
Econometrica Supplementary Material

SUPPLEMENT TO “MACROECONOMIC IMPLICATIONS
OF AGGLOMERATION”

(Econometrica, Vol. 82, No. 2, March 2014, 731–764)

BY MORRIS A. DAVIS, JONAS D. M. FISHER, AND TONI M. WHITED1

This document provides supplementary background material for the main paper.
It discusses (i) the growth model, (ii) the data, (iii) deriving the moment conditions
that underlie estimation, (iv) measuring the impact of agglomeration on per capita
consumption growth, (v) solving the model, (vi) standard errors of our estimates,
(vii) Monte Carlo analysis of our estimation strategy, (viii) proofs of equilibrium ex-
istence and uniqueness for versions of the model without housing, (ix) several pertur-
bations to our estimation, and (x) how we verify numerically that the Luttmer (2007)
property holds.

APPENDIX A: FIRST ORDER CONDITIONS, PRICES, AND GROWTH

THIS SECTION DESCRIBES DETAILS about the growth model that were omitted
from the main text. These include (i) the first order conditions of the plan-
ning problem, (ii) how to map the Lagrange multipliers for this problem into
competitive equilibrium prices, (iii) how the planner’s first order conditions
relate to those of the agents’ in the competitive equilibrium, (iv) the stationar-
ity inducing transformation of the growing economy, and (v) how to calculate
the increase in steady state consumption and housing required to compensate
households for not having the growth due to local agglomeration.

A.1. The Model Without Growth

The competitive equilibrium can be found as the solution to an optimization
problem with side conditions. Idiosyncratic technology zt evolves as a station-
ary discrete Markov chain. Let qt(zt) denote the time t distribution of cities
across productivity histories zt and let Q(z�z′) denote the probability that
zt+1 = z′ conditional on zt = z. The planner’s problem is given by
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1We are grateful to Bill Johnson and Randal Verbrugge for helping us to understand the evo-
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Chicago or the Federal Reserve System.
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andKb0,Ks0, kf (z0), {At�Pbt�Pst�Pf t� z
t}∞
t=0, and x(zt) given. Competitive equi-

librium allocations are obtained as a solution to this optimization problem such
that x(zt)= y(zt)/ lb(z

t). Prices that correspond to an equilibrium are easy to
obtain from the constraint’s Lagrange multipliers. We now show how to do
this and how to relate the planners first order conditions to those of individual
agents in the competitive equilibrium.

Let the Lagrange multipliers for the above constraints be βtπt , βtπtqt(zt)×
py(z

t), βtπtqt(zt)rh(zt), βtπtqt(zt)rl(zt), βtπtrbt , βtπtrst , and βtπtθt . Then the
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In the competitive equilibrium {Pxt� x= b� s� f }, py , {rx�x= b� s� f� l�h}, and
w correspond to investment prices, intermediate good prices, rental rates, and
wages. Under this interpretation, we can relate the planner’s first order con-
ditions to those of the individual agents described in Section 2.2 and referred
to in Sections 3.1 and 3.2. Equations (S9)–(S11), after substituting for π us-
ing (S8), correspond to the representative household’s first order conditions
for capital accumulation. Equation (S12) corresponds to the first order con-
dition of the final good producer for intermediate input demand. Equations
(S13), (S14), and (S19) correspond to the intermediate good producers’ first
order conditions for finished land, business capital, and labor. Equation (S16),
after substituting for π using (S8), corresponds to the household’s first order
condition for housing in each location. Equations (S17) and (S18) correspond
to the first order conditions of housing service providers for finished land use
and rental of residential structures. Equation (S22) corresponds to the first or-
der condition of finished land service providers (landlords) for infrastructure
use.
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A.2. The Model With Growth

With growth, that is under the assumptions
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we need to obtain the mapping from the growing economy to a stationary plan-
ning problem. The mapping is driven by the balanced growth expressions de-
rived in the main text.
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All of the growth rates in these expressions are derived in the main text except
for gh. This growth rate equals [γζ−1

n gζf ]1−ωgωs .
The multipliers and prices are transformed as
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Replacing the growing variables in the original planning problem using these
transformations, one can show the planning problem reduces to
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and K̄b0, K̄s0, k̄f (z0), {P̄bt� P̄st� P̄f t� zt}∞
t=0, and x̄(zt) given. Competitive equilib-

rium allocations for the growing economy are obtained in two steps. First we
find the solution to the transformed problem such that x̄(zt) = ȳ(zt)/l̄b(z

t).
The second step translates the stationary allocations and prices to their grow-
ing counterparts using the transformations described above.

Let the Lagrange multipliers for the above constraints be βtπ̄t , βtπ̄tqt(zt)×
py(z

t), βtπtqt(zt)r̄h(zt), βtπtqt(zt)r̄l(zt), βtπt r̄bt , βtπt r̄st , and βtπtθ̄t . Then the
first order conditions for C̄t , K̄bt+1, K̄st+1, k̄f t+1(z
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h̄(zt), l̄h(zt), and k̄s(zt) are
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It is straightforward to established that the first order conditions for the un-
transformed economy correspond to these first order conditions once the sta-
tionary variables are replaced with their growing counterparts using the trans-
formations given above.

A.3. Compensation for Lost Growth

Here we derive the formulas used to evaluate the level increase in consump-
tion and housing required to compensate households for giving up the growth
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due to local agglomeration:
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We seek μ so that utility with and without agglomeration is equated. That is,
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APPENDIX B: DATA

This section provides a detailed description of how we construct empirical
counterparts to model variables from various data sources and how we merge
our different data sources.
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B.1. MSA-Level Panel Data, 1978–2009

B.1.1. Current Population Survey Data (Wages and Hours Worked by Skill)

The March Current Population Survey (CPS) data are available for down-
load at http://cps.ipums.org/cps/ as part of the Integrated Public Use Microdata
Series (IPUMS-CPS) project at the University of Minnesota Population Cen-
ter.

We download the March CPS data from 1979 through 2010. We chose 1979
as our starting year because the number of metropolitan areas we can identify
in the CPS and then match to data on housing rents drops off rapidly prior to
1979. The CPS wage and employment questions refer to the “previous calen-
dar year.” Therefore, data for any given year’s CPS is treated as data appropri-
ate for the previous calendar year. For example, variables generated from the
March 2005 CPS would be treated as data for the year 2004.

In each year of our data, we use the following criteria to restrict the sample
(with IPUMS-CPS variables shown in italics)

• Respondent lives in a household, not in group quarters or vacant units
(gq = 1).

• Is aged 20–65 (age ≥ 20 and age ≤ 65).
• Wage and salary income in the previous calendar year is identified and is

nonzero (incwage> 0 and incwage< 999,998).
• Weeks worked in the previous calendar year is identified and is between 1

and 52 (wkswork1 ≥ 1 and weekswork1 ≤ 52).
• Hours worked in a typical week in the previous year (if the respondent

worked) is identified and is between 1 and 99 (uhrswork ≥ 1 and uhrswork ≤
99).

• Educational attainment is recorded (educ ≥ 2 and educ ≤ 115).
• Has an identified metro area of residence (metarea nonmissing).2

For each MSA, we use the CPS data to create the following three variables:
(i) Ratio of labor input of high skill to labor input of low skill, m= ns/nu

(ii) Ratio of total wages paid to total wages paid to low skill workers, s
(iii) Average weekly wage of high skill workers, ws.
We use the educ categorical variable to label respondents as either “low”

or “high” skill workers. High skill workers are assumed to have completed 1+
years of college (educ ≥ 80 and educ ≤ 115). Everyone else in the sample is
assumed to be a low skill worker.

The variable ns is created as the total of weeks worked the previous calen-
dar year (wkswork1) multiplied by the number of hours per week the respon-
dent usually worked (uhrswork) for high skill workers. The variable nu is the

2According to notes from the IPUMS-CPS, the metro area of residence was not collected from
respondents, but was added by the Census Bureau. The metro areas of residence are based on
Federal Information Processing Standards (FIPS) codes used in the 1990 census.

http://cps.ipums.org/cps/
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same, but for low skill workers. For each respondent, we weigh the product of
wkswork1 and uhrswork using the IPUMS-CPS sampling person weights, perwt.

The variable s is computed as

wunu +wsns
wunu

=

∑
j∈MSAi

perwtj · wagesj

∑
j∈MSAi

perwtj · wagesj · 1{unskilledj}

for respondent j in MSA i, that is, as the sum of all low and high skill work-
ers’ pre-tax wage and salary income for the previous calendar year (incwage)
divided by the sum of all low skill workers’ pre-tax wage and salary income for
the previous calendar year. We weigh pre-tax wage and salary income for all
persons using the IPUMS-CPS sampling person weights.

The variable ws is created as the sum of all high skill workers’ pre-tax wage
and salary income for the previous calendar year (created as an input into s)
divided by ns.

B.1.2. BEA Data (Output Prices)

We assume that the price of output varies across MSAs because industry
composition varies across MSAs and the price index for industry output varies
across industries.

Chain-type price indexes for industry output are available over the 1947–
2009 period in the Annual Industry Accounts, http://www.bea.gov/industry/
index.htm#annual. To construct a price index for output produced by MSA,
we merge this information with MSA-level data on earnings by industry that
is available in Tables CA05 and CA05N of the Regional Economic Accounts,
http://www.bea.gov/regional/reis/. Earnings is inclusive of wage and salary dis-
bursements, supplements to wages and salaries, and proprietors’ income.

In the remainder of this section, Section B.1.2, the notation will differ from
that used in the paper.

Denote gt�j as the growth rate of the price of industry output j from periods t
to t+ 1, and denote git as the growth rate of the price of all output produced in
MSA i between years t and t+1. Assuming output from j = 1� � � � �N industries
is produced in MSA i in year t, we set the growth rate of the price of output
produced in MSA i between years t and t + 1 as

git =
N∑
j=1

ωi
t�jgt�j�(S23)

http://www.bea.gov/industry/index.htm%23annual
http://www.bea.gov/regional/reis/
http://www.bea.gov/industry/index.htm%23annual
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The weight on each industry, ωi
t�j , is the share of our estimate of total value of

the MSA i attributable to value added of industry j in year t:

ωi
t�j =

μjε
i
t�j

N∑
k=1

μjε
i
t�k

�(S24)

where εit�j stands for total earnings of employees in industry j in MSA i during
year t, and μj is a time- and MSA-invariant “markup” that scales earnings of
industry j to value added from industry j (described next).3 For each MSA, we
construct a price index for output, normalized to 1.0 in the year 1969, that is
consistent with the sequence of time-series estimates of git .

Before describing how we compute μj , we note two details about the earn-
ings and industry data. First, on a somewhat infrequent basis, Tables CA05
and CA05N do not report estimates of earnings for a given industry in an MSA
in a given year. In these cases, we set earnings for this industry–MSA–year
cell to 0.4 Also, some of the industry–MSA–year employment estimates are
marked with code E. According to the BEA website, these estimates “consti-
tute the major portion of the true estimate.” In these cases, we assume that the
reported estimate is equal to the actual estimate.

Second, the definition of industries in the Regional Accounts is not consis-
tent across years. Table CA05 reports employment based on SIC industry clas-
sifications over the 1969–2000 period and CA05N reports employment based
on NAICS industry classifications after 2001.

We map SIC and NAICS industry employment from Tables CA05 and
CA05N to prices from the Annual Industry Accounts according to the tables
shown later in this section. These tables list all the categories of nonfarm pri-
vate employment. The sum of the earnings estimates in each of these categories
is considered as total nonfarm earnings and is used to compute the denomina-
tor of equation (S24).

In all cases except one, there is an exact correspondence of earnings esti-
mates from Tables CA05 and CA05N to prices from the Annual Industry Ac-
counts. For the SIC category of “Transportation and public utilities,” line 500
of Table CA05, there is no clean analogous price index in the Annual Indus-
try Accounts. Instead, the Annual Industry Accounts includes separate price
indexes for “Transportation and warehousing” and “Utilities.” In Table CA05,
we therefore separate earnings of the single transportation and public utilities

3The markup is allowed to change in 1997, which industry classifications change from Standard
Industrial Classification (SIC) based to North American Industry Classification System (NAICS)
based.

4The three reasons that are listed for omission are (a) to avoid disclosure of confidential in-
formation (code D), (b) earnings are less than $50,000 (code L), or (c) data are not available for
this year (code N). These omissions occur in approximately 6% of industry–MSA–year cells from
1969 to the mid-1990s and about 13% of cells after the mid-1990s.
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category into earnings in two categories: Earnings from utilities (electric, gas,
and sanitary services, line 570) and earnings from transportation and public
utilities less earnings from utilities (i.e. line 500 less line 570).

Finally, we need to compute a markup that maps earnings to value added.
For each industry, we compute the markup μj as the product of two estimated
values. The first is the fraction of earnings, by industry, not attributable to
proprietor’s income. We compute this so as to remove an estimate of propri-
etors’ income from reported earnings by industry by MSA. For each of the
SIC industry classifications covering the 1947–1997 period, we compute this
fraction using data on the components of value added by industry, available in
the file GDPbyInd_VA_SIC, which is available at http://www.bea.gov/industry/
io_histannual.htm. Similar data are not available for NAICS, so we map our
SIC based estimates to NAICS industries for the 1997–2009 period. Taking the
construction industry as an example, in 1947 reported compensation of em-
ployees in this industry (in millions) is $6266 and reported proprietors’ income
is $2123. We compute the fraction of earnings not attributable to proprietor’s
income in this year as 0�747 = 6266/(6266+2123). We repeat this process each
year over the 1947–1997 period and compute the average over all years for the
construction sector as 0.788. Thus, for the construction sector, in each MSA in
each year we scale reported earnings of construction sector employees by 0.788
to remove an estimate of proprietor’s income.

In the second step, we scale the estimate of compensation of employees
less proprietors’ income to value added. For SIC industries over the 1947–
1997 period, we use data from the GDPbyInd_VA_SIC file, and for NAICS
industries over the 1998–2009 period, we use similar data from the GDP-
byInd_VA_NAICS file, available at http://www.bea.gov/industry/gdpbyind_
data.htm, to make this computation. Again, using the example of the con-
struction industry to illustrate how this process works, according to the GDP-
byInd_VA_SIC file, in 1947, the reported value added of the industry (in mil-
lions) is $9057 and compensation of employees is $6266, and thus the ratio of
value added to compensation of employees in that year is 1�445 = 9057/6266.
Averaged over all years in the 1947–1997 period, the ratio of value added to
compensation of employees in the construction industry is 1.432. We use a sim-
ilar procedure to compute the mapping of compensation of employees to value
added using a similar procedure for the NAICS industries over the 1998–2009
period.

A summary of our procedure for the construction sector is the following:
We set value added from the construction sector in MSA i in any year t over
1947–1997 equal to total earnings of employees (from Table CA05) in that
year in that MSA multiplied by μj for construction, which we compute as
1�128 = 0�788 ∗ 1�432. We repeat this for every SIC industry (1947–1997) and
every NAICS industry (1998–2009) for every MSA in every year. In Tables S.I
and S.II, we list our estimates of the two components of μj in the right-most
columns.

http://www.bea.gov/industry/io_histannual.htm
http://www.bea.gov/industry/gdpbyind_data.htm
http://www.bea.gov/industry/io_histannual.htm
http://www.bea.gov/industry/gdpbyind_data.htm
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TABLE S.I

EARNINGS AND PRICE DATA BY INDUSTRY, 1969–2001a

Data for Earnings, wit�j
Regional Accounts Table CA05, 1969–2000

Data for Growth in Prices, gpt�j
Industry Accounts, 1969–2001

μj = a ∗ b
a b

Line Label Line Label

100 Agricultural services, forestry
fishing, and other

3 Agriculture, forestry, fishing, and
hunting

0.300 4.858

200 Mining 6 Mining 0.895 3.092
300 Construction 11 Construction 0.788 1.432
400 Manufacturing 12 Manufacturing 0.979 1.454
500b Transportation and public utilities

less electric, gas, and sanitary
services

36 Transportation and warehousing 0.932 1.981

570 Electric, gas, and sanitary services 10 Utilities 0.925 3.197
610 Wholesale trade 34 Wholesale trade 0.899 1.873
620 Retail trade 35 Retail trade 0.806 1.721
700 Finance, insurance, and real

estate
50 Finance, insurance, real estate,

rental, and leasing
0.856 4.784

800 Services 59 Professional and business services 0.742 1.557
900 Government and government

enterprises
82 Government 1.000 1.236

aa: Adjustment to remove proprietor’s income from earnings. b: Mapping of wage compensation to value added.
bSee text for details.

B.1.3. BLS Data and 1990 Decennial Census of Housing (Housing Rents)

We create annual estimates over the 1978–2009 period of the average rents
paid for certain types of rental units, by MSA, using a two-step procedure.

In the first step, we estimate the average rents paid for certain types of
rental housing units in 1990 using household-level data from the 1990 De-
cennial Census of Housing (DCH). These data are available for download at
http://usa.ipums.org/usa/ as part of the Integrated Public Use Microdata Series
(IPUMS-USA) project at the University of Minnesota Population Center. We
use data from the 1990 DCH.

With IPUMS-USA variables in italics, we restrict the 1990 DCH sample to
renter nonfarm households in 2–19 unit residences in a building built between
1940 and 1986, and living in an identifiable MSA (ownershg = 2, farm 	= 1,
unitsstr ∈ {5�8}, builtyr ∈ {3�7}, and metarea > 0) who live in households and
do not live in group quarters (gq ∈ {3�4�6}), and where the reported monthly
gross rent of the house (rent inclusive of utilities) is nonzero (rentgrs> 0). Con-
ditional on these restrictions, we compute the weighted average value of units
by MSA using the sampling weight variable hhwt. These calculations yield es-
timates of the average rental price of housing for 272 metro areas as identified
in the 1990 DCH. We exclude single-family rented units, rented high-rise units

http://usa.ipums.org/usa/
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TABLE S.II

EARNINGS AND PRICE DATA BY INDUSTRY, 2001–2006a

Data for Earnings, wit�j
Regional Accounts Table CA05N, 2001–2005

Data for Growth in Prices, gpt�j
Industry Accounts, 2001–2006

μj = a ∗ b
a b

Line Label Line Label

100 Forestry, fishing, related
activities, and other

5 Forestry, fishing, and related
activities

0.300 3.441

200 Mining 6 Mining 0.895 3.397
300 Utilities 10 Utilities 0.925 3.737
400 Construction 11 Construction 0.788 1.520
500 Manufacturing 12 Manufacturing 0.979 1.659
600 Wholesale trade 34 Wholesale trade 0.899 1.889
700 Retail trade 35 Retail trade 0.806 1.729
800 Transportation and warehousing 36 Transportation and warehousing 0.932 1.541
900 Information 45 Information 0.742 2.203

1000 Finance and insurance 51 Finance and insurance 0.856 1.888
1100 Real estate and rental and leasing 56 Real estate and rental and leasing 0.856 15.856
1200 Professional, scientific, and

technical services
60 Professional, scientific, and

technical services
0.742 1.534

1300 Management of companies and
enterprises

64 Management of companies and
enterprises

0.742 1.174

1400 Administrative and waste services 65 Administrative and waste
management services

0.742 1.329

1500 Educational services 69 Educational services 0.742 1.132
1600 Health care and social assistance 70 Health care and social assistance 0.742 1.218
1700 Arts, entertainment, and

recreation
75 Arts, entertainment, and

recreation
0.742 1.705

1800 Accommodation and food
services

78 Accommodation and food
services

0.742 1.625

1900 Other services except public
administration

81 Other services except government 0.742 1.546

2000 Government and government
enterprises

82 Government 1.000 1.236

aa: Adjustment to remove proprietor’s income from earnings. b: Mapping of wage compensation to value added.

(> 20 units), and units in very old (built before 1940) or very new (built af-
ter 1986) apartment buildings to attempt to keep the average characteristics
of rental units roughly constant across metropolitan areas without resorting to
hedonic regressions.

In the second step, we extrapolate the annual rental price of housing in each
metro area forward from 1990 to 2009 and backward from 1990 to 1978 us-
ing annual MSA-specific constant-quality price indexes for the price per unit
of shelter. These price indexes for shelter are published by the Bureau of La-
bor Statistics (BLS) as part of computations for the Consumer Price Index and
are available at http://www.bls.gov. The BLS reports rental price indexes for

http://www.bls.gov
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27 MSAs, but the indexes of three of these MSAs (Phoenix, AZ, Washington,
DC, and Tampa Bay, FL) do not have data available prior to 1985, so we ex-
clude these from our sample. The CPS does not have data on Anchorage and
Honolulu back to 1978, explaining our sample of 22 MSAs.

In 1983, the BEA changed its procedure for measuring the price of owner-
occupied rent, which accounts for about 73% of all spending on shelter. Af-
ter 1983, the BEA began measuring the price of owner-occupied rent using
the “rental equivalence” approach, whereas in earlier years, the BLS used the
“asset price method.”5 To eliminate this nontrivial inconsistency in the data,
we replace the reported values of the shelter indexes from 1978–1982 with
predicted values, essentially predicting what the BLS would have reported if
the owner-occupied data had been collected using the “rental equivalence ap-
proach.” Specifically, we regress the log BLS shelter indexes on MSA dummies
and the log BLS tenant-rent indexes over the 1983–2009 period. The R2 of
the regression is 0.99 and the coefficient on log tenant rents is 1.055. Based
on the regression results and the values of the log tenant-rent indexes in the
1978–1982 period, we predict the log MSA shelter indexes from 1978–1982.

B.1.4. Merging the MSA-Level Data, 1978–2009

We merge the CPS data on wages and employment (Section B.1.1) with the
BEA data on output prices (Section B.1.2) and the annual data we construct on
housing rents (Section B.1.3). The data are merged by MSA and by year. After
all data are merged, we are left with a balanced panel of 22 MSAs. In every
MSA and date in our sample, the minimum number of respondents from the
CPS is never less than 200; it is typically about 250 until 1999 and then jumps
to about 450 after 2000. The median number of respondents is about 540 until
about 2000, at which point the median jumps to about 1000. The maximum
number of respondents is always above 3000 and is typically about 4000.

The MSAs are defined as sets of counties, but MSA definitions are not com-
pletely consistent across data sources or across time.

• The BEA fixes MSA definitions: The counties that comprise MSAs are
identical in every year of reported data. As of the writing of this paper, the
MSA definitions in the BEA data are given by the list in the December 2009
report of the Office of Management and Budget (OMB).6 If the OMB update
MSA definitions, the BEA data revise history accordingly.

• The definitions of MSAs change over time in the CPS data and the BLS
rental price index data. To our knowledge, the MSA definitions over history
do not revise in either of these data sets. The BLS has three different sets of
MSA definitions: 1978–1986, 1987–1997, and 1998 onward. The CPS has four

5See http://www.bls.gov/cpi/cpifact6.htm for details.
6See http://www.census.gov/population/www/metroareas/metrodef.html.

http://www.bls.gov/cpi/cpifact6.htm
http://www.census.gov/population/www/metroareas/metrodef.html
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TABLE S.III

MSA DEFINITIONS BY YEAR, ATLANTA AND BOSTON

Year Added Year Added
Atlanta to Sample Boston to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

13035 Butts GA 1978* 1978 25009 Essex (pt.) MA 1978 1978
13057 Cherokee GA 1978 1978 25017 Middlesex (pt.) MA 1978 1978
13063 Clayton GA 1978 1978 25021 Norfolk (pt.) MA 1978 1978
13067 Cobb GA 1978 1978 25023 Plymouth (pt.) MA 1978 1978
13089 DeKalb GA 1978 1978 25025 Suffolk MA 1978 1978
13097 Douglas GA 1978 1978 25005 Bristol (pt.) MA 1985 1987
13113 Fayette GA 1978 1978 33011 Hillsborough (pt.) NH 1985 1987
13117 Forsyth GA 1978 1978 33015 Rockingham (pt.) NH 1985 1987
13121 Fulton GA 1978 1978 25027 Worcester (pt.) MA 1985 1987
13135 Gwinnett GA 1978 1978 25013 Hampden (pt.) CT 1994 1998
13151 Henry GA 1978 1978 33013 Merrimack (pt.) NH 1994 1998
13217 Newton GA 1978 1978 33017 Strafford (pt.) NH 1994 1998
13223 Paulding GA 1978 1978 09015 Windham (pt.) CT 1994 1998
13247 Rockdale GA 1978 1978 23031 York (pt.) ME 1994 1998
13297 Walton GA 1978 1978
13013 Barrow GA 1985 1987
13077 Coweta GA 1985 1987
13255 Spalding GA 1985 1987
13015 Bartow GA 1994 1998
13045 Carroll GA 1994 1998
13227 Pickens GA 1994 1998
13085 Dawson GA 2004 x
13143 Haralson GA 2004 x
13149 Heard GA 2004 x
13159 Jasper GA 2004 x
13171 Lamar GA 2004 x
13199 Meriwether GA 2004 x
13231 Pike GA 2004 x

*1994 deleted, 2004 added.

different sets of MSA definitions: 1978–1984, 1985–1993, 1994–2003, and 2004
onward.7

Tables S.III–S.XIII list the counties that comprise each MSA and the year
in which the counties were added to the CPS and the BLS MSA-level data.
Sometimes a county is included in the CPS definition but not the BLS defini-
tion. We indicate these cases with the letter “x.” Information used to construct
the list of counties in the MSA definitions in the CPS by year are available on

7We lag the reported CPS date by one year for reasons discussed earlier.
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TABLE S.IV

MSA DEFINITIONS BY YEAR, CHICAGO AND CINCINNATI

Year Added Year Added
Chicago to Sample Cincinnati to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

17031 Cook IL 1978 1978 39025 Clermont OH 1978 1978
17043 DuPage IL 1978 1978 39061 Hamilton OH 1978 1978
17089 Kane IL 1978 1978 39165 Warren OH 1978 1978
18089 Lake IL 1978 1978 21015 Boone KY 1978 1978
17111 McHenry IL 1978 1978 21037 Campbell KY 1978 1978
17197 Will IL 1978 1978 21117 Kenton KY 1978 1978
18089 Lake IN 1985 1978 18029 Dearborn IN 1978 1978
18127 Porter IN 1985 1978 39017 Butler OH 1985 1987
17063 Grundy IL 1985 1987 18115 Ohio IN 1994 1998
17093 Kendall IL 1985 1987 21077 Gallatin KY 1994 1998
55059 Kenosha WI 1985 1987 21081 Grant KY 1994 1998
17037 DeKalb IL 1994 1998 21191 Pendleton KY 1994 1998
17091 Kankakee IL 1994 1998 39015 Brown OH 1994 1998
18073 Jasper IN 2004 x 21023 Bracken KY 2004 x
18111 Newton IN 2004 x 18047 Franklin IN 2004 x

TABLE S.V

MSA DEFINITIONS BY YEAR, DALLAS AND DENVER

Year Added Year Added
Dallas to Sample Denver to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

48085 Collin TX 1978 1978 08001 Adams CO 1978 1978
48113 Dallas TX 1978 1978 08005 Arapahoe CO 1978 1978
48121 Denton TX 1978 1978 08013 Boulder CO 1978* 1978
48139 Ellis TX 1978 1978** 08031 Denver CO 1978 1978
48221 Hood TX 1978* 1978 08047 Gilpin CO 1978++ 1978***

48251 Johnson TX 1978 1978 08059 Jefferson CO 1978 1978
48257 Kaufman TX 1978 1978 08035 Douglas CO 1978 1987
48367 Parker TX 1978 1978 08123 Weld CO 1994+ 1998
48397 Rockwall TX 1978 1978 08014 Broomfield CO 2004 x
48439 Tarrant TX 1978 1978 08019 Clear Creek CO 2004 x
48497 Wise TX 1978 1978*** 08039 Elbert CO 2004 x
48213 Henderson TX 1994 1998 08093 Park CO 2004 x
48231 Hunt TX 1994 1998
48119 Delta TX 2004 x

*1985 deleted, 1994 added, 2004 deleted; **1987 deleted, 1998 added; ***1987 deleted, +2004 deleted, ++1985
deleted, 2004 added.
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TABLE S.VI

MSA DEFINITIONS BY YEAR, DETROIT AND HOUSTON

Year Added Year Added
Detroit to Sample Houston to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

26087 Lapeer MI 1978 1978 48039 Brazoria TX 1978 1978
26093 Livingston MI 1978 1978 48157 Fort Bend TX 1978 1978
26099 Macomb MI 1978 1978 48201 Harris TX 1978 1978
26125 Oakland MI 1978 1978 48291 Liberty TX 1978 1978
26147 St. Clair MI 1978 1978 48339 Montgomery TX 1978 1978
26163 Wayne MI 1978 1978 48473 Waller TX 1978 1978
26161 Washtenaw MI 1985 1987 48167 Galveston TX 1985 1987
26115 Monroe MI 1985 1998 48071 Chambers TX 1994 1998
26049 Genesee MI 1994 1998 48015 Austin TX 2004 x
26091 Lenawee MI 1994 1998 48407 San Jacinto TX 2004 x

TABLE S.VII

MSA DEFINITIONS BY YEAR, KANSAS CITY AND LOS ANGELES

Year Added Year Added
Kansas City to Sample Los Angeles to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

29037 Cass MO 1978 1978 06037 Los Angeles CA 1978 1978
29047 Clay MO 1978 1978 06059 Orange CA 1978 1978
29095 Jackson MO 1978 1978 06065 Riverside CA 1985* 1987
29165 Platte MO 1978 1978 06071 San Bernardino CA 1985* 1987
29177 Ray MO 1978 1978 06111 Ventura CA 1985* 1987
20091 Johnson KS 1978 1978
20209 Wyandotte KS 1978 1978
29107 Lafayette MO 1985 1987
20103 Leavenworth KS 1985 1987
20121 Miami KS 1985 1987
29049 Clinton MO 1994 1998
29013 Bates MO 2004 x
29025 Caldwell MO 2004 x
20049 Franklin KS 2004 x
20107 Linn KS 2004 x

*2004 deleted.
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TABLE S.VIII

MSA DEFINITIONS BY YEAR, MIAMI AND MILWAUKEE

Year Added Year Added
Miami to Sample Milwaukee to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

12086 Dade FL 1978 1978 55079 Milwaukee WI 1978 1978
12011 Broward FL 1985 1987 55089 Ozaukee WI 1978 1978
12099 Palm Beach FL 2004 x 55131 Washington WI 1978 1978

55133 Waukesha WI 1978 1978
55101 Racine WI 1985 1998

the NBER and the BLS website.8 Information used to construct the counties in
the MSA definitions in the BLS for the 1978–1996 and 1987–1997 time periods
were supplied to us by the BLS and are available online for 1998 onward.9

To assess how the changing nature of MSA definitions may affect our empir-
ical work, for the years 1980, 1990, 2000, and 2008, we compute the population
in each MSA according to (a) the 1978 BLS definitions of MSAs and (b) the
1998 BLS definitions. These computations are shown in Table S.XIV. In most
MSAs, 80% or more of the population lives in the counties included as part of
the 1978 BLS definitions. In every MSA, the ratio is at least 60%. In addition,
the ratio of the population defined according to the 1978 definition to the pop-
ulation defined according to the 1998 definition is stable in almost every MSA.
This suggests that the population of most counties included in the 1998 MSA
definitions increased at roughly the same rate over the 1980–2008 period.

B.2. Aggregate Data

B.2.1. Data Used for the Depreciation Rate of Residential Structures

One of our moment conditions that involves the depreciation rate on resi-
dential structures, κh, is

E

[
κh − PhtDht

PhtKht

]
= 0�

where PhtDht is nominal value of aggregate depreciation on structures in year
t and PhtKht is the nominal value of the aggregate stock of structures in year t.
Our data on PhtDht are from line 7 (Residential Fixed Assets) of the BEA Fixed
Assets Table 1.3, Current Cost Depreciation of Fixed Assets and Consumer

8See http://www.nber.org/cps-basic/metrochg.pdf and point 6 of http://www.bls.gov/gps/
notescps.htm.

9See Appendix 5 of http://www.bls.gov/opub/hom/pdf/homch17.pdf.

http://www.nber.org/cps-basic/metrochg.pdf
http://www.bls.gov/gps/notescps.htm
http://www.bls.gov/opub/hom/pdf/homch17.pdf
http://www.bls.gov/gps/notescps.htm
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TABLE S.IX

MSA DEFINITIONS BY YEAR, MINNEAPOLIS AND NEW YORK

Year Added Year Added
Minneapolis to Sample New York to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

27003 Anoka MN 1978 1978 34003 Bergen NJ 1978 1978
27019 Carver MN 1978 1978 36005 Bronx NY 1978 1978
27025 Chisago MN 1978 1978 36047 Kings NY 1978 1978
27037 Dakota MN 1978 1978 36061 New York NY 1978 1978
27053 Hennepin MN 1978 1978 36079 Putnam NY 1978 1978
27123 Ramsey MN 1978 1978 36081 Queens NY 1978 1978
27139 Scott MN 1978 1978 36085 Richmond NY 1978 1978
27163 Washington MN 1978 1978 36087 Rockland NY 1978 1978
27171 Wright MN 1978 1978 36119 Westchester NY 1978 1978
55109 St. Croix WI 1978 1978 36059 Nassau NY 1978 1978
27059 Isanti MN 1985 1987 36103 Suffolk NY 1978 1978
27141 Sherburne MN 1994 1998 34013 Essex NJ 1978 1978
55093 Pierce WI 1994 1998 34027 Morris NJ 1978 1978

34039 Union NJ 1978 1978
34035 Somerset NJ 1978 1978
34017 Hudson NJ 1978 1978
34023 Middlesex NJ 1978 1978
34031 Passaic NJ 1978 1978
9001 Fairfield (pt.) CT 1985* 1987
9005 Litchfield (pt.) CT 1985* 1987
9009 New Haven (pt.) CT 1985* 1987
36071 Orange NY 1985* 1987
34019 Hunterdon NJ 1985 1987
34025 Monmouth NJ 1985 1987
34029 Ocean NJ 1985 1987
34037 Sussex NJ 1985 1987
36027 Dutchess NY 1985* 1998
9007 Middlesex (pt.) CT 1985* 1998
34021 Mercer NJ 1985* 1998
34041 Warren NJ 1985* 1998
42103 Pike PA 1994 1998

*2004 deleted.

Durable Goods.10 Our data on PhtKht are from line 7 of the BEA Fixed As-
sets Table 1.1, Current Cost Net Stock of Fixed Assets and Consumer Durable
Goods. The capital stocks reported in Fixed Assets Table 1.1 are year-end val-
ues. To adjust for this, we set Kht as the once-lagged reported year-end value,
that is, we set Kht for the year 2000 as the year-end reported value for 1999.

10These tables are available at http://www.bea.gov/national/FA2004/SelectTable.asp.

http://www.bea.gov/national/FA2004/SelectTable.asp
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TABLE S.X

MSA DEFINITIONS BY YEAR, PHILADELPHIA AND PITTSBURGH

Year Added Year Added
Philadelphia to Sample Pittsburgh to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

42017 Bucks PA 1978 1978 41994 Allegheny PA 1978 1978
42029 Chester PA 1978 1978 42007 Beaver PA 1978 1978
42045 Delaware PA 1978 1978 42125 Washington PA 1978 1978
42091 Montgomery PA 1978 1978 42129 Westmoreland PA 1978 1978
42101 Philadelphia PA 1978 1978 42051 Fayette PA 1985 1987
34005 Burlington NJ 1978 1978 42019 Butler PA 1994 1998
34007 Camden NJ 1978 1978 42004 Armstrong PA 2004 x
34015 Gloucester NJ 1978 1978
10003 New Castle DE 1992 1987
24015 Cecil MD 1992 1987
34011 Cumberland NJ 1992 1987
34021 Mercer NJ 1992 1987
34033 Salem NJ 1992 1987
34001 Atlantic NJ 1998 1998
34009 Cape May NJ 1998 1998

B.2.2. Data Used for the Depreciation Rate of Infrastructure Capital

One of our moment conditions that involves the depreciation rate on resi-
dential structures, κf , is

E

[
κf − PftDft

Pf tKft

]
= 0�

TABLE S.XI

MSA DEFINITIONS BY YEAR, PORTLAND AND SAN DIEGO

Year Added Year Added
Portland to Sample San Diego to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

41005 Clackamas OR 1978 1978 06073 San Diego CA 1978 1978
41051 Multnomah OR 1978 1978
41067 Washington OR 1978 1978
53011 Clark WA 1978 1978
41071 Yamhill OR 1985 1987
41009 Columbia OR 1994 1998
41047 Marion OR 1994* 1998
41053 Polk OR 1994* 1998
53059 Skamania WA 2004 x

*2004 deleted.
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TABLE S.XII

MSA DEFINITIONS BY YEAR, SAN FRANCISCO AND SEATTLE

Year Added Year Added
San Francisco to Sample Seattle to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

06001 Alameda CA 1978 1978 53033 King WA 1978 1978
06013 Contra Costa CA 1978 1978 53061 Snohomish WA 1978 1978
06041 Marin CA 1978 1978 53053 Pierce WA 1985 1987
06075 San Francisco CA 1978 1978 53029 Island WA 1994 1998
06081 San Mateo CA 1978 1978 53035 Kitsap WA 1994 1998
06055 Napa CA 1985* 1987 53067 Thurston WA 1994 1998
06085 Santa Clara CA 1985* 1987
04023 Santa Cruz CA 1985* 1987
06095 Solano CA 1985* 1987
06097 Sonoma CA 1985* 1987

*2004 deleted.

where PftDft is the nominal value of aggregate depreciation on infrastructure
capital in year t and PftKft is the nominal value of the aggregate stock of in-
frastructure in year t.

TABLE S.XIII

MSA DEFINITIONS BY YEAR, ST. LOUIS AND TAMPA BAY

Year Added Year Added
St. Louis to Sample Tampa Bay to Sample

FIPS County State CPS BLS FIPS County State CPS BLS

29071 Franklin MO 1978 1978 12057 Hillsborough FL 1978 1978
29099 Jefferson MO 1978 1978 12101 Pasco FL 1978 1978
29183 St. Charles MO 1978 1978 12103 Pinellas FL 1978 1978
29189 St. Louis MO 1978 1978 12053 Hernando FL 1985 1987
29510 St. Louis City MO 1978 1978
17027 Clinton IL 1978 1978
17119 Madison IL 1978 1978
17133 Monroe IL 1978 1978
17163 St. Clair IL 1978 1978
17083 Jersey IL 1985 1987
29113 Lincoln MO 1994 1998
29219 Warren MO 1994 1998
29055 Crawford (pt.) MO 1994 x
29221 Washington MO 2004 x
17005 Bond IL 2004 x
17013 Calhoun IL 2004 x
17117 Macoupin Il 2004 x
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TABLE S.XIV

POPULATION (IN MILLIONS) BY MSA DEFINITION (1978 VERSUS 1998)

1980 1990 2000 2008 1980 1990 2000 2008

1978 defn Atlanta 2�03 2�70 3�75 4�75 Milwaukee 1�40 1�43 1�50 1�55
1998 defn 2�25 2�98 4�13 5�24 1�57 1�61 1�69 1�75
1978/1998 0�90 0�91 0�91 0�91 0�89 0�89 0�89 0�89

1978 defn Boston 3�66 3�78 4�00 4�10 Minneapolis 2�11 2�44 2�84 3�06
1998 defn 6�11 6�53 6�95 7�18 2�20 2�54 2�97 3�23
1978/1998 0�60 0�58 0�58 0�57 0�96 0�96 0�96 0�95

1978 defn Chicago 7�31 7�35 8�08 8�39 New York 15�29 15�59 16�88 17�46
1998 defn 7�67 7�72 8�51 8�92 18�81 19�45 21�09 21�88
1978/1998 0�95 0�95 0�95 0�94 0�81 0�80 0�80 0�80

1978 defn Cincinnati 1�40 1�45 1�55 1�66 Philadelphia 4�72 4�86 5�04 5�14
1998 defn 1�73 1�82 1�98 2�12 5�96 6�22 6�54 6�73
1978/1998 0�81 0�80 0�79 0�78 0�79 0�78 0�77 0�76

1978 defn Dallas 2�97 3�95 5�12 6�26 Pittsburgh 0�81 0�76 0�75 0�74
1998 defn 3�07 4�07 5�27 6�42 1�12 1�06 1�08 1�07
1978/1998 0�97 0�97 0�97 0�97 0�73 0�72 0�70 0�69

1978 defn Denver 1�22 1�35 1�70 1�88 Portland 1�24 1�41 1�79 2�05
1998 defn 1�74 1�98 2�58 2�94 1�58 1�79 2�27 2�59
1978/1998 0�70 0�68 0�66 0�64 0�78 0�79 0�79 0�79

1978 defn Detroit 4�35 4�25 4�45 4�43 St. Louis 2�36 2�42 2�52 2�61
1998 defn 5�29 5�19 5�46 5�46 2�41 2�49 2�60 2�72
1978/1998 0�82 0�82 0�82 0�81 0�98 0�97 0�97 0�96

1978 defn Houston 2�91 3�49 4�39 5�36 San Diego 1�86 2�50 2�81 3�00
1998 defn 3�12 3�73 4�67 5�68 1�86 2�50 2�81 3�00
1978/1998 0�93 0�94 0�94 0�94 1�00 1�00 1�00 1�00

1978 defn Kansas City 1�33 1�45 1�63 1�78 San Francisco 3�25 3�69 4�12 4�27
1998 defn 1�45 1�58 1�78 1�94 5�20 6�05 6�82 7�09
1978/1998 0�92 0�91 0�92 0�92 0�63 0�61 0�60 0�60

1978 defn Los Angeles 9�41 11�27 12�37 12�87 Seattle 1�61 1�97 2�34 2�56
1998 defn 11�50 14�53 16�37 17�79 2�41 2�97 3�55 3�91
1978/1998 0�82 0�78 0�76 0�72 0�67 0�66 0�66 0�65

1978 defn Miami 1�63 1�94 2�25 2�40 Tampa Bay 1�57 1�97 2�27 2�56
1998 defn 2�64 3�19 3�88 4�15 1�61 2�07 2�40 2�73
1978/1998 0�61 0�61 0�58 0�58 0�97 0�95 0�95 0�94

• We compute the nominal value of infrastructure capital, PftKft , as the sum
of the nominal stocks of (a) federal nondefense, and state and local govern-
ment highways and streets, (b) federal nondefense, and state and local “other
structures” (pre-1996) and transportation and power structures (post-1997),
(c) state and local sewer systems structures, (d) state and local water supply
facilities, and (e) privately owned power and communication, transportation,
and “other” structures. The data for the nominal stocks of federal and state
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and local infrastructure capital are in the BEA Fixed Asset Tables 7.1a (lines
38, 40, 49, 51, 52, and 53, covering the period 1925–1996) and 7.1b (lines 41,
42, 43, 56, 57, 58, 59, and 60, covering 1997–2009). The data for the nominal
stocks of private infrastructure capital are in the BEA Fixed Asset Table 2.1,
lines 50, 63, and 67.11

• We compute the nominal value of the depreciation of infrastructure cap-
ital, PftDft , analogously. The data for the nominal depreciation of infrastruc-
ture capital for the federal and state and local government are in BEA Fixed
Asset Tables 7.3a (lines 38, 40, 49, 51, 52, and 53) and 7.3b (lines 41, 42, 43, 56,
57, 58, 59, and 60). Depreciation for privately owned infrastructure capital is
reported in BEA Fixed Asset Table 2.4, lines 50, 63, and 67.

As mentioned earlier, the BEA reports the capital stocks data at year end.
To adjust for this, we define Kft as the lag of reported year-end values.

B.2.3. Data Used for the Depreciation Rate of Business Capital

One of our moment conditions that involves the depreciation rate on capital
used in production, κb, is

E

[
κb − PbtDbt

PbtKbt

]
= 0�

where PbtDbt is the nominal value of aggregate depreciation on capital used in
production in year t and PbtKbt is the nominal aggregate stock of capital used
in production in year t.

• We compute PbtDbt as the nominal depreciation of all fixed assets and con-
sumer durable goods (line 1) less nominal depreciation of private residential
structures (line 7) of the BEA Fixed Assets Table 1.3, all less nominal depreci-
ation of infrastructure capital, defined in Section B.2.2.

• We compute PbtKbt as the nominal stock of all fixed assets and consumer
durable goods (line 1) less the nominal stock of private residential structures
(line 7) of the BEA Fixed Assets Table 1.1, all less nominal depreciation of
infrastructure capital as defined in Section B.2.2.

As mentioned earlier, the BEA reports the capital stocks data at year end,
and we adjust for this by setting PbtKbt equal to the lag of reported year-end
values.

B.2.4. Data Used for the Growth Rate of the Price of Housing Structures,
Infrastructure Capital, and Business Capital

Our moment conditions that involve the trend growth rate of the aggregate
real price of housing structures gPS and the trend growth rate of the aggregate

11The BEA notes that “other” government structures consist “primarily of electric and gas
facilities, transit systems, and airfields,” whereas “other” private structures include structures
that pertain to “water supply, sewage and waste disposal, public safety, highway and street, and
conservation and development.”
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real price of business capital gpb are

E
{(

lnPht − ln(gph)t
)
t
}= 0�

E
{(

lnPft − ln(gpf )t
)
t
}= 0�

E
{(

lnPbt − ln(gpb)t
)
t
}= 0�

• The variable Pht is the real price for housing structures, defined as the
nominal price index for structures divided by the price index of consumption.
The nominal price index for structures is computed as the nominal stock of
housing structures, line 7 of BEA Fixed Asset Table 1.1, divided by the chain-
type quantity index for residential structures, line 7 of BEA Fixed Asset Ta-
ble 1.2.

• The variable Pft is the real price for infrastructure capital, defined as the
nominal price index for infrastructure capital divided by the price index of
consumption. The nominal price index for infrastructure capital is computed
by chain-weighting the price indexes of each of the components of infrastruc-
ture capital described in Section B.2.2: federal nondefense, and state and local
government highways and streets, and other (pre-1996) or transportation and
power (post-1997), state and local sewer systems structures, state and local wa-
ter supply facilities, state and local transportation structures and power struc-
tures, and privately owned power and communication structures, transporta-
tion structures, and other structures. The price indexes for each of the compo-
nents is computed as the ratio of the nominal stock (Fixed Asset Tables 7.1a,
7.1b, and 2.1) to the chain-type quantity indexes (Fixed Asset Tables 7.2a, 7.2b,
and 2.2).

• The variable Pbt is the real price for business capital, defined as the nomi-
nal price index for business capital divided by the price index of consumption.
We compute the nominal price index for business capital by chain-weighting
the price index for (a) all fixed assets and consumer durable goods less (b) the
price index for housing structures less (c) the price index for infrastructure
capital.

– The nominal price index for all fixed assets and consumer durable goods
is computed by dividing the nominal stock of all fixed assets and consumer
durable goods, line 1 of BEA Fixed Asset Table 1.1, by the chain-type quantity
index for all fixed assets and consumer durable goods, line 1 of BEA Fixed
Asset Table 1.2.

– The price indexes for housing structures and infrastructure capital are de-
fined above.

• We discuss how we create the price index for consumption in Sec-
tion B.2.9.
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B.2.5. Data Used for the Growth Rate of Housing, Structures, and Land Prices

Our moment condition that involves the average of rental prices across
MSAs, the aggregate growth rate of the real price of land rents gpl and the
real price of housing structures gph , and the share of housing rents attributable
to housing structures ω is

E
{(

lnEtrhit −
[
(1 −ω) ln(gpl)+ω ln(gph)

]
t
)
t
}= 0�

We compute Etrhit in each period as the average level of real rental prices in
each MSA. In each MSA, the real rental price is computed as the nominal
rental price divided by the price index for consumption. We discuss how we
create the price index for consumption in Section B.2.9.

B.2.6. Data Used for the Structures’ Share of Housing Rents

One of our moment conditions for the structures’ share of housing rents, ω,
the growth rate of the price of land rents, gpl , the growth rate of the price of
housing structures, gph , and the depreciation rate on housing structures, κs, is

E

⎛
⎝

∑
plit lhit∑

(Phtkhit +plit lhit)

[
ω

1 −ω
R/gpl − (1 − κf )ζ
R/gph + κh − 1

+ 1
]

− 1

⎞
⎠= 0�

We set
∑
plit lhit as the market value aggregate value of finished land in resi-

dential use, taken from a study by Davis and Heathcote (2007) and available at
http://www.lincolninst.edu/subcenters/land-values/price-and-quantity.asp. We
compute the annual data as the average of the reported quarterly data. We
set

∑
(Phtkhit + plit lhit) as the market value of housing (land and structures),

taken from the same Davis and Heathcote (2007) study. Again, we set annual
values as the average of the reported quarterly values.

B.2.7. Parameters of the Production Function Related to Capital and Land
Shares of Production

Two of our moment conditions related to capital’s and finished land’s share
of production, α and φ, are

E

⎛
⎝

∑
plit lbit∑

(Pbtkbit +plit lbit)

[
αφ

1 −φ
R/gpl − (1 − κf )ζ
R/gpb + κb − 1

+ 1
]

− 1

⎞
⎠= 0�(S25)

E

⎛
⎝

∑
witnit∑

[witnit + rlit lbit + rbtkbit]
−φ(1 − α)

⎞
⎠= 0�(S26)

Data for Equation (S25). We set
∑
plit lbit equal to the aggregate value of

finished land used in production, computed as the sum of the following vari-
ables:

http://www.lincolninst.edu/subcenters/land-values/price-and-quantity.asp
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(i) The value of land used for nonresidential purposes by nonfarm nonfi-
nancial corporate businesses. These data come from Table B.102 of the Flow
of Funds Accounts of the United States (FFA). We set the value of land equal
to the value of real estate owned by this sector (line 3) less the replacement
cost of structures owned by this sector (lines 33 and 34). We set the annual as
the average of the reported quarterly observations.

(ii) The value of land used for nonresidential purposes by nonfarm non-
financial noncorporate businesses. These data come from Table B.103 of the
FFA. We set the value of land equal to the value of nonresidential real estate
owned by this sector (line 5) less the replacement cost of nonresidential struc-
tures owned by this sector (line 33). We set the annual as the average of the
reported quarterly observations.

(iii) The current cost of privately owned infrastructure capital (power and
communication structures, transportation structures, and other structures) as
described in Section B.2.2.

(iv) The value of land used for nonresidential purposes by financial corpo-
rations. We compute this as R (to be defined later) times the Current Cost
Net Stock of Private Nonresidential Fixed Assets Owned by Financial Corpo-
rations, line 25 of BEA Fixed Asset Table 4.1. We set the annual as the average
of the current and lagged year-end observations.

(v) The value of land used for nonresidential purposes by nonprofit organi-
zations. We compute this as R times the sum of equipment and software owned
by nonprofit organizations (line 6 of FFA Table B.100) and the replacement
cost of nonresidential structures owned by nonprofit organizations (line 46 of
FFA Table B.100). We set the annual as the average of the reported quarterly
observations.

(vi) The value of land used for nonresidential purposes by the government.
We compute this as R times the Current Cost Net Stock of Government Fixed
Assets (line 8 of BEA Fixed Asset Table 1.1) less the current cost of infras-
tructure capital owned by the federal, state, and local government, as defined
in Section B.2.2. We set the annual as the average of the current and lagged
year-end observations.

We set
∑
(Pbtkbit + plit lbit) equal to the aggregate value of all capital and

finished land used in production, computed as the sum of the following vari-
ables:

(a) The total market value of tangible assets owned by nonfarm nonfinancial
corporate businesses less the replacement cost of residential structures owned
by nonfarm nonfinancial businesses, line 2 less line 33 of FFA Table B.102.12

We set the annual as the average of the reported quarterly observations.
(b) The total market value of tangible assets less the market value of res-

idential real estate owned by nonfarm nonfinancial noncorporate businesses,

12Residential structures are typically a very small fraction of total tangible assets: In 2009, they
accounted for 1.4% of value.
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line 2 less line 4 of FFA Table B.103. We set the annual as the average of the
reported quarterly observations.

(c) The value of land used for nonresidential purposes by financial corpo-
rations computed in step (iv) above plus the Current Cost Net Stock of Private
Nonresidential Fixed Assets owned by Financial Corporations, line 25 of BEA
Fixed Asset Table 4.1. We set the annual as the average of the current and
lagged year-end observations.

(d) The value of land used for nonresidential purposes by nonprofit orga-
nizations computed in step (v) above plus equipment and software owned by
nonprofit organizations (line 6 of FFA Table B.100) plus the replacement cost
of nonresidential structures owned by nonprofit organizations (line 46 of FFA
Table B.100). We set the annual as the average of the reported quarterly ob-
servations.

(e) The value of land used for nonresidential purposes by the government
computed in step (vi) above plus the Current Cost Net Stock of Government
Fixed Assets (line 8 of BEA Fixed Asset Table 1.1) less the current cost of
infrastructure capital owned by the federal, state, and local governments, as
defined in Section B.2.2. We set the annual as the average of the current and
lagged year-end observations.

(f) The Current Cost Net Stock of Consumer Durable Goods, line 13 of
BEA Fixed Asset Table 1.1. We set the annual as the average of the current
and lagged year-end observations.

We define R as the value of all land used for nonresidential purposes by
businesses (the sum of items (i)–(iii) above) divided by the value of all tangible
assets less land used for nonresidential purposes by businesses (the sum of (a)
and (b) above less the sum of items (i)–(iii) above).

Also note that (as mentioned previously) when we use data from the BEA
Fixed Asset Tables, we compute current-year values as the average of the re-
ported current- and previous-year values. We do this because the BEA reports
values at year end; this adjustment aligns the timing of the BEA data with that
of the FFA data.

Data for Equation (S26). We compute∑
witnit∑

[witnit + rlit lbit + rbtkbit]
as follows. We set the numerator equal to “unambiguous labor income.” We
set the denominator equal to total gross domestic income plus an estimate of
the nominal service flow from the stock of durable goods less the reported
consumption of housing services less an estimate of “ambiguous income” (i.e.,
income that is neither unambiguous capital nor unambiguous labor income).

• We set unambiguous labor income equal to line 2 of Table 1.10 of
the National Income and Product Accounts (NIPA), “Compensation of em-
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FIGURE S.1.—Comparison of user cost and expenditures on durable goods.

ployees, paid.” This table is available at http://www.bea.gov/national/nipaweb/
SelectTable.asp?Selected=N.

• We set gross domestic income equal to line 1 of NIPA Table 1.10, “Gross
domestic income.”

• We estimate the nominal service flow from the stock of durable goods as
the sum of nominal depreciation on the stock of durable goods, line 13 of BEA
Fixed Asset Table 1.3, plus the rate of interest on a 5-year Treasury bond times
the nominal stock of durable goods. We take the nominal rate of interest on a
5-year Treasury bond from the website of the Federal Reserve Board, http://
www.federalreserve.gov/releases/h15/data.htm. We set the nominal stock of
durable goods as the average of the current- and previous- year reported (year-
end) values of the stock, as reported in line 13 of BEA Fixed Asset Table 1.1.

Figure S.1 compares our estimate of the user cost of durables to expendi-
tures on consumer durable goods as reported in the NIPA over our sample
period, 1978–2009. Both data series are in billions of dollars. Broadly speak-
ing, the levels and growth rates of the two series are similar.

• We set consumption of housing services equal to line 50 of NIPA Ta-
ble 2.4.5, “Household consumption expenditures (for services): Housing.”

• As in Cooley and Prescott (1995), we use the following data from NIPA
Table 1.10 to determine ambiguous income:

line 9, Taxes on production and imports
− line 10, Subsidies
+ line 15, Proprietors’ income with inventory valuation and CCA (capital

consumption allowance)
+ line 22, Current surplus of government enterprises
+ line 26, Statistical discrepancy.

http://www.bea.gov/national/nipaweb/SelectTable.asp?Selected=N
http://www.federalreserve.gov/releases/h15/data.htm
http://www.bea.gov/national/nipaweb/SelectTable.asp?Selected=N
http://www.federalreserve.gov/releases/h15/data.htm
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B.2.8. Data Used for the Infrastructure Share of Finished Land

One of our moment conditions for infrastructure’s share of finished land
rents, ζ, the growth rates of the price of finished land and infrastructure capital,
gpl and gpf , and the depreciation rate on infrastructure capital, κf , is

E

⎛
⎝R/gpl − (1 − κf )ζ
R/gpf − (1 − κf ) ζ −

∑
Pftkfit∑

(plit lbit +plit lhit)

⎞
⎠= 0�

We set
∑
pftkfit equal to the aggregate value of infrastructure capital, mea-

sured as defined in Section B.2.2. We set
∑
(plit lbit +plit lhit) as the sum of the

aggregate value of finished land used for business purposes,
∑
plit lbit , mea-

sured as defined in Section B.2.7, data for equation (S26), and the aggregate
value of finished land used in housing,

∑
plit lhit , measured as defined in Sec-

tion B.2.6.

B.2.9. Data for the Growth of Aggregate per Capita Real Consumption

Our moment condition for growth in aggregate real per capita consumption,
gc , is

E
{(

lnCt − ln(gc)t
)
t
}= 0�

We compute Ct as nominal aggregate consumption divided by the appropriate
price index and divided again by the population.

We define the population as the civilian noninstitutional population aged
16 and older. These data are available from the Bureau of Labor Statistics. We
replace the reported population with a predicted value based on a regression of
the BLS data on a fourth order polynomial in year (R2 of 0.998). This smoothes
a few odd peaks in the reported BLS series.

We define nominal aggregate consumption as follows:
• total consumption as reported by the NIPA, line 1 of NIPA Table 2.4.5,
• less expenditures on durable consumption goods, line 3 of NIPA Ta-

ble 2.4.5,
• less the consumption of housing services, line 50 of NIPA Table 2.4.5,
• plus government consumption expenditures, line 3 of NIPA Table 3.9.5,
• plus an estimate of the nominal service flow from the stock of durable

goods. This estimate is described in detail in the previous section.
We compute the price index for this definition of consumption by chain-

weighting the appropriate price indexes. For total consumption, expenditures
on durable goods, and the consumption of housing services, the price indexes
are available in NIPA Table 2.4.4. The price index for government consumption
expenditures is available in NIPA Table 3.9.4. Finally, we set the price index for
the service flow from durable goods equal to an estimate of the price index for
the stock of durable goods. We estimate this as the average of the current and
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previous year values of the price index, which is computed as the reported
nominal year-end stock of consumer durable goods (line 13 of BEA Fixed As-
set Table 1.1) divided by the reported quantity index for this stock (line 13 of
BEA Fixed Asset Table 1.2).

B.3. Other Data

In addition to the lagged endogenous panel variables in the system, we use
two other MSA-level variables as instruments in our GMM analysis: per capita
personal income, as measured by the BEA in Table CA1-3 of its Local Area
Personal Income and Employment Tables, and repeat-sales price indexes for
existing homes as produced by the Federal Housing Finance Agency. In our
GMM analysis, we log and demean both variables. For the purposes of com-
paring simulated model output on employment and average wages across all
366 MSAs in the United States, we use data from the Local Area Personal
Income and Employment Tables of the BEA. By MSA, wage and salary em-
ployment is reported on line 7020 of Table AMSA04 (Personal income and its
components) and we compute average wage as the sum of “Wage and salary
disbursements” (line 50) and “Supplements to wages and salaries” (line 60)
divided by wage and salary employment. For the 22 MSAs in our sample, we
compare the BEA-based average wage and total employment measures to es-
timates from the CPS, generated as total hours worked for all respondents (for
employment) and average wage per hour for all hours worked by all work-
ers. After removing year effects and taking logs, the correlation of the average
wage estimates is 0.76 and for the employment estimates is 0.99.

APPENDIX C: DERIVATION OF AGGREGATE MOMENT CONDITIONS

In the main text, we assumed variables were demeaned when we stated mo-
ment conditions used to calculate trend rates of growth. In practice, we incor-
porate the estimates of the means in our calculations. The moment conditions
stated here incorporate this estimation of the means.

We use the following moment conditions to identify κb, κs, and κf :

E

{
κb − Dbt

Kbt

}
= 0�

E

{
κs − Dst

Kst

}
= 0�

E

{
κf − Dbt

Kft

}
= 0�

where DXt is nominal depreciation of capital of type X = B�S�F .
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Along the balanced growth path (without aggregate uncertainty, but with id-
iosyncratic uncertainty) the household’s Euler equation for finished land holds
for each city,

plit =Et|i
{

1
R

[
rlit+1 + (1 − κf )ζplit+1

]}
�(S27)

where Et|i denotes expectation at t conditional on i, rli is the rental price of
finished land in city i, and pli is the capital price of finished land in city i. This
equation is derived as follows. Finished land klit is a Cobb–Douglas aggregate
of raw land Li (normalized to 1 in the main text) and infrastructure capital kfit ,
such that

klit = l1−ζ
i kζf it �

Raw land does not depreciate, but infrastructure capital depreciates at rate κf
such that in the absence of any investment,

kfit+1

kfit
= 1 − κf �

This implies that in the absence of any investment in infrastructure capital,
finished land essentially depreciates. To see this, write

klit+1

klit
=
(
kfit+1

kfit

)ζ
= (1 − κf )ζ�

Consider the household raising its holdings of finished land in city i by klit
units this period, and next period you rent the land and then resell it after it
depreciates. The no arbitrage condition for this transaction is equation (S27).

Equation (S27) implies that along a balanced growth path, the average rental
price of land and the average price of land grow at the same rate, gpl . We do
not measure rents from land, but we do measure rents from housing, which
includes land and structures. We assume housing services are derived from
structures and finished land as

hit = kωsit l1−ω
hit �

From profit maximization of housing service providers, at each date and in
each city,

rhit =ω−ω(1 −ω)ω−1r1−ω
lit r

ω
st �(S28)
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where rh denotes the rent on services from houses and rs denotes the rent on
housing structures. Therefore, along a balanced growth path

rhit = g(1−ω)t
pl

gωtps rhi0�

lnEtrhit = ln rhi0 + [(1 −ω) ln(gpl)+ω ln(gps)
]
t�

since rents on housing structures and land follow the same trends as their re-
spective asset prices.

Along a balanced growth path, for x= b� s� f� l,
Pxt = Px0g

t
px
�

lnPxt = lnPx0 + ln(gpx)t�

where Pxt is the real price of the indicated type of capital (in the case of land,
this is the average price). We identify gPB , gPS , gPF , and gPL using the moment
conditions

E
{
lnPxt − lnPx0 − ln(gpx)t

}= 0� x= b� s� f�
E
{(

lnPbt − lnPx0 − ln(gpx)t
) · t}= 0� x= b� s� f�

E
{
lnEtrhit − lnErhi0 − [(1 −ω) ln(gpl)+ω ln(gps)

]
t
}= 0�

E
{(

lnEtrhit − lnEtrhi0 − [(1 −ω) ln(gpl)+ω ln(gps)
]
t
) · t}= 0�

The moment conditions for identifying gpl (the final two conditions) are based
on the fact that rlit = gtpl rli0 implies Etrlit = gtplE0rli0, where Et denotes expecta-
tion at t over i.

We now use equation (S27) evaluated along the balanced growth path to re-
late prices of land to rent from land. Analogous relationships hold for the other
forms of capital. We use these relationships to formulate moment conditions
to identify ω, α, φ, and ζ. Notice that along a balanced growth path,

Etplit+1 = gplEtplit�
Etrlit+1 = gplEtrlit �

Since EtEt|ixt =Etxt , it follows from (S27) that

Etplit = gpl
R− (1 − κf )ζgpl

Etrlit �

Similar conditions hold for the other types of capital.
We identify ζ, the share of development capital in the production of finished

land, as follows. In every city,

ζ = rf itkf it

rlit lbit + rlit lhit �
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so that

ζ = Etrf itkf it

Etrlit lbit +Etrlit lhit �

Using the relationship between values and incomes,

EtPftkf it

Etplit lbit +Etplit lhit = R/gpl − (1 − κf )ζ
R/gpf − (1 − κf )

Etrf tkf it

[Etrlit lbit +Etrlit lhit] �

Therefore, we identify ζ using

E

⎧⎨
⎩R/gpl − (1 − κf )ζ
R/gpf − (1 − κf ) ζ −

∑
Pftkfit∑

(plit lbit +plit lhit)

⎫⎬
⎭= 0�

To identify ω, first relate the ratio of capital to land income in the housing
sector:

rstksit

rlit lhit
= ω

1 −ω�

Use this and the relationship between value and income ratios to obtain a re-
lationship between the share of land in house values and ω:

Etplit lhit

Etpstksit +Etplit lhit = 1
EtPstksit

Etplit lhit
+ 1

= 1
ω

1 −ω
R/gpl − (1 − κf )ζ
R/gps + κs − 1

+ 1
�

The moment condition that identifies ω is then

E

⎧⎨
⎩

∑
plit lhit∑

(Pstksit +plit lhit)

[
ω

1 −ω
R/gpl − (1 − κf )ζ
R/gps + κs − 1

+ 1
]

− 1

⎫⎬
⎭= 0�

Now consider the identification of α and φ. For this, we make use of the fol-
lowing relationships implied by the intermediate good producer’s production
function:

φ(1 − α)= Etwitnit

Etwitnit +Etrlit lbit +Etrbtkbit �(S29)

αφ

1 −φ = Etrbtkbit

Etrlit lbit
�
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We use the last equality to relate the ratio of the value of land to the value of
tangible assets in the business sector to α and φ:

Etplit lbit

EtPbtkbit +Etplit lbit = 1
EtPbtkbit

Etplit lbit
+ 1

= 1
αφ

1 −φ
R/gpl − 1

R/gpb + κb − 1
+ 1

�

Using the last equality and (S29), we arrive at the moment conditions used to
identify α and φ:

E

⎧⎨
⎩

∑
plit lbit∑

[Pbtkbit +plit lbit]

[
αφ

1 −φ
R/gpl − 1

R/gpb + κb − 1
+ 1

]
− 1

⎫⎬
⎭= 0�

E

⎧⎨
⎩

∑
witnit∑

[witnit + rlit lbit + rbtkbit]
−φ(1 − α)

⎫⎬
⎭= 0�

We also need to estimate gc , the gross growth rate of per capita consumption.
Along a balanced growth path,

Ct = C0g
t
c�

lnCt = lnC0 + ln(gc)t�

where Ct is per capita consumption. Therefore, we identify gc using the two
moment conditions

E
{
lnCt − lnC0 − ln(gc)t

}= 0�

E
{(

lnCt − lnC0 − ln(gc)t
) · t}= 0�

APPENDIX D: MEASURING THE EFFECT OF AGGLOMERATION ON PER
CAPITA CONSUMPTION GROWTH

The balanced growth path of our model has

gc = γ(1−α)δ/((1−α)δ+(ζ−1)(δ−1))
a γ(1−ζ)(δ−1)/((1−α)δ+(ζ−1)(δ−1))

n

× γαδ/((1−α)δ+(ζ−1)(δ−1))
b γζ(1−δ)/((1−α)δ+(ζ−1)(δ−1))

f �

Use the balanced growth equation to express γa as

γ̂a = ĝ((1−α)δ+(ζ−1)(δ−1))/((1−α)δ)
c γ̂(1−ζ)(1−δ)/((1−α)δ)

n ĝα/(1−α)
pb

ĝζ(1−δ)/((1−α)δ)
pf

�

g∗
c = γ̂(1−α)φ/((1−α)φ+(ζ−1)(φ−1))

a γ(1−ζ)(φ−1)/((1−α)φ+(ζ−1)(φ−1))
n

× g−αφ/((1−α)φ+(ζ−1)(φ−1))
pb

g−ζ(1−φ)/((1−α)φ+(ζ−1)(φ−1))
pf
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= [ĝ((1−α)δ+(ζ−1)(δ−1))/((1−α)δ)
c γ̂(1−ζ)(1−δ)/((1−α)δ)

m

× ĝα/(1−α)
pb

ĝζ(1−δ)/((1−α)δ)
pf

](1−α)φ/((1−α)φ+(ζ−1)(φ−1))

× γ(1−ζ)(φ−1)/((1−α)φ+(ζ−1)(φ−1))
n g−αφ/((1−α)φ+(ζ−1)(φ−1))

pb

× g−ζ(1−φ)/((1−α)φ+(ζ−1)(φ−1))
pf

= ĝφ[(1−α)δ+(ζ−1)(δ−1)]/(δ[(1−α)φ+(ζ−1)(φ−1)])
c γ̂(φ−δ)(1−ζ)/(δ[(1−α)φ+(1−ζ)(1−φ)])

n

× ĝζ(φ−δ)/(δ[(1−α)φ+(ζ−1)(φ−1)])
pf

�

Therefore,

Λ= ĝc − g∗
c

g∗
c − 1

= (
ĝc − ĝφ[(1−α)δ+(ζ−1)(δ−1)]/(δ[(1−α)φ+(ζ−1)(φ−1)])

c

× γ̂(φ−δ)(1−ζ)/(δ[(1−α)φ+(1−ζ)(1−φ)])
n ĝζ(φ−δ)/(δ[(1−α)φ+(ζ−1)(φ−1)])

pf

)
/(
ĝφ[(1−α)δ+(ζ−1)(δ−1)]/(δ[(1−α)φ+(ζ−1)(φ−1)])
c

× γ̂(φ−δ)(1−ζ)/(δ[(1−α)φ+(1−ζ)(1−φ)])
N ĝζ(φ−δ)/(δ[(1−α)φ+(ζ−1)(φ−1)])

pf
− 1

)
�

APPENDIX E: SOLVING THE MODEL AND COMPARING IT TO DATA

This section describes how we solve our model with ω = 0 and ξ = 1. The
notation is somewhat different from the main text of the paper, but is internally
consistent.

In this model, there is a representative household with a large number of
members who share consumption risk perfectly. Each period the household
allocates its workers and capital across locations, chooses how much infras-
tructure capital to build in each location for the next period, and decides how
much business capital it wants to allocate across locations in the next period.
We assume these decisions are made after the household observes total factor
productivity in each location in that period. The household takes all prices and
the distribution of total factor productivity as given. That is, it behaves com-
petitively and does not take into account the effect of its actions on the density
of production in each location. In each location there are developers and pro-
ducers. The developers rent local infrastructure capital from the household
and combine it with raw land to produce developed land, which they then rent
to local producers. Producers rent capital and labor from the household and
developed land to produce the city-specific intermediate good. There is also a
final good producer who combines city-specific intermediate goods to produce
the final good. Developers and goods producers maximize profits, taking all
prices and total factor productivity as given.
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The competitive equilibrium for this economy can be found as the solution
to an optimization problem with side conditions. Notation is borrowed from
the main text except that here we assume that the support of the distribution
of technology is discrete. Let m(zt) denote the distribution of cities across
idiosyncratic productivity histories zt . The household perfectly insures itself
against consumption risk, so we write the optimization problem as

max
{Ct �Kt+1�y(z

t )�l(zt )�k(zt )�n(zt )�h(zt )�x(zt )�d(zt )}∞t=0

∞∑
t=0

βt
∑

m
(
zt
)
n
(
zt
)

× [lnCt +ψ lnh
(
zt
)]

subject to

Ct +Kt+1 − (1 − κ)Kt +Xt ≤
[∑

m
(
zt
)
y
(
zt
)η]1/η

�

y
(
zt
)≤ z(1−α)φ

t

[
ŷ(zt)

l̂(zt)

](λ−1)/λ

l
(
zt
)1−φ

k
(
zt
)αφ
n
(
zt
)(1−α)φ

�

∑
m
(
zt
)
k
(
zt
)≤Kt�

n
(
zt
)
h
(
zt
)+ l(zt)≤ d(zt−1

)ς
� ∀zt�∑

m
(
zt
)
n
(
zt
)≤ 1�

d
(
zt
)≤ (1 − ζ)d(st−1

)+ x(zt)� ∀zt�∑
m
(
zt
)
x
(
zt
)≤Xt�

K0� d(z0) ∀z0� ŷ
(
zt
)

and l̂
(
zt
)

given�

The un-indexed summations are over productivity histories zt . The competitive
equilibrium corresponds to a solution to this optimization problem such that
y(zt)= ŷ(zt) and l(zt)= l̂(zt). Note that for simplicity, and in contrast to the
main text, we have assumed that housing services are derived from developed
land only.

E.1. Steady State With One City

This section derives the steady state with one city, which we use for starting
values in the general case. The first order condition and constraints for land
development, evaluated in steady state, are

1 = 1
R

[
rd + (1 − ζ)]�

x= ζd�
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where rd is the rental rate for infrastructure capital. Then

1 = 1
R

[
rlςd

ς−1 + (1 − ζ)]�
r∗d =R− 1 + ζ�
R= 1/β�

rlςd
ς−1 = r∗d�

where rl is rent on finished land.
Output in the city is

y = z(1−α)φ
[
y

l

](λ−1)/λ

l1−φkαφn(1−α)φ�

Let δ= λφ. Solving for output,

y = zδ(1−α)l1−δkδαnδ(1−α)�(S30)

Aggregate output is

Y = y
and output prices are

q= 1�

The labor supply constraint implies

n= 1

and the aggregate resource constraint is

C + κK + ζD= Y�
where the total stock of developed land is equal to the developed land in the
city,D= d. The equilibrium rent on business capital r∗k is found using the busi-
ness capital accumulation and is given by

r∗k = 1/β− 1 + κ�
Rental demand for capital, developed land demand, labor demand, housing,

land development, labor allocation first order necessary conditions (FONCS),
and the land constraint are

k= αφyr∗−1
k �

rl = y(1 −φ)l−1�
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w= (1 − α)φyn−1�

ψC = rlh�
rlςd

ς−1 = r∗d�

ψ lnh= 1
C
θ+ 1

C
[ψC −w]�

nh+ l= dς�
Here w denotes the wage. From the infrastructure FONC,

dς = r∗dd
ςrl
�

Since n= 1, the land constraint can be written

l= r∗dd
ςrl

− h�

Using this, the land demand FONC and the housing demand FONC, we have

y(1 −φ)= r∗dd
ς

−ψC�(S31)

Substitute from the capital rental and land demand FONCS into (S30) to
express y as function of rl:

y = zδ(1−α)
[
(1 −φ)y

rl

]1−δ[
αφ

r∗k
y

]δα

=
[
zδ(1−α)[1 −φ]1−δ

[
αφ

r∗k

]δα]1/(δ(1−α))
rl�

Use the definition of rd to solve for d as a function of rl:

d =
[
ς

r∗d

]1/(1−ς)
rl�

Solve for k as a function of rl using the capital rental FONC:

k= αφ

r∗k

[
zδ(1−α)[1 −φ]1−δ

[
αφ

r∗k

]δα]1/(δ(1−α))
rl�

Solve for C as a function of y and d using (S31):

C = r∗d
ψς
d− 1 −φ

ψ
y�
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With this last expression, we solve the aggregate resource constraint for rl
using the expressions for y and d as functions of rl from above. First substitute
in for the right hand side of the aggregate resource constraint:

y = C + κk+ ζd
= r∗d
ψς
d− 1 −φ

ψ
y + καφ

r∗k
y + ζd�

Substituting for y and d in the last equation and solving for rl, we arrive at

r∗l =
[[

r∗d
ςψ

+ ζ
][
ς

r∗d

]1/(1−ς)

/([
1 + 1 −φ

ψ
− καφ

r∗k

]

×
[
zδ(1−α)[1 −φ]1−δ

[
αφ

r∗k

]δα]1/(δ(1−α)))]1/((δ−1)/(δ(1−α))−1/(1−ς))

�

With r∗l in hand, we can solve for C∗, k∗, d∗, and y∗ using expressions derived
above. In addition, from the housing FONC,

h∗ =ψC∗/r∗l �

and from the land constraint,

l∗ = r∗dd∗/r∗l − h∗�

Finally, the labor demand and labor allocation FONCS yield

w∗ = y∗(1 − α)φ�
θ∗ = C∗ψ lnh∗ −ψC∗ +w∗�

The foregoing demonstrates that, for admissible parameters, a nonstochastic
steady state exists and is unique with one level of productivity.

E.2. General Steady State Solution

The solution strategy is to fix C , K, D, and θ, solve for all other endogenous
variables conditional on these variables, and then find a fixed point in C , K,D,
and θ that satisfies market clearing.

Using the transition equation for exogenous productivity it is straightforward
to compute the steady state distribution of cities by exogenous productivity.
The mass of cities of type i is mi and the aggregate output is

Y =
[∑

miyi
η
]1/η

�(S32)
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Output prices are

qi = Y 1−ηyη−1
i �

The aggregate resource constraint is

C + κK + ζD= Y�
so that

qi = [C + κK + ζD]1−ηyη−1
i �

Except where it helps the exposition, we drop the i subscript hereafter. The
FONC for infrastructure capital accumulation is

1 = βE[rlςd′ς−1 + 1 − ζ]�
From the housing FONC and land constraint,

rl = ψCn

dς − l �

Therefore, the FONC for infrastructure capital can be written

1 = βE
[
ψCn′

d′ς − l′ ςd
′ς−1 + 1 − ζ

]
�

Equilibrium rk is given by

r∗k = 1/β− 1 + κ�
From the FONCS and constraints,

nihi + li = dςi �(S33)

ψC = rlhi�(S34)

ψC lnhi = θ+ [ψC −wi]�(S35)

wi = qi(1 − α)φyin−1
i �(S36)

rli = qi(1 −φ)yil−1
i �(S37)

qi = [C + κK + ζD]1−ηyη−1
i �(S38)

r∗k = qiαφyik−1
i �(S39)

yi = zδ(1−α)
i l1−δ

i kδαi n
δ(1−α)
i �(S40)

1 = βE
[
ψC

h′
i

ςd′ς−1
i + 1 − ζ

]
�(S41)

ki = qiαφyir∗−1
k �(S42)
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Here we have used the i subscript to be clear on which variables are location
specific and which are common to all locations. Combine all but (S38) and
(S40), (S41), (S42) to form

ψC

r∗kh
= (1 −φ)

αφ

k

l
�(S43)

(1 − α)k
αn

= θ+ψC −ψC lnh
r∗k

�(S44)

nh+ l= dς�(S45)

It follows that

lψC

r∗k(dς − l) = (1 −φ)
αφ

k

n
�(S46)

Using (S43), we can rewrite the infrastructure FONC as

1 = βE
[
(1 −φ)r∗k
αφ

k

l
ςd′ς−1 + 1

]
�

Furthermore, combining (S44) and (S46),

lψC

r∗k(dς − l) = (1 −φ)
(1 − α)φ

θ+ψC −ψC lnh
r∗k

�

Solving this last equation for h yields

h= exp
(
θ

ψC
+ 1 − (1 − α)φl

(dς − l)(1 −φ)
)

= ĥ(d� l;C�θ)�
Using (S43),

k= αφψC

(1 −φ)r∗kĥ(d� l;C�θ)
l

= k̂(d� l;C�θ)�
Using (S33),

n= dς − l
ĥ(d� l;C�θ)

= n̂(d� l;C�θ)�
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Using (S38), (S39), and (S40), and substituting in the expressions for k and n,
we solve for lj for each d′

i using

r∗k = αφ[C + κK + ζD]1−ηzδ(1−α)η
j l(1−δ)η

j

× k̂(d′
i� lj;C�θ

)δαη−1
n̂
(
d′
i� lj;C�θ

)δ(1−α)η
�

The “prime” superscript denotes the choice of the indicated variable made for
the following period when the current state is given by the subscript. For each
i, this yields

lji = l̃
(
C�K�D�θ�zj� d

′
i

)
�(S47)

nji = ñ
(
C�K�D�θ�zj� d

′
i

)
�(S48)

kji = k̃
(
C�K�D�θ�zj� d

′
i

)
�(S49)

Here we use the subscript convention that the variable is chosen contempo-
raneously with the technology state that corresponds to the first subscript and
the state that corresponds to the second subscript in the period before.

From the land infrastructure FONC, for each i,

1 = β
∑

πij

[
(1 −φ)r∗k
αφ

k̃(C�K�D�θ�zj� d
′
i)

l̃(C�K�D�θ� zj� d
′
i)
ςd′ς−1

i + 1 − ζ
]

(S50)

= β
∑

πij
[
f
(
C�K�D�θ�zj� d

′
i

)+ 1 − ζ]�
Here the πij denotes the probability of transitioning from state i to state j.
Because πij depends on zi, solving (S50) yields

d′
i = d(C�K�D�θ�zi)�

Using (S47), (S48), and (S49), we may now obtain

lij = l(C�K�D�θ� zi� zj)�
nij = n(C�K�D�θ� zi� zj)�
kij = k(C�K�D�θ� zi� zj)�

The switch in the order of the subscripts is by design. These expressions can be
substituted into (S40) to construct

yij = y(C�K�θ�D�zi� zj)�
By the definition of developed land investment,

xij = d′
i − (1 − ζ)dj

= x(C�K�D�θ� zi� zj)�
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In addition,

Y = C + κK + ζD
= Y(C�K�X)�

We solve for C, K, D, and θ using

Y(C�K�D�θ)=
[∑

mijy(C�K�D�θ� zi� zj)
η
]1/η

�

K =
∑

mijk(C�K�D�θ� zi� zj)�

1 =
∑

mijn(C�K�D�θ� zi� zj)�

X =
∑

mijx(C�K�D�θ� zi� zj)�

where mij denotes the steady state mass of cities that have zi today and zj yes-
terday. Notice that the city level variables are entirely determined by lagged
and current technology. In particular, for each possible pair of technology
states there is a unique value of infrastructure capital chosen for the next pe-
riod. Consequently, the number of infrastructure capital states corresponds to
the number of possible pairs of technology states.

We use the GAUSS nonlinear equation solver eqSolve to solve this system
of four equations. To evaluate these equations, we need to solve (S50). We
accomplish this using a version of eqSolve that we have modified to exploit
the sparseness of the transition matrix formed with the πij (see below).

For this, we need to find mij , the steady state distribution of (zt� zt−1). For
simplicity, consider the case of three z states. The results described below are
based on a grid for zt with 75 points, so there are 5625 (zt� zt−1) states. We need
the transition probabilities for (zt� zt−1) to (zt+1� zt). The state is summarized
by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 z1

z1 z2

z1 z3

z2 z1

z2 z2

z2 z3

z3 z1

z3 z2

z3 z3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�
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We obtain the πij (defined above) from the underlying transition matrix for zt .
Then the matrix of transition probabilities is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π11 0 0 π12 0 0 π13 0 0
π11 0 0 π12 0 0 π13 0 0
π11 0 0 π12 0 0 π13 0 0
0 π21 0 0 π22 0 0 π23 0
0 π21 0 0 π22 0 0 π23 0
0 π21 0 0 π22 0 0 π23 0
0 0 π31 0 0 π32 0 0 π33

0 0 π31 0 0 π32 0 0 π33

0 0 π31 0 0 π32 0 0 π33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

From this matrix, we can calculate the steady state mij . Obtaining the steady
state and evaluating conditional expectations is greatly accelerated by exploit-
ing the sparseness of this matrix.

E.3. Approximating the Technology Process

We consider an underlying technology process

lnzt = max{γz + lnzt−1 + εt� lnzmin}�(S51)

where εt is i.i.d. normally distributed with mean zero and variance σ2
ε . This is

isomorphic to the process considered by Gabaix (2000). As long as g < 0 for
fixed zmin, this process has an invariant distribution in zt , which is convenient
for solving our model. The tail of this distribution is exponential, that is, it has
the property that

Pr[zt > b] = a

bϑ

for some a > 0 and ϑ > 0. Zipf’s law is ϑ = 1 for the zt population. We can
always find a γz to match an admissible ϑ. The parameter ϑ can be estimated
in our data by regressing the log rank zt on lnzt . The coefficient on lnzt is a
consistent estimate of ϑ. Technology is well approximated by an exponential
distribution with ϑ= 2�5.

We approximate (S51) with a discrete Markov chain. The grid is chosen to
be equally spaced in logs. The elements of the transition equation are condi-
tional probabilities of transiting from a given grid point to intervals around all
possible grid points, where the intervals are equally spaced from the midpoints
between grid points. These probabilities are calculated using (S51). In practice,
we assume wide domains for the grid, varying from 150 to over 300 times the
standard deviation of the innovation. This ensures that mass does not accumu-
late on the largest grid points. We solve for the γz that yields ϑ = 20 in the
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steady state, excluding a small number of the smallest and largest grid points.
We exclude some grid points to focus on the region of the state space where the
approximation is best. This strategy yields a remarkably good approximation to
an exponential distribution, except in the extreme tails. In fact, the overall ap-
proximation resembles empirical plots of log city rank by population versus log
population, with a different slope of course. We set zmin = 1 − 1/ζ. This sets
the mean of the distribution to approximately 1. We assume σε = 0�001.

APPENDIX F: STANDARD ERRORS

We estimate Λ in three steps. To begin, we collect the expressions in the mo-
ment conditions described in the last subsection into a vector-valued function
Ψ1(Xt�θ1), so that

EΨ1(Xt�θ1)= 0�(S52)

Here, Xt is a vector of the aggregate variables included in these moment con-
ditions, and θ1 is a parameter vector given by

θ1 ≡ [κb�κb�κb�gpl � gpb� gps � gpf � γn� gc�α�φ�ω�ζ]′�

Because this system of moment conditions is exactly identified, the dimensions
of Ψ1 and θ1 are equal. The first step is to estimate equation (S34) by GMM,
in which we use a Newey–West weight matrix with a lag length of 2.

In the second step, we estimate δ and ξ using the moment conditions in
equation (26) in the main text. This estimation requires that we plug in the
estimates of ω and α from the first step into (26). To account for the sampling
variation associated with these two plug-in parameters, we adjust the weight
matrix using the methods described in Newey and McFadden (1994). Specifi-
cally, write the moment condition in (26) as

EΨ2(Xit� θ2)= 0�(S53)

in which Xit is the vector of panel data in (26) and θ2 = {δ�ξ�ω�α}. Next,
let ψω(Xt) and ψα(Xt) be the influence functions associated with ω and α.
To express the optimal weight matrix for the GMM estimation based on the
moment condition in (S53), we define

Ψ̃2(Xit� θ2)≡ Ψ2(Xit� θ2)(S54)

− √
N

(
∂Ψ2(Xit� θ2)

∂ω
ψω(Xt)+ ∂Ψ2(Xit� θ2)

∂α
ψα(Xt)

)
�
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The
√
N term appears in this expression to account for the fact that the pa-

rameters ω and α are estimated with only T observations, instead of with NT
observations. Finally, the optimal weight matrix is given by

Ω≡E[Ψ̃2(Xit� δ�ξ�ω�α)Ψ̃2(Xit� δ�ξ�ω�α)
′]�

The rest of the GMM estimation proceeds by averaging the moment conditions
over both i and t, and by clustering the weight matrix at the city level.

The third step is to substitute the point estimates for gc , gpf , δ, α, φ, and
ζ into equation (17) in the main text to obtain Λ. To calculate the sampling
variance of Λ, we need the joint covariance matrix of these six parameters,
which we calculate by stacking the parameters’ influence functions as shown by
Erickson and Whited (2002). As in (S54), we multiply the influence functions
for the parameters estimated with time-series data by

√
N . After this calcula-

tion, a standard application of the delta method gives the variance of Λ.

APPENDIX G: MONTE CARLO STUDY

We perform a Monte Carlo study of our estimator using simulated data
whose distribution closely approximates that of our own data set, which con-
sists of some variables that vary in only the time dimension and others that
vary in both the time and the city dimension. We first consider the times-series
variables

xt ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dbt

Kbt

�
Dst

Kst

�
Dft

Kft

�Erhit�pbt�pst�pft� ct�∑
plit lhit∑

(pstksit +plit lhit)
�

∑
plit lbit∑

(pbtkbit +plit lbit)
�

∑
witnit∑

(witnit + rlit lbit + rbtkbit)
�

∑
pftkfit∑

(plit lbit +plit lhit)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�(S55)

As a first step, we use our actual data to estimate a time-trend regression for
xt ,

xt = a + bt + uxt�(S56)

in which b is a vector of time trends for the individual elements of xt , a is a
vector of intercepts, and uxt is a vector of disturbances with covariance ma-
trix Σux. With the estimates of (a�b�Σux), we simulate each variable as follows.
We generate a matrix of normal disturbances of length 132 and width equal to
the dimension of xt . These disturbances are serially uncorrelated, but are con-
temporaneously correlated with a covariance matrix of Σu. We then generate
xt using (S56). Finally, we keep the last 32 observations, where 32 is the time
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span of our actual data set. This procedure give us time-series variables with
the same first and second moments as those in our actual data.

Next we describe our panel variables �ŷit = (�ŵeit��r̂hit��p̂yit��ŝit��m̂it�
�v̂it), in which �v̂it is a vector that contains our two additional instrumental
variables, house prices, and per capita income. We simulate directly in first-
differenced, “hatted” form. We first calculate the means and covariances of
these variables in our actual data. We also calculate the first-order serial cor-
relations from OLS estimates of a simple AR(1) model,

�ŷit =A�ŷit−1 + uyit �(S57)

in which A is a diagonal matrix of autoregressive coefficients. We denote the
estimated covariance matrix of the residuals as Σy .

Next, we use these estimates to create simulated panel variables. First, we
generate a matrix of normal disturbances, ũyit , of length 132 and width equal to
the dimension of �ŷit times 22, which is the number of cities in our panel. We
then update the variables (�r̂hit��p̂yit��ŝit��m̂it��v̂it) in each of these cities
using (S57). Finally, we construct �ŵeit using

�ŵeit = 1
1 −ω

δ− 1
δ(1 − α)�r̂hit +

1
δ(1 − α)�q̂it(S58)

+ 1 − ξ
ξ

�χ̂it + (ξ− 1)�m̂it + εit�

in which εit is constructed as ε∗
it+a′ũyit , in which a is a vector of coefficients that

correspond to (�r̂hit��p̂yit��ŝit��m̂it) and in which ε∗
it an i.i.d. normal variable.

Thus, the error term in (S58) shares common contemporaneous variation with
(�r̂hit��p̂yit��ŝit��m̂it), as our model predicts. We set the variance of ε∗

it so
that the variance of �ŵeit in our simulated data equals the variance of �ŵeit
in our real data. We set the correlation parameters, a, so that the covariance
between �ŵeit and (�r̂hit��p̂yit��ŝit��m̂it) in our simulated data approximates
this covariance in our actual data.

Finally, we note that all of the panel variables are the residuals from regress-
ing the raw variables on time dummies. They are, therefore, by construction
orthogonal to any time-series variables, so we set the covariances between the
time-series and the panel variables equal to zero.

We repeat this procedure 10,000 times (thus generating 10,000 data sets),
where we set the true values of the coefficients equal to our estimates from
Table III. Specifically, δ = 1�04, ξ = 0�54, and the time-series coefficients all
equal their estimated values. We use these true values to evaluate Λ= 0�102.

We estimate the model using twice lagged values of (�ŵeit��r̂hit��q̂it��χ̂it�
�m̂it��v̂it). We average our GMM moment conditions in both the cross-
sectional and time-series dimensions. We calculate standard errors as we do
for Table I, with a Newey–West correction for the first stage time-series esti-
mation and clustering at the city level for the second stage panel estimation.
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TABLE S.XV

MONTE CARLO RESULTS

δ ξ Λ

Coefficients
Average coefficient 1.0414 0.5493 0.1021
Average bias 0.0014 0.0093 0.0013
Mean absolute deviation 0.0366 0.0319 0.0600
RMSE 0.0475 0.0505 0.0803

Test Statistics
Upside null rejection frequency (2.5%) 0.0300 0.0468 0.0083
Downside null rejection frequency (2.5%) 0.0823 0.0542 0.0907
J-test 5% rejection rate 0.0102
m2-test 5% rejection rate 0.0968
m3-test 5% rejection rate 0.0000

We report the results from this simulation in Table S.XV.
The top panel of Table S.XV reports the average estimated coefficient over

the 10,000 trials, as well as the average bias, mean absolute deviation, and root
mean square error (RMSE). We see that despite the small sample size, our
two-step GMM estimator produces nearly unbiased coefficient estimates. The
mean absolute deviations and RMSEs are low for δ and ξ, but somewhat larger
for Λ. This result makes sense inasmuch as Λ is estimated from both time-
series and panel data, and the time-series data contain much less variation
identifying information.

The bottom panel of the table reports the two tail probabilities from nominal
5% tests that the coefficient estimates equal their true values. “Upside” refers
to the right tail and “downside” refers to the left tail. In general, these tests are
slightly oversized, which arises because the standard errors are “too small.”
However, the overrejection is not symmetric. For δ and Λ, the probability of
rejecting the null on the upside is much smaller than the probability of rejecting
the null on the downside. For δ, the right tail is approximately correctly sized,
and for Λ, the right tail is undersized, which means that there is a negligible
probability of rejecting the null in favor of the alternative of Λ> 0. Of course,
the right tails are the ones that matter for our application because our theory
implies that both δ and Λ are positive. Our test rejection results are, therefore,
comforting in that they imply that our significant coefficients are not an artifact
of a test overrejection in small samples.

Finally, we report the rejection rates for our three diagnostic tests. We find
that the J-test and the m3-test underreject, but that the m2-test overrejects
slightly. The first two results imply that the J-test and the m3-test are unlikely
to be useful specification tests. In contrast, the third result implies that the
insignificant m2-test statistic we find in our estimation is not likely to be an
artifact of an undersized test.



MACROECONOMIC IMPLICATIONS OF AGGLOMERATION 49

APPENDIX H: EQUILIBRIUM EXISTENCE AND UNIQUENESS
WITHOUT HOUSING

This section shows, for several versions of the model without housing, that
there is a unique solution in which all cities are occupied when a simple para-
metric restriction is satisfied.

To simplify the notation, we index cities by their location on the unit interval
rather than productivity history as we do in the paper and elsewhere in this
document. Note that some of the notation is inconsistent with the main text
and elsewhere in this document.

Allocations are obtained by solving an optimization problem, taking as given
the distribution of TFP across locations i, Ai. The TFP equals a productivity
shock multiplied by an increasing function of output per unit of land. An equi-
librium is a solution to the optimization problem in which the implied TFP dis-
tribution equals the one assumed. Throughout, we assume that the exogenous
productivity process z is a well behaved finite dimensional discrete Markov
chain.

H.1. Model Without Housing and Perfectly Substitutable Goods

Equilibrium is the solution to the program

max
C�Ni�Li

{
lnC

+π
[∫

AiN
α
i L

1−α
i di−C

]

+π
∫
ϕi[1 −Li]di

+πθ
[

1 −
∫
Ni di

]}
� Ai given

such that

Ai =
[
AiN

α
i L

1−α
i

Li

](λ−1)/λ

�

Note first of all that for given Ai, the program has a unique interior solu-
tion.

The necessary and sufficient conditions for an interior solution to the pro-
gram for given Ai are

AiαN
α−1
i L1−α

i = θ�
1 =Li�
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Ai(1 − α)Nα
i L

−α
i = ϕi�

1 =
∫
Ni di�

C =
∫
AiN

α
i L

1−α
i �

1
C

= π�

An equilibrium requires

Ai = zi
[
AiN

α
i

]1−1/λ = zλi Nαλ−α
i �

Substitute for Ai in the FONC for labor:

zλi N
αλ−α
i αNα−1

i = θ�
αzλi N

αλ−1
i = θ�

Ni =
[
θ

αzλi

]1/(αλ−1)

�

Subsitute for Ni into the aggregate resource constraints:

θ=
[∫ [

αzλi
]1/(1−αλ)

di

]1−αλ
�

C =
∫ [

θ

αzλi

]α/(αλ−1)

di

=
[∫

zλ/(1−αλ)
i di

]−α ∫
zαλ/(1−αλ)
i di�

Ni =
[
θ

αzλi

]1/(αλ−1)

=

⎡
⎢⎢⎢⎣ αzλi[∫ [

αzλi
]1/(1−αλ)

di

]1−αλ

⎤
⎥⎥⎥⎦

1/(1−αλ)

= zλ/(1−αλ)
i∫
zλ/(1−αλ)
i di

�
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Ai = zλi Nαλ−α
i

= z(λ−αλ)/(1−αλ)
i[∫
zλ/(1−αλ)
i di

]αλ−α �

These expressions yield unique allocations. But do these allocations corre-
spond to an equilibrium?

If αλ > 1, then the formula for employment says it is inversely related to
productivity. The reason is that the wage is identical across inhabited locations.
With increasing returns the only way this can happen is if low productivity loca-
tions have higher TFP through the externality. If agents always believe this dis-
tribution of TFP, then the equilibrium is maintained. But there is another set
of beliefs that yields higher utility. In particular, that everyone assumes TFP
is zero everywhere except at the highest productivity shock cities. Everyone
would locate there and there would be no incentive to move elsewhere—wages
are zero everywhere else and coordinating on another set of beliefs lowers util-
ity.

With αλ < 1, this is not an issue. The household will never leave a location
unoccupied because the marginal product of labor goes to infinity as labor goes
to zero. Given the distribution of TFP implied by the FONCs, the program has
a unique solution that implies the same distribution of TFP. There is only one
distribution of TFP that solves the FONCs.

H.2. Model Without Housing and With One-Period Time-to-Build Infrastructure

We have

max
∑

βt lnCt

+π
[∫

AitN
α
itL

1−α
it di−C −

∫ [
Kit+1 − (1 − κ)Kit

]
di

]

+π
∫
ϕi
[
Kς
it −Lit

]
di

+πθ
[

1 −
∫
Ni di

]
�

The necessary and sufficient conditions for an interior solution to the pro-
gram for given Ai are

AitαN
α−1
it L1−α

it = θ�
Ait(1 − α)Nα

itL
−α
it = ϕit�
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Kς
it =Lit�

1 = βEit
[
ϕit+1ςK

ς−1
it+1 + (1 − κ)]�

1 =
∫
Nit di�

C +
∫ [
Kit+1 − (1 − κ)Kit

]
di=

∫
AitN

α
itL

1−α
it di�

1
C

= π�

Solve for Ai:

Ait = zit
[
AitN

α
itK

ς(1−α)−ς
it

]1−1/λ

= zλitN
αλ−α
it K−λςα+ςα

it �

Substitute for Ai in labor FONC and solve for Nit ,

zλitN
αλ−α
it K−λςα+ςα

it αNα−1
it Kς(1−α)

it = θ�
αzλitN

αλ−1
it Kς(1−λα)

it = θ�

Nit =
[

θ

αzλitK
ς(1−λα)
it

]1/(αλ−1)

=
[
θ

αzλit

]1/(αλ−1)

Kς
it�

and in land FONC and solve for ϕit ,

zλitN
αλ−α
it K−λςα+ςα

it (1 − α)Nα
itK

−ςα
it = ϕit�

zλit

[
θ

αzλit

]αλ/(αλ−1)

(1 − α)= ϕit�

ϕit = (1 − α)zλ/(1−αλ)
it

[
αθ−1

]αλ/(1−αλ)
�

which can be substituted into the infrastructure FONC as

1 = βEit
[
(1 − α)zλ/(1−αλ)

it+1

[
αθ−1

]αλ/(1−αλ)
ςKς−1

it+1 + (1 − κ)]�
so that

β(1 − α)ςKς−1
it+1Eitz

λ/(1−αλ)
it+1

[
αθ−1

]αλ/(1−αλ) = 1 −β(1 − κ)�
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which yields

Kit+1 =
[

1 −β(1 − κ)
β(1 − α)ςEitzλ/(1−αλ)

it+1

[
αθ−1

]αλ/(1−αλ)

]1/(ς−1)

�

Substituting this expression for Kit+1 (backed up one period) into the aggre-
gate employment constraint yields

1 =
∫ [

θ

αzλit

]1/(αλ−1)

Kς
it di

=
∫ [

θ

αzλit

]1/(αλ−1)[ 1 −β(1 − κ)
β(1 − α)ςEit−1z

λ/(1−αλ)
it

[
αθ−1

]αλ/(1−αλ)

]ς/(ς−1)

di�

θ=
[∫ [

1
αzλit

]1/(αλ−1)

×
[

1 −β(1 − κ)
β(1 − α)ςααλ/(1−αλ)Eit−1z

λ/(1−αλ)
it

]ς/(ς−1)

di

](αλ−1)(ς−1)/(1−ς+αλς)
�

From this we obtain

θ= f
(
zit−1�Eit−1z

af
it : i ∈ [0�1])

= f
(
zit�Eitz

af
it+1 : i ∈ [0�1])�

where af is a scalar defined by algebraic expressions of the underlying model
parameters. Similarly,

Kit+1 = g(zit�Eitzagit+1 : i ∈ [0�1])�
Kit = g

(
zit−1�Eit−1z

ag
it : i ∈ [0�1])�

Here the two expressions for θ reflect that we are calculating the stationary
solution, so it does not matter which date we calculate it. The second expres-
sion for the local capital stock merely backs up the first one—in a stationary
equilibrium both will be satisfied.

Note that in steady state,∫
Kit+1 di=

∫
Kit di�

Therefore,∫ [
Kit+1 − (1 − κ)Kit

]
di =

∫
Kit+1 −

∫
Kit + κ

∫
Kit

= κ

∫
Kit�
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With this fact, the aggregate final good constraint becomes

C + κ
∫
Kit di =

∫
AitN

α
itK

ς(1−α)
it di

=
∫
zλitN

αλ
it K

ς(1−α)λ
it di

=
∫
zλit

[
θ

αzλitK
ς(1−α)λ
it

]αλ/(αλ−1)

Kς(1−α)λ
it di

=
∫
zλit

[
θ

αzλit

]αλ/(αλ−1)

Kς(1−α)λαλ/(1−αλ)
it Kς(1−α)λ

it di�

which using the expressions for θ and Kit yields

C = h(zit−1�Eit−1z
ah
it : i ∈ [0�1])�

Finally, after substituting for θ and Kit in an earlier derivation, we have

Nit =m
(
zit�

{
zit−1�Eit−1z

am
it : i ∈ [0�1]})�

With a finite dimensional Markov chain (satisfying usual regularity condi-
tions) for zi, a nontrivial solution exists and is unique if αλ< 1. This is seen by
considering the marginal product of labor

αzλitN
αλ−1
it Kς(1−λα)

it �

which indicates that unless the condition is satisfied, the marginal product of
labor goes to zero as employment does. In this case, we cannot rule out corner
solutions for at least some locations. If they are all occupied, then the above
expressions can be used to solve for the unique equilibrium.

We now extend the model to imperfect substitutes.

H.3. Model Without Housing and With Infrastructure and Imperfect Substitutes

We have

max
∑

βt lnCt

+πt
[(∫

Yη
it di

)1/η

di−C −
∫ [
Kit+1 − (1 − κ)Kit

]
di

]

+π
∫
ϕit
[
Kς
it −Lit

]
di+π

∫
qit
[
AitN

α
itL

1−α
it −Yit

]
di

+πtθt
[

1 −
∫
Nit di

]
�
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The necessary and sufficient conditions for an interior solution to the pro-
gram for given Ai are

qitAitαN
α−1
it L1−α

it = θ�
qitAit(1 − α)Nα

itL
−α
it = ϕit�

qit = Y 1−ηYη−1
it �

Kς
it =Lit�

1 = βEit
[
ϕit+1ςK

ς−1
it+1 + (1 − κ)]�

1 =
∫
Nit di�

C +
∫ [
Kit+1 − (1 − κ)Kit

]
di=

[∫ [
AitN

α
itL

1−α
it

]η
di

]1/η

�

1
C

= π�

Solve for

Ait = zit
[
AitN

α
itK

ς(1−α)−ς
it

]1−1/λ

= zλitN
αλ−α
it K−λςα+ςα

it

and

qit = Y 1−ηYη−1
it

= Y 1−η[AitN
α
itL

1−α
it

]η−1

= Y 1−η[zλitNαλ
it K

ς(1−λα)
it

]η−1
�

Substitute in labor FONC

Y 1−η[zλitNαλ
it K

ς(1−λα)
it

]η−1
zλitN

αλ−α
it K−λςα+ςα

it αNα−1
it Kς−ςα

it = θ�
which yields

Nit =
[

θ

Y 1−ηzληit α

]1/(ηαλ−1)

Kης(1−λα)/(1−ηαλ)
it �

Substitute in land FONC

Y 1−η[zλitNαλ
it K

ς(1−λα)
it

]η−1
zλitN

αλ
it K

−λςα
it (1 − α)= ϕit�

Y 1−ηKς(1−λα)(η−1)
it zηλit N

ηαλ
it K−λςα

it (1 − α)= ϕit�
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Simplify exponent on Kit ,

Kς(1−λα)(η−1)
it K−λςα

it =Kς(1−λα)η−ς(1−λα)−λςα
it

=Kς(1−λα)η−ς
it �

so that

ϕit = Y 1−ηzηλit N
ηαλ
it Kς(1−λα)η−ς

it (1 − α)

= Y 1−ηzηλit

[
θ

Y 1−ηzληit α

]ηαλ/(ηαλ−1)

×Kηαλης(1−λα)/(1−ηαλ)
it Kς(1−λα)η−ς

it (1 − α)�
Simplify the exponent on Kit ,

ηαλης(1 − λα)
1 −ηαλ + ς(1 − λα)η− ς

= ηαλης(1 − λα)+ ς(1 − λα)η− ς−ηαλ(ς(1 − λα)η− ς)
1 −ηαλ

= ηαλης− λαηαλης+ ς(1 − λα)η− ς−ηαλ(ςη− λαςη− ς)
1 −ηαλ

= ςη− ς
1 −ηαλ�

so that

ϕit = Y 1−ηzηλ/(1−ηαλ)
it

[
θ

Y 1−ηα

]ηαλ/(ηαλ−1)

K(ςη−ς)/(1−ηαλ)
it (1 − α)�

which can be substituted into the infrastructure FONC as

1 = βEit
[
ϕit+1ςK

ς−1
it+1 + (1 − κ)]

= βEit

[
Y 1−ηzηλ/(1−ηαλ)

it+1

[
θ

Y 1−ηα

]ηαλ/(ηαλ−1)

×K(ςη−1−ηαλς+ηαλ)/(1−ηαλ)
it+1 ς(1 − α)+ (1 − κ)

]

to yield

Kit+1 = [(
1 −β(1 − κ))

/
(
θηαλ/(ηαλ−1)(1 − α)ςβY (1−η)/(1−ηαλ)

×Eitzηλ/(1−ηαλ)
it+1

)](1−ηαλ)/(ςη−1−ηαλς+ηαλ)
�
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Solve for Yit and substitute into the expression for Y ,

Yit =AitN
α
itL

1−α
it

= zλitN
αλ
it K

ς(1−λα)
it

= zλit

[
θ

Y 1−ηzληit α

]αλ/(ηαλ−1)

Kαλης(1−λα)/(1−ηαλ)
it Kς(1−λα)

it

= zλit

[
θ

Y 1−ηzληit α

]αλ/(ηαλ−1)

Kς(1−λα)/(1−ηαλ)
it

= zλit

[
θ

Y 1−ηzληit α

]αλ/(ηαλ−1)

× [(1 −β(1 − κ))
/
(
βY(1−η)/(1−ηαλ)θηαλ/(ηαλ−1)(1 − α)ς

×Eit−1z
ηλ/(1−ηαλ)
it+1

)]ς(1−λα)/(ςη−1−ηαλς+ηαλ)
�

Substituting into the definition of Y ,

Y =
[∫

zηλit

[
θ

Y 1−ηzληit α

]ηαλ/(ηαλ−1)

× [(1 −β(1 − κ))
/
(
βY(1−η)/(1−ηαλ)θηαλ/(ηαλ−1)(1 − α)ς

×Eit−1z
ηλ/(1−ηαλ)
it+1

)]ς(1−λα)/(ςη−1−ηαλς+ηαλ)
di

]1/η

�

Using capital letters to denote complicated expressions of underlying parame-
ters, we arrive at

Y = Γ θBYD

[∫
zAit
[
Eit−1z

ηλ/(1−ηαλ)
it

]ς(1−λα)/(ςη−1−ηαλς+ηαλ)
di

]1/η

�

Y =
(
Γ θB

[∫
zAit
[
Eit−1z

ηλ/(1−ηαλ)
it

]ς(1−λα)/(ςη−1−ηαλς+ηαλ)
di

]1/η)1/(1−D)
�

Substitute for variables in the aggregate employment constraint:

1 =
∫
Ni di

=
∫ [

θ

Y 1−ηzληit α

]1/(ηαλ−1)

Kης(1−λα)/(1−ηαλ)
it di
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=
∫ [

θ

Y 1−ηzληit α

]1/(ηαλ−1)

× [(1 −β(1 − κ))
/
(
θηαλ/(ηαλ−1)(1 − α)ςβY (1−η)/(1−ηαλ)

×Eit−1z
ηλ/(1−ηαλ)
it

)]ης(1−λα)/(ςη−1−ηαλς+ηαλ)
di�

After substituting for Y , we arrive at

θ= f (zit−1�Eit−1z
af
it : i ∈ [0�1])�

Y = l(zit−1�Eit−1z
al
it : i ∈ [0�1])�

Kit+1 = g(zit�Eitzagit : i ∈ [0�1])�
Nit =m

(
zit�

{
zit−1�Eit−1z

am
it : i ∈ [0�1]})�

C + κ
∫
g
(
zit−1�Eit−1z

ag
it : i ∈ [0�1])di

= l(zit−1�Eit−1z
al
it : i ∈ [0�1])�

C = h(zit−1�Eit−1z
ag
it �Eit−1z

al
it : i ∈ [0�1])�

Notice that we can use the expression for

Nit =
[

θ

Y 1−ηzληit α

]1/(ηαλ−1)

Kης(1−λα)/(1−ηαλ)
it

to verify that ηαλ< 1 is not sufficient to guarantee employment is not inversely
related to productivity. For η< 0, we would have an inverse relationship. This
arises because high enough complementarity deters allocating workers to lo-
cations because output at those locations would be too high relative to other,
complementary, locations.

The marginal product of labor is given by

αY 1−ηzληit N
ηαλ−1
it Kης(1−λα)

it �

Clearly if ηαλ> 1, then as employment goes to zero, then so does the marginal
product of labor. Workers would be allocated to the city with the highest pro-
ductivity (for any given infrastructure stock). We require ηαλ< 1 to guarantee
that all locations are occupied. If they are all occupied, then the above expres-
sions can be used to solve for the unique equilibrium.
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H.4. Model Without Housing and With Infrastructure, Imperfect Substitutes,
and Freely Mobile Equipment

We have

max
∑

βt lnCt

+πt
[(∫

Yη
it di

)1/η

−C −
∫ [
Dit+1 − (1 − κd)Dit

]
di

− [Kt+1 − (1 − κk)Kt

]]

+πϕit
[
Dς
it −Lit

]
+πqit

[
AitK

φα
it N

φ(1−α)
it L(1−φ)

it −Yit
]

+πtθt
[

1 −
∫
Nit di

]

+πtrt
[

1 −
∫
Dit di

]
�

The necessary and sufficient conditions for an interior solution to the pro-
gram for given Ai are

qitAitφ(1 − α)Kφα
it N

φ(1−α)−1
it L1−φ

it = θ�
qitAit(1 −φ)Kφα

it N
(1−α)φ
it L−φ

it = ϕit�
qitAitφαK

φα−1
it Nφ(1−α)

it L1−φ
it = r�

qit = Y 1−ηYη−1
it �

Dς
it =Lit�

1 = βEit
[
ϕit+1ςD

ς−1
it+1 + (1 − κd)

]
�

1 = β[r + 1 − κk]�
1 =

∫
Nit di�

K =
∫
Kit di�

C +
∫ [
Dit+1 − (1 − κd)Dit

]
di+Kt+1 − (1 − κk)Kit =

[
Yη
it di

]1/η
�

AitK
φα
it N

φ(1−α)
it L1−φ

it = Yit�
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1
C

= π�

Solve for Kit , noting that the rental rate on equipment r is determined as a
function of parameters by the intertemporal condition:

qitAitφ(1 − α)Kφα
it N

φ(1−α)−1
it L1−φ

it

qitAitφαK
φα−1
it Nφ(1−α)

it L1−φ
it

= θ

r
�

(1 − α)Kit

αNit

= θ

r
�

Kit = αθ

(1 − α)rNit�

After substituting into land and labor FONCs and expressions for Yit , Ait , and
qit , the problem is essentially the same as above except for the additional term
in the aggregate equipment and resource constraints. Notice from the aggre-
gate equipment constraint that

K =
∫
Kit di

=
∫

αθ

(1 − α)rNit di

= αθ

(1 − α)r �

After making the substitution for K in the aggregate resource constraint and
following the steps in the model without equipment, we have a solution.

It is helpful to do the early parts of the derivation so we can find the restric-
tion on parameters necessary for a well behaved interior solution.

Solve for

Ait = zφ(1−α)
it

[
AitK

φα
it N

φ(1−α)
it L1−φ

it /Lit
]1−1/λ

= zφ(1−α)
it

[
Ait

(
αθ

(1 − α)rNit

)φα
Nφ(1−α)
it Dς(1−φ)−ς

it

]1−1/λ

= zλφ(1−α)
it

(
αθ

(1 − α)r
)φα(λ−1)

Nφλ−φ
it D−λςφ+ςφ

it

and

qit = Y 1−ηYη−1
it

= Y 1−η[AitK
φα
it N

φ(1−α)
it L1−φ

it

]η−1
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= Y 1−η
[
zλφ(1−α)
it

(
αθ

(1 − α)r
)φα(λ−1)

Nφλ−φ
it D−λςφ+ςφ

it

×
(

αθ

(1 − α)r
)φα

Nφ
it D

ς(1−φ)
it

]η−1

= Y 1−η
[
zλφ(1−α)
it

(
αθ

(1 − α)r
)φαλ

Nφλ
it D

ς−λςφ
it

]η−1

�

Substitute in the labor FONC,

qitAitφ(1 − α)Kφα
it N

φ(1−α)−1
it L1−φ

it = θ�

φ(1 − α)Y 1−η
[
zλφ(1−α)
it

(
αθ

(1 − α)r
)φαλ

Nφλ
it D

ς−λςφ
it

]η−1

zλφ(1−α)
it

×
(

αθ

(1 − α)r
)φα(λ−1)

Nφλ−φ
it D−λςφ+ςφ

it

(
αθ

(1 − α)r
)φα

Nφ−1
it L1−φ

it = θ�

zηλφ(1−α)
it

(
αθ

(1 − α)r
)ηφαλ

φ(1 − α)Y 1−ηNηφλ−1
it Dης−ηλςφ

it = θ�

so that we still have the necessary condition ηφλ< 1 to avoid corner solutions.

APPENDIX I: ESTIMATION ROBUSTNESS

We first confirm that making decisions earlier requires additional lags for the
instruments. Suppose firms’ choices are made at t −T , T > 0. We focus on the
model without housing and capital, and make use of log linear approximations.
Note that profits equal zero only in expectation, not by date and state. Here, to
make the notation simpler, we index cities by their location on the unit interval
rather than productivity history as we do in the paper and elsewhere in this
document.

We use the following implication of a conditional expectation. For any vari-
able x,

xit = Eit−Txit +
T−1∑
j=0

uit−j�

where

uit−j ⊥Ωt−j−1

denotes one-step-ahead forecast errors.
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In the competitive equilibrium firms, set labor as

Eit−T
αYit

Nit�t−T
= Eit−TWit�

where Nit�t−1 denotes employment for t chosen at t − T . Log linearizing yields

Eit−T elnα+lnYit−lnNit�t−T =Eit−T elnWit �

nit�t−T =Eit−T yit −Eit−Twit�
where

xit = lnXit −E lnXit

for variable X . Similarly, log linearizing the land FONC yields

lbit�t−T = Eit−T yit −Eit−T rit �
The TFP is

ait = yit − (1 − α)lbit�t−T + αnit�t−T �
Using the implication of the conditional expectation gives

nit�t−T = yit −wit +
T−1∑
j=0

uit−j�

lbit�t−T = yit − rit +
T−1∑
j=0

vit−j�

Therefore,

ait = (1 − α)rit + αwit +
T−1∑
j=0

uit−j +
T−1∑
j=0

vit−j�

The density externality is written as

yit − lbi�t−T = rit +
T−1∑
j=0

vit−j�

Clearly TFP and the externality are correlated with variables lagged up to
T − 1 times. Therefore, valid instruments must be lagged at least T times.

A similar result holds for the case when non-infrastructure capital is allo-
cated one period in advance of the TFP shock. In this case, non-infrastructure
investment implies a first order condition similar to that for infrastructure in
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the baseline version of the model. Using the notation from the first section of
this document,

πtPbt = βπt+1

∑
zt+1

[
rbt+1

(
zt+1

)+ Pbt+1(1 − κb)
]
Q(zt� zt+1)�

Using the fact that πt = πt+1 yields∑
zt+1

rbt+1

(
zt+1

)
Q(zt� zt+1)= Pbt/β− Pbt+1(1 − κb)= rbt+1�

where rbt+1 denotes the unconditional average rent on non-infrastructure cap-
ital. By the definition of a conditional expectation,

rbt+1

(
zt+1

)=
∑
zt+1

rbt+1

(
zt+1

)
Q(zt� zt+1)+ e(εt+1)= rbt+1 + e(εt+1)�

where εt+1 ⊥ zt is the TFP shock. It follows that the right hand side of the
measurement equation for city-specific TFP, equation (29) in the main text, is
identical except for the addition of an error term orthogonal to earlier dated
variables. Our instrumental variables strategy remains valid.

Now we consider several perturbations to the estimation that involve when
the density externality impacts TFP and the timing of allocation decision. We
allow TFP to depend on lagged density, and averages of current and lagged
density. This involves replacing rit in the main text’s equation (26) with lagged
values or averages of current and lagged values. The following table reports
our findings:

Perturbation of Estimation δ se Λ se

Replace rit with rit−1 1.040 0.024 0.101 0.052
Replace rit with rit−2 1.040 0.018 0.101 0.041
Replace rit with (rit + rit−1)/2 1.045 0.027 0.109 0.059
Replace rit with (rit−1 + rit−2)/2 1.042 0.021 0.103 0.043
Replace rit with (rit + rit−1 + rit−2)/3 1.045 0.024 0.108 0.055

Suppose allocations are picked T periods in advance. As discussed above,
this introduces expectational errors in addition to technology shocks in the
main text’s equation (26). To address this, we need to back up the instru-
ments. Backing up the instruments of course lowers their predictive power.
The following table reports our findings when we increase the lag on the in-
struments:

Perturbation of Estimation δ se Λ se

Replace instruments lagged 2 with 3 1.119 0.090 0.229 0.185
Replace instruments lagged 2 with 4 1.244 0.225 0.510 0.814
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TABLE S.XVI

ESTIMATION ROBUSTNESS RESULTS

Perturbation of Estimation With Lagged 3 Instruments δ se Λ se

Replace rit with rit−1 1.072 0.037 0.152 0.085
Replace rit with rit−2 1.043 0.021 0.106 0.049
Replace rit with (rit + rit−1)/2 1.091 0.054 0.182 0.119
Replace rit with (rit−1 + rit−2)/2 1.055 0.027 0.125 0.063
Replace rit with (rit + rit−1 + rit−2)/3 1.069 0.037 0.146 0.083

Perturbation of Estimation With Lagged 4 Instruments δ se Λ se

Replace rit with rit−1 1.091 0.059 0.202 0.161
Replace rit with rit−2 1.056 0.032 0.138 0.070
Replace rit with (rit + rit−1)/2 1.136 0.096 0.285 0.295
Replace rit with (rit−1 + rit−2)/2 1.070 0.042 0.163 0.101
Replace rit with (rit + rit−1 + rit−2)/3 1.093 0.058 0.205 0.155

Table S.XVI reports our findings when we combine the two perturbations.

APPENDIX J: VERIFYING THE LUTTMER (2007) PROPERTY

In our context, the Luttmer property is that the ratio of the Zipf coefficient
for technology relative to that for population is invariant to technology’s Zipf
coefficient, holding all other model parameters fixed. Therefore, for otherwise
fixed parameters, adjusting γz to yield a different Zipf coefficient for technol-
ogy should not change the Zipf coefficient ratio implied by the model if the
model satisfies the Luttmer property.

We verify the Luttmer property in our model by holding all parameters at
their estimated values except for η, λ, and γz . Recall that η, holding other
parameters fixed, can be adjusted to change the Zipf ratio. We consider η =
0�927 and η = 0�9, and λ = 1�02 and λ = 1�05. For the four combinations of
parameters, we vary γz so that the approximate technology Zipf coefficient
equals −10, −19, −20, and −21, resolving the model and calculating the Zipf
coefficient ratio for each case.

We face a challenge when approximating the technology process. In partic-
ular, holding fixed the domain of the approximation, adjusting the Zipf coef-
ficient changes the mass of the technology on the largest grid points and this
introduces a bias into our Zipf coefficient ratio calculation. Therefore, in our
calculations, we adjust the domain of the grid so that the mass on the largest
grid point is approximately the same.13

Table S.XVII reports our findings. If the Luttmer property holds, then the
technology–population ratio of Zipf coefficients should be invariant to the

13The mass on the last grid point is 0.0060, 0.0060, 0.0060, and 0.0061 for Zipf coefficients −21,
−20, −19, and −10.
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TABLE S.XVII

VALIDATION OF THE LUTTMER PROPERTY

Ratio of Zipf Coefficients

Technology’s λ= 1�05 λ= 1�02

Zipf Coefficient η= 0�927 η= 0�9 η= 0�927 η= 0�9

−21 4.71 3.80 4.27 3.49
−20 4.71 3.80 4.27 3.49
−19 4.72 3.83 4.28 3.49
−10 4.69 3.83 4.26 3.49

technology Zipf coefficient for each particular η and λ combination. While
this property holds “exactly” in only one case, the ratios are roughly constant
for the other cases and the variation does not follow a pattern that would sug-
gest significant departures from the Luttmer property. In this sense, we say
that we verify numerically that the Luttmer property holds approximately in
our model.

Recent results in Davis, Fisher, and Veracierto (2013) suggested that this
finding is not unique to our specification. These authors study a similar model
driven by a similar technology process, but without an agglomeration external-
ity. They found that the Luttmer property holds and confirmed that the kind
of model we study can be made consistent with empirical estimates of the level
and the ratio of the Zipf coefficients for technology and population.
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