewhere.

This computation of the output effects is correct for the steady state analysis.
Recall that we define the marginal social return (MSR) to R&D for firm i as
the increase in aggregate output associated with a unit increase in firm i’s R&D
stock (not a unit increase in its R&D flow), taking into account the induced
changes in R&D by other firms. Therefore, we need to divide the aggregate
output gain by the increase in the stock of R&D for firm i and any other firms
whose R&D is induced by the change, which is given by dG'z = 1 dR'z, where
zisan N x 1 vector of ones. Thus we can write the MSR as

dY'z
dG'z’

Note that the MSR is a scalar.

The marginal private return (MPR) is defined as the increase in firm i’s out-
put generated by a unit increase in its R&D stock (any induced R&D by other
firms is not relevant to this computation). The MPR consists of two parts. The
first is the increase in firm i’s output, given its levels of labor and capital. This
increase is given by z¥dY, where z* is an N x 1 vector with 1 in the ith po-
sition and zeroes elsewhere. In addition, the firm enjoys output gains through
the business stealing effect. This will be reflected in an increase in the level of
labor and capital used by the firm (holding the level of productivity constant).
Thus we cannot compute business stealing gains directly from the effect of
R&D in the production function.

To compute these gains, we exploit the impact of business stealing in the
market value equation. To isolate the impact of business stealing (SPILLSIC)
on market value, we hold the productivity level constant by “turning off” the
effect of own R&D (y; =0) and SPILLTECH (y, = 0). Define the N x N

matrix
0 o*
* ij

q

where wj}; = 3{3dij <0 (j #i). From (G.7), the induced percentage change in
market value is

dinV*=I*dinG=I"Q"'z".

The change in market value associated with the business stealing effect,
dInV*, can be decomposed into two parts—a change in the level of output
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and shifts in the price-cost margin of the firm. To compute the private return
to R&D in terms of output gains, we need to separate the estimated value ef-
fect of R&D into these output and price effects. We assume that a fraction o of
the overall change in market value is due to changes in output (the case oo =1
corresponds to the case where the price-cost margin is constant—in particu-
lar, not affected by SPILLSIC). We discuss later how we choose the empirical
value of o for the computations. Using this value, we can write the absolute
output changes associated with business stealing as dY* = o By "7 1z*.14

There is a change in output due to business stealing for each firm. The
change for firm j is distributed to (or from) all other firms, in general, and
we need to describe what that depends on. Consistent with the original for-
mulation of SPILLSIC, we assume that the fraction of the overall loss by firm
Jj which goes to firm i, which we call s;;, depends on the closeness of the two
firms, SIC;;, and on how much firm i changes its R&D, which is what induces
the redistribution, dR;. Following our earlier derivation of the linear approxi-
mation to the system, we use

_ SIC;dR

Y SICudR,
k#]

sji

As required, these weights add up to 1 over all recipient firms.

Let z** denote an N x 1 vector with +1 in the ith position and —s;; in the
j # i positions. Then we can write the total change in firm i’s output as dY’'z* +
dY*z**. The first component is the direct gain in output by firm i, and the
second component is the redistribution of output from other firms to firm i.
The marginal private return to R&D is the total output gain by firm i divided
by the increase in the R&D stock by firm i:

dY/Z* _,’_dY*/Z**
dG'z* '

A comparison of the expressions for MSR and MPR, in equations (G.8) and
(G.9), shows that we cannot say which is larger a priori. The MSR and MPR
differ in three respects: (1) the MSR is larger because it includes productivity
(output) gains from firms other than i due to technology spillovers in the nu-
merator, (2) the MSR is smaller than the MPR because it also counts the full
R&D costs of other firms (if there is amplification) in the denominator, and
(3) the MSR is also smaller because the MPR counts output gains for the firm
through the business stealing effects, while the social return excludes them.

(G9) MPR, =

4Note that if there is no amplification effect in R&D ({2 = I), then all firms lose output to
firm i. But when there is amplification, this need not be true, and, in fact, even firm i can end
up losing output to other firms whose R&D was increased by amplification. It all depends on the
pattern of amplification and firms’ positions in product space (i.e., on {2 and I'*).
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G.3.2. Special Case: No R&D Amplification

Consider the case where there is no R&D amplification effect ({2 =I) and
no SPILLSIC effect on output (¢; = 0). In this case, the earlier formula for
dY reduces to

¢1Y] oY owYi 5, Y.
dY =| 6,Y, 1Y, oY |z' = 7 >
onm Yy Yy @Yy

where again z* is an N x 1 vector with 1 in the ith position and zeroes else-
where. It follows that dY'z = ¢, Y; + }_,,8;;Y}, so the marginal social return
for firm i can be expressed as

v > biY;
MSR,= ¢, —+¢, 20—
¢ G, +¢, G,
The MSR depends on the coefficients of own R&D and technology spillovers
in the production function, and the technology spillover linkages across firms.
> jzibji

Y;i . . . . .
The term ¢, =7z captures the marginal impact of an increase in firm i’s

R&D stock on all other firms’ output levels, which are mediated by the tech-
nology linkages between firm i and other firms.

In the fully symmetric case where all firms are identical both in size and in
technology spillover linkages (Y; = Y; and b;; = b for all i, j), this expression
simplifies even further to

Y;
(G.10) MSR;= = (o1 +¢2).

We turn next to the marginal private return. Using the expression above for
dY,we get dY'z* = ¢,Y;. The second term involves d Y*, which is

Y, 0 0 0 o, o g
dY*=0c( 0 Y, O wy 0 i |zZ'=0| wY,

0 0 Yy wy @y, 0 wy; Yy
Recalling that z** denotes an N x 1 vector with +1 in the ith position and
—s;; in the j # i positions, we get dY*'z** = —a ) ; 5;;0};Y;. Combining these
results and recalling that ;= v3d;;, the marginal private return for firm i can
be written as

Y; Y
MPR; = QDla RRE ;Sﬁdﬁé~
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The MPR depends on the coefficient of own R&D in the production func-
tion and the coefficient of business stealing in the value equation, plus the
product market linkages (these are embedded in both the s; and d;; coeffi-
cients). In the fully symmetric case where all firms are identical in size and
product market linkages, this simplifies to

Y,

G.11) MPR,; =
(G11) G

(@1 —07y3).

In this fully symmetric case, the ratio between the marginal social and private
returns is
MSR @1+ ¢,

G.12 = :
12 Mer P1—0Ys

The social return is larger than the private return if the coefficient of tech-
nology spillovers in the production function is larger than the coefficient of
business stealing in the value equation in absolute value, adjusted by o (i.e.,
@, > |oy3]). In the general case, however, the relative returns also depend on
the position of the firm in both the technology and product market spaces.

As we pointed out earlier, to compute the private return to R&D in terms
of output gains, we need to separate the estimated value effect of R&D into
the output and price effects. The empirical computations of the private re-
turns to R&D are done using the value o = % That is, we assume that half
of the percentage change in the market value of a firm is due to changes in
output and half to changes in its price-cost margin. This assumption can be mi-
crofounded. In particular, we analyzed an N-firm Cournot model with asym-
metric costs—where firm i has unit cost ¢ and all other firms have unit cost ¢’
(no cost ranking is assumed). We can show that a marginal increase in R&D
by firm i reduces the profit of all other firms, and that at most half of this
reduction is due to changes in the output levels of those firms. This implies
o < 1. The actual breakdown into changes in output and price-cost margins de-
pends on the number of firms and the elasticity of demand. Using the assump-
tion o = 1 is conservative in the sense that it provides an upper bound to the
MPR, and thus a lower bound to the gap between MSR and MPR when that
gap is positive (as we find empirically). Further details are available on http:/
cep.lse.ac.uk/textonly/_new/research/productivity/BSV_sigma_1March.pdf.
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