Econometrica Supplementary Material

SUPPLEMENT TO “IDENTIFICATION AND ESTIMATION OF A
DISCRETE GAME OF COMPLETE INFORMATION”
(Econometrica, Vol. 78, No. 5, September 2010, 1529-1568)

BY PATRICK BAJARI, HAN HONG, AND STEPHEN P. RYAN

APPENDIX B: TECHNICAL APPENDIX
B.1. Identification at Infinity in Two-by-Two Games

FOR THE PURPOSE OF ILLUSTRATION, in this appendix we specialize the argu-
ments for identification to the two-by-two game.

Identifying the Mean Payoff Functions
Given a linear specification of the mean utility functions, let f;(7, x) = x] 8]

for = (2 —i)Bk + (i — 1)jR. The following assumption requires a rich sup-
port of the covariates.

ASSUMPTION 9: For each i =1,2, j =T, B, and k = L, R, there exists a

i ' ) b

set 7,/ "*U=D of covariates x such that lim  ~  ie-owi-n Pla; = ik
1=1 o

x]=1.

Assumption 9 requires that for each player i and for each of player i’s strate-
gies, we can shift the covariates x along a dimension such that action q; is a
dominant strategy for player i with probability arbitrarily close to 1. For exam-
ple, for i =2 and k = L, Assumption 9 requires that along a path of ||x|| — oo,
xeT}, Plaa=L|x]— 1,0r

P[xZTR ZTR + e (TR) <0, fo fR + e <0(BR)] — 1.

Assumptions 1, 2, and 9 allow us to identify the mean utilities along these paths.
The next assumption requires that we can extrapolate knowledge of the deter-
ministic utilities along this path to other values of x on its support.

ASSUMPTION 10: Foreachi=1,2,j=T,B, k=L, R, and x € /%"
there exists some L, > 0 such that

i

LlllLfO mineig E[x]x]'|x € TODHCTD x> L]>o0.

Assumption 10 requires that the linear deterministic payoff functions x7 3]

can be extrapolated from the path ||x|| — oo, x € 71(;—1)%(2—5), to the full sup-
port of x.

THEOREM 4: Under Assumptions 1,2, 9, and 10, f;((2—i)Bk + (i — 1)jR, x)
is identified forall i=1,2, j=T,B,and k = L, R.
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PROOF: Fori=1,2,k=L,R,and j=T, B, denote by P((2 — i)Bk + (i —
1)jR|x) the unconditional probabilities P(e;(7)+x7B7 > 0|x). The data do not
directly identify this probability, but only identify the conditional probabilities:

P(a,» =Q2—-DB+({—DRlas;_i=2—-Dk+(i—1)j, x).
However, because of Assumption 9,

lim [P(a;= (2~ DB+(i— DR

(i—1)j+2-ik
[lx[|—o00,xeT;_;

a;;=Q2—Dk+(i—1)j,x) —P((2—i)Bk + (i — 1)jR, x)] =0.

This implies that P((2 — i)Bk + (i — 1)jR, x) and hence f;((2 — i)Bk + (i —
1)jR, x) can be identified along the path of ||x|| - oo, x € 7;(_";1)”(27")". Be-
cause the cumulative distribution function of €;(7) is strictly increasing, the
linear index x] 87 is identified along this path. Assumption 10 further identifies
the coefficient parameters 7. According to Assumption 10, for every 87 # B,
there exists a set of x] with positive probabilities such that x] 8] # x7 B}, which
implies identification of 37. Q.E.D.

A special case of Assumption 9 is when € = (¢;(jk)),i=1,2,j=1T,B,
and k = L, R, has finite support but the support for x7 for i = 1,2 and all
7 is either larger or infinite. Denote by U an upper bound of the absolute
value of the support of €;(jk) for all i, k, and j. Then a sufficient condi-
tion for Assumption 9 to hold is that for all i/ and 7, P[xlT/ B7 >2U] > 0 and
P[x{’[j’l? < —2U] > 0. Then we do not need the requirement that || x|| — oo.
The sets 777"V can be defined as 7,°*"**" = {x:x787 > 2U, V7} and
T,TCTOHEED — x: x7BT < —2U, V). In this case, a sufficient condition for As-
sumption 10 to hold is that for all i =1, j = {7, B} and i = 2, k = {L, R}, the
matrices E[xx'|x € T,."7"**~"*] are positive definite and finite.

Identifying the Equilibrium Selection Mechanism

Given that the deterministic utility components are identified in Theorem 4,
the next goal is to identify the equilibrium selection mechanism. The equilib-
rium selection probabilities are only needed when there are three equilibria,
which can be either (TL, BR, mix) or (BL, TR, mix). The mixing probabilities
for these two cases are

fi(BL,x)+ € (BL)
fi(BL,x) — fi(BR, x) + €(BL) — €;(BR)’
Pm(La X, E) =1 _Pm(Rs X, 6)

P,(R;x,€) =
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and

J2(TR, x) + &2(TR)
f(TR, x) — f,(BR, x) + €,(TR) — €,(BR)’
P,.(T;x,e)=1—P,(B; x,€).

Pm(Bs X, E) =

In the ideal case where there are no error terms, €;(BL) = €, (BR) =
€,(TR) = €,(BR) =0, all of P,(R), P, (L), P,(T), and P, (B) are functions
of the known deterministic payoffs. Define the observed equilibrium selection
probabilities as p(TL, x), p(BR,x),1 — p(TL, x) — p(BR, x) in the case of
(TL,BR,mix) and as p(BL,x),p(TR,x),1 — p(BL,x) — p(TR, x) in the
case of (BL, TR, mix), where the dependence on covariates x is made explicit.
Then for those values of x where (TL, BR, mix) is realized,

P(TL|x) = p(TL,x) + (1 — p(TL, x) — p(BR, x))P,y(T)Pu(L),
P(TR|x)=(1—p(TL,x) — p(BR, x))P,,(T)P,(R),
P(BL|x) = (1—p(TL, x) — p(BR, x))P,y(B)P,(L).
These are three equations that identify the two unknown variables p(7T'L, x)
and p(BR, x). Similarly, for values of x such that (BL, TR, mix) is realized,
P(BL|x)=p(BL,x)+ (1 —p(BL,x) — p(TR, x))P,(B)P,(L),
P(BR|x)=(1—p(BL, x) — p(TR, x))P(B)P,(R),
P(TL|x)=(0—-p(BL,x)—p(TR, x))P,(T)P,(L)
are the three equations that overidentify the two unknown variables p(BL, x)
and p(TR, x).

In the presence of the unobservable error terms e, additional identification
assumptions need to be imposed to isolate the effects of the error terms.

ASSUMPTION 11: The equilibrium selection probabilities depend only on the
utility indexes,

p(xa 6) = p(ul((z - l)Bk + (l - I)JR’ x) Vl’ ja k):

where p(x,€) = [p(TL; x,€), p(BR; x,€), p(BL; x,€), p(TR; x, €)]. In addi-
tion, the equilibrium selection probabilities are scale invariant with respect to
the utility indexes. For all « > 0, p(au;((2 — )Bk + (i — 1)jR, x) Vi, j, k) =
p(u((2—iBk+ (i—1)jR,x) Vi, j, k).

This assumption rules out the possibility that p(x, €) might depend on x
and e nonseparably, independent of the latent utility indexes. It also requires
that the equilibrum selection probabilities only depend on the relative but not
absolute scales of the latent utilities.

The scale invariance assumption, supplemented by the next support condi-
tion on the observables and unobservables, allows us to identify the equilib-
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rium selection probabilities from the variations in the covariates x. In particu-
lar, Assumption 11 implies that the determinants for the equilibrium selection
probabilities are the same as the determinants for the mixing probabilities. It
allows for a rich class of equilibrium selection mechanisms, but does exclude
some important ones. For example, it allows for the Pareto efficient equilib-
rium to be selected with a larger probability and for this probability to depend
on the relative efficiency level. This restriction follows from the intuition that
if all payoffs were scaled by a constant, we would not expect the distribution
over outcomes to change. However, it does not allow this probability to de-
pend on how much more efficient the efficient equilibrium is compared to the
inefficient ones in absolute terms. It also rules out equilibrium selection prob-
abilities that depend independently on some of the observed covariates but not
on other observed covariates or the error terms. This potentially limits the an-
titrust implications of the model, because firms concerned with avoiding the
suspicions of antitrust investigators might want to choose selection rules which
depend on some variables that are easier to communicate but not others.

ASSUMPTION 12: There exists a set 7 such that for all € > 0,

i f((2—=i)Bk + (i—1)jR, x) B
(20) \xl—lg‘gce’f (ui((Z—i)Bk+(i—1)jR,x,5) >1—7;>_1

foralli=1,2,j=T,B,and k=L, R, and that forall A=R,B, T, L,

. P,(A;x,€)
1 Pl ———>1-€¢])=1.
\x|elolo‘2ce7’ (Pm(A, X, 0) ~ E>

This assumption is satisfied if € has finite support but x has infinite support.

THEOREM 5: Under Assumptions 1-12, the equilibrium selection probabilities
p(ui((2—)Bk + (i —1)jR, x) Vi, j, k)
are all identified from the observed choice probadbilities.

PROOF: Assumptions 1-10 identify the payoff functions f;((2 — i)Bk + (i —
1)jR, x) for all i, j, k. Using Assumption 12, we can approximate the mixing
probabilities with arbitrary precision by using larger and larger values of the co-
variates x. This allows us to recover the equilibrium selection probabilities with
arbitrary precision at very large values of the covariates x. By Assumption 11,
the equilibrium selection probabilities with smaller values of the latent utility
indexes are obtained by extrapolation along the remote sections of a ray that
emanates from the origin and goes through the latent utility indexes. Q.E.D.

B.2. Monte Carlo

To demonstrate the performance of our estimator in small samples, we con-
duct a Monte Carlo experiment using a simple entry game with two players.
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Each player has the profit function

mi(a) =1(a; = D){Bixin + Brx2 + €:(a)},

with the observable covariates defined by x;; ~ N(1, 1) and x,; = n(a), where
N(u, 0?) is the normal distribution with mean w and variance o2, and n(a)
is the number of competitors a firm faces given action profile a. The idiosyn-
cratic error term, which is different for each player for each action profile a,
is drawn independently from the standard normal distribution. The choice of
unit variance in the random shock satisfies the need for a scale normalization,
and assigning payoffs of zero to not entering the market satisfies the location
normalization. xy; represents variability in profits to firm i from entering that
market, and x,; captures the effects of having a competitor. The true payoff
parameters are 8; =2 and B, = —10.

The distributions of the covariates were chosen such that when payoffs are
evaluated at their means, it is optimal for only one of the two firms to enter the
market. Under these circumstances, the set of equilibria in this game, denoted
by £, has three elements: two pure strategies characterized by one firm or the
other entering the market, and one mixed strategy where firms enter with some
probability. We specify that the probability of equilibrium 7; € £ being played
is

exp(6;MIXED;)

3" exp(6;MIXED))’

miEeE

Pr(m) =

where MIXED; is an indicator variable equal to 1 if equilibrium 7, is in mixed
strategies. When 6, = 0, one of the three equilibria is picked with equal chance.
As that parameter tends to either negative or positive infinity, the mixed strat-
egy is played with probability approaching 0 or 1, respectively. The true selec-
tion parameter is 6; = 1.

Our game has three unknown parameters: 3;, 8,, and 6,. The game gener-
ates moments from the probabilities of observing the four possible combina-
tions of entry choices. Only three of these moments are linearly independent,
as the probabilities must sum to 1, implying that our model is exactly identi-
fied. We generate 500 samples of size n = 25, 50, 100, 200, and 400 to assess
the finite sample properties of our estimator. We set the number of importance
games per observation to be equal to the sample size, and generated new im-
portance games for each observation and each replication. Asymptotic errors
for each run are calculated using the optimal weighting matrix from a two-step
generalized method of moments (GMM) procedure. The Laplace-type estima-
tor of Chernozhukov and Hong (2003) is used to recover the parameters. The
results of our Monte Carlo are reported in Table IX.

The results are encouraging even in the smallest sample sizes. The payoff pa-
rameters are tightly estimated near their true values, while the mixed strategy
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TABLE IX
MONTE CARLO RESULTS

Mean Median Mean  Median  Mean Median
Mean Median Std. Dev. Bias Bias AD AD ASE ASE
N=25
B 1.982 2,017 0491 —0.018 0.017 0346 0.218 0.624  0.595
B2 -9.952 -10 0.916 0.048 0 0.643  0.399 222 1.249
0, —-1.743  —-0977 3959 2743 —-1.977 3.421 2398 2.644 2346
N =50
Bi 2.048 2.039 0.401 0.048 0.039 0.265 0.113 0.588 0.574
B2 -9.962 -10 0.787 0.038 0 0.534 0.28 1.232  1.148
0, —0.62 0.526 3395 —-1.62 0474 2.04 0.588 2.545 2124
N =100
B 2.057 2.036  0.327 0.057 0.036  0.221  0.095 0.544 0.536
B2 —10.016 —10.012 0.663 —-0.016 —-0.012 0.442 0213 1.086 1.071
0, 0.14 0.611 2297 —-086 —0.389 1.122 0498 2.218 1.882
N =200
Bi 2.049 2.037 0.245 0.049 0.037 0.166 0.063 0.452 0.434
B> —9.981 —10.003 0.543 0.019 -0.003 0.347 0.114 0915 0.887
0, 0.664 0.779 0598 —-0.336 —-0.221 0.461 0.303 1.548 1.187
N =400
B 2.044 2.041 0.224 0.044 0.041 0.166 0.105 0.274 0.261
B2 —10.013 —10.026 049 —-0.013 —-0.026 0.362 0.231 0.579  0.566
0, 0.732 0.756 0377 —-0.268 —-0.244 0356 0.281 0.275 0.257
The true parameter vector is B =2, By = —10, and 6; = 1. Each sample size was evaluated 500 times. AD =

Absolute Deviations, ASE = Asymptotic Standard Errors.

shifter is estimated with considerably lower precision. There is a distinct down-
ward bias in the estimates of the equilibrium selection parameter that shrinks
as the sample size grows. The median bias in all parameters is much better
than the mean bias, implying that the mean bias is largely driven by occasional
extreme outliers.

The standard deviation of the estimates of all three parameters shrinks as
the sample size increases, as do the mean and median absolute deviations. Sig-
nificantly, the decrease in the standard deviation for the payoff parameters is
close to 4/n, as theory implies. The rate of convergence of the equilibrium se-
lection parameter is much more dramatic as the sample size increases, largely
because this parameter is not precisely estimated at smaller sample sizes.

We include the means and medians of the asymptotic standard errors as well
as the standard deviations of the Monte Carlo results. The asymptotic errors
are usually comparable to the Monte Carlo standard errors, which are cal-
culated by looking at the variance of the parameter estimates across the 500
replications for each sample size. The asymptotic errors tend to overstate the
variance of the payoff parameters and understate the variance of the selection
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parameter relative to the Monte Carlo errors. Their magnitude decreases at an
increasing rate as the sample size grows, also similar to the Monte Carlo errors.
Overall, our results suggest that the asymptotic errors are good small-sample
approximations to their Monte Carlo counterparts.

The precision of the estimated payoff coefficients relative to the equilibrium
selection parameter follows from the intuition that the payoff-relevant covari-
ates define the thresholds at which firms are willing to enter a market, and thus
enter the likelihood of every observation directly. On the other hand, the equi-
librium selection parameter enters the estimating moments in a more subtle
manner. This parameter is identified using coordination failures between firms
due to mixed strategy equilibrium.

To illustrate, suppose that all payoffs, including idiosyncratic shocks, are
observed by the econometrician. For some realizations of the covariates, the
model will predict two pure strategies, with one or the other of the firms en-
tering the market, and a single mixed strategy. If the mixed strategy equilib-
rium is played, there is a chance of either no firms entering the market or both
firms entering the market. It is only when these mistakes are observed that
the econometrician is certain that the mixed strategy is played. Behind this is
a subtle and complex relationship between variables, as the probability of ob-
serving a mistake is a function of both 6, which controls how often a mixed
strategy occurs, and the payoffs of the game, which determine the probability
of observing a mistake conditional on playing a mixed strategy.

This interplay illustrates a more general point, which is that although the
parameters are identified, in small samples the estimation of some parameters
may depend on a relatively small subset of outcomes. Note well that this is true
even in the extreme case when the payoff functions, including the idiosyncratic
shocks, are known with certainty, since the model itself generates probabilistic
outcomes through both the equilibrium selection mechanism and the random
nature of mixed strategies. In light of this, the results here are very positive,
as we are able to recover estimates of the true parameters with acceptable
precision in moderate sample sizes.

There is one caveat to our procedure that researchers have to address in
practice. In each Monte Carlo simulation, we know the true parameters of the
game and we are able to generate importance games using them. With real
data, of course, them parameters are initially unknown. The importance sam-
pler can generate imprecise parameter estimates with poor initial guesses, so it
is necessary to derive starting parameters from a separate source. Below we use
a related game of private information to generate initial starting values. Para-
metric identification is another difficult empirical issue. In the Monte Carlo
example, we are able to calculate the rank condition explicitly at the true pa-
rameter values and find it to be nonsingular. This is an overly strong condition
for local identification, but is not sufficient for global identification, which is
difficult to obtain.
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B.3. Rank Conditions in the Monte Carlo Example

As an illustration, we explicitly analyze the rank condition for identification,
which requires that the Jacobian matrix is invertible everywhere, in the context
of the Monte Carlo simulation example. The Jacobian matrix is formed by
taking derivatives of the outcome probabilities with respect to the parameters:

- dP(1, 1|x, B1, B, 01)
P
A JdP(1,0|x, By, B1, 61)
P
dP(0,0lx, Bi, B1, 61)
- P
dP(1,1|x, By, B1, 61) IP(1,1|x, B, B1, 61)
B, 06,
dP(1,0|x, B1, B1, 01) JP(1,0|x, By, B1, 01)
B, 96,
dP(0,1|x, B, B1, 01) P, 1]|x, By, B1, 61)
B, d0, -

Despite the simple structure of the Monte Carlo setup, the observed outcome
probabilities,

P(171|x7 Bl: Bla 01)’ P(170|x7 Bla 31501)7 and
P(Oa0|x7 Bla Bl: 01)7

are highly complex functions of the model parameters, and the calculation of
A is nontrivial.'* We investigate the nonsingularity of the Jacobian matrix A.
Because this is a conditional model, for each vector of parameters (8, B2, 61)
we look for a covariate x that gives a nonsingular Jacobian matrix A. Due to
the computation cost of numerically evaluating an integral in the Jacobian ma-
trix, it is prohibitively time consuming to verify nonsingularity for an exhaustive
search over the parameter space. Therefore, we take a grid of size 6 with in-
terval length 0.3 symmetrically around each of the true parameter values. For
each combination of the parameter values in the grid, we evaluate the smallest
absolute value of the eigenvalues of the Jacobian A4 at 25 values of the covari-
ates x. The maximum over the covariates x of the smallest absolute eigenvalue

“We derive these relationships in supplementary material which is available upon request.
Calculating the numerical values of A also requires numerically integrating a one-dimensional
integral, which we evaluate by simulation. Since the derivatives are expressed analytically, we do
not need to choose a step size to compute the numerical derivatives.
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FIGURE 1.—Distribution of absolute eigenvalues in the Monte Carlo example.

of the Jacobian matrix A is recorded and plotted in Figure 1. The histogram of
the minimum absolute eigenvalues suggests that they are bounded away from
zero and, as a result, that the rank condition is satisfied. While this is not defin-
itive analytical proof that the Jacobian is invertible everywhere (this requires
demonstrating strong conditions on the Jacobian, for example that it is a P-
matrix, which is infeasible given the complexity of our system), as formally re-
quired for identification, it does suggest that our problem is identified in a
neighborhood of the true parameters.

B.4. Maximal Number of Nash Equilibria

When considering the nonparametric identification of the equilibrium selec-
tion mechanism, knowledge of generic properties of the set of Nash equilibria
proves useful. Here we briefly review results in the literature on the maximum
number of equilibria to normal form games of the class considered here.

Solutions to normal form games can be characterized using polynomial
equalities and inequalities. Therefore, before considering games, we re-
view some important results on the solutions of a system polynomials. Let
F = {fi(x)}, be the system of n polynomials of n variables. We are look-
ing for the set of all common roots of this system. A polynomial f;(x) =

U U i U ..
Z}J.:I a_,-x:1 x? X = ZL] a; ]_[Z:Ixi". The powers ¢} are integers in gen-

n
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eral: index i refers to the equation number, index j refers to the number of
monomials in polynomial i, and index k refers to the specific variable x;.
The points e/ = (e, ..., eY) form the finite sets E; = (¢/,j=1,...,J) and
indicate which monomial terms appear in f;. For instance, in the polynomial
fi(x1, x2) = x3x3 + 2x2, the support set is E; = {(2, 3), (2, 0)}.

The collection of sets E = (Ey, E,, ..., E,) is called the support of the system
of polynomials. The convex hulls Conv(E;) are called Newton polytopes of f;.
For example, the Newton polytope of the polynomial f(x;, x;) = x1x, + x1 +
x, + 1 is the unit square with vertices in (1, 1), (1, 0), (0, 1), and (0, 0).

The degree of the polynomial i is d; = max; > ,_, e’. One of the most impor-
tant theorems describing the behavior of zeros of F in the complex space C" is
Bézout’s theorem, which says that the total number of common complex roots
of F is at most [, d;. Bézout’s theorem provides an upper bound to the num-
ber of common roots in the system, giving little information on the polynomials
that are sparse. In fact, for sparse systems, the number of common roots of the
polynomial system can be significantly less than the bound set by this theorem.
A universal and powerful tool for root counting in case of sparse polynomials
is Bernstein’s theorem.

Let P; be Newton polytopes of equations f;(x) in the system F defined pre-
viously. The mixed volume of the system of polytopes is defined as

Q1)  MPy,...,P)= ) (—1)'5'\/01(213,4),
}

Scil,...n ieS

where S are all subsets of {1,2,...,n}, |S| is the cardinality (number of el-
ements) of a particular subset, and Vol(-) is the conventional geometric vol-
ume. The sum of the polytopes is defined for two polytopes P and Q as

P+Q={p+qlpeP,qecQ).

THEOREM 6—(Bernstein): The number of common roots in the system F is
equal to the mixed volume of the n Newton polytopes of this system.

This is an extremely powerful result because the mixed volume is easy to
compute. A general problem with complex roots though is that they are not
invariant with respect to the group of polynomial transformations of F. For
example, if the polynomial f(x) has degree d and thus has d distinct complex
roots, then the polynomial f(x)* can have 2d distinct complex roots. This is
not the case with the real roots of a system of polynomials and thus power
transformations have no effect on the number of distinct real roots. This is
captured by Khovanskii’s theorem, which sets the upper bound on the number
of common real roots of the polynomial system which does not depend on the
degrees of the equations in the system.
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THEOREM 7—(Khovanskii): If m is the number of all monomials in F (or
equivalently m = |E| = Y| ] — i—cardinality of the support) and there are n
polynomials in F, then the maximum number of real solutions of the system is
20 (n + 1)m.

In many cases, however, the so-called Kouchnirenko conjecture holds: if the
number of terms in f; is at most m;, then the number of isolated real roots is
at most [, (m; — 1). This conjecture is violated for some generic (although
quite complex) counterexamples.

Consider an arbitrary N-person game where player i has n; strategies. Using
Lagrangian multiplier techniques, it can be reduced to a system of n + ). n;

polynomial equations with n 4 Y, n; unknowns. Let x\” denote strategy k of
player i, let §;l’) i 1okojinsnnjy D€ the payoff function, representing the pay-
off of player i when she plays the pure strategy k and the other players are
playing ji, ..., jv, and let @ be the expected payoff of player i. Let A{) be
the Lagrange multiplier for the constraint x\” > 0 and let A’ be the Lagrange

multiplier for the constraint ) ;" | x(‘) 1. The Lagrangian for bidder i can be
written as

i) _ Z (,)Z (i) @O LG=D G+ (V)
L X fjl ,j2,-~-,ji—1’kvji+1>-~-,ijfl i X Xjy

- Z Aox + )ﬁ”( Zx(’)>.

The first order condition for the Lagrangian and the complementary slackness
conditions for the multipliers A} are

@ G G+ L (N) () (D)
(22) &xil) ngl Jaseesfic15Ksjig1seens in%i i X Xjy )\kU A

23) 1= x=0,
k=1

4)  x"AD=0, k=1,...,n

If we multiply the first equation by x;, it reduces to

(i) ()]
(25) Xk Z 'fh,/'2:-~-:J'i71’k,/i+1,--~,]'1v

J15J25 e Jim15Jig 15N

oD DG N NG
XX X xji+1 Xjy X AT =0,



12 P. BAJARIL, H. HONG, AND S. P. RYAN

(26) wa ,
(27) xPAD =0, k=1,...,n.

Summing the first equation over all k, we obtain 7 = X, Then each bidder
is characterized by the system of equations

af i (i)
(28) Xk (77 Z ghyjzv-~-,ji71,kyji+1,-~-,l'1v

J15J2seoJim15Ji15-JN

(1) (i-1) _.(i+1) Ny | _
XXy X x/i+1 Xjy ) =0,

(29) Zx(” k=1,...,n;, i=1,...,N.

Thus, for each player we have n; + 1 equations and n; + 1 unknown parame-
ters (n; mixed strategies and the expected payoff). The individual equation has
[1,n;+ 1 terms (the number of strategies of the other players when the strat-
egy of player i is fixed, plus the expected payoff of player i). In addition, the
linear equations limiting the mixed strategies to the simplex have n; + 1 terms
each. So in total there are ) , n; + N equations and unknowns. The total num-
ber of termsis ), [ ], n;+>_,n: +2N. If we consider purely mixed strategies,
then x{” > 0, and thus the system can be rewritten as

(@] (@]
(30) Z(gjl,jz’---,jmvk,jm ----- ] gll J2s s Jim 15N Jig15eees fN)
J—i
(1) (i=1) .(i+1) (N) _
i1 Ji-1 TJit1 Xjy =0,

Gl)  k=1,...,m—1, i=1,...,N.

X X

This system has n; — 1 unknowns for player i and ), n; — N unknowns in total.
The number of terms for each equation is [ ], n;, according to the number of
strategies of the rival players when the strategy of the given player is fixed. The
total number of terms is then given by the sum > ([, n))(n; — 1).

McKelvey and McLennan (1996) directly applied Bernstein’s theorem to the
given system of equations and expressed the number of solutions in terms of
the mixed volume of Newton polytopes for the case of totally mixed solutions
(the case with possible pure strategies needs specific consideration for each
payoff structure). We can also apply Khovanskii’s result to this system as fol-
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TABLE X
TABULATION OF KOUCHNIRENKO’S FORMULA

Number of Strategies (k)

N 2 3 4 5 6
2 3 16 729 65536 9765625

3 27 262,144 38,443,359,375 3.65203E+16  1.44884E+23
4 2401 2.08827E+11 3.90919E+21 3.12426E+33  4.45419E+46
5 759,375 1.07374E+19 1.25344E+36 8.01109E+55  6.40832E+77
6 887,503,681 4.03445E+28 1.50578E+54 7.4656E+83 5.2603E+116

lows. First, by Kouchnirenko’s conjecture, the maximum number of solutions
to this system is

(32) ﬁ(]‘[ n;— 1)’”_1,

i=1 N j#i

which gives an approximate upper bound on the number of solutions. An exact
application of Khovanskii’s formula with m = Zi(]—[j i) (n; — 1) gives the
maximum number of solutions as 2"™/"=2Y (3" p, — N + 1)™.

For a particular case when k equals the number of strategies, Kouch-
nirenko’s formula gives (kK¥~! — 1)N*=D for the number of equilibria, while
Khovanskii’s bound is

NEON=D -1y
2( 2

JIN(k — 1)+ 1P Ve,

The number of moments with N players when each player has k strategies is
kN — 1. The corresponding numbers of moments are tabulated in Table XI.
They are significantly smaller than Kouchnirenko’s bounds.

Dept. of Economics, University of Minnesota, 4-127 Hanson Hall, 1925 Fourth
Street South, Minneapolis, MN 55455, U.S.A. and NBER; bajari@econ.umn.edu,

TABLE XI
TABULATION OF THE NUMBER OF AVAILABLE MOMENTS

Number of Strategies (k)

N 2 3 4 5 6
2 3 8 15 24 35
3 7 26 63 124 215
4 15 80 255 624 1295
5 31 242 1023 3124 7775
6 63 728 4095 15,624 46,655
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