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APPENDIX A: THEORETICAL DERIVATIONS

A.1. Bounds on Intensive Margin Elasticities With Income Effects and
Stochastic Prices

This section establishes two results. First, the bounds in Proposition 1 apply
to the Hicksian elasticity when the quasilinearity assumption in (2) is relaxed.
Second, allowing for stochastic prices p, does not affect the bounds. To simplify
notation, I ignore heterogeneity across agents and assume all agents have a
flow utility function v(x,, y,). Heterogeneity does not affect the result under
the assumption that the structural elasticity does not vary locally across agents,
as discussed below.

Let E, denote the conditional expectation operator over prices given infor-
mation available in period ¢ and let p = (py, ..., pr) denote the realized price
vector. To account for stochastic prices, I redefine the nominal model so that
the agent maximizes expected lifetime utility

T
23) B v(x,m)

subject to the dynamic budget constraint Z,,; = Z, — p,x, — y, and the terminal
condition Z7,; =0.

Let Vi(p,Z) = Z; v(xs(p), ys(p)) denote the utility the agent attains
from periods ¢ to T with a realized price vector of p and wealth Z,. Follow-
ing Helms (1985), I define the agent’s expenditure function with stochastic
prices as the minimum wealth required to attain expected utility above a given
threshold U. The agent’s partial expenditure function (on all other goods) con-
ditional on consuming X, units of good x; in period ¢ is

e, U) = mZinZ — p.X; such that
EVip,Z)>=U and x, =%,
and hence the total expenditure function can be written as
(24) E(p;,U) =ngnptxt +e(x,).
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Let the expenditure-minimizing choice of x, be denoted by x;*(p,, U;), the
structural Hicksian demand function under the nominal model in (23). Let
x$(p:, U,) denote the observed Hicksian demand function with frictions. Let
e(p) = —%% denote the structural Hicksian price elasticity of demand at
price p,. When utility is not quasilinear, identifying (p,) requires variation in
prices within period ¢ because price changes across periods conflate the Frisch
and Hicksian elasticities (MaCurdy (1981)). Consider an experiment in which
some agents face a price of p,4 and others face a price of pp in period ¢, and
let

_logx3(ps) —logx(p.a)
log(ps) —log(pa)

E(PA, PB) =

denote the observed elasticity from this experiment. Our objective is to identify
&(p;) from estimates of € in an environment with frictions.
In this setting, the & class of models is defined by the condition

(25)  [px;+E(x))) — [pxy* +E(x0*)] < bpx)™.

I first establish an analog of Lemma 1 to characterize the choice set with fric-
tions.

LEMMA Al: For small 8, the set of observed Hicksian demands is approxi-
mately

(26) X{(pi, 8) ={x{:|logx{ — logx{*| < [2&(p,)8]"?}.
PROOF: The first-order condition for (24) is
(27) €.(x{*) =—p,.

Using a quadratic approximation to the partial expenditure function, we can
exploit this first-order condition to obtain

[pex +e(x)] — [px{™ +e(x))]
1 , e .
~ E(xﬁ’*)z(logxﬁ —log x5*)?€,, (x5%)

and, hence, we can rewrite (25) as

p 1 1/2
28 logx® —logx®*| < |28 2L —— | .
(%) logx; ~logil = 20 B ]

Differentiating (27) with respect to p, implies 1/€,,(x;™) = —% and substi-
tuting this equation into (28) completes the proof. Q.E.D.
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Next, I establish the analog of Proposition 1. When utility is not quasilinear,
the structural elasticity &(p,) varies with the price p,. Let e(p4) and &(pp)
denote the structural point elasticities at the initial and final prices, and let

_ logxg"(pp)—logx{"(p.a) ..
e(Pa> PB) = ==, s denote the structural arc elasticity between

the two prices. Then the upper bound on e(p,, pp) is characterized by an
equation analogous to (12):

_logx(ps) —logx$(p.a)

e(pa, pp) = 10g( pp) — l0g(pa)
2(2¢ 8)1/2
==8(PA,PB)—‘—£—Z%%§%;L—H

Solving this equation requires a parametric assumption about utility to relate
the two point elasticities at p 4 and pjp to the arc elasticity. I make the follow-
ing local isoelasticity assumption, which is analogous to Assumption 2 in the
extensive margin case.

ASSUMPTION 2': The structural Hicksian elasticity is constant between p 4

and pg: e(p,) = =% k5 = e(pa, pp) for pi € [pa, psl.

Under Assumption 2’, the upper and lower bounds on the structural arc elas-
ticity e(p 4, pp) are characterized by the same equations as (12) and (13):

(2e8)'2
Alogp

T=e42

PROPOSITION Al: Under Assumption 2', for small 6, the range of structural
Hicksian elasticities €(p 4, pg) consistent with an observed Hicksian elasticity
e(pa, pa) is approximately (g, ey), where

T+ 40 1-p) d T+ 40 (1+p)
— (1 - an = —_—
T alogpr P UTET Alogpr P

e =

with

13(p) 2\
=142 Al .
P ( t5—5 (Alogp)
The proof is identical to the proof of Proposition 1.
In a model with heterogeneous utilities v;(x; y;), Proposition Al requires
a stronger isoelasticity assumption, namely that the structural elasticity e( p,)
does not vary across agents between p,4 and pp. It also requires an assump-
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tion analogous to Assumption 1, that is, that tastes are orthogonal to the price
change used for identification.

A.2. Bounds on Extensive Margin Elasticities

With quasilinear utility, the agent’s flow utility in period ¢ is v;,(x,y) =
y + b;;x. Recognizing that the consumption path of y does not affect lifetime
utility, the flow utility cost of choosing x suboptimally in period ¢ is

u (x*(po)) — ui(x) = (x;, — x)(bir — py).

I define a 6 class of models around the nominal model by a condition analogous
to (7):

1
(29) (x;, —x)(bi, — p;) <8;p;, and N ZSM <& and

F(bi,z|6i,t) =F(bi,t)~

The last condition in (29)—that the taste distribution cannot vary across agents
with different frictions—is needed to ensure that the choice set has the same
width for the marginal agents at each level of p.*? This condition was not nec-
essary in the intensive margin case because there the marginal agent did not
vary with p.

PROOF OF LEMMA 2: Equation (29) implies that agent i’s observed demand
for x is

1, if bi,t — D> 3:’,:1%
Xit = {0,1}, if |bi,t — Pl < 6P,
0, lf bi,t — pt < _5i,tpt-

Let 65,,(p,) denote the observed participation rate for agents who have fric-
tions 6},, and let 6, =E6;,,(p,) denote the observed participation rate in the
aggregate economy. Under the condition that F(b;,|5;,) = F(b;,), it follows
that 65, (p,) lies in the set

[1-F(A+8)p),1—-F((1-38,)p)]
=[6; + F(p,) — F(1+8,)p.), 0; + F(p,) — F(1 = 8:1)p.)]
= [9:5 - f(pt)pl&',ta 0:‘ + f(pz)PzSi,t]a
32To see why this condition is needed, suppose agents with b;, close to p; have very large §;,

while those away from the margin have §;, = 0. This would result in a wide choice set for the
participation rate at p, evenif E§;, < 8.
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where the last line uses a first-order Taylor expansion of F(p,) around p,. Un-

. ’ ’ _ __dlogll-F(p)l _ f(p1)
der Assumptions 1’ and 2', n = e = v Pre Hence

eﬁi,t(pt) € [ef -(1- nﬁi,t)a 0? (1 + 7151',:)]
= Eb5,(p)€l0; - (1 —nES;), 0] - (L +1nES;,)]
=  0,(p)/0;(p)ell—n6,1+nd].

The approximation log(1l + 1) ~ 1né for small 6 yields |log8, — log 67| <
né. Q.E.D.

PROOF OF PROPOSITION 2: Given a structural elasticity n, the maximal ob-
served response to a price change of Alog p is Alog6 = nAlog p + 26m and
the minimal observed response is Alog # = nAlog p — 281. Therefore, the ob-
served elasticity i = il';’gz must satisfy

(30) (I=p)n=<n=(1+p,n,

28

where p, = .If p, > 1, n is unbounded above for a given value of 7 be-

Alog p
cause both inequalities in (30) are satisfied for arbitrarily large 7. If Mffgp

then the upper and lower bounds on n are obtained when (30) holds with
equality. Solving these equations yields (16). Q.E.D.

<1,

PROOF OF COROLLARY 2: Suppose 1 =0. Then p, < 1= ny =0. Hence a
positive structural elasticity (n > 0) can only generate a 0 observed elasticity if

p'f]:AliﬁgP21<:>AMCX1,%:AIng§28. QED

A.3. Intuition for 46 Threshold in Corollary 1

This section explains why Aug, (g) must be below 48 so as to observe € = 0.
Let d = x*(p4) — min(X 4(p4, 6)) denote the difference between the mean
optimal demand and the lowest mean demand in the initial choice set. Fig-
ure 1(a) shows that at the upper bound ¢y, the difference between the optimal
demands at the two prices is x*(p4) — x*(pg) = 2d. By definition, the percent-
age utility cost of choosing min(X 4(p 4, 6)) instead of x*(p ) is 6. Given that
the utility cost of deviating by d units is &, the utility cost of deviating by 2d
units is 496, as illustrated in Figure 1(b).

APPENDIX B: SOURCES AND CALCULATIONS FOR STUDIES IN TABLE I

This appendix describes how the values in columns 3-5 in Table I are cal-
culated. The papers used for the analysis along with comprehensive documen-
tation of the calculations are available at http://obs.rc.fas.harvard.edu/chetty/
bounds_opt _meta_analysis.zip.
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a) Upper Bound on ¢ with Zero Observed Response b) Utility Cost with Zero Response

3.6 T T T T T T T 3
s\ 151
350 N 1 150
A { 3L
341 ~ i 1491 45
N
s 148
. 33f ST f r
> pS 147
S 32 Deviation d ~ e
% a1l Util loss & ~ Deyiation 2d 5 146
£ iR Util loss 45 2 1450
3 3l Y E
8 A% 144
2.9 + N 4
\\\ 1431
2.8} ~ 4
o 142
\\
27 ST 141} d d
N
~
. . . . . . , 140l ‘ ‘ - ‘ ‘ ‘ |
02 04 06 08 \ 1 1.2 14 16 18 2 22 5 8 10 12 14 6 18 20 2
0g(pa) log(pz)
log price (log p,) Demand (x,)

FIGURE 1.—Construction of upper bound when observed elasticity is zero.

I use compensated intensive margin estimates reported in each paper when
available and use the Slutsky equation to calculate compensated elasticities in
cases where uncompensated elasticities are reported.

The studies do not always directly report the relevant inputs, especially the
net-of-tax change Alog(1 — 7). For studies whose estimates are identified from
a single quasi-experiment (e.g., Feldstein (1995)), I define Alog(1 — 7) as the
change in the marginal NTR for the group that the authors’ define as the
“treated” group. For studies that pool multiple tax or wage changes of dif-
ferent sizes and do not explicitly isolate a treatment group (e.g., Gruber and
Saez (2002)), I define Alog(1 — 7) as twice the standard deviation (SD) of
Alog(1—MTR) in the sample. The logic for this approach is as follows. In a lin-
ear regression Y; = a + 1 X; + u;, the standard error of Bl is the square root of
(var(u)/var(X))/N,where N is the sample size. Consider a second regression
Y; = a+ B:2Z;+u;, where Z; = 0 for half the observations (the “control group™)
and Z; =2 - SD(X) for the remaining observations (the “treatment group”).
Setting the size of the single treatment to 2 - SD(X) yields var(Z) = var(X).
Hence, the standard error of B, equals the standard error of Bi. A single tax
change of 2 - SD(Alog(1 — MTR)) therefore produces an estimate of € with
the same precision as the original variation in marginal tax rates used for iden-
tification.

I calculate the bounds by assuming that agents face a linear budget set whose
slope is given by their marginal tax rate (MTR) and apply Proposition A1 using
Alog(1 — MTR) in place of Alog p. This yields valid bounds on & for agents
who remain in the interior of budget segments in a progressive tax system.
However, the bounds cannot be applied to agents who locate at kinks. Given
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that most of the studies in Table I estimate elasticities from changes in the
behavior of agents away from kinks, this is not a serious limitation.*

The remainder of this appendix describes how I calculate , the standard
error of g, and Alog(1 — MTR) for each study in Table 1.

A. Hours Elasticities

1. MaCurdy (1981). = is reported in the text on page 1083; s.e.(€) is im-
puted from the ¢-statistic for & reported in row 5 of Table 1 as 0.15/0.98,
because the estimate of compensated elasticity is approximately equal to §;
Alog(1 — 7), the relevant within-person annual wage variation, is not reported
in the paper, so T use 2 x SD =2 x (0.152> 4 2 - 0.086%)!/ from Table 1, col-
umn 4 of Low, Meghir, and Pistaferri (2010), who estimated the standard de-
viation of changes in log wages. Note that this is likely an overestimate of the
size of Alog(1 — 1), resulting in bounds that are too tight, because MaCurdy
used family background characteristics, age, and year dummies as instruments
for wage growth and did not use all elements of wage growth for identification.

2,3. Eissa and Hoynes (1998). ¢ is reported for men as an intensive mar-
gin “wage elasticity” of 0.07 and an income elasticity of —0.03 in Table 8, col-
umn 3. This “wage elasticity” uses the total hours change, which includes the
hours change induced by the increased EITC rebate, which raised the average
net of tax rate by 0.042 for a couple earning $15,000 with two children (for
whom the average net-of-tax rate changed from 107.5% in 1993 to 112.1% in
1994 computed using TAXSIM). This rebate should have changed hours (in
log terms) by —0.03 x 0.042, giving an uncompensated elasticity of 0.069. The
compensated elasticity is g1, =&/, — zil’él , = 0.200, with w, [, and y from Ta-
ble 3, column 4. A parallel calculation using Table 9 gives &;°)" = 0.088. The
s.e.(?) assumed that w, [, y, and the change in income from the EITC expan-
sion are measured without error. Then using the ¢-statistics from the coeffi-
cients on In(wage) and virtual inc to impute the standard errors for the elastic-
ities yields SE(£2}) = {SE(%,,)* + [w71 SE(%,,)1*}""* = 0.074 and SE(g}°0") =
0.067. Note that this calculation is limited because the full variance—covariance
matrix for the regression coefficients is not reported. Alog(1 — ) is defined as
2 x SD of log net-of-tax-rate in the phase-out EITC rates listed in Table 1 for
1984-1996, because most married couples who receive the EITC are in the
phase-out region (Table 2).

¥ Recent studies that identify observed elasticities from bunching at kinks (e.g., Saez (2010),
Chetty, Friedman, Olsen, and Pistaferri (2011b)) are an exception. I incorporate these studies
into the linear-demand framework by exploiting the fact that they also study movements in the
kinks over time, which create reductions in marginal rates for the subgroup of individuals located
between the old and new bracket cutoffs. These studies imply that these individuals do not in-
crease labor supply significantly when their marginal tax rates are lowered. This constitutes an
observed elasticity estimate based on choices at interior optima, permitting application of Propo-
sition 1.
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4. Blundell, Duncan, and Meghir (1998). & and s.e.(¢) are from Table 4,
row 1. I interpret this estimate as an intensive margin elasticity because the
variation in wages from the grouping estimator does not appear to affect par-
ticipation, based on the discussion on page 845. Alog(1 — 7) is defined as
2 x SD(log W, — logw, — log w,) = 0.23, which is reported in Table 9, because
the variation arises from group-time interactions in wages.

5. Ziliak and Kniesner (1999). € and s.e.(€) are from Table 1, column 3.
Alog(1 — 1) is the study that effectively uses within-person annual wage vari-
ation, because lagged wage growth is included as an instrument. Since within-
person annual wage variation is not reported in the paper, I again use 2 x SD =
2x(0.152242-0.086%)"/? from Table 1, column 4 of Low, Meghir, and Pistaferri
(2010).

B. Taxable Income Elasticities

6. Bianchi, Gudmundsson, and Zoega (2001). € and s.e.(#) are the av-
erage percent change in earnings for men and women weighted by observa-
tions (columns 1-4 of Table 6) divided by the percent change in the net-of-tax
rate. The standard error is computed from the standard errors reported for the
changes in earnings. I interpret this estimate as an intensive margin elasticity
because Table 6 conditions on work in 1986, and tax rates were generally lower
in 1987 and 1988 than in 1986. I take this to be a compensated elasticity be-
cause Bianchi, Gudmundsson, and Zoega argued that income effects are small
on page 1565-1566, although this is somewhat tenuous. Note that the elastic-
ity estimates provided by the authors are computed using average rather than
marginal tax rates, necessitating the use of the computation described above.
Alog(1 — 7) is the log change from a tax rate of 0 in 1987 to 0.3875, which is an
average of the flat tax in 1988 and the mean of the top marginal tax rate and
bottom marginal tax rate in 1986 reported in Table 1, because the change in
earnings estimate compares 1987 to the average earnings in 1986 and 1988.

7. Gruber and Saez (2002). ¢ and s.e.(2) are averages of the estimates
in column 2 of Table 9 for individuals with taxable income between $10,000 and
$50,000 and those with taxable income between $50,000 and $100,000. These
estimates are compensated elasticities, as Gruber and Saez note on page 20
that income effects are essentially zero in their sample. Alog(1 — 7) is defined
as 2 x SD of the change in log net-of-tax-rate and is computed separately for
columns 3 and 4 of Table 3 using the means and standard deviations for each
year. The two estimates of Alog(1 — 7) are then averaged in the same way as
in the elasticity calculation described above.

8. Saez (2004). ¢ and s.e.(€) are from Table 7B, column 6 for the top
5% to 1% of tax units. Note that Saez used gross income, not taxable income.
I interpret his estimate as an intensive margin elasticity because his sample
consists of repeated cross sections of workers and because the extensive margin
is unlikely to be important for the top 5% to 1% of taxpayers. I interpret this
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estimate as a compensated elasticity following the aforementioned evidence
from Gruber and Saez (2002) that income effects are small. Alog(1l — 7) is
defined as 2 x SD of the log net-of-tax-rate for the top 5% to 1% of tax units
listed in column § of Table 5.

9. Jacob and Ludwig (2008). For &, these authors report in Table 3 that
head of households’ quarterly earnings conditional on working changed by
$228 from a control mean of $5558. As with Eissa and Hoynes, I calcu-
late how much income would have changed absent the grant worth $6860
(page 9) so as to compute a compensated wage elasticity. Jacob and Ludwig
did not report the effect of unearned income on earnings, so [ use an estimate
from Imbens, Rubin, and Sacerdote (2001), who reported in Table 4, speci-
fication V, column 1, a marginal propensity to earn out of unearned income
(MPE) of —0.114 with a standard error of 0.015. In an earlier version, Im-
bens, Rubin, and Sacerdote (1999) reported earnings and participation elas-
ticities of “around” —0.20 and —0.14, respectively, so I assume an intensive
MPE of 44l = —0.114{1 — (0.14/0.20)} = —0.034. On a quarterly basis, the
grant should have lowered earnings by —0.034 - (6860/4) = 58.65. Dividing the
change in earnings absent the grant by the tax change gives an uncompensated
elasticity of {log(5558 — 228 4 58.65) — log(5558)}/{log(1) — log(1 — 0.3)} =
0.086. Finally, the elasticity is & = & — dfi’—g” = 0.086 + 0.034 = 0.121. For
s.e.(€), assuming that the standard error on the intensive MPE is proportional
to the error on the total MPE and that the change in income due to the grant
is measured without error, then the standard error is 0.031. For Alog(1 — 1),
the MTR changed from 0 to 0.30 for those receiving the housing voucher as
described in footnote 29 so that log(1) — log(1 — 0.3) = 0.36.

10, 11. Gelber (2010). € and s.e.(€) are from Table 3, column 1 for men and
column 2 for women. These estimates use earned income since it is less suscep-
tible to manipulation than taxable labor income. These estimates presumably
reflect primarily intensive margin responses since the extensive margin is un-
likely to be important for the high-income group affected by the change in top
bracket tax rates. Alog(l — 7) is the percent change in net-of-tax rate from
1989 to 1991 for the highest tax brackets reported in Table 1.

12. Saez (2010).  and s.e.(z) are from Table 2, row 1 of column 6 for
wage earners with two or more children. Alog(1 — ) is the change in NTR at
the first kink in the EITC benefit schedule from 1995 to 2004.

13, 14. Chetty et al. (2011b). € and s.e.(¢) are observed elasticities at middle
and top kinks, calculated using equation 6 as b/ K Alog(1 — 7). In this equation,
K is the location of the tax bracket cutoff (DKr 164,300 for the middle tax and
DKTr 267,600 for the top tax). The estimated excess mass at the kink (b) is 1.79
(s.e. 0.05) for married women at the top kink (Figure IIIb) and 0.06 (s.e. 0.03)
at the middle kink (Figure VIa). Alog(1 — 7) is the size of tax changes at the
middle and top tax kinks as reported in Figure II.
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15. Chetty et al. (2011b). & and s.e.(¢) are from Table 2, column 1.
Alog(1 — 7) is defined as 2 x SD of the changes in the log net-of-tax rate re-
ported in the last row of Table 1, column 1.

C. Top Income Elasticities

16. Feldstein (1995). ¢ is the high minus medium tax rate specification in
Table 2. For this and other studies based on TRAS86, I follow the literature in
interpreting elasticities as compensated elasticities because the reform was rev-
enue neutral. s.e.(€) was not reported. For a rough estimate, rescaling the stan-
dard error cited by Feldstein on page 566 for Auten and Carroll (1994) by the

ratio of sample sizes in the two studies yields s.e.(g) = 0.15,/14,425/3735 =
0.295. Alog(1 — 7) is reported in Table 2 for the high tax rate group.

17. Auten and Carroll (1999). & and s.e.(g) are from Table 2, column 6.
Alog(1 — 7) was reported by Goolsbee (1999) for the highest income group in
Table 3, row C for 1985-1989 because TRA86 “provided tax variation mostly
at the top of the income scale, so that their overall estimates are identified
primarily by reactions of high income taxpayers” (Gruber and Saez (2002,
pp- 24-25)).

18. Goolsbee (1999). € and s.e.(¢) are from Table 4, column 1. Alog(1 — 7)
is from Table 3, row C for 1985-1989 based on the quote above.

19. Saez (2004). ¢ and s.e.(¢) are from Table 3C, column 3 for the top 1%
of tax units. Note that Saez used gross income, not taxable income. I interpret
his estimate as an intensive margin elasticity because his sample consists of re-
peated cross sections of workers and because the extensive margin is unlikely
to be important for the top 1% of taxpayers. I interpret this estimate as a com-
pensated elasticity following the aforementioned evidence from Gruber and
Saez (2002) that income effects are small. Alog(1 — 7) is defined as 2 x SD of
the log net-of-tax-rate for the top 1% of tax units listed in column 3 of Table 5.

20. Kopczuk (2010). € and s.e.(€) are from Table 9, second panel, column 1,
2002-2005, with standard error imputed from the reported ¢-statistic. This
is a compensated elasticity following Gruber and Saez (2002, equation (2)).
Alog(1 — ) is reported on page 17.

D. Macro/Cross-Sectional

21. Prescott (2004). € and s.e.(€) were calculated by regressing log hours
per worker on log net-of-tax rates using Organization for Economic Coopera-
tion and Development (OECD) data reported by Prescott in Table 2 on hours
per adult, which are converted to hours per worker using labor force partici-
pation rates from OECD Stat Extracts.* The data on labor force participation

¥Data are for men and women aged 15-64 for 1970-1974 and 1993-1996 so as to match
Prescott’s data. Data are available from OECD Stat Extracts at http://stats.oecd.org/Index.aspx?
DataSetCode=LFS_SEXAGE_I_R.
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rates are missing for Canada and the United Kingdom in the 1970’s, and these
observations are therefore excluded. The elasticity estimate can be interpreted
as a compensated labor supply elasticity if government expenditure is viewed
as unearned income in the aggregate. Alog(1 — 7) is defined as 2 x SD of the
change in log net-of-tax rate for the 12 observations with nonmissing data on
hours per employed person.

22. Davis and Henrekson (2005). € is computed using log differences in an-
nual hours per employed adult based on the slope coefficient in Table 2.3 (mid-
dle panel, Sample C) and the sample means of annual hours per employed
person and tax rates in Table 2.1 for the corresponding sample. The elasticity
estimate can be interpreted as a compensated labor supply elasticity if gov-
ernment expenditure is viewed as unearned income in the aggregate. s.c.(?)
is calculated from the standard error reported for the slope coefficient in Ta-
ble 2.3 (middle panel, Sample C). Alog(1 — 7) is computed as 2 x SD of log 1
minus the sum of tax rates for the 19 countries in Sample C.%

23. Blau and Kahn (2007). ¢ is computed from intensive margin (with se-
lection correction) elasticities reported in Table 6, defining the income elas-
ticity as the elasticity of women’s hours with respect to husband’s wages and
using the Slutsky equation to compute compensated elasticities in correspond-
ing fashion. Mean values of w/ and y are from Tables A2 and A3. I report an
unweighted average of the elasticities from Model 1 for each of the three time
periods. s.e.(#) is calculated from the standard error reported for the regres-
sion coefficients in Table 7 of NBER Working Paper 11230. I assume that the
covariance between the coefficient estimates is zero because the full variance—
covariance matrix for the regression coefficients is not reported. Alog(1 — 7) is
defined as 2 x SD of log wage rates because the study effectively exploits cross-
sectional variation in wage rates for identification; the instruments used in Ta-
ble 6 correct only for measurement error. The standard deviation of log wages
for married women is not reported and is, therefore, taken from Rothstein
(2008), who reported a value of 0.50 in column 4 of Table 1 for married women
in 1992-1993. This estimate is consistent with other published estimates of the
standard deviations of women’s log wages in the Current Population Survey
(e.g., Blau and Kahn (2000), Card and DiNardo (2002)).

¥Data are for 1995 for all countries except New Zealand and Australia, for which I use 1986
and 1985 values following Davis and Henrekson’s data appendix. Austria is excluded because
Davis and Henrekson exclude it from Sample C. The variable of interest in the data set is tw,
which stands for “tax wedge.” See Davis and Henrekson for more details. The mean (0.496 vs.
0.500) and standard deviation (0.14 vs. 0.133) reported for Sample C in Table 2.1 differ slightly
from those used in this calculation. The data were accessed from the .zip appendix at http://cep.
Ise.ac.uk/pubs/number.asp?number=502.
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APPENDIX C: SOURCES AND CALCULATIONS FOR EXTENSIVE MARGIN
STUDIES IN TABLE I1

This appendix describes the sources of the values in columns 3-5 of Table 11
for each study. For studies 1-7, the elasticity estimates (7)) and standard er-
rors in columns 3 and 4 are taken from Table 1 in Chetty, Guren, Manoli,
and Weber (2011a); details on the sources of these estimates are given in Ap-
pendix B of that paper. Studies 8-10 are also from Chetty et al. (2011a); de-
tails on these estimates can be found in Appendix C of that paper. I follow
the same methods as in Appendix B to calculate Alog(1 — 7), defined here
as the change in the net-of-average tax rate. The papers used for the analysis
along with comprehensive documentation of the calculations are available at
http://obs.rc.fas.harvard.edu/chetty/bounds_opt_meta_analysis.zip.

A. Quasi-Experimental Elasticities

1. Eissa and Liebman (1996). Alog(1 — 7) is from Meyer and Rosenbaum
(2000), who used the same data source and, in Table 2, calculated the financial
gain from working for single mothers in 1990 as $8458, compared with $7469
in 1984. I therefore define Alog(1 — 1) = log(8458) — log(7469).

2. Graversen (1998). Alog(1 — 7) is from Table 3, which reports level
changes in employment rates and participation elasticities, from which I back
out Alog(1 — 7) = (A#/6)/7m, where A = —0.031 is the estimated change in
employment rates for single women, 6 = 0.7 is the mean employment rate for
single women using an average of the six participation rates in Table 2 weighted
by sample sizes, and i = —0.174 is the elasticity estimate reported in Table 3.

3. Devereux (2004). Alog(1 — 7) is defined as 2 x SD of the deviations from
the mean log wage change for each region/age/education group in Table Al
for women because the variation used for identification is across region and
time by education/age group. Note that this table conditions on some work,
whereas in the sample used to estimate 7, nonparticipants’ wages are imputed
as the average for their group.

4. Meyer and Rosenbaum (2001). Alog(1 — 7) is from the discussion of study
4 in Chetty et al. (2011a), who defined Alog(1 — 1) = 45% after accounting for
taxes and transfers as in Meyer and Rosenbaum (2000, p. 1043).

5. Eissa and Hoynes (2004). Alog(1 — 7) is from Meyer and Rosenbaum
(2000, p. 1043), who reported a tax change of 45% from 1984 to 1996 for the
group studied by Eissa and Hoynes.

6. Liebman and Saez (2006). Alog(1 — 7) is defined as log(1 — 0.419) —
log(1 — 0.31) based on the change in tax rates reported on pages 10-11 for
OBRAY3.

7. Blundell, Bozio, and Laroque (2011). Alog(1 — 7) is defined as 2 x SD of
log net-of-tax rates for participation. A standard deviation of 0.37 was obtained
from personal correspondence with authors.
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B. Macro/Cross-Sectional Elasticities

8. Nickell (2003). 7 is computed using the average point estimate of 2%
(reported on page 8) and the sample means of employment rates and tax rates
from Tables 1 and 2, respectively. s.e.(77) was not reported because Nickell
did not report standard errors for the studies in Table 4 on which his point
estimate is based. Alog(1 — 7) is defined as 2 x SD of log net-of-tax rates using
values listed in Table 2 because most of the studies in Table 4 used in Nickell’s
estimate of the effect of taxation on employment used panel or cross-sectional
data for OECD countries.

9. Prescott (2004). 17 and s.e.(7) are calculated by regressing log labor
force participation rates from OECD Stat Extracts on log net-of-tax rates using
the same sample of countries and years as Prescott.*® The data on tax rates are
taken from Table 2 of Prescott. The data on labor force participation rates are
missing for Canada and the United Kingdom in the 1970’s and these observa-
tions are therefore excluded. Alog(1 — 7) is defined as 2 x SD of the change in
log net-of-tax rate for the 12 observations with nonmissing data on labor force
participation rates.

10. Davis and Henrekson (2005). 77 is computed using the log difference in
employment based on the slope coefficient in Table 2.3 (bottom panel, Sam-
ple C) and the sample means of labor force participation and tax rates in Ta-
ble 1 for the corresponding sample. s.e.(n) is calculated from the standard
error reported for the slope coefficient in Table 2.3 (bottom panel, Sample C).
Alog(1 — 7) is computed as 2 x SD of log 1 minus the sum of tax rates for the
19 countries in Sample C.

11. Blau and Kahn (2007). For 7, I report an unweighted average of the
own wage participation elasticities for each of the three time periods in Ta-
ble 6, Model 1. For s.e.(7), the standard error is calculated from the standard
error reported for own log wage in Table 7 of NBER Working Paper 11230.
I assume that the covariance between the coefficient estimates is zero because
the full variance—covariance matrix for the parameters in the probit model is
not reported. Alog(1 — 7) is defined as 2 x SD of log wages, calculated as de-
scribed in study 23 in Appendix B above.
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