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THIS SUPPLEMENT contains proofs and derivations for results presented in the
main paper. The notation used in the supplement is defined in the main paper.

A. PROOFS

This section contains proofs for Theorems 1(ii) and 2 as well as Corollary 1.
The proof of Theorem 1 requires Lemma A.1, which is stated below.

PROOF OF THEOREM 1(ii): Since the L1 distance satisfies the triangle in-
equality ∥∥PθYn − Pθ

φ̂n

∥∥ ≤ ‖PθYn − PθN�Yn‖ + ∥∥PθN�Yn − Pθ
φ̂n

∥∥�
it suffices to show that ‖PθN�Yn − Pθ

φ̂n
‖ P−→ 0:∥∥PθN�Yn − Pθ

φ̂n

∥∥
≤

∫
Rm

∥∥Pθ
φ̂n+Ĵ−1/2

n D−1
n s

− Pθ
φ̂n

∥∥dN(0� I)(s)
≤

∫
Rm

I{‖φ̂n −φ0‖< δ}I
{∥∥φ̂n −φ0 + Ĵ−1/2

n D−1
n s

∥∥< δ}
× ∥∥Pθ

φ̂n+Ĵ−1/2
n D−1

n s
− Pθ

φ̂n

∥∥dN(0� I)(s)+ 2I{‖φ̂n −φ0‖ ≥ δ}

+ 2
∫

Rm

I
{∥∥φ̂n −φ0 + Ĵ−1/2

n D−1
n s

∥∥ ≥ δ}dN(0� I)(s)
≤

∫
Rm

M(φ0� δ)
∥∥Ĵ−1/2

n D−1
n s

∥∥dN(0� I)(s)+ 2I{‖φ̂n −φ0‖ ≥ δ}

+ 2I{‖φ̂n −φ0‖ ≥ δ/2}
+ 2

∫
Rm

I
{∥∥Ĵ−1/2

n D−1
n s

∥∥ ≥ δ/2}
dN(0� I)(s)

≤M(φ0� δ)
∥∥Ĵ−1/2

n

∥∥‖D−1
n ‖

∫
Rm

‖s‖dN(0� I)(s)+ op(1) P−→ 0�

For the second inequality, we bound the L1 distance ‖Pθ
φ̂n+Ĵ−1/2

n D−1
n s

− Pθ
φ̂n

‖ by

2 if either φ̂n or φ̂n + Ĵ−1/2
n D−1

n s lies outside of the Nδ(φ0) neighborhood. For
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the third inequality, we use the Lipschitz bound of Assumption 2 and the in-
equality I{‖x + y‖ ≥ δ} ≤ I{‖x‖ ≥ δ/2} + I{‖y‖ ≥ δ/2}. The last line follows
from Assumption 1 that φ̂n converges in probability to φ0, ‖Dn‖ ↑ ∞, and
Ĵ−1/2
n =Op(1). A similar argument can be used to establish the convergence of
PθYn to Pθφ0

. Q.E.D.

The following lemma is needed for the subsequent proof of Theorem 2. To
simplify the notation, let pY(θ)= p(θ|Yn) and p0(θ)= p(θ|φ0). Similarly, we
abbreviate the thresholds κYn and κφ0 by κY and κ0.

LEMMA A.1: Suppose that
∫ |pY(θ) − p0(θ)|dθ = op(1) and

∫
I{p0(θ) =

κ0}p0(θ)dθ= 0, where κ0 <∞. Then∫
|I{pY(θ)≥ κ0} − I{p0(θ)≥ κ0}|pY(θ)dθ= op(1)�

PROOF: This lemma is used to prove Theorem 2. Write∫
|I{pY(θ)≥ κ0} − I{p0(θ)≥ κ0}|pY(θ)dθ

=
∫
I{θ|pY(θ)≥ κ0�p0(θ) < κ0}pY(θ)dθ

+
∫
I{θ|pY(θ) < κ0�p0(θ)≥ κ0}pY(θ)dθ

=
∫
θ∈An

pY(θ)dθ+
∫
θ∈Bn

pY(θ)dθ= (I) + (II)�

say. We subsequently construct op(1) bounds for terms (I) and (II).
Bound for (I): We deduce from the L1 convergence assumption of pY(θ) to

p0(θ) that

(I) =
∫
θ∈An

pY(θ)dθ=
∫
θ∈An

p0(θ)dθ+ op(1)= (Ia) + op(1)�

Thus, it suffices to construct an op(1) bound for (Ia). Define the function

fn(θ)= pY(θ)−p0(θ)

and notice that fn(θ) > 0 for θ ∈An. With this definition,∫
An

fn(θ)p0(θ)dθ=
∫
An

|pY(θ)−p0(θ)|p0(θ)dθ(A.1)

≤ κ0

∫
An

|pY(θ)−p0(θ)|dθ= op(1)�
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The inequality follows from p0(θ) < κ0 on the setAn. The op(1) statement is a
consequence of the assumptions that pY(θ) converges to p0(θ) in L1 and that
κ0 is finite.

Now notice that

I{θ ∈An} = I{I{θ ∈An}fn(θ) > 0}�(A.2)

If θ ∈An, then fn(θ) > 0, which means that I{θ ∈An}fn(θ) > 0. Moreover, for
any η> 0, we obtain the inequality

I{I{θ ∈An}fn(θ) > η} ≤ 1
η
I{θ ∈An}fn(θ)�(A.3)

Thus,

(Ia) =
∫
I{I{θ ∈An}fn(θ) > 0}p0(θ)dθ

≤
∫
I{I{θ ∈An}fn(θ) > 0}p0(θ)dθ

−
∫
I{I{θ ∈An}fn(θ) > η}p0(θ)dθ+ 1

η

∫
An

fn(θ)p0(θ)dθ

=
∫
I{0< I{θ ∈An}fn(θ)≤ η}p0(θ)dθ+ 1

η

∫
An

fn(θ)p0(θ)dθ

= (Ib) + (Ic)�

say. The first equality follows from (A.2). The inequality is a consequence
of (A.3).

To bound (Ib) notice that

I{0< I{θ ∈An}fn(θ)≤ η} ≤ I{κ0 −η≤ p0(θ)≤ κ0 +η}�
For the indicator function on the left-hand side to be 1, it has to be the case
that θ ∈An and fn(θ)≤ η. On the set An, pY(θ)≥ κ0, which leads to

κ0 ≤ pY(θ)= p0(θ)+ fn(θ)≤ p0(θ)+η�
that is,

κ0 −η≤ p0(θ)�

Moreover, p0(θ) < κ0 ≤ κ0 + η and, therefore, the following inequality is sat-
isfied:

κ0 −η≤ p0(θ)≤ κ0 +η�
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Thus,

(Ib) ≤
∫
I{κ0 −η≤ p0(θ)≤ κ0 +η}p0(θ)dθ�

Based on the dominated convergence theorem and the assumption
∫
I{p0(θ)=

κ0}p0(θ)= 0, we deduce that

lim
η−→0

∫
I{κ0 −η≤ p0(θ)≤ κ0 +η}p0(θ)dθ(A.4)

=
∫
I{p0(θ)= κ0}p0(θ)= 0�

Notice that our bound for (Ib) is deterministic.
To establish that (Ia)

P−→ 0, it suffices to show that for every ε > 0 and δ > 0,
there exists an N(ε�δ) such that for n≥N(ε�δ),

P{(Ia)> ε} ≤ P{(Ib)> ε/2} + P{(Ic)> ε/2}< δ�
Based on (A.4), we can find an η(ε) > 0 such that P{(Ib)> ε/2} = 0. To obtain
a bound for (Ic), define Zn = ∫

An
fn(θ)p0(θ)dθ such that (Ic) =Zn/η. Accord-

ing to (A.1), Zn = op(1). Thus, we can find an N(ε�δ) such that

P

{
|Zn|>η(ε)ε2

}
< δ

whenever n≥N(ε�δ), which shows that (Ia) = op(1).
Bound for (II): This bound can be obtained following the same steps. Change

the definition of fn(θ) to

fn(θ)= p0(θ)−pY(θ)�
Using this definition, we obtain that∫

θ∈Bn
fn(θ)pY(θ)dθ=

∫
θ∈Bn

(p0(θ)−pY(θ))pY(θ)dθ

≤ κ0

∫
θ∈Bn

|p0(θ)−pY(θ)|dθ= op(1)

because on the set Bn, the density pY(θ) is bounded by κ0. Now consider

(II) =
∫
Bn

pY(θ)dθ

=
∫
I{I{θ ∈ Bn}fn(θ) > 0}pY(θ)dθ



BAYESIAN AND FREQUENTIST INFERENCE 5

≤
∫
I{I{θ ∈ Bn}fn(θ) > 0}pY(θ)dθ

−
∫
I{I{θ ∈ Bn}fn(θ) > η}pY(θ)dθ

+ 1
η

∫
Bn

fn(θ)pY(θ)dθ

=
∫
I{0< I{θ ∈ Bn}fn(θ)≤ η}p0(θ)dθ

+ 1
η

∫
Bn

fn(θ)pY(θ)dθ+ op(1)

= (IIb) + (IIc) + op(1)�
In the last line, we used the L1 convergence to replace pY(θ) by p0(θ) in the
definition of term (IIb) which introduces an additional op(1) term.

To bound (IIb) notice that

I{0< I{θ ∈ Bn}fn(θ)≤ η} ≤ I{κ0 −η≤ pn(θ)≤ κ0 +η}�
For the indicator function on the left-hand side to be 1, it has to be the case
that θ ∈ Bn and fn(θ)≤ η. On the set Bn, pY(θ) < κ0, which leads to

κ0 >pY(θ)= p0(θ)− fn(θ)≥ p0(θ)−η�
that is,

κ0 +η≥ p0(θ)�

Moreover, p0(θ)≥ κ0 ≥ κ0 − η and, therefore, the following inequality is sat-
isfied:

κ0 −η≤ p0(θ)≤ κ0 +η�
Thus,

(IIb) ≤
∫
I{κ0 ≤ p0(θ) < κ0 +η}p0(θ)dθ�

Dominated convergence implies that the bound converges to 0 as η−→ 0. The
remaining steps needed to establish that (II) = op(1) are identical to the steps
followed for term (I). Q.E.D.

PROOF OF THEOREM 2: Throughout the proof, we express the symmetric
difference between two sets in terms of indicator functions: A 	 B = |I{x ∈
A} − I{x ∈ B}|.
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Part (i). To simplify the notation let pY(θ)= p(θ|Yn) and p0(θ)= p(θ|φ0).
Similarly, we abbreviate the thresholds κYn and κφ0 by κY and κ0. Write∫

|I{pY(θ)≥ κY } − I{p0(θ)≥ κ0}|pY(θ)dθ

=
∫

|I{pY(θ)≥ κY } − I{pY(θ)≥ κ0}|pY(θ)dθ

+
∫

|I{pY(θ)≥ κ0} − I{p0(θ)≥ κ0}|pY(θ)dθ
= (I) + (II)�

say. In view of our assumptions, Lemma A.1 provides an op(1) bound for
term (II). Now consider term (I). Since, by construction,∫

I{pY(θ)≥ κY }pY(θ)dθ= 1 − τ�

we can write term (I) as

(I) =
∫
I{pY(θ)≥ min{κ0�κY }}pY(θ)dθ

−
∫
I{pY(θ)≥ max{κ0�κY }}pY(θ)dθ

= I{κ0 ≥ κY }
[
(1 − τ)−

∫
I{pY(θ)≥ κ0}pY(θ)dθ

]

+ I{κ0 < κY }
[∫

I{pY(θ)≥ κ0}pY(θ)dθ− (1 − τ)
]

=
∣∣∣∣
∫
I{pY(θ)≥ κ0}pY(θ)dθ− (1 − τ)

∣∣∣∣�
To show that I = op(1), we add and subtract

∫
I{p0(θ) ≥ κ0}pY(θ)dθ and,

using the triangle inequality,

(I) ≤
∣∣∣∣
∫
I{pY(θ)≥ κ0}pY(θ)dθ−

∫
I{p0(θ)≥ κ0}pY(θ)dθ

∣∣∣∣
+

∣∣∣∣
∫
I{p0(θ)≥ κ0}pY(θ)dθ− (1 − τ)

∣∣∣∣
=

∣∣∣∣
∫
I{pY(θ)≥ κ0}pY(θ)dθ−

∫
I{p0(θ)≥ κ0}pY(θ)dθ

∣∣∣∣
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+
∣∣∣∣
∫
I{p0(θ)≥ κ0}pY(θ)dθ−

∫
I{p0(θ)≥ κ0}p0(θ)dθ

∣∣∣∣
≤

∫ ∣∣I{pY(θ)≥ κ0} − I{p0(θ)≥ κ0}
∣∣pY(θ)dθ

+
∫
I{p0(θ)≥ κ0}|pY(θ)−p0(θ)|dθ= op(1)�

The first equality holds because
∫
I{p0(θ) ≥ κ0}p0(θ)dθ = 1 − τ. The final

op(1) result follows from Lemma A.1 and the L1 convergence of the posterior
densities established in Theorem 1.

Part (ii). The triangle inequality implies that∥∥Pθ
φ̂n

− Pθφ0

∥∥ ≤ ∥∥PθYn − Pθ
φ̂n

∥∥ + ∥∥PθYn − Pθφ0

∥∥ P−→ 0

by Theorem 1(ii). Let pn(θ) = p(θ|φ̂n) and κn = κφ̂n . Then using the same
argument as for part (i), replacing pY(θ) by pn(θ) and κY by κn, we can easily
establish that∫ ∣∣I{θ ∈ CSθHPD(φ̂n)} − I{θ ∈ CSθHPD(φ0)}

∣∣dPθYn P−→ 0�(A.5)

Now consider the inequality

|I{θ ∈A} − I{θ ∈ B}|(A.6)

≤ |I{θ ∈A} − I{θ ∈ C}| + |I{θ ∈ B} − I{θ ∈ C}|
= (I) + (II)�

If the left-hand side of (A.6) is 0, then the inequality is trivially satisfied. The
left-hand side of (A.6) is 1 if θ ∈A and θ /∈ B or if θ /∈A and θ ∈ B. Since the
statement of the inequality is symmetric in A and B, we focus on the first case.
If θ ∈A, θ /∈ B, and θ ∈C, then (I) = |1−1| = 0 and (II) = |0−1| = 1. If θ ∈A,
θ /∈ B, and θ /∈ C, then (I) = |1 − 0| = 1 and (II) = |0 + 0| = 0. We deduce that
whenever the left-hand side of (A.6) is equal to 1, the right-hand side is equal
to 1 as well, which confirms the inequality.

Now let

A= CSθHPD(Y
n)� B= CSθHPD(φ̂n)� and C = CSθHPD(φ0)�

Integrating both sides of (A.6) yields∫
|I{θ ∈A} − I{θ ∈ B}|pY(θ)dθ

≤
∫

|I{θ ∈A} − I{θ ∈ C}|pY(θ)dθ
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+
∫

|I{θ ∈ B} − I{θ ∈C}|pY(θ)dθ
= op(1)�

The op(1) statement follows from part (i) and (A.5). Q.E.D.

PROOF OF COROLLARY 1: Recall that Θ(φ̂n)⊂ CSθF(Y
n) and CSθHPD(Y

n)⊂
Θ. Part (i) follows from the inequalities

PθYn(CSθHPD(Y
n) \ CSθF(Y

n))

≤ PθYn(Θ \Θ(φ̂n))
= 1 − PθYn(Θ(φ̂n))
≤ 1 − Pθ

φ̂n
(Θ(φ̂n))+ ∣∣Pθ

φ̂n
(Θ(φ̂n))− PθYn(Θ(φ̂n))

∣∣
P−→ 0�

The probability limit is obtained from Pθ
φ̂n
(Θ(φ̂n))= 1 and Theorem 1(ii).

Part (ii) can be deduced from the inequalities

PθYn(CSθF(Y
n) \ CSθHPD(Y

n))

≥ PθYn(Θ(φ̂n) \ CSθHPD(Y
n))

≥ PθYn(Θ(φ̂n))− PθYn(CSθHPD(Y
n))

≥ Pθ
φ̂n
(Θ(φ̂n))− PθYn(CSθHPD(Y

n))− ∣∣PθYn(Θ(φ̂n))− Pθ
φ̂n
(Θ(φ̂n))

∣∣
P−→ 1 − (1 − τ)= τ�

The probability limit is obtained from Pθ
φ̂n
(Θ(φ̂n))= 1, PθYn(CSθHPD(Y

n))= 1 −
τ, and Theorem 1(ii). Q.E.D.

B. DERIVATIONS OF RESULTS

This section contains derivations for Section 2 and for Remark 2 in Section 3,
as well as detailed derivations for the entry game illustration in Section 4.

Derivations for Section 2

Direct calculation of the posterior density of θ:

p(θ|Yn)= 1√
2π/n

∫ ∞

−∞

1
λ
I{φ≤ θ≤φ+ λ}exp

{
−n

2
(φ− φ̂n)2

}
dφ
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= 1
λ

1√
2π

∫ √
n(θ−φ̂n)

√
n(θ−φ̂n−λ)

exp
{
−s

2

2

}
ds

= 1
λ

[
�N(

√
n(θ− φ̂n))−�N(

√
n(θ− φ̂n − λ))]�

The second equality follows from rearranging the inequalities in the indicator
function and the change of variables s = √

n(φ− φ̂n). It is straightforward to
verify that p(θ|Yn) has a single mode at θ= φ̂n+λ/2 and is symmetric around
the mode.

Derivations for Section 3

DIRECT CALCULATIONS TO VERIFY EQUATION (18): We begin with the
change of variable s = Ĵ1/2

n Dn(θ− φ̂n + s̃), which leads to

p(θ|Yn)= pN(θ|Yn)

= 1
λn

∫
f

(
θ− φ̂n − Ĵ−1/2

n D−1
n s

λn

)
ϕN(s)ds

= 1
λn

∣∣Ĵ1/2
n Dn

∣∣ ∫ 0

s̃=−λn
f (−λ−1

n s̃)ϕN
(
Ĵ1/2
n Dn(θ− φ̂n + s̃))ds̃�

The second equality makes use of the assumption that f (x)= 0 outside of the
unit interval. The L1 distance can be bounded as

∫
θ

∣∣pN(θ|Yn)− ∣∣Ĵ1/2
n Dn

∣∣ϕN(
Ĵ1/2
n Dn(θ− φ̂n)

)∣∣dθ(B.1)

= ∣∣Ĵ1/2
n Dn

∣∣ ∫
θ

∣∣∣∣
∫ 0

s̃=−λn

1
λn
f (−λ−1

n s̃)

× [
ϕN

(
Ĵ1/2
n Dn(θ− φ̂n + s̃)) −ϕN

(
Ĵ1/2
n Dn(θ− φ̂n)

)]
ds̃

∣∣∣∣dθ
≤ ∣∣Ĵ1/2

n Dn

∣∣ ∫ 0

s̃=−λn

∫
θ

1
λn
f (−λ−1

n s̃)

× ∣∣ϕN(
Ĵ1/2
n Dn(θ− φ̂n + s̃)) −ϕN

(
Ĵ1/2
n Dn(θ− φ̂n)

)∣∣dθds̃
≤

∫ 0

s̃=−λn

1
λn
f (−λ−1

n s̃)

∫
θ̃

∣∣ϕN(
θ̃+ Ĵ1/2

n Dns̃
) −ϕN(θ̃)

∣∣dθ̃ds̃�
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The first equality follows because
∫ 1

0 f (x)dx= 1 and ϕN(Ĵ1/2
n Dn(θ− φ̂n)) does

not depend on s̃. The last inequality is based on the change of variables θ̃ =
Ĵ1/2
n Dn(θ− φ̂n)�
Now consider the difference ϕN(θ̃+ h)− ϕN(θ̃) for −h̄ ≤ h ≤ 0. By direct

calculation, we obtain

|ϕN(θ̃+ h)−ϕN(θ̃)| =
∣∣∣∣(2π)−1/2 exp

{
−1

2
(θ̃+ h)2

}
−ϕN(θ̃)

∣∣∣∣
=

∣∣∣∣exp
{
−1

2
(2θ̃h+ h2)

}
− 1

∣∣∣∣ϕN(θ̃)�
A first-order Taylor series expansion around h= 0 yields

exp
{
−1

2
(2θ̃h+ h2)

}
− 1

= −(θ̃+ h∗(θ̃))exp{−θ̃h∗(θ̃)}exp{−h2
∗(θ̃)/2}h�

where −h̄≤ h∗(θ̃)≤ 0. Thus, on the interval −h̄≤ h≤ 0, we obtain the bound∣∣∣∣exp
{
−1

2
(2θ̃h+ h2)

}
− 1

∣∣∣∣ϕN(θ̃)(B.2)

≤ (|θ̃| + h̄)exp{−θ̃h̄I{θ̃≤ 0}}h̄ϕN(θ̃)�

Replacing h̄ by Ĵ1/2
n Dnλn in (B.2) and combining (B.1) with (B.2) leads to∫

θ

∣∣pN(θ|Yn)− ∣∣Ĵ1/2
n Dn

∣∣ϕN(
Ĵ1/2
n Dn(θ− φ̂n)

)∣∣dθ
≤ Ĵ1/2

n Dnλn

∫
θ̃

(|θ̃| + Ĵ1/2
n Dnλn

)
× exp

{−θ̃Ĵ1/2
n DnλnI{θ̃≤ 0}}ϕN(θ̃)dθ̃

= op(1)�
The op(1) statement follows because Dnλn −→ 0, and we can find a finite con-
stant M and an NM such that for n >NM ,∫

θ̃

(|θ̃| + Ĵ1/2
n Dnλn

)
exp

{−θ̃Ĵ1/2
n DnλnI{θ̃≤ 0}}ϕN(θ̃)dθ̃≤M

with probability approaching 1.
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Derivations for Section 4

The probabilities that firm i is profitable as a monopolist and a duopolist are

mi =�N(βi) and di =�N(βi − γi)�(B.3)

The relationship between the reduced-form entry probabilities, and mi and di,
i= 1�2, is given by

φ11 = d1d2�(B.4)

φ00 = (1 −m1)(1 −m2)�(B.5)

φ10 =m1(1 −m2)+ d1(m2 − d2)+ψ(m1 − d1)(m2 − d2)(B.6)

=m1(1 − d2)− (1 −ψ)(m1 − d1)(m2 − d2)�

where ψ ∈ [0�1]. The vector of nonredundant reduced-form parameters is
given by φ = [φ11�φ00�φ10]′ and the structural parameters are θ = [β1�γ1�
β2�γ2]′. In addition, there is an auxiliary parameter ψ.

Identified Set

We now provide a characterization of the identified set Θ(φ). Define

G(θ�α)=
[
G1(θ)

G2(θ)

]
−

[
02×1

α

]
�(B.7)

where

G1(θ)=
[

d1d2

(1 −m1)(1 −m2)

]
� G2(θ)=m1(1 − d2)�

and

α= (1 −ψ)(m1 − d1)(m2 − d2)�

Moreover, let

ᾱ(θ)= (m1 − d1)(m2 − d2)(B.8)

and

Q(θ;φ)= min
0≤α≤ᾱ(θ)

‖φ−G(θ�α)‖�(B.9)

Notice that by construction, Q(θ;φ)≥ 0. In view of (B.4) to (B.6) and (B.7), it
is straightforward to verify that the identified set can be characterized as

θ ∈Θ(φ) if and only if Q(θ;φ)= 0�
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Suppose we partition θ into θ= [θ′
1� θ

′
2]′. Equations (B.4) and (B.5) imply that

conditional on φ and θ1, the subvector θ2 is uniquely determined. Thus, the
dimension of the identified set Θ(φ) is 2. Since the entry game is symmetric
with respect to firm 1 and firm 2, our illustration focuses on inference for θ1. We
denote the identified set for this subvector byΘ1(φ) and it can be characterized
by the projection

Θ1(φ)= {
θ1|∃θ2 s.t. Q([θ′

1� θ
′
2]′;φ)= 0

}
�

Frequentist Inference

The starting point of the frequentist inference is a large-sample approxima-
tion of the sampling distribution of φ̂n, defined as

φ̂n =
[
n11

n
�
n00

n
�
n10

n

]′
�(B.10)

where n11 is the number of markets with a duopoly, n00 is the number of mar-
kets without entry, and n10 is the number of markets with a firm 1 monopoly.
We assume that

√
n(φ̂n −φ)�⇒N(0�Λ(φ))(B.11)

uniformly in φ, where Λ(φ) can be consistently estimated by Λ̂. Now define

Qn(θ; φ̂n)= min
0≤α≤ᾱ(θ)

n‖φ̂n −G(θ�α)‖Λ̂−1 �(B.12)

We construct a confidence set for θ as a level set of Qn(θ; φ̂n). To do so, we
examine the sampling distribution of Qn(θ; φ̂n) for θ ∈Θ(φ).

We partition φ̂n into φ̂1�n and φ̂2�n, where the partitions conform with G1(θ)
and G2(θ). Moreover, define

Ĥ1(θ)= φ̂1�n −G1(θ)� Ĥ2(θ)= φ̂2�n −G2(θ)�

and partition Λ̂ accordingly. In addition, let

Ĥ2�11(θ)= Ĥ2(θ)− Λ̂21Λ̂
−1
11 Ĥ1(θ)� Λ̂2�11 = Λ̂22 − Λ̂21Λ̂

−1
11 Λ̂12�

Using the formula for factorizing a joint normal density into a marginal and a
conditional density, we can rewrite the objective function as

Qn(θ; φ̂n)= min
0≤α≤ᾱ(θ)

n
(‖Ĥ1(θ)‖Λ̂−1

11
+ ‖Ĥ2�11(θ)+ α‖Λ̂−1

2�11

)
�(B.13)
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The minimizing value of α, which we denote by α̂(θ), is given by

α̂(θ)=
⎧⎨
⎩

0� if 0 ≤ Ĥ2�11(θ),
−Ĥ2�11(θ)� if −ᾱ(θ)≤ Ĥ2�11(θ) < 0,
ᾱ(θ)� otherwise.

(B.14)

In turn, the objective function becomes

Qn(θ; φ̂n)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n‖Ĥ1(θ)‖Λ̂−1
11

+ n‖Ĥ2�11(θ)‖Λ̂−1
2�11
�

if 0 ≤ Ĥ2�11(θ)�

n‖Ĥ1(θ)‖Λ̂−1
11
� if −ᾱ(θ)≤ Ĥ2�11(θ) < 0�

n‖Ĥ1(θ)‖Λ̂−1
11

+ n‖Ĥ2�11(θ)+ ᾱ(θ)‖Λ̂−1
2�11
�

otherwise�

(B.15)

As shown in Andrews and Guggenberger (2009), critical values for the con-
struction of uniformly valid confidence sets can be obtained by considering the
behavior of the objective function Qn(·) under sequences of parameters. To do
so, suppose data are generated based on φn =G(θn�αn). To approximate the
distribution of Qn(θn; φ̂n), notice that

Ĥ1(θn)= φ̂1�n −G1(θn)

= φ̂1�n −φ1�n�

Ĥ2�11(θn)= φ̂2�n −G2(θn)− Λ̂21Λ̂
−1
11 [φ̂1�n −G1(θn)]

= φ̂2�n −φ2�n − αn − Λ̂21Λ̂
−1
11 (φ̂1�n −φ1�n)�

Let

Z1�n = √
nΛ̂−1/2

11 (φ̂1�n −φ1�n)�

Z2�11�n = √
nΛ̂−1/2

2�11 [φ̂2�n −φ2�n − Λ̂21Λ̂
−1
11 (φ̂1�n −φ1�n)]�

Using this notation, we can rewrite the objective function as

Qn(θn; φ̂n)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖Z1�n‖ + ∥∥Z2�11�n − √
nΛ̂−1/2

2�11 αn
∥∥�

if
√
nΛ̂−1/2

2�11 αn ≤Z2�11�n�

‖Z1�n‖ + ‖Z2�11�n + √
nΛ̂−1/2

2�11 (ᾱ(θn)− αn)‖�
if Z2�11�n <−√

nΛ̂−1/2
2�11 (ᾱ(θn)− αn)�

‖Z1�n‖� otherwise�

(B.16)
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Now suppose that
√
nΛ−1/2

2�11 αn −→ a and
√
nΛ−1/2

2�11 (ᾱ(θn)− αn)−→ ā, where
a ∈ R

+ ∪ ∞ and ā ∈ R
+ ∪ ∞. Thus,

Qn(θn; φ̂n)�⇒
{‖Z1‖ + ‖Z2�11 − a‖� if a≤Z2�11,

‖Z1‖ + ‖Z2�11 + ā‖� if Z2�11 <−ā,
‖Z1‖� otherwise,

(B.17)

where Z1 ∼ N(0� I2), Z2�11 ∼ N(0�1), and Z1 and Z2�11 are independent. We
have to distinguish three cases. First,

Qn(θn; φ̂n)�⇒ ‖Z1‖
≤ ‖Z1‖ + ‖Z2�11‖I{Z2�11 ≥ 0} if a= ∞� ā= ∞�

Second,

Qn(θn; φ̂n)�⇒ ‖Z1‖ + ‖Z2�11 − a‖I{Z2�11 ≥ a}
≤ ‖Z1‖ + ‖Z2�11‖I{Z2�11 ≥ 0} if a <∞� ā= ∞�

Third,

Qn(θn; φ̂n)�⇒ ‖Z1‖ + ‖Z2�11 − a‖I{Z2�11 ≥ a}
+ ‖Z2�11 + ā‖I{Z2�11 <−ā} if a <∞� ā <∞

≤ ‖Z1‖ + ‖Z2�11‖�
The bound for this last case is weaker than the bounds for the first two cases.
The case ā < 0 arises only if ᾱ(θn)−→ 0 sufficiently fast, meaning that θn ap-
proaches an area of the parameter space in which the model is point-identified.
From the definition of ᾱ(θ) in (B.8), it follows that the third case arises if one
of the interaction parameters is close to 0. In our numerical illustration, we
use a conservative fixed critical value obtained from the 1 − τ quantile of a χ2

(df = 3).
A frequentist confidence set for the four-dimensional parameter vector θ

can then be defined as the level set

CSθF(Y
n)= {θ|Qn(θ; φ̂n)≤ c2

τ}�(B.18)

We are restricting our attention to confidence sets constructed from fixed
(rather than sample-size and θ-dependent) critical values. In principle, one can
construct the set CSθF(Y

n) by evaluating the objective function Qn(θ; φ̂n) on
a four-dimensional grid. However, since the identified set Θ(φ) lies in a two-
dimensional subspace, the specification of a suitable grid is difficult. Moreover,
our goal is to construct a confidence set for the subvector θ1. Thus, we let

¯
Qn(θ1; φ̂n)= min

θ2
Qn([θ′

1� θ2]′; φ̂n)
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and define

CSθ1
F (Y

n)= {θ|
¯
Qn(θ1; φ̂n)≤ c2

τ}�(B.19)

The confidence set CSθ1
F (Y

n) is the projection of CSθF(Y
n) onto the domain

of θ1. To compute the projection-based confidence set, we specify a two-
dimensional grid for θ1 and evaluate the objective function

¯
Qn(θ1; φ̂n) for each

grid point. A parameter value is included in the confidence set if
¯
Qn(θ1; φ̂n)≤

c2
τ .

Bayesian Inference: Draws From the Conditional Prior

Prior 1 and prior 2 are specified on the θ-ψ space through densities p(θ�ψ).
These priors induce a prior distribution on the reduced-form parameters φ.
As explained in the main text, the conditional prior of θ given φ will not get
updated through the likelihood function and the posterior will converge to
p(θ|φ̂n). To characterize the conditional prior p(θ1|φ), we conduct the follow-
ing change of variables. Let

Z = [β1�γ1�β2�γ2�ψ]′(B.20)

and

X = [β1�γ1�φ11�φ00�φ10]′�(B.21)

To convert a prior density for Z = f (X) into a prior for X , we can use

pX(X)= pZ(f (X))|f ′(X)|�(B.22)

Once we have derived pX(X), we can proceed as follows. Notice that

p(θ1|φ)∝ p(θ1�φ)�(B.23)

We use a random-walk Metropolis algorithm to generate draws from p(θ1|φ).
For this algorithm, it is sufficient to be able evaluate the joint density p(θ1�φ)
numerically. Descriptions of the algorithm can be found in many textbooks
(e.g., Geweke (2005)). Our proposal density is multivariate Gaussian with a
covariance matrix that equals a suitably scaled identity matrix.

We proceed by characterizing the function f (X) component by component
and then derive the Jacobian f ′(X). The following functional relationships are
useful:

m1 =�N(β1)� m2 =�N(β2)�

d1 =�N(β1 − γ1)� d2 =�N(β2 − γ2)�
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Since we have to solve for β2 and γ2, notice that

β2 =�−1
N (m2)� γ2 =�−1

N (m2)−�−1
N (d2)�

The Nash equilibrium conditions imply that

φ00 = (1 −m1)(1 −m2)�

φ11 = d1d2�

φ10 =m1(1 −m2)+ d1(m2 − d2)+ψ(m1 − d1)(m2 − d2)�

We can use these conditions to solve for m2, d2, and ψ:

m2 = 1 − φ00

1 −m1
�

d2 = φ11

d1
�

ψ= φ10 −m1(1 −m2)− d1(m2 − d2)

(m1 − d1)(m2 − d2)
�

The expression for ψ can be simplified by replacing m2 and d2,

ψ= φ10 −m1(1 −m2)− d1(m2 − d2)

(m1 − d1)(m2 − d2)

=
φ10 −φ00

m1

1 −m1
− d1

(
1 − φ00

1 −m1
− φ11

d1

)

(m1 − d1)

(
1 − φ00

1 −m1
− φ11

d1

)

=
φ10(1 −m1)−φ00m1 − d1

(
1 −m1 −φ00 − φ11(1 −m1)

d1

)

(m1 − d1)

(
1 −m1 −φ00 − φ11(1 −m1)

d1

)

= φ10(1 −m1)−φ00m1 − d1g(X)

(m1 − d1)g(X)
�

where

g(X)=
(

1 −m1 −φ00 − φ11(1 −m1)

d1

)
�

Combining terms, we obtain the following expressions for the components
of f (X):

f1(X)= β1�
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f2(X)= γ1�

f3(X)=�−1
N

(
1 − φ00

1 −�N(β1)

)
�

f4(X)= f3(X)−�−1
N

(
φ11

�N(β1 − γ1)

)
�

f5(X)= A(X)

B(X)

= φ10(1 −�N(β1))−φ00�N(β1)−�N(β1 − γ1)g(X)

(�N(β1)−�N(β1 − γ1))g(X)
�

where

g(X)=
(

1 −�N(β1)−φ00 − φ11(1 −�N(β1))

�N(β1 − γ1)

)
�

Now we can calculate the derivatives for the Jacobian matrix. For this, define

ψ(z)= ∂�−1
N (z)

∂z
= 1
φN(�

−1
N (z))

�

Term f1(X):

∂f1(X)

∂β1
= 1�

Term f2(X):

∂f2(X)

∂γ1
= 1�

Term f3(X):

∂f3(X)

∂β1
= −ψ

(
1 − φ00

1 −�N(β1)

)
φ00

[1 −�N(β1)]2
φN(β1)�

∂f3(X)

∂φ00
= −ψ

(
1 − φ00

1 −�N(β1)

)
1

1 −�N(β1)
�

Term f4(X):

∂f4(X)

∂β1
= ∂f3(X)

∂β1
+ψ

(
φ11

�N(β1 − γ1)

)
φ11φN(β1 − γ1)

�2
N(β1 − γ1)

�

∂f4(X)

∂γ1
= −ψ

(
φ11

�N(β1 − γ1)

)
φ11φN(β1 − γ1)

�2
N(β1 − γ1)

�
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∂f4(X)

∂φ11
= −ψ

(
φ11

�N(β1 − γ1)

)
1

�N(β1 − γ1)
�

∂f4(X)

∂φ00
= ∂f3(X)

∂φ00
�

Term f5(X):

∂f5(X)

∂x
=
∂A(X)

∂x
B(X)−A(X)∂B(X)

∂x
B(X)2

�

Term A(X):

∂A(X)

∂β1
= −(φ10 +φ00)φN(β1)−φN(β1 − γ1)g(X)

−�N(β1 − γ1)
∂g(X)

∂β1
�

∂A(X)

∂γ1
=φN(β1 − γ1)g(X)−�N(β1 − γ1)

∂g(X)

∂γ1
�

∂A(X)

∂φ11
= −�N(β1 − γ1)

∂g(X)

∂φ11
�

∂A(X)

∂φ00
= −�N(β1)−�N(β1 − γ1)

∂g(X)

∂φ00
�

∂A(X)

∂φ10
= (1 −�N(β1))−�N(β1 − γ1)

∂g(X)

∂φ10
�

Term B(X):

∂B(X)

∂β1
= (φN(β1)−φN(β1 − γ1))g(X)

+ (�N(β1)−�N(β1 − γ1))
∂g(X)

∂β1
�

∂B(X)

∂γ1
=φN(β1 − γ1)g(X)+ (�N(β1)−�N(β1 − γ1))

∂g(X)

∂γ1
�

∂B(X)

∂φ11
= (�N(β1)−�N(β1 − γ1))

∂g(X)

∂φ11
�

∂B(X)

∂φ00
= (�N(β1)−�N(β1 − γ1))

∂g(X)

∂φ00
�
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Term g(X):

∂g(X)

∂β1
= −φN(β1)+ φ11φN(β1)

�N(β1 − γ1)
+ φ11(1 −�N(β1))φN(β1 − γ1)

�2
N(β1 − γ1)

�

∂g(X)

∂γ1
= −φ11(1 −�N(β1))φN(β1 − γ1)

�2
N(β1 − γ1)

�

∂g(X)

∂φ11
= − 1 −�N(β1)

�N(β1 − γ1)
�

∂g(X)

∂φ00
= −1�

Bayesian Inference: Draws From the Posterior

According to Equations (B.3)–(B.6), we can express the reduced-form prob-
abilities as functions of θ and ψ. Thus, the likelihood function is given by

p(Yn|θ�ψ)=φn11
11 (θ�ψ)φ

n00
00 (θ�ψ)φ

n10
10 (θ�ψ)φ

n01
01 (θ�ψ)�(B.24)

If this prior distribution is combined with a prior specified on the θ–ψ space,
then the posterior is given by

p(θ�ψ|Yn)∝ p(Yn|θ�ψ)p(θ�ψ)(B.25)

and draws can be generated with a random-walk Metropolis algorithm.
In addition to priors 1 and 2, we consider a prior that is flat with respect to

the reduced-form parameters. Conditional on φ, the prior for θ1 is uniform on
the identified set Θ1(φ). To obtain draws from the posterior distribution of θ1,
we sample (i) from p(φ|Yn) and (ii) from p(θ1|φ). For step (i), notice that
under the flat prior for φ, the posterior distribution PφYn takes the form of a
Dirichlet distribution

[φ11�φ00�φ10�φ01]′ ∼ Dirichlet(n11 + 1� n00 + 1� n10 + 1� n01)�

A draw from this Dirichlet distribution can be generated as follows: Let
aj ∼ G(nj + 1�1), where j ∈ {11�00�10�01}, and G(α�1) denotes a Gamma
distribution with shape parameter α and scale parameter 1. Then set

φ= [a11� a00� a10� a01]′/(a11 + a00 + a10 + a01)�

For step (ii) we specify a two-dimensional grid for θ1 so as to construct pro-
jections of the identified set Θ1(φ) onto the β1 and γ1 ordinates. Let these
projections be delimited by

¯
β1, β̄1,

¯
γ1, and γ̄1. We then use an acceptance sam-

pler with a proposal density that is uniform on [
¯
β1� β̄1] ⊗ [

¯
γ1� γ̄1] to obtain a

draw of θ1 conditional on φ.
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Bayesian Inference: Credible Sets

Credible sets are computed according to the following steps:
Step 1. Construct two independent sequences {θ(1)1�s}Ss=1 and {θ(2)1�s}Ss=1 of draws

from the distribution of θ1.
Step 2. Use the {θ(1)1�s}Ss=1 draws to construct kernel density estimates p̂(θ(2)1�s )

for each θ(2)1�s , s = 1� � � � � S.
Step 3. Find a cutoff κ such that (1 − τ)S of the density estimates p̂(θ(2)1�s )

are greater than or equal to κ.
Step 4. Use the {θ(1)1�s}Ss=1 draws to construct kernel density estimates p̂(θ1)

for values of θ1 on a two-dimensional grid. Include a particular grid point into
the credible set if p̂(θ1)≥ κ.
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