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What outcomes can be implemented by the choice of an information structure in
binary-action supermodular games? An outcome is partially implementable if it sat-
isfies obedience (Bergemann and Morris (2016)). We characterize when an outcome
is smallest equilibrium implementable (induced by the smallest equilibrium). Smallest
equilibrium implementation requires a stronger sequential obedience condition: there
is a stochastic ordering of players under which players are prepared to switch to the
high action even if they think only those before them will switch. We then characterize
the optimal outcome induced by an information designer who prefers the high action
to be played, but anticipates that the worst (hence smallest) equilibrium will be played.
In a potential game, under convexity assumptions on the potential and the designer’s
objective, it is optimal to choose an outcome where actions are perfectly coordinated
(all players choose the same action), with the high action profile played on the largest
event where that action profile maximizes the average potential.

KEYWORDS: Information design, supermodular game, smallest equilibrium imple-
mentation, sequential obedience, potential game.

1. INTRODUCTION

CONSIDER AN INFORMATION DESIGNER WHO CAN CHOOSE the information structure for
players in a game but cannot control what actions the players choose. The designer is in-
terested in the induced joint distribution over actions and states, which we call an outcome.
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We are interested in two questions: What outcomes can be implemented by information
design? And which outcome will the designer choose given an objective function?

These questions have been studied in recent years under the classical partial implemen-
tation assumption that the designer can also choose the equilibrium played. It is without
loss of generality to restrict attention to direct mechanisms, where players are simply given
an action recommendation by the information designer. An outcome is partially imple-
mentable if and only if it satisfies an obedience constraint, that is, the requirement that
players have an incentive to follow the designer’s recommendation. This is equivalent to
the requirement that the outcome be an (incomplete information version of) correlated
equilibrium (Bergemann and Morris (2016)).

In this paper, we study how the answers to our questions change if we are interested
in a more demanding notion of implementation: smallest equilibrium implementation. We
address these questions in the context of binary-action supermodular (BAS) games, where
each player has two actions, low and high, and the payoffs are supermodular at each state.
Smallest equilibrium implementation requires that the outcome be induced in the small-
est equilibrium of the incomplete information game defined by the chosen information
structure.1 A smallest equilibrium always exists, and it arises if players are initially playing
the low action and switch to the high action only if it is uniquely rationalizable to do so.2
Our first main result addresses the implementability question by providing a characteri-
zation of smallest equilibrium implementability.

Our characterization is closely analogous to the obedience characterization of partial
implementation. The more demanding criterion of smallest equilibrium implementation
gives rise to a more demanding sequential obedience constraint. Sequential obedience re-
quires that it be possible for the information designer to choose (perhaps randomly con-
ditioning on the state) an ordering of players in which players are recommended to play
the high action in such a way that they are willing to follow the recommendation even if
they only expect players who received the recommendation before them to choose the high
action. Under a dominance state assumption (there exists a state at which the high ac-
tion is a dominant action for all players), we show that (the closure of) the set of smallest
equilibrium implementable outcomes is equal to the set of outcomes (consistent with the
prior) that satisfy sequential obedience as well as obedience.3 Thus, this set, like the set
of partially implementable outcomes, is characterized by a finite collection of linear con-
straints.

Our second main result addresses an optimal information design question: Which out-
comes will be induced by an information designer who prefers the high action to be played
but anticipates that the worst, hence smallest, equilibrium will be played?4 The set of at-
tainable outcomes, that is, smallest equilibrium implementable outcomes, having been
characterized by our first result, our second result determines which outcomes in this set

1Strategy profiles are partially ordered according to the probability of playing the high action at each type
of each player.

2Throughout the paper, we will appeal to well-known properties of supermodular games, without supplying
explicit references. Milgrom and Roberts (1990) and Vives (1990) are classic references.

3Largest equilibrium implementability can symmetrically be characterized by a reverse version of sequential
obedience. For full implementability, that is, the requirement that an outcome be induced by all equilibria of
some information structure, sequential obedience and reverse sequential obedience are clearly necessary, and
we show in Appendix B.1 of the Supplemental Material (Morris, Oyama, and Takahashi (2024)) that, under an
appropriate extension of the dominance state assumption, these conditions are in fact jointly sufficient.

4Assuming that the designer can select the equilibrium bypasses the issue of eliminating the possibility of
coordination failure, a key issue in games with strategic complementarities.
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are optimal given the objective function of the designer. This result applies when two re-
strictions are satisfied. First, the game has a potential (Monderer and Shapley (1996));5

this restriction requires that the sum of payoff gains from switching the actions of a subset
of players not depend on the order in which they are switched. Second, the potential and
designer’s objective are convex;6 this restriction is automatically satisfied in symmetric
games (by supermodularity) and is satisfied in asymmetric games when the asymmetry is
not too large.

Under these conditions, an optimal outcome is shown to satisfy perfect coordination:
either all players choose the low action or all players choose the high action. This is true
even with asymmetric payoffs. The designer has an instrumental motive to perfectly co-
ordinate the players’ actions, since it slackens incentive constraints by the convexity of
the potential and thus enables the designer to induce higher outcomes. Convexity of the
designer’s objective, that is, her intrinsic preference for coordination, only increases the
advantages of perfect coordination. Solving our information design problem then reduces
to solving a simple Bayesian persuasion problem. Say that a state is “good” if the potential
of all playing the high action is higher than the potential of all playing the low action (nor-
malized to zero), and “bad” otherwise. It is then optimal to pool all the good states with
as many bad states with the lowest cost-benefit ratio as possible, subject to the average
potential being nonnegative, where the cost of including a state is given by the loss in the
potential at that state, while the benefit is the gain in the objective at that state.

In the recent literature on information design with adversarial equilibrium selection,
the problem has been addressed only in some special BAS games. The present paper
offers a unified explanation, for general BAS games. It also provides a framework within
which to identify the tight connection between smallest equilibrium implementation and
the literatures on higher order beliefs in games and contracting with externalities. We
discuss the related literature in Section 5, as well as in Section 2 through the leading
example and in Section 3.3 through the (limit) complete information case.

1.1. Setting

There are finitely many players, denoted by I = {1� � � � �|I|}, |I| ≥ 2. A state is drawn
from a finite set � according to the probability distribution μ ∈ �(�),7 where we assume
that μ has full support: μ(θ) > 0 for all θ ∈�.

Players make binary decisions, ai ∈ Ai ={0�1}, simultaneously. We denote A = ∏
i∈I Ai

and A−i = ∏
j �=i Aj . Given action profile a = (ai)i∈I ∈ A and state θ ∈ �, player i ∈ I re-

ceives payoff ui(a�θ). Throughout this paper, we assume supermodular payoffs, that is, for
each i ∈ I and θ ∈ �,

di(a−i� θ) ≡ ui

(
(1� a−i)� θ

) − ui

(
(0� a−i)� θ

)
is weakly increasing in a−i ∈ A−i. We denote 0 = (0� � � � �0) ∈ A and 1 = (1� � � � �1) ∈ A,
and write 0−i ∈ A−i and 1−i ∈ A−i for the action profiles of player i’s opponents such that
all players j �= i play 0 and 1, respectively. We maintain a dominance state assumption that

5A potential is a function on action profiles and states, with the property that at each state, each player’s
payoff gain from switching actions is equal to the corresponding gain in the value of this function.

6A function on action profiles and states is convex if, at each state, the value of any action profile is smaller
than the convex combination of those of all players choosing the low action and all players choosing the high
action, with the weight being the fraction of high action players in the action profile in consideration.

7For a finite or countably infinite set X , we write �(X) for the set of all probability distributions over X .
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requires that there exist a state where action 1 is a dominant action for all players: that
is, there exists θ ∈ � such that di(0−i� θ) > 0 for all i ∈ I. This is a richness assumption
about the space of possible payoff structures and technically will be used to trigger an
infection argument in smallest equilibrium implementation.8 Fixing I, A, �, and μ, we
refer to (ui)i∈I (or (di)i∈I) as the base game.

An information structure is given by a type space T = ((Ti)i∈I�π), in which each Ti is a
countable set of types for player i ∈ I,9 and π ∈ �(T ×�) is a common prior over T ×�,
where we write T = ∏

i∈I Ti and T−i = ∏
j �=i Tj . We require an information structure to be

consistent with the prior μ:
∑

t∈T π(t� θ) = μ(θ) for each θ ∈ �. We also assume that for
all i ∈ I, π(ti) ≡ ∑

t−i�θ
π((ti� t−i)� θ) > 0 for all ti ∈ Ti.

Together with the base game (ui)i∈I , the information structure T defines an incomplete
information game, which we refer to simply as T . In the incomplete information game
T , a strategy for player i is a mapping σi : Ti → �(Ai). A strategy profile σ = (σi)i∈I is
a (Bayes–Nash) equilibrium of the game T if, for all i ∈ I, ti ∈ Ti, and ai ∈ Ai, whenever
σi(ti)(ai) > 0, we have∑

t−i∈T−i�θ∈�
π(t−i� θ|ti)ui

((
ai�σ−i(t−i)

)
� θ

) ≥
∑

t−i∈T−i�θ∈�
π(t−i� θ|ti)ui

((
a′
i� σ−i(t−i)

)
� θ

)
for all a′

i ∈ Ai, where π(t−i� θ|ti) = π((ti�t−i)�θ)
π(ti)

, and ui((ai� ·)� θ) is extended to
∏

j �=i �(Aj) in
the usual manner. We write E(T ) for the set of equilibria of the game T . Since the game
is supermodular, there always exists a smallest equilibrium, which is in pure strategies,
and this equilibrium is also the limit of best response dynamics with all players initially
choosing action 0.10 We write σ (T ) for that smallest pure strategy equilibrium.

We are interested in induced outcomes, where an outcome is a distribution in �(A×�).
A pair (T �σ) of an information structure and a strategy profile induces outcome ν ∈
�(A×�):

ν(a�θ) =
∑
t∈T

π(t� θ)
∏
i∈I

σi(ti)(ai)�

An outcome ν satisfies consistency if
∑

a∈A ν(a�θ) = μ(θ) for all θ ∈ �.

1.2. Implementability

Which outcomes can be implemented by a suitable choice of information structure?
The answer will depend on what is assumed about the equilibrium to be played. Two
extreme cases are studied in the mechanism design literature: partial implementation re-
quires only that some equilibrium induce the outcome, and full implementation requires
that all equilibria induce the outcome. We will focus on an intermediate case (well defined
for supermodular games): smallest equilibrium implementation requires that the smallest
equilibrium induce the outcome.

8This assumption will be maintained throughout the analysis and used in Theorem A.1(2) (and results that
use Theorem A.1(2)). This form of the assumption, however, is stronger than needed. See Appendix B.2.6 of
the Supplemental Material for a relaxation.

9The countability restriction is made for expositional simplicity only. In particular, Theorem A.1(1) holds
with possibly uncountable measurable spaces of types; see Appendix B.2.5 of the Supplemental Material.

10Because of the countability of type spaces where there is no issue on measurability, the strategy sets are
naturally complete lattices and the payoffs are continuous in strategies (in the pointwise convergence topol-
ogy), so that standard results on supermodular games apply to our setting.
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DEFINITION 1: An outcome ν ∈ �(A × �) is partially implementable if there exist an
information structure T and an equilibrium σ ∈ E(T ) that induce ν.

An outcome ν satisfies obedience if∑
a−i∈A−i�θ∈�

ν
(
(ai� a−i)� θ

)(
ui

(
(ai� a−i)� θ

) − ui

((
a′
i� a−i

)
� θ

)) ≥ 0 (1.1)

for all i ∈ I and ai� a
′
i ∈Ai. Bergemann and Morris (2016) showed the following:

PROPOSITION 1: An outcome is partially implementable if and only if it satisfies consis-
tency and obedience.

Bergemann and Morris (2016) called such outcomes Bayes correlated equilibria since
they correspond to one natural generalization of correlated equilibrium of Aumann
(1974) to incomplete information games. We write BCE ⊂ �(A×�) for the set of Bayes
correlated equilibria. Note that BCE is characterized by a finite system of weak linear
inequalities and thus is a convex polytope.

A more demanding notion of implementation is the following:

DEFINITION 2: Outcome ν is fully implementable if there exists an information structure
T such that (T �σ) induces ν for all σ ∈ E(T ).11

And the intermediate notion we study is the following:

DEFINITION 3: Outcome ν is smallest equilibrium implementable (S-implementable) if
there exists an information structure T such that (T �σ (T )) induces ν.

We write SI ⊂ �(A × �) (resp. FI ⊂ �(A × �)) for the set of S-implementable (resp.
fully implementable) outcomes. Clearly, FI ⊂ SI ⊂ BCE. Our first main result, Theorem 1
in Section 3, characterizes the closure SI, while the characterization of SI is given in Ap-
pendix A.1. A characterization of FI is reported in Appendix B.1 of the Supplemental
Material (Morris, Oyama, and Takahashi (2024)).

Smallest equilibrium implementation is relevant for an information designer who ex-
pects the smallest equilibrium to be played. For example, Segal (2003, Section 4.1.3)
discussed contracting applications where the smallest equilibrium is the Pareto-efficient
equilibrium for the players. Cooper (1994) argued for hysteresis equilibrium selection,
where past actions are default choices, and players switch from the default only if it is
uniquely rationalizable to do so. If action 0 was the default action, this would lead to
smallest equilibrium selection. In this paper, we study the problem of an information de-
signer who favors the high action but anticipates adversarial equilibrium selection as a
worst-case scenario. We introduce this problem in the next subsection and show how this
has an S-implementation characterization.

11Under supermodularity, full implementation in fact requires E(T ) be a singleton.
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1.3. Optimality

Now we postulate an information designer who optimally chooses an information struc-
ture T based on her welfare criterion over A × �. Suppose that the designer receives a
value V (a�θ) if players choose a ∈ A in state θ ∈ �. We maintain the monotonicity as-
sumption on V : for each θ ∈ �, V (a�θ) is weakly increasing in a.

We are interested in the information design problem with adversarial equilibrium selec-
tion, where the designer wants to obtain the best possible values even if players will play
her worst equilibrium, which, by the monotonicity of V in a, is the smallest equilibrium
σ (T ). Thus, her problem is

sup
T

min
σ∈E(T )

∑
t∈T�θ∈�

π(t� θ)V
(
σ (t)� θ

) = sup
T

∑
t∈T�θ∈�

π(t� θ)V
(
σ (T )(t)� θ

)
�

where V (·� θ) is extended to
∏

i∈I �(Ai) in the usual manner. By the definition of S-
implementable outcomes, this is equivalent to

sup
ν∈SI

∑
a∈A�θ∈�

ν(a�θ)V (a�θ) = max
ν∈SI

∑
a∈A�θ∈�

ν(a�θ)V (a�θ)� (1.2)

An optimal outcome of the adversarial information design problem is any element ν of SI
that maximizes

∑
a�θ ν(a�θ)V (a�θ). Our second main result, Theorem 2 in Section 4, will

identify an optimal outcome under additional assumptions.

2. A LEADING EXAMPLE

We will use the following example to illustrate ideas throughout the paper. Let us label
the action 1 “invest” and the action 0 “not invest.” The payoff to not invest is always 0.
There are two players, I ={1�2}. Player 1 has a cost 7 of investing while player 2 has a cost
8. Each player receives a return 3 to investing when the other player invests, so the game
is supermodular. There are two states, b (“bad”) and g (“good”), which are equally likely
(μ(b) = μ(g) = 1

2 ). If the state is good, players receive an additional return 9 to investing.
Thus, both players have a dominant action to invest in the good state and not invest in the
bad state (hence, the dominance state assumption is satisfied with θ = g). The payoffs are
summarized by the following tables, where player 1 is the row player and player 2 is the
column player:

b Not Invest

Not 0, 0 0, −8
Invest −7, 0 −4, −5

g Not Invest

Not 0, 0 0, 1
Invest 2, 0 5, 4

� (2.1)

Consider the problem of a designer who wants to maximize the expected number of play-
ers who choose action 1 (i.e., V (a�θ) =|{i ∈ I|ai = 1}| for all a ∈A and θ ∈ �).

First, consider the case of partial implementation. By the asymmetry of the payoffs, the
optimal outcome is asymmetric (Arieli and Babichenko (2019)). The optimal direct in-
formation structure and equilibrium are the following. Player 1 (more willing to invest) is
always recommended to invest (hence receives no information). Player 2 is recommended
to invest always in the good state and with probability 4

5 in the bad state (otherwise, rec-
ommended not to invest). To verify that following the recommendations constitutes an
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equilibrium, observe that player 2 is (just) willing to invest when recommended to do so
since he is sure that player 1 will invest, and assigns to the good state probability 5

9 which
is the smallest probability with which he is willing to invest. Given this, player 1 is (strictly)
willing to invest. The resulting outcome (probability distribution over actions and states)
is represented in the following:

b Not Invest
Not 0 0

Invest 1
10

2
5

g Not Invest
Not 0 0

Invest 0 1
2

,

where the expected number of players who invest is 19
10 . The optimal outcome is not a per-

fect coordination outcome (an outcome where either both invest or both do not invest).
This is because for any partially implementable perfect coordination outcome, the obe-
dience constraint for player 1 (more willing to invest) does not bind, and the gap can be
exploited to induce more investment.

However, in the direct information structure as described, there is a strict equilibrium
where both players never invest (which is the smallest equilibrium thereof): if player 1
thinks that player 2 will never invest, his expected payoff to investing is negative (and
even smaller for player 2). No outcome close to the partially implementable outcome
above is S-implementable.

Our Theorem 1 in Section 3 will establish that the following perfectly coordinated out-
come is in the closure of the S-implementable set:

b Not Invest

Not 1
4 0

Invest 0 1
4

g Not Invest

Not 0 0
Invest 0 1

2

; (2.2)

indeed, the following outcome will be shown to be S-implementable (and in fact fully
implementable) for all 0 < δ ≤ 1

4 :

b Not Invest
Not 1

4 + δ 0

Invest 0 1
4 − δ

g Not Invest
Not 0 0

Invest 0 1
2

� (2.3)

which converges to the former outcome (2.2) as δ → 0. The expected number of players
who invest is 3

2 under (2.2). Our Theorem 2 in Section 4 will establish that this outcome is
the solution to the information design problem under S-implementability.

To provide intuition for these results, suppose that players observed a public “good”
signal always in the good state and with probability 1

2 in the bad state (otherwise, they
observe a “bad” signal). If players both observed the good signal, they would think that
the state was good with probability 2

3 , and the expected payoffs would be

Not Invest
Not 0, 0 0, −2

Invest −1, 0 2, 1

.
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This “average” game has two strict Nash equilibria, (Not Invest�Not Invest) and
(Invest� Invest). The (Invest� Invest) equilibrium is just risk dominant (Harsanyi and
Selten (1988)); also this is a potential game (Monderer and Shapley (1996)) and
(Invest� Invest) weakly maximizes the potential. To (approximately) implement
(Invest� Invest) in a smallest equilibrium—hence as a unique rationalizable play—by
eliminating (Not Invest�Not Invest), the direct information structure as described so far
does not suffice, and we need private signals.12 From the higher order beliefs literature,
we know that an “email game information structure” (Rubinstein (1989)) will uniquely
implement a risk-dominant equilibrium, if we allow for a (vanishingly small) possibility
of dominant action types. In Section 3.2, we will describe such an information structure
that implements the outcome (2.3), as an illustration of the proof for the general case of
Theorem 1. Observe also that the probability 1

2 with which the “good” signal is sent in
the bad state is the largest probability such that (Invest� Invest) is risk dominant in the
average game. With a larger probability, (Not Invest�Not Invest) would become a strictly
risk-dominant equilibrium, which cannot be eliminated by dominant action types of small
probability (Kajii and Morris (1997)). In Section 3.3, we discuss formal connections be-
tween our characterizations and the literature on higher order beliefs.13

This example illustrates that an optimal outcome exhibits the perfect coordination
property even in asymmetric games for S-implementation but not for partial implemen-
tation. Note that if we had considered a symmetric game, clearly the perfect coordination
property would have held for partial implementation as well. Thus, the perfect coordi-
nation results in Mathevet, Perego, and Taneva (2020) (in a symmetric version of this
example) and Li, Song, and Zhao (2023) (in regime-change games) are less surprising.
The perfect coordination property holds in this example despite the costs being asymmet-
ric. We will see in Section 4 that this example has a convex potential (so the asymme-
try is not too large). Given the perfect coordination property, it is then optimal to have
the players invest on the largest probability event where, in the induced average game,
(Invest� Invest) is risk dominant, or equivalently, maximizes the average potential. The
arguments in Section 4 extend these ideas to the general case under convexity assump-
tions on the potential and the designer objective.

3. SMALLEST EQUILIBRIUM IMPLEMENTATION

3.1. Sequential Obedience

We now introduce a strengthening of obedience—which we call sequential obedience—
that we will use to characterize (the closure of) the set of S-implementable outcomes.
Suppose that players’ default action was to play action 0 but the information designer
recommended a subset of players to play action 1, with the designer giving those rec-
ommendations sequentially, according to some commonly known distribution on states
and sequences of recommendations. When players are advised to play action 1, they will
accept the recommendation only if it is a best response provided that only players who
received the recommendation earlier than they did switch.

12In Appendix A.6, we demonstrate that no outcome close to (2.2) can be S-implementable with public
signals.

13Mathevet, Perego, and Taneva (2020) analyzed a symmetric version of this example, but did not note that
they were implementing both invest on the largest event where both invest was risk dominant.
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To describe this formally, let � be the set of all sequences of distinct players. For exam-
ple, if I ={1�2�3}, then

�={∅�1�2�3�12�13�21�23�31�32�123�132�213�231�312�321}�

For each γ ∈ �, we denote by a(γ) ∈A the action profile such that player i plays action 1 if
and only if i is listed in γ. We call ν� ∈ �(�×�) an ordered outcome with the interpretation
that ν�(γ�θ) is the probability that the state is θ, players listed in γ choose action 1 in
order γ, and players not listed in γ choose action 0. An ordered outcome ν� ∈ �(�× �)
induces an outcome ν ∈ �(A×�) in the natural way:

ν(a�θ) =
∑

γ:a(γ)=a

ν�(γ�θ)�

For each i ∈ I, let �i be the set of all sequences in � where player i is listed. For each
γ ∈ �i, we denote by a−i(γ) ∈ A−i the action profile of player i’s opponents such that
player j �= i plays action 1 if and only if j is listed in γ before i (therefore, player j plays
action 0 if and only if either j is not listed in γ or j is listed in γ after i).14

DEFINITION 4: An ordered outcome ν� ∈ �(�×�) satisfies sequential obedience if∑
γ∈�i�θ∈�

ν�(γ�θ)di

(
a−i(γ)� θ

) ≥ 0 (3.1)

for all i ∈ I.

We also define sequential obedience as a property of outcomes in the natural way:

DEFINITION 5: An outcome ν ∈ �(A × �) satisfies sequential obedience if there exists
an ordered outcome ν� ∈ �(�×�) that induces ν and satisfies sequential obedience.

By definition, the ordered outcome ν� such that ν�(∅� θ) = μ(θ) for all θ ∈ � and hence
the outcome ν such that ν(0� θ) = μ(θ) for all θ ∈ � trivially satisfy sequential obedience.

We can illustrate sequential obedience by showing that it is satisfied by outcome (2.2)
in our example in Section 2. Consider the ordered outcome ν� given by

b g

∅ 1
4 0

1 0 0
2 0 0

12 1
6

1
3

21 1
12

1
6

.

14The notation a−i(γ) should not be confused with the possible notation “(a(γ))−i” (which would represent
the action profile of player i’s opponents such that all the players listed in γ play action 1).
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This satisfies sequential obedience:

∑
γ∈�1�θ∈�

ν�(γ�θ)d1

(
a−1(γ)� θ

) = 1
6

× (−7) + 1
12

× (−4) + 1
3

× 2 + 1
6

× 5 = 0�

∑
γ∈�2�θ∈�

ν�(γ�θ)d2

(
a−2(γ)� θ

) = 1
6

× (−5) + 1
12

× (−8) + 1
3

× 4 + 1
6

× 1 = 0�

and hence the induced outcome (2.2) also does. Note that, while outcome (2.2) is sym-
metric (and satisfies perfect coordination), the inducing ordered outcome above treats
the players asymmetrically: the asymmetry in the payoffs is absorbed in the asymmetry in
the “hidden variables” ν�(γ�θ).

3.2. Characterization

In this section, we show that sequential obedience, along with consistency and obedi-
ence, fully characterizes the closure SI of the set SI of S-implementable outcomes.

THEOREM 1: An outcome is contained in SI if and only if it satisfies consistency, obedi-
ence, and sequential obedience.

In particular, analogously to BCE, SI is a convex polytope.15

In Appendix A.1, we provide a characterization of SI (Theorem A.1), from which The-
orem 1 as well as Corollary 1 below are shown to follow in Appendix A.2.

Theorem 1 requires obedience (necessary for partial implementation) as well as se-
quential obedience. Note that sequential obedience is stronger than the “upper obedi-
ence” requirement that a player want to follow a recommendation to play action 1 (i.e.,
the condition (1.1) with ai = 1 and a′

i = 0). If an outcome satisfies sequential obedience,
but not the “lower obedience” requirement that a player want to follow a recommenda-
tion to play action 0 (i.e., the condition (1.1) with ai = 0 and a′

i = 1), then, by the con-
struction in the proof of Theorem A.1, we can find a first-order stochastically dominating
outcome in SI.16 By a continuity argument, we thus have the following.

COROLLARY 1: If an outcome ν satisfies consistency and sequential obedience, then there
exists an outcome ν̂ ∈ SI that first-order stochastically dominates ν.

Theorem 1 and Corollary 1 have important implications to the adversarial information
design problem (1.2). By Theorem 1, we immediately have the following.

15The set of ordered outcomes that satisfy sequential obedience is characterized by a finite system of weak
linear inequalities and thus is a convex polytope: by Theorem 1, SI is the intersection of BCE and the im-
age of this set under the linear transformation that maps ν� ∈ �(� × A) to ν ∈ �(A × �) by ν(a�θ) =∑

γ:a(γ)=a ν�(γ�θ).
16For ν� ν̂ ∈ �(A × �), we say that ν̂ first-order stochastically dominates ν if for each θ ∈ �, ν̂(·� θ) first-

order stochastically dominates ν(·� θ):
∑

a∈B ν̂(a�θ) ≥ ∑
a∈B ν(a�θ) for all upper sets B ⊂ A (i.e., sets B such

that a′ ∈ B whenever a ∈ B and a′ ≥ a).
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COROLLARY 2: An outcome is an optimal outcome of the adversarial information design
problem if and only if it is an optimal solution to the problem maxν∈�(A×�)

∑
a�θ ν(a�θ)V (a�θ)

subject to consistency, obedience, and sequential obedience.

By Corollary 1, therefore, an optimal outcome of the adversarial information design
problem can be obtained by a maximal (with respect to first-order stochastic dominance)
optimal solution to the relaxed problem maxν∈�(A×�)

∑
a�θ ν(a�θ)V (a�θ) subject to con-

sistency and sequential obedience (without obedience imposed).
In the remainder of this subsection, we sketch a proof of Theorem 1. First consider

necessity (i.e., the “only if” part of Theorem 1). Fix an outcome that is S-implementable.
By definition, there must exist an information structure such that the smallest equilibrium
induces that outcome. Since the outcome is partially implementable, Proposition 1 implies
that it satisfies consistency and obedience.

Now consider a sequence of pure strategy profiles obtained by sequentially taking my-
opic best responses, starting with the smallest strategy profile. In particular, in each round,
pick a player, say by a round-robin protocol, and let all types of that player switch from ac-
tion 0 to action 1 whenever it is a strict best response to the strategy profile in the previous
round. By supermodularity, the sequence of strategy profiles will be monotone increasing
and must converge to the smallest equilibrium, which gives rise to the outcome we have
fixed and want to show to satisfy sequential obedience. For each type profile, there will
be a set of players who eventually switch to action 1 and there will be a sequence γ corre-
sponding to the order in which those players switch. Let us define an ordered outcome by
letting the probability of state θ and sequence γ be the probability that θ is the state and
γ is the sequence generated by the best response dynamics described above.

By construction, every type who switches to action 1 has a strict incentive to do so,
assuming that players before him in the constructed sequence have already switched. In
the best response dynamics, a player knows his type and the round. But suppose that he
was not told his type or the round, but instead was asked ex ante if he was prepared to
always switch to action 1 whenever he would have been told to switch to action 1 under
the best response dynamics. We are just averaging across histories where switching to
action 1 is a strict best response, so it remains a strict best response even if the player
does not know the history. This verifies that the ordered outcome we constructed satisfies
sequential obedience (with strict inequality): a player knowing that the state and sequence
are drawn according to the ordered outcome has a strict incentive to choose action 1 if
he expects only players before him in the realized sequence (unknown to him) to play
action 1. A continuity argument establishes that sequential obedience is satisfied by any
outcome in SI.

Second, consider sufficiency (i.e., the “if” part of Theorem 1). The proof is by construc-
tion. Here we illustrate the construction by showing how to S-implement outcome (2.3) in
the example in Section 2. When θ = b, it is publicly announced with (ex ante) probability
1
4 + δ. On the remaining event, where invest is risk dominant, private signals are sent, as
in the email game or global games, in such a way that all types of both players will find
invest iteratively dominant. The ordered outcome establishing sequential obedience gives
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a general recipe to construct such an information structure. Outcome (2.3) is induced by
the ordered outcome

b g

∅ 1
4 + δ 0

1 0 0

2 0 0
12 1

6 − δ 1
3

21 1
12

1
6

� (3.2)

which satisfies sequential obedience with strict inequalities. Let ε > 0 be sufficiently small
that we have (

1
6

− δ

)
× (−7) + 1

12
× (−4) +

(
1
3

− ε

)
× 2 + 1

6
× 5 > 0� (3.3)(

1
6

− δ

)
× (−5) + 1

12
× (−8) +

(
1
3

− ε

)
× 4 + 1

6
× 1 > 0� (3.4)

Then let η > 0 be much smaller than ε. Now construct information structure (T�π) as
follows. Let T1 = T2 ={1�2� � � �}∪{∞}, and let π ∈ �(T ×�) be given by

π
(
(t1� t2)� θ

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η(1 −η)m
(

1
6

− δ

)
if θ = b and (t1� t2) = (m+ 1�m+ 2) for some m ∈N�

η(1 −η)m
1

12
if θ = b and (t1� t2) = (m+ 2�m+ 1) for some m ∈N�

η(1 −η)m
(

1
3

− ε

)
if θ = g and (t1� t2) = (m+ 1�m+ 2) for some m ∈N�

η(1 −η)m
1
6

if θ = g and (t1� t2) = (m+ 2�m+ 1) for some m ∈N�

1
4

+ δ if θ = b and (t1� t2) = (∞�∞)�

ε if θ = g and (t1� t2) = (1�1)�
0 otherwise;

see Table I. This information structure is generated by the following signal structure:
A nonnegative integer m is drawn according to the distribution η(1 − η)m. Given the
realization of state θ, a sequence γ of players is drawn, independently of m, according
to ν�(·� θ) in (3.2), but with ν�(12�g) − ε in place of ν�(12�g). If γ = 12 or 21, then each
player receives a signal equal to the sum of m and his ranking in γ; if γ = ∅, both receive
a signal ∞. The remaining probability ε is relocated to π((1�1)�g), which will play the
role of initiating the infection argument.

We claim that in the smallest equilibrium of this game, both players of types ti <∞ will
invest. First, each player of type ti = 1 assigns probability greater than ε

ε+η
to the good

state, which is close to 1 as η  ε, and therefore, invest is a dominant action for this
type. Then for τ ≥ 2, suppose that each player of types ti ≤ τ − 1 invests. Given η ≈ 0,
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TABLE I

INFORMATION STRUCTURE IMPLEMENTING OUTCOME (2.3).

b

t1\t2 1 2 3 4 · · · ∞
1 η( 1

6 − δ)

2 η 1
12 η(1 −η)( 1

6 − δ)

3 η(1 −η) 1
12 η(1 −η)2( 1

6 − δ)

4 η(1 −η)2 1
12

� � �
���

� � �

∞ 1
4 + δ

g

t1\t2 1 2 3 4 · · · ∞
1 ε η( 1

3 − ε)

2 η 1
6 η(1 −η)( 1

3 − ε)

3 η(1 −η) 1
6 η(1 −η)2( 1

3 − ε)

4 η(1 −η)2 1
6

� � �
���

� � �

∞

approximately the payoffs to investing for players 1 and 2 of type ti = τ are then greater
than (positive multiplications of)

1
12

× (−4) +
(

1
6

− δ

)
× (−7) + 1

6
× 5 +

(
1
3

− ε

)
× 2

and (
1
6

− δ

)
× (−5) + 1

12
× (−8) +

(
1
3

− ε

)
× 4 + 1

6
× 1�

respectively, which are strictly positive by the conditions (3.3) and (3.4). Therefore, by in-
duction, both players of types ti <∞ invest in the smallest equilibrium. Note that players
of type ti = ∞ know that the state is b and hence do not invest. Thus, the outcome (2.3)
is implemented by the smallest (in fact unique) equilibrium of this information structure.

The argument for general BAS games follows identical steps, again using the ordered
outcome establishing sequential obedience to construct the type space that S-implements
the outcome.

3.3. The (Limit) Complete Information Case

In this section, we discuss the sequential obedience condition and our characteriza-
tion result for S-implementability in the special case where, for some state θ∗ ∈ �, we
have either μ(θ∗) = 1, or μ(θ∗) converging to 1. This allows us to establish the tight con-
nection between our results and the literatures on contracting with externalities (Segal
(2003), Winter (2004)) and on higher order beliefs, in particular on robustness to incom-
plete information (Rubinstein (1989), Carlsson and van Damme (1993), Kajii and Morris
(1997)).
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First, suppose that we relax our maintained full support assumption for the probabil-
ity distribution μ on states, and assume instead that μ(θ∗) = 1. Thus, the base game can
be considered as a complete information game, and a consistent outcome, which assigns
probability 1 to θ∗, can be identified with a probability distribution over action profiles
ξ ∈ �(A). Let a complete information BAS game be given and represented by a profile
(fi)i∈I of payoff difference functions fi : A−i → R, i ∈ I. Then the set of partially imple-
mentable outcomes in (fi)i∈I is equal to the set of correlated equilibria of (fi)i∈I . By super-
modularity, there is a smallest correlated equilibrium, which is the degenerate outcome
on the smallest Nash equilibrium. This is the unique S-implementable outcome, and the
smallest Nash equilibrium a is reached by iterative dominance from 0 (all playing action
0), that is, there exists γ ∈ � such that a(γ) = a and

fi
(
a−i(γ)

)
> 0 (3.5)

for all i ∈ I such that ai = 1. In particular, 1 (all playing action 1) is S-implementable
(hence fully implementable) in (fi)i∈I if and only if there exists a permutation γ of all
players that satisfies (3.5) for all i ∈ I.

This observation lies behind the literature on bilateral contracting with externalities
(Segal (2003), Winter (2004)), where the authors considered an exogenous initial super-
modular game and added transfers in some form (thus determining the payoff functions fi
endogenously) to implement a target outcome as a unique equilibrium. They then asked
what is the least-cost way of providing transfers so that condition (3.5) is satisfied. We
refer to (3.5) as the “divide-and-conquer” condition following the terminology in this lit-
erature.

Our sequential obedience condition can be understood as a stochastic divide-and-
conquer condition, where the ordering of the players is random (possibly contingent on
the state θ) and the condition is written as the expectation with respect to the random
ordering.17 Formally, an ordered outcome ρ ∈ �(�) satisfies sequential obedience in a
complete information game (fi)i∈I if∑

γ∈�i
ρ(γ)fi

(
a−i(γ)

) ≥ 0 (3.6)

for all i ∈ I. An outcome ξ ∈ �(A) satisfies sequential obedience in (fi)i∈I if there exists
an ordered outcome ρ ∈ �(�) that induces ξ (i.e., ξ(a) = ∑

γ:a(γ)=a ρ(γ) for all a ∈A) and
satisfies sequential obedience in (fi)i∈I .

By Theorem A.1, condition (3.6) characterizes S-implementation in the limit complete
information case as μ(θ∗) → 1. For a prior μ ∈ �(�), let SI(μ) ⊂ �(A × �) denote the
set of S-implementable outcomes under μ. We say that an outcome ξ ∈ �(A) is limit
S-implementable at θ∗ if there exist a sequence of priors μk ∈ �(�) and a sequence of
S-implementable outcomes νk ∈ SI(μk) such that μk(θ∗) → 1 and

∑
θ∈� ν

k(·� θ) → ξ as
k → ∞.18 Under the maintained assumption of dominance state, we have the following
by Theorem A.1 along with an argument similar to the proof of Theorem 1.

COROLLARY 3: An outcome is limit S-implementable at θ∗ if and only if it satisfies obedi-
ence and sequential obedience in (di(·� θ∗))i∈I .

17This condition has appeared in Oyama and Takahashi (2020) and also played an important role in Halac,
Lipnowski, and Rappoport (2021). See also Gershkov and Szentes (2009) for an earlier study where a similar
condition is found (but in a different, voting situation).

18The latter condition can also be equivalently written as νk(·� θ∗) → ξ as k→ ∞.
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The proof is given in Appendix A.2.
As an illustration, consider the case of two players, and suppose that in the complete

information game at θ∗, both 1 and 0 are strict equilibria, so that (the degenerate outcome
on) 0 is the S-implementable, but not fully implementable, outcome when μ(θ∗) = 1. It
can be verified that (the degenerate outcome on) 1 satisfies sequential obedience if and
only if it is (weakly) risk dominant. Therefore, the “if” part of Corollary 3 implies that if
1 is a risk-dominant equilibrium, then it is limit S-implementable (hence limit fully im-
plementable), a well-known result from the infection arguments of the email game (Ru-
binstein (1989)) and global game (Carlsson and van Damme (1993)). Conversely, if 0 is a
risk-dominant equilibrium (and hence no other outcome satisfies sequential obedience),
then the “only if” part of Corollary 3 implies that as μk(θ∗) → 1, any information struc-
tures induce equilibrium outcomes νk such that

∑
θ∈� ν

k(0� θ) → 1, that is, 0 is robust to
incomplete information (Kajii and Morris (1997)). Thus, our S-implementability question
can be viewed as an incomplete information generalization of the robustness question.19

4. APPLICATION TO INFORMATION DESIGN WITH ADVERSARIAL EQUILIBRIUM
SELECTION

In this section, we study the optimal information design problem with adversarial equi-
librium selection. Under the monotonicity of the designer objective V , it amounts to max-
imization of (the expectation of) V on the domain SI (Section 1.3) and is expressed as a
finite-dimensional linear problem (Corollary 2 in Section 3.2). Here, we impose additional
restrictions on the base game, which are satisfied in many games found in applications. In
Appendix A.4.1, we discuss two classes of such examples, investment games and regime
change games.

We assume that the base game is a potential game. A potential game has the property
that the sum of payoff gains for a sequence of players switching from 0 to 1 is independent
of the order in which players switch. This will allow us to provide a characterization of
sequential obedience in terms of the change in the potential by a simultaneous switch of
a subset of players.

DEFINITION 6: The base game (di)i∈I is a potential game if there exists � : A×� → R
such that for each θ ∈�,

di(a−i� θ) = �
(
(1� a−i)� θ

) −�
(
(0� a−i)� θ

)
for each i ∈ I and a−i ∈ A−i.

We identify a potential game with its potential function �. We adopt the normalization
that �(0� θ) = 0 for all θ ∈ �. For example, the game (2.1) in Section 2 is a potential game
with a potential

b Not Invest
Not 0 −8

Invest −7 −12

g Not Invest
Not 0 1

Invest 2 6

� (4.1)

19In Morris, Oyama, and Takahashi (2023), we formally described a tight connection between limit imple-
mentation by information design and a modified version of the “robustness to incomplete information” notion
of Kajii and Morris (1997).
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We will now see that the sequential obedience condition can be simplified to a condition
with a single inequality if the potential satisfies a convexity condition that bounds the
degree of asymmetry in the game and if the outcome is a perfect coordination outcome.

Our convexity condition requires that for all θ ∈ �, �(a�θ) be smaller than a convex
combination of �(0� θ) = 0 and �(1� θ).20 Write n(a) for the number of players choosing
action 1 in action profile a ∈ A.

DEFINITION 7: Potential � satisfies convexity if

�(a�θ) ≤ n(a)
|I| �(1� θ) (4.2)

for all a ∈ A and θ ∈ �.

For the game (2.1) in Section 2, the potential as given in (4.1) satisfies convexity.
The convexity condition requires that payoffs be not too asymmetric across players. To

see why, note that if payoffs of the base game are symmetric, so �(a�θ) = �̂(n(a)� θ) for
some function �̂ : {0� � � � �|I|}×� → R, then supermodularity implies that �̂(n+ 1� θ) −
�̂(n�θ) is increasing in n and thus (4.2) is satisfied. If payoffs are asymmetric, define a
symmetrized potential �̂ : {0� � � � �|I|}×�→ R by

�̂(n�θ) = 1(
|I|
n

) ∑
a:n(a)=n

�(a�θ)�

This represents the average value of the potential �(a�θ) across all action profiles where
n players choose action 1. Now a natural measure of the asymmetry of payoffs is

�(a�θ) =�(a�θ) − �̂
(
n(a)� θ

)
�

Here, �(a�θ) measures how much higher the value of the potential is for a relative to the
average of action profiles where the same number of players are choosing action 1. Now
supermodularity implies that

M(n�θ) = n

|I|�(1� θ) − �̂(n�θ) ≥ 0

for all n and θ, where M(n�θ) is a measure of the supermodularity of the symmetrized
potential. So convexity can be written as the requirement that

�(a�θ) = �(a�θ) + �̂
(
n(a)� θ

) ≤ n(a)
|I| �(1� θ)

and so

�(a�θ) ≤M
(
n(a)� θ

)
20This condition is thus a strengthening of the requirement that arg maxa∈A�(a�θ) ∩{0�1} �= ∅ for all θ ∈�.

This latter condition is necessary and sufficient for perfect coordination in global game selection in potential
games (Frankel, Morris, and Pauzner (2003), Leister, Zenou, and Zhou (2022)).
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for any a ∈ A and θ ∈ �.
An outcome is perfectly coordinated if either all play 0 or all play 1.

DEFINITION 8: Outcome ν satisfies perfect coordination if, for all θ ∈ �, ν(a�θ) > 0 only
for a ∈{0�1}.

This property has been introduced in the context of regime change games by Inostroza
and Pavan (2022).

Now we have the following:21

PROPOSITION 2: In a convex potential game, a perfectly coordinated outcome ν satisfies
sequential obedience if and only if the average potential of 1 under ν is nonnegative:∑

θ∈�
ν(1� θ)�(1� θ) ≥ 0� (4.3)

The proof is given in Appendix A.4.
We now consider the optimal information design problem. In the following, we normal-

ize the designer’s objective V so that V (0� θ) = 0 for all θ ∈ �. Our main characterization
of optimal outcomes requires one additional assumption on V :

DEFINITION 9: Designer’s objective V satisfies restricted convexity with respect to po-
tential � if

V (a�θ) ≤ n(a)
|I| V (1� θ)

whenever �(a�θ) >�(1� θ).

Convexity of V , V (a�θ) ≤ n(a)
|I| V (1� θ) for all a and θ, is obviously a sufficient condition

for restricted convexity, irrespective of �. As discussed above when discussing the convex-
ity of �, we can say more about convexity when V is supermodular. In this case, convexity
of V is equivalent to the assumption that the designer does not distinguish among play-
ers too much; and convexity holds automatically if players are treated identically. Thus,
for example, convexity holds if V (a�θ) = ( n(a)

|I| )α with α ≥ 1. This includes both the case
where the designer wants to maximize the expected fraction of players who play action
1 (α = 1), and thus has no preference over whether the players are coordinated or not;
and the case where the designer cares only about the probability that all players play 1
(α → ∞). An important setting where convexity fails but restricted convexity holds is in
the regime change games; see Example A.2 in Appendix A.4.1.

Now assume that the potential � satisfies convexity and the objective V satisfies re-
stricted convexity with respect to �. Under the convexity of �, coordinating players’ ac-
tions tends to slacken the incentive constraints, and by the restricted convexity of V , it
also improves the value for the designer. Indeed, as will be shown in Theorem 2, there
will be an optimal outcome that satisfies perfect coordination. Once we know that the

21For the complete information case with a potential, Segal (2003) showed (in our language) that if the
potential of 1 in the game obtained by adding transfers is positive, then the deterministic divide-and-conquer
condition (3.5) is satisfied for any permutation γ of all players with an appropriate choice of transfers with the
same total, and vice versa. The resulting potential satisfies convexity.



792 S. MORRIS, D. OYAMA, AND S. TAKAHASHI

solution satisfies perfect coordination, due to Proposition 2 it is easy to characterize such
an optimal outcome, and we first do so.

Consider the maximization problem with respect to perfectly coordinated outcomes
subject to consistency and sequential obedience (in the form of condition (4.3) in Propo-
sition 2):

max
(ν(1�θ))θ∈�

∑
θ∈�

ν(1� θ)V (1� θ) (4.4a)

subject to

0 ≤ ν(1� θ) ≤ μ(θ) (θ ∈ �)� (4.4b)∑
θ∈�

ν(1� θ)�(1� θ) ≥ 0� (4.4c)

Notice that the problem can be viewed as a Bayesian persuasion problem where the role
of the receiver is played by the potential and there are two available actions, 0 and 1. The
solution will clearly have ν(1� θ) = μ(θ) for all “good states” θ with �(1� θ) ≥ 0 and as
many “bad states” θ with �(1� θ) < 0 as possible consistent with the average potential∑

θ∈� ν(1� θ)�(1� θ) being nonnegative. But which bad states to include? We will see that
it is optimal to include states with the lowest cost-benefit ratio, where the cost is −�(1� θ)
and the benefit is V (1� θ).

Concretely, assume for simplicity that V (1� θ) > 0 for all θ ∈ � such that �(1� θ) < 0
(i.e., remove all “bad states” that are irrelevant for the designer), and relabel the states as
� = {1� � � � �|�|} in such a way that �(1�θ)

V (1�θ) is increasing in θ (with a convention x
0 = ∞ for

x ≥ 0):22

�(1�1)
V (1�1)

≤ · · · ≤ �
(
1� |�|)

V
(
1� |�|) �

By the dominance state assumption, �(1� θ) > 0. Then define

�(θ) =
∑
θ′>θ

μ
(
θ′)�(

1� θ′)
for θ ∈ {0�1� � � � �|�|}. If �(0) = ∑

θ′∈� μ(θ′)�(1� θ′) ≥ 0, then the outcome “always play
1” is an optimal solution. In the following, we assume that �(0) < 0. Let θ∗ ∈ � be the
unique state such that �(θ) ≥ 0 if and only if θ ≥ θ∗. Note that �(1� θ∗) < 0. Let

p∗ = �
(
θ∗)

−�
(
1� θ∗) �

By construction, 0 ≤ p∗ < μ(θ∗); indeed, we have p∗ ≥ 0 since �(θ∗) ≥ 0, and p∗ −
μ(θ∗) =�(θ∗ − 1)/(−�(1� θ∗)) < 0 since �(θ∗ − 1) < 0.

22As is clear from the argument below, the choice of the order on the states θ for which �(1� θ) ≥ 0 is
inconsequential.
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Now define the perfectly coordinated outcome ν∗ by

ν∗(a�θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ(θ) if a= 1 and θ > θ∗�
p∗ if a= 1 and θ = θ∗�
μ(θ) −p∗ if a= 0 and θ = θ∗�
μ(θ) if a= 0 and θ < θ∗�
0 otherwise�

(4.5)

which clearly satisfies consistency (4.4b). This outcome satisfies the sequential obedience
constraint (4.4c) with equality:∑

θ∈�
ν∗(1� θ)�(1� θ) =�

(
θ∗) +p∗�

(
1� θ∗) = 0� (4.6)

It also satisfies lower obedience: for all i ∈ I,∑
a−i∈A−i�θ∈�

ν∗((0� a−i)� θ
)
di(a−i� θ) =

∑
θ≤θ∗

ν∗(0� θ)�
(
(1�0−i)� θ

)
< 0�

since by the convexity of �, �((1�0−i)� θ) ≤ 1
|I|�(1� θ) < 0 for all θ ≤ θ∗. Thus, ν∗ ∈ SI

by Proposition 2 and Theorem 1. Theorem 2 shows that ν∗ is an optimal solution to the
problem (4.4) and that it is an optimal outcome of the adversarial information design
problem.

THEOREM 2: Consider a game with convex potential � and a designer with objective V
satisfying restricted convexity with respect to �. Then there exists an optimal outcome of the
adversarial information design problem that satisfies perfect coordination. In particular, the
outcome ν∗ defined in (4.5) is an optimal outcome.

The proof is given in Appendix A.5.
We can illustrate the result with the two-player two-state example in Section 2. Suppose

that the designer wants to maximize the expected number of players who invest, that is,
V (a�θ) = n(a), so that restricted convexity is satisfied. With the potential � given in
(4.1) (which satisfies convexity), we have �(0) = ∑

θ′∈{b�g}μ(θ′)�(1� θ′) = −3 and �(b) =
μ(g)�(1�g) = 3 (and �(g) = 0 by convention), and hence θ∗ = b is the threshold state.
With p∗ = 1

4 , the optimal outcome ν∗ is thus as given in (2.2) in Section 2.
The characterization of the optimal solution as given in Theorem 2 becomes yet simpler

in a continuous version of our problem with a continuum of symmetric players and a
continuous state space � ⊂ R. Assume that the (common) payoff difference function d
and the designer’s objective V depend on the proportion � of players playing action 1
and are nondecreasing in the state θ, and also that V satisfies restricted convexity. In
this version, the potential is written as �(��θ) = ∫ �

0 d(�′� θ) d�′, which is convex in �. The
continuous limit of the optimal outcome (4.5) then becomes the outcome that has all
players playing action 1 (resp. 0) if the state is above (resp. below) the threshold state θ∗

that solves ∫
θ>θ∗

�(1� θ) dμ(θ) = 0 (4.7)
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(with μ denoting the probability distribution of θ also in this case).23

5. RELATED LITERATURE

5.1. Higher Order Beliefs and Robustness to Incomplete Information

Our implementation result has its roots in a large literature on the role of higher or-
der beliefs in games. While not expressed in this language, the “electronic mail game” of
Rubinstein (1989) and the global games of Carlsson and van Damme (1993) showed that
the risk dominant equilibrium of a two-player two-action coordination game can be im-
plemented by information design if there is a small probability of dominant action types.
Oyama and Takahashi (2020) generalized these arguments to general BAS games, ap-
pealing to a complete information version of sequential obedience (as an intermediate
step of a proof). Our argument establishing the sufficiency of sequential obedience for
smallest equilibrium implementation generalizes this logic to an incomplete information
setting. Kajii and Morris (1997) showed a converse: in any incomplete information setting,
if payoffs are given by a fixed complete information game with high probability, there is
always an equilibrium where the risk dominant equilibrium of the fixed game is played
with high probability. In Section 3.3, we discussed the formal implications of our results
in the present paper—in particular for the limit complete information case—to the higher
order beliefs literature.

5.2. Contracting With Externalities

Our approach has been to fix the base game payoffs (di)i∈I and show that sequential
obedience characterizes the set of outcomes that are S-implementable. Alternatively, if
the outcome to be smallest equilibrium implemented has all players choose the high ac-
tion, the sequential obedience condition can read as characterizing the set of payoffs for
which playing the high action is uniquely rationalizable. This interpretation of our results
provides a new perspective on contracting with externalities (Segal (2003) and Winter
(2004)), where agents make decisions about whether to participate or not in the pres-
ence of strategic complementarities.24 In fact, the recent studies by Halac, Lipnowski, and
Rappoport (2021) and Moriya and Yamashita (2020), who considered the optimal joint
design of transfers and information and showed how the “divide-and-conquer” incentive
schemes (Segal (2003)) in the model of Winter (2004) can be improved upon by introduc-
ing higher order payoff uncertainty, can be understood from this viewpoint. In particular,
the optimization problem of Halac, Lipnowski, and Rappoport (2021) can be equiva-
lently rewritten as a problem with the constraint that “all participating” is limit S- (hence
fully) implementable, which is characterized by our sequential obedience condition—a
stochastic version of “divide-and-conquer.” In Morris, Oyama, and Takahashi (2022b),
we formally describe the above solution method. By appealing also to the fact that their
model has a potential, we obtain additional insights over Halac, Lipnowski, and Rap-
poport (2021).25

23In Morris, Oyama, and Takahashi (2022a), we gave a formal derivation of this result.
24In Segal (2003), agents’ action spaces are designed by the principal who must allow non-participation (the

lowest action), in which case all actions above the smallest equilibrium can be eliminated, and hence actions
may in effect be viewed as binary.

25In Morris, Oyama, and Takahashi (2022b), we also discussed the incomplete information generalization
of Winter (2004) by Moriya and Yamashita (2020) and showed that a straightforward application of our results
immediately solves their model with an extension with many players and many states.
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5.3. Information Design With Adversarial Equilibrium Selection

In this literature, three papers are most relevant.26
 Inostroza and Pavan (2022) posed

the question in the context of a class of regime change games (unlike us, they assumed that
players had private information prior to the designer’s information release). Mathevet,
Perego, and Taneva (2020) also posed the question and solved for an optimal information
structure in a two-player two-state symmetric example. A recent paper of Li, Song, and
Zhao (2023) solved for an optimal information structure in regime change games. Inos-
troza and Pavan (2022) showed that it was without loss to assume that optimal outcomes
satisfied the perfect coordination property in regime change games, which also held for
the optimal outcomes in Mathevet, Perego, and Taneva (2020) and Li, Song, and Zhao
(2023). However, all these papers assume symmetric payoffs, where the perfect coordina-
tion property is less surprising.27 The perfect coordination property is more surprising in
games with asymmetric payoffs. We illustrated this point in Section 2 with an asymmetric
version of the example of Mathevet, Perego, and Taneva (2020). There is generally multi-
plicity in implementing information structures. The information structures implementing
the optimal outcome in Mathevet, Perego, and Taneva (2020) and Li, Song, and Zhao
(2023) are tailored to the applications, whereas our implementing information structure
construction applies to general BAS games. In Morris, Oyama, and Takahashi (2022a),
for the continuous limit model as described after Theorem 2 (which encompasses the
regime change game studied by Li, Song, and Zhao (2023) as a special case), we provide
another, simple global game implementation of the optimal outcome as given by (4.7)
which applies to all symmetric and state-monotonic BAS games.

The recent literature on Bayesian persuasion (Kamenica and Gentzkow (2011)) has
highlighted the distinction between a belief-based modeling of incomplete information
(i.e., identifying information with a probability distribution over posteriors satisfying
“Bayes-plausibility”) and a signal-based approach (identifying information with a map-
ping from states to a probability distribution over signals). The many-player analogue
of the belief-based approach is to look at (common prior subspaces of) the universal type
space of Mertens and Zamir (1985) (Mathevet, Perego, and Taneva (2020) and Sandmann
(2020)) that encodes players’ beliefs and higher order beliefs. Our results embed restric-
tions on higher order beliefs imposed by the common prior assumption, and one could
make this explicit, as Kajii and Morris (1997) and Oyama and Takahashi (2020) did (us-
ing the language of belief operators (Monderer and Samet (1989)) and generalized belief
operators (Morris and Shin (2007) and Morris, Shin, and Yildiz (2016), respectively). We
chose not to work directly with the universal type space or explicitly with beliefs and higher
order beliefs, because our sequential obedience approach is simpler, highlights the anal-

26Earlier, Kamien, Tauman, and Zamir (1990) raised the question of full implementation by information
design and demonstrated by examples how private signals could generate more outcomes than public signals.
Carroll (2016) considered a bilateral trading game and characterized the information structure which mini-
mized the sum of players’ payoffs, subject to the best equilibrium being played. The trading game had binary
actions but was not supermodular, and the methods were different from this paper. Bergemann and Morris
(2019, Section 7.1) and Hoshino (2022) illustrated the implications of the higher order beliefs literature for
information design.

27Inostroza and Pavan (2022, Additional Material) showed that assuming the perfect coordination property
is without loss in regime change games with asymmetric payoffs for the objective of minimizing the probability
of regime change (as well as under some other alternative generalized settings). Their argument is, however,
special to the regime change payoffs, and neither implies nor is implied by our result. In Supplemental Ap-
pendix B.3, we show that the perfect coordination property holds in asymmetric regime change games within
our setting as well.
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ogy with the partial implementation case, and reduces the original infinite-dimensional
problem into a finite-dimensional linear program.

6. DISCUSSION

In this section, we discuss how our results would generalize or vary under alternative
assumptions and formulations. Formal treatments of those issues are relegated to the
Supplemental Material (Morris, Oyama, and Takahashi (2024)).

6.1. Full Implementation

In our analysis, we focused on S-implementation, rather than full implementation. It is
the relevant notion, in particular, when an information designer is concerned with induc-
ing the high action in the worst-case scenario. But we show in Supplemental Appendix B.1
that the arguments for full implementation are straightforward extensions of the results
for S-implementation. An outcome is fully implementable only if it satisfies not only se-
quential obedience which is necessary for S-implementation, but also the reverse version
of sequential obedience which is necessary for “largest equilibrium implementation,” and
conversely, under an appropriate extension of the dominance state assumption, these nec-
essary conditions are also jointly sufficient for full implementation. We further show that
for any outcome in SI, there exists an outcome in FI that stochastically dominates that
outcome. Thus, under the action monotonicity of the objective function, optimal infor-
mation design subject to S-implementability is in fact equivalent to that subject to full
implementability.

6.2. Non-Supermodular Payoffs

The supermodularity of payoffs has been maintained throughout the paper. For a gen-
eral binary-action game (di)i∈I with possibly non-supermodular payoffs, our arguments
still continue to work in the special case where we are interested in implementing the “all
players always play action 1” outcome by a unique rationalizable strategy profile. (Note
that under the supermodularity assumption, this is equivalent to S-implementation and
full implementation.) In this case, the implementability is characterized by the strength-
ening of sequential obedience that requires that action 1 be a strict best response for a
player whenever action 1 is played by others before him in the sequence, but independent
of the play of players after him.28 Then, applying our results to the BAS game (di)i∈I ob-
tained by di(a−i� θ) = mina′−i≥a−i

di(a′
−i� θ) will give the characterization; see Supplemental

Appendix B.2.1 for formal arguments.

6.3. Many Actions

For (supermodular) games with more than two actions, a natural generalization of the
sequential obedience would be to require the existence of a distribution over sequences
of action profiles, possibly correlated with the state, such that each player, whenever
recommended to switch from an action to a higher action, has an incentive to do so

28A similar condition appears in Halac, Lipnowski, and Rappoport (2021, Section V) and Halac, Lipnowski,
and Rappoport (2022).
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when expecting that the switches before the current switch have occurred; see Supple-
mental Appendix B.2.2 for a formal account. Then, the necessity of this condition for
S-implementability can be proved almost identically as in the proof of Theorem A.1(1):
consider the sequential best response process from the smallest strategy profile, and then
averaging the obedience conditions upon switches leads to the generalized sequential obe-
dience condition.

On the other hand, we do not expect the generalized sequential obedience condition
(along with consistency, obedience, and an appropriately modified version of dominance
state) to be sufficient for S-implementability in all games. A proof strategy of the same
approach as in the proof of Theorem A.1(2) would be to consider an information struc-
ture generated by multi-dimensional signals, with each dimension suggesting the timing
of switching from an action to another in the random sequence of action profiles. How-
ever, this would not work as desired in general, since the averaged condition of sequential
obedience may well be too coarse to control the incentives there. In Supplemental Ap-
pendix B.2.2, we report a special case which in effect reduces to a binary-action case, but
still covers the result of Hoshino (2022). We have to leave for future research identifying
a broader class of games in which our current approach works (with minimal modifica-
tions), or developing a new idea in constructing information structures, possibly along
with a more refined sequential obedience-like condition.29

6.4. Adversarial Information Sharing

Our implicit assumption has been that players do not share among themselves the in-
formation that is privately revealed to them by the information structure. Given that the
designer is concerned with the worst case in the actions of players, it would be possible
that she has a robustness concern also about the possibility of information sharing among
the players. A simple way to allow for this possibility is to suppose that there might be
a non-strategic information sharing protocol that can selectively reveal players’ informa-
tion to others and ask what is the designer’s optimal choice of information structure when
she assumes that there will be adversarial information sharing.30 In Supplemental Ap-
pendix B.2.3, we formulate this problem and prove that, under the supermodularity of
the payoffs and the monotonicity of the objective function, the designer cannot do better
than revealing a public signal to the players in this case. The problem then reduces to a
Bayesian persuasion problem.

6.5. Finite Information Structures

Our implementation in the proof of Theorem A.1(2) involves infinitely many types, but
it is straightforward to construct its finite version, depending on the environment and the
outcome to be implemented. The crucial assumption is that there is no a priori bound on
the number of types; see Supplemental Appendix B.2.4 for a formal argument. Specialized
to a symmetric two-player two-state example, Mathevet, Perego, and Taneva (2020) pre-
sented an information structure implementing the optimal outcome that is much smaller
than the one that the finite version of our construction would give. It is an interesting

29One might appeal to the approach of Gossner and Veiel (2022), who developed a finite automaton repre-
sentation of “critical” information structures that characterize rationalizable outcomes in general finite games.

30Galperti and Perego (2020) studied a non-strategic model where information is shared automatically
among players through a fixed network which is known to the designer, and Mathevet and Taneva (2022)
considered a similar model but accounted for incentives. Both papers consider partial implementation.
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open problem to characterize the smallest number of types needed to implement a given
outcome for general BAS games.

APPENDIX A

A.1. Characterization of S-Implementability

In this section, we provide a necessary and essentially sufficient condition for S-
implementability in terms of a strict version of sequential obedience.

DEFINITION A.1: An ordered outcome ν� ∈ �(�×�) satisfies strict sequential obedience
if ∑

γ∈�i�θ∈�
ν�(γ�θ)di

(
a−i(γ)� θ

)
> 0 (A.1)

for all i ∈ I such that ν�(�i ×�) > 0.
An outcome ν ∈ �(A×�) satisfies strict sequential obedience if there exists an ordered

outcome ν� ∈ �(�×�) that induces ν and satisfies strict sequential obedience.

Our sufficiency holds only for outcomes where all players choose action 1 with positive
probability at the dominance state θ.31

DEFINITION A.2: Outcome ν satisfies grain of dominance if ν(1� θ) > 0.

The set of S-implementable outcomes is characterized as follows:

THEOREM A.1:
(1) If an outcome is S-implementable, then it satisfies consistency, obedience, and strict

sequential obedience.
(2) If an outcome satisfies consistency, obedience, strict sequential obedience, and grain of

dominance, then it is S-implementable.

In the subsequent subsections, we prove the sufficiency part (part (1)) and the necessity
part (part (2)) of Theorem A.1, respectively. There, since the strategies to appear are all
pure, by abusing notation we let σi(ti) represent a pure action (an element of Ai), rather
than a mixed action (an element of �(Ai)).

A.1.1. Proof of Theorem A.1(1)

Let ν ∈ �(A × �) be S-implementable, and let (T�π) be a type space whose smallest
equilibrium σ induces ν. By Proposition 1, ν satisfies consistency and obedience.

Consider the sequence of pure strategy profiles {σn} obtained by sequential best re-
sponse starting with the smallest strategy profile: let σ0

i (ti) = 0 for all i ∈ I and ti ∈ Ti, and
for round n = 1�2� � � �, all types of player n (mod |I|) switch from action 0 to action 1 if
it is a strict best response to σn−1

−i . Thus,

σn
i (ti) =

⎧⎪⎪⎨⎪⎪⎩
1 if i ≡ n (mod |I|)�

and
∑
t−i�θ

π
(
(ti� t−i)� θ

)
di

(
σn−1

−i (t−i)� θ
)
> 0�

σn−1
i (ti) otherwise�

31See Supplemental Appendix B.2.7 for the indispensability of this condition.



IMPLEMENTATION VIA INFORMATION DESIGN 799

By supermodularity, for each i and ti, the sequence {σn
i (ti)} (of pure actions 0 and 1) is

monotone increasing and converges to σi(ti). Let ni(ti) = n if σn−1
i (ti) = 0 and σn

i (ti) =
1 (and hence σi(ti) = 1); let ni(ti) = ∞ if σn

i (ti) = 0 for all n (and hence σi(ti) = 0).
Write n(t) = (n1(t1)� � � � � n|I|(t|I|)). For γ = (i1� � � � � ik) ∈ �, let T (γ) denote the set of type
profiles t such that n(t) is ordered according to γ, that is, those type profiles t such that
ni(ti) = ∞ for all i /∈{i1� � � � � ik}, and ni� (ti�) < nim (tim) <∞ if and only if � <m.

Now, define ν� ∈ �(�×�) by

ν�(γ�θ) =
∑
t∈T (γ)

π(t� θ)

for each (γ�θ) ∈ � × �. Observe that ν� induces ν; indeed, for each (a�θ) ∈ A × �, we
have ∑

γ:a(γ)=a

ν�(γ�θ) =
∑

γ:a(γ)=a

∑
t∈T (γ)

π(t� θ)

=
∑

t:ni(ti)<∞ ⇐⇒ ai=1

π(t� θ) =
∑

t:σ (t)=a

π(t� θ) = ν(a�θ)�

To show strict sequential obedience, fix any i ∈ I with ν�(�i × �) > 0. Note that for all
ti ∈ Ti with ni(ti) < ∞, we have∑

t−i∈T−i�θ∈�
π

(
(ti� t−i)� θ

)
di

(
σ

ni(ti)−1
−i (t−i)� θ

)
> 0�

By adding up the inequality over all such ti, we have

0 <
∑

ti :ni(ti)<∞

∑
t−i∈T−i�θ∈�

π
(
(ti� t−i)� θ

)
di

(
σ

ni(ti)−1
−i (t−i)� θ

)
=

∑
γ∈�i

∑
t∈T (γ)

∑
θ∈�

π(t� θ)di

(
a−i(γ)� θ

)
=

∑
γ∈�i�θ∈�

ν�(γ�θ)di

(
a−i(γ)� θ

)
�

Thus, ν satisfies strict sequential obedience.

A.1.2. Proof of Theorem A.1(2)

Let ν ∈ �(A×�) satisfy consistency, obedience, strict sequential obedience, and grain
of dominance, and let ν� ∈ �(� × �) be an ordered outcome establishing strict sequen-
tial obedience. Since ν(1� θ) > 0 by grain of dominance, there exists γ̄ ∈ � containing all
players with ν�(γ̄� θ) > 0. For ε > 0 with ε < ν�(γ̄� θ), let

ν̃�(γ�θ) =

⎧⎪⎪⎨⎪⎪⎩
ν�(γ�θ) − ε

1 − ε
if (γ�θ) = (γ̄� θ)�

ν�(γ�θ)
1 − ε

otherwise�
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where we assume that ε is sufficiently small that ν̃� satisfies strict sequential obedience,
that is, ∑

γ∈�i�θ∈�
ν̃�(γ�θ)di

(
a−i(γ)� θ

)
> 0

for all i ∈ I. By the dominance state assumption, we can take a q̄ < 1 such that

q̄di(0−i� θ) + (1 − q̄) min
θ �=θ

di(0−i� θ) > 0 (A.2)

for all i ∈ I. Then let η> 0 be such that

ε

|I| − 1
ε

|I| − 1
+η

≥ q̄ (A.3)

and ∑
γ∈�i�θ∈�

(1 −η)|I|−n(a−i(γ))−1ν̃�(γ�θ)di

(
a−i(γ)� θ

)
> 0 (A.4)

for all i ∈ I, where n(a−i(γ)) is the number of players playing action 1 in the action profile
a−i(γ). Now construct the type space (T�π) as follows. For each i ∈ I, let

Ti =
{

{1�2� � � �} if ν̃�(�i ×�) = 1�
{1�2� � � �}∪{∞} otherwise�

Let π ∈ �(T ×�) be given by

π(t� θ)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − ε)η(1 −η)mν̃�(γ�θ) if there exist m ∈ N and γ ∈ � \{∅}
such that ti = m+ �(i� γ) for all i ∈ I�

(1 − ε)ν̃�(∅� θ) if t1 = · · · = t|I| = ∞�
ε

|I| − 1
if 1 ≤ t1 = · · · = t|I| ≤ |I| − 1 and θ = θ�

0 otherwise

for each t = (ti)i∈I ∈ T and θ ∈�, where

�(i� γ) =
{
� if there exists � ∈{1� � � � �k} such that i� = i�

∞ otherwise

for each i ∈ I and γ = (i1� � � � � ik) ∈ �. Observe that π is consistent with μ:
∑

t π(t� θ) =∑
γ ν�(γ�θ) = μ(θ) for all θ ∈�.

CLAIM A.1: For any i ∈ I and any τ ∈{1� � � � �|I|− 1}, π(θ|ti = τ) ≥ q̄.
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PROOF: For τ ∈{1� � � � �|I|− 1}, we have

π(θ|ti = τ) =

∑
t−i

π(ti = τ� t−i� θ)

∑
t−i�θ

π(ti = τ� t−i� θ)
≥

ε

|I| − 1
ε

|I| − 1
+η

≥ q̄�

where the first inequality holds since
∑

t−i
π(ti = τ� t−i� θ) ≥ π(t1 = · · · = t|I| = τ�θ) = ε

|I|−1 ,
and

∑
t−i�θ

π(ti = τ� t−i� θ) = ε
|I|−1 +∑

γ:�(i�γ)≤τ�θ(1 − ε)η(1 −η)τ−�(i�γ)ν̃�(γ�θ) ≤ ε
|I|−1 + (1 −

ε)η
∑

γ:�(i�γ)≤τ�θ ν̃�(γ�θ) ≤ ε
|I|−1 +η, while the second inequality is by (A.3). Q.E.D.

For S ⊂ I, we denote by 1S the action profile such that ai = 1 if and only if i ∈ S.

CLAIM A.2: For any i ∈ I and any τ ∈{|I|�|I|+ 1� � � �},

π
(
{j �= i|tj < τ}= S�θ|ti = τ

) = (1 −η)|I|−|S|−1ν̃�
({
γ ∈ �i|a−i(γ) = 1S

} ×{θ}
)
/Ci

for all S ⊂ I \{i}, where Ci = ∑|I|
�=1(1 −η)|I|−�ν̃�({γ = (i1� � � � � ik) ∈ �i|i� = i}×�) > 0.

PROOF: For τ ∈{|I|�|I|+ 1� � � �} and for S ⊂ I \{i}, we have

π
(
{j �= i|tj < τ}= S�θ|ti = τ

)
= π

(
ti = τ�{j �= i|tj < τ}= S�θ

)
/π(ti = τ)

= (1 − ε)η(1 −η)τ−|S|−1ν̃�
({
γ ∈ �i|a−i(γ) = 1S

} ×{θ}
)
/π(ti = τ)

= (1 −η)|I|−|S|−1ν̃�
({
γ ∈ �i|a−i(γ) = 1S

} ×{θ}
)
/Ci�

as claimed. Q.E.D.

CLAIM A.3: For any i ∈ I such that ν̃�(�i ×�) < 1,

π
(
{j �= i|tj < ∞}= S�θ|ti = ∞) = ν(1S� θ)/Di

for all S ⊂ I \{i}, where Di = (1 − ε)(1 − ν̃�(�i ×�)) > 0.

PROOF: For S ⊂ I \{i}, we have

π
(
{j �= i|tj < ∞}= S�θ|ti = ∞)
= π

(
ti = ∞�{j �= i|tj <∞}= S�θ

)
/π(ti = ∞)

= (1 − ε)ν̃�
({
γ ∈ �|a(γ) = 1S

} ×{θ}
)
/Di

= ν�
({
γ ∈ �|a(γ) = 1S

} ×{θ}
)
/Di = ν(1S� θ)/Di�

as claimed, where (1 − ε)ν̃�(γ�θ) = ν�(γ�θ) whenever a(γ) = 1S . Q.E.D.

We are in a position to conclude the proof of Theorem A.1(2). We first show that action
1 is uniquely rationalizable for all players of types ti < ∞. For types ti ≤|I|− 1, action 1
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is a strictly dominant action by Claim A.1 and condition (A.2). For τ ≥|I|, suppose that
action 1 is uniquely rationalizable for all players of types ti ≤ τ − 1. Then the expected
payoff for a player i of type ti = τ from playing action 1 is no smaller than∑

S⊂I\{i}�θ∈�
π

(
{j �= i|tj < τ}= S�θ|ti = τ

)
di(1S� θ)

=
∑

γ∈�i�θ∈�
(1 −η)|I|−n(a−i (γ))−1ν̃�(γ�θ)di

(
a−i(γ)� θ

)
/Ci > 0�

where the equality is by Claim A.2 and the inequality by the “perturbed” strict sequen-
tial obedience condition (A.4). Therefore, action 1 is uniquely rationalizable for ti = τ.
Hence, by induction, action 1 is uniquely rationalizable for all types ti < ∞. Then, for
each i ∈ I, let σi be the pure strategy such that σi(ti) = 1 if and only if ti < ∞. For a
player i (with ν̃�(�i ×�) < 1) of type ti = ∞, against σ−i the expected payoff is∑

S⊂I\{i}�θ∈�
π

(
{j �= i|tj <∞}= S�θ|ti = ∞)

di(1S� θ)

=
∑

a−i∈A−i�θ∈�
ν
(
(0� a−i)� θ

)
di(a−i� θ)/Di ≤ 0�

where the equality is by Claim A.3 and the inequality by (lower) obedience, which implies
that playing 0 is a best response to σ−i. It therefore follows that σ is indeed the smallest
equilibrium. Finally, by construction, σ induces ν, as desired.

A.2. Proofs of Theorem 1 and Corollaries 1 and 3

A.2.1. Proof of Theorem 1

The “only if” part follows from Theorem A.1(1) by a continuity argument. To prove
the “if” part, let ν ∈ �(A × �) satisfy consistency, obedience, and sequential obedience
with ν� ∈ �(� × �). Let ν ∈ �(A × �) be any outcome that satisfies consistency, obedi-
ence, strict sequential obedience with, say, ν� ∈ �(�×�), and grain of dominance.32 Then
define νε ∈ �(A × �) by νε = (1 − ε)ν + εν. Clearly, νε satisfies consistency, obedience,
strict sequential obedience with (1 −ε)ν� +εν�, and grain of dominance. Hence, we have
νε ∈ SI by Theorem A.1(2). Since νε → ν as ε → 0, we therefore have ν ∈ SI.

A.2.2. Proof of Corollary 1

First, we claim that for any ν ∈ �(A × �) that satisfies consistency, strict sequential
obedience, and grain of dominance, there exists ν̂ ∈ SI that first-order stochastically dom-
inates ν. Indeed, given such an outcome ν, consider the information structure as con-
structed in the proof of Theorem A.1(2). There, all types ti < ∞ of any player i play
action 1 as a unique rationalizable action, and hence the smallest equilibrium induces an
outcome ν̂ ∈ SI that first-order stochastically dominates ν.

32For example, let ν be the outcome induced by the smallest equilibrium of the information structure such
that each θ ∈ �, when realized, becomes common knowledge; that outcome satisfies consistency, obedience,
and strict sequential obedience by Theorem A.1(1), and grain of dominance by the assumptions of dominance
state and full support.
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Now let ν ∈ �(A × �) satisfy consistency and sequential obedience. Then, as in the
proof of Theorem 1, there exists a sequence of outcomes νε ∈ �(A×�) converging to ν
that satisfy consistency, strict sequential obedience, and grain of dominance: for example,
let νε = (1 − ε)ν + εν with an outcome ν as in the proof of Theorem 1. Then, as claimed
above, for each ε, there exists an outcome ν̂ε ∈ SI that first-order stochastically dominates
νε. Then a limit point of ν̂ε, which is contained in SI, first-order stochastically dominates ν.

A.2.3. Proof of Corollary 3

The “only if” part follows from Theorem A.1(1) by a continuity argument. To prove the
“if” part, let ξ ∈ �(A) satisfy obedience and sequential obedience with an ordered out-
come ρ ∈ �(�) in (di(·� θ∗))i∈I . Let ρ̄ ∈ �(�) be any ordered outcome such that ρ̄(γ̄) = 1
for some sequence γ̄ of all players. By the dominance state assumption, ρ̄ satisfies strict se-
quential obedience in (di(·� θ))i∈I . Then, for each k, define μk ∈ �(�) by μk(θ∗) = 1 − 1

k

and μk(θ) = 1
k

, and νk� ∈ �(� × �) by νk�(·� θ∗) = (1 − 1
k
)ρ and νk�(·� θ) = 1

k
ρ̄, and let

νk ∈ �(A×�) be the outcome induced by νk� . Clearly, νk is consistent with μk and satis-
fies obedience, strict sequential obedience, and grain of dominance. Hence, νk ∈ SI(μk)
by Theorem A.1(2). Since μk(θ∗) → 1 and

∑
θ∈� ν

k(·� θ) → ξ as k → ∞, ξ is limit S-
implementable at θ∗.

A.3. A Dual Representation of Sequential Obedience

In this section, we report a dual representation of sequential obedience. Sequential
obedience of an outcome ν is defined by the existence of an ordered outcome ν� inducing
ν that satisfies condition (3.1), or in other words, by the solvability of the system of these
equalities and inequalities. A duality theorem thus gives us an equivalent condition in
terms of dual variables, as presented in Proposition A.1 below. It will be used to prove
Proposition A.2 in Section A.4.

For ν ∈ �(A×�), let I(ν) ⊂ I denote the set of “active players” who are recommended
to play action 1 with positive probability:

I(ν) = {
i ∈ I|ν

(
(1� a−i)� θ

)
> 0 for some a−i ∈A−i and θ ∈ �

}
�

By definition, ν(a�θ) > 0 only if S(a) ⊂ I(ν), where S(a) ={i ∈ I|ai = 1}.

PROPOSITION A.1: An outcome ν satisfies sequential obedience (resp. strict sequential
obedience) if and only if, for any (λi)i∈I ∈ RI

+ such that λi > 0 for some i ∈ I(ν),∑
a∈A�θ∈�

ν(a�θ) max
γ:a(γ)=a

∑
i∈S(a)

λidi

(
a−i(γ)� θ

) ≥ (resp. >)0� (A.5)

Thus, sequential obedience requires that for any player weights, the expected weighted
sum of payoff changes along the best path be nonnegative.

For illustration, consider outcome (2.3) in the example in Section 2. For given (λ1�λ2) ∈
R2

+ \{(0�0)}, the left-hand side of (A.5) is computed as(
1
4

− δ

)
max

{
λ1 × (−7) + λ2 × (−5)�λ2 × (−8) + λ1 × (−4)

}
+ 1

2
max{λ1 × 2 + λ2 × 4�λ2 × 1 + λ1 × 5}
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=

⎧⎪⎪⎨⎪⎪⎩
(λ2 − λ1)

(
3
4

+ 5δ
)

+ λ1(12δ) if λ1 ≤ λ2�

(λ1 − λ2)
(

3
2

+ 4δ
)

+ λ2(12δ) if λ1 ≥ λ2�

which is always nonnegative (resp. positive) if δ= 0 (resp. if δ > 0). Thus, Proposition A.1
guarantees the existence of some ordered outcome that induces outcome (2.3) and satis-
fies sequential obedience (resp. strict sequential obedience) if δ= 0 (resp. if δ > 0).

PROOF OF PROPOSITION A.1: Given any ν ∈ �(A × �), let N�(ν) = {ν� ∈ �(� × �)|∑
γ:a(γ)=a ν�(γ�θ) = ν(a�θ)} and �(ν) = {λ ∈ �(I)|

∑
i∈I(ν) λi = 1}, which are each convex

and compact. For ν� ∈N�(ν) and λ ∈ �(ν), let

D(ν��λ) =
∑
i∈I

λi

∑
γ∈�i�θ∈�

ν�(γ�θ)di

(
a−i(γ)� θ

)
=

∑
γ∈��θ∈�

ν�(γ�θ)
∑
i∈S(γ)

λidi

(
a−i(γ)� θ

)
=

∑
a∈A�θ∈�

∑
γ:a(γ)=a

ν�(γ�θ)
∑
i∈S(a)

λidi

(
a−i(γ)� θ

)
�

which is linear in each of ν� and λ, where for γ ∈ �, S(γ) denotes the set of players that
appear in γ.

First, ν satisfies sequential obedience (resp. strict sequential obedience) if and only if
there exists ν� ∈ N�(ν) such that D(ν��λ) ≥ (resp. >)0 for all λ ∈ �(ν), which in turn is
equivalent to

max
ν�∈N�(ν)

min
λ∈�(ν)

D(ν��λ) ≥ (resp. >)0� (A.6)

Second, (LHS of (A.5)) = maxν�∈N�(ν) D(ν��λ) for each λ ∈ �(ν). Hence, ν satisfies
condition (A.5) if and only if

min
λ∈�(ν)

max
ν�∈N�(ν)

D(ν��λ) ≥ (resp. >)0� (A.7)

Now, by the minimax theorem, we have maxν� minλ D(ν��λ) = minλ maxν� D(ν��λ), and
therefore, (A.6) holds if and only if (A.7) holds. Q.E.D.

A.4. Sequential Obedience in Potential Games

In this section, we provide a simpler characterization of sequential obedience for po-
tential games (Proposition A.2), from which Proposition 2 and Theorem 2 in Section 4
are proved under the convexity assumptions. We also discuss two examples of potential
games, investment games and regime change games, to illustrate our assumptions.

For any outcome ν ∈ �(A×�), define

�ν(a) =
∑

a′∈A�θ∈�
ν
(
a′� θ

)
�

(
a∧ a′� θ

)
�
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where b = a ∧ a′ denotes the action profile such that bi = 1 if and only if ai = a′
i = 1. To

interpret this function �ν , imagine a hypothetical situation where players make commit-
ments whether to “play ai = 1 whenever recommended to do so” (represented simply as
ai = 1) or “play ai = 0 whatever the recommendation” (represented as ai = 0), before
they receive recommendations a′ according to ν. Thus, if the profile of commitments is
a, then the ex post play is a ∧ a′ when the profile of recommendations is a′, and hence
the ex ante expected value of the potential � with respect to ν is �ν(a). In particular,
�ν(1) is the expected potential of ν when all players follow the recommendations, while
�ν(0�1−i) is that when only player i deviates to action 0 with all others following recom-
mendations; therefore, upper obedience—the requirement that players have an incentive
to follow recommendation of action 1—can be written with function �ν as

�ν(1) ≥�ν(0�1−i)

for all i ∈ I. Sequential obedience is shown to be equivalent to the stronger condition
that the outcome potential is maximized when all players follow the recommendations
(recall that I(ν) is the set of players who are recommended to play action 1 with positive
probability under ν).

PROPOSITION A.2: In a potential game, an outcome satisfies sequential obedience (resp.
strict sequential obedience) if and only if

�ν(1) ≥ (resp. >)�ν(a) (A.8)

for all a ∈A such that S(a) � I(ν).

The proof is given in Section A.4.2, where we verify that condition (A.8) is equivalent to
the condition given in Proposition A.1. The key property is that if the base game is a po-
tential game, the weighted sum of deviation gains across different players is represented
by a single function �ν .

For illustration, consider again the example in Section 2. For outcome (2.3), which we
denote by ν, the average potential �ν is given as follows:

Not Invest

Not 0 − 3
2 +8δ

Invest − 3
4 +7δ 12δ

.

Thus, outcome ν satisfies condition (A.8) with weak (resp. strict) inequality if δ= 0 (resp.
if δ > 0).

In the special case where there is limit complete information at some θ∗ (discussed
in Section 3.3) and the outcome is (the degenerate outcome on) pure action profile 1,
condition (A.8) reduces to the condition that

�
(
1� θ∗) ≥ (resp. >)�

(
a�θ∗)

for all a �= 1, that is, that 1 is potential maximizing in the complete information potential
game �(·� θ∗). Thus, by Corollary 3 and Proposition A.2, 1 is limit S-implementable at θ∗

if and only if it is a weak potential maximizer at θ∗.33

33In Morris, Oyama, and Takahashi (2022b), we reported interesting connections between the sequential
obedience condition in complete information potential games and some well-known concepts from cooperative
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A.4.1. Examples

Recall that n(a) = |S(a)| denotes the number of players choosing action 1 in action
profile a ∈ A, and (abusing notation slightly) we also let n(a−i) denote the number of
players choosing action 1 in action profile a−i ∈A−i.

EXAMPLE A.1—Investment Game: Let �={1� � � � �|�|}, and

di(a−i� θ) =R(θ) + hn(a−i)+1 − ci�

where hk is increasing in k and R(θ) is strictly increasing in θ. Assume that R(|�|) +h1 >
ci for all i ∈ I, so that the dominance state assumption holds with θ =|�|. We interpret
di(a−i� θ) to be the return to investment (action 1), which is (i) increasing in the state; and
(ii) increasing in the proportion of others investing (making the game supermodular). But
there are heterogeneous costs of investment; without loss we assume that

c1 ≤ c2 ≤ · · · ≤ c|I|�

This game has a potential:

�(a�θ) = R(θ)n(a) +
n(a)∑
k=1

hk −
∑
i∈S(a)

ci�

It satisfies convexity if and only if

1
�

�∑
k=1

(hk − ck) ≤ 1
|I|

|I|∑
k=1

(hk − ck) (A.9)

for any � = 1� � � � �|I|− 1. This condition automatically holds if costs are symmetric and
amounts to the assumption that costs are not too asymmetric. In particular, a sufficient
condition for convexity is that

hk − ck ≤ hk+1 − ck+1

for any k = 1� � � � �|I|− 1, where hk is increasing by supermodularity.
The game (2.1) in Section 2 falls in this class of games with R(b) = 0, R(g) = 9, h1 = 0,

h2 = 3, c1 = 7, and c2 = 8. Its potential, as given in (4.1) in Section 4, satisfies convexity,
where h1 − c1(= −7) < h2 − c2(= −5).

EXAMPLE A.2—Regime Change Game: Let �={1� � � � �|�|}, and

di(a−i� θ) =
{
ci if n(a−i) ≥ |I| − k(θ)�
ci − 1 if n(a−i) < |I| − k(θ)�

where 0 < ci < 1, and k : � → N is strictly increasing. We assume that k(1) ≥ 1 and
k(|�|) = |I|, so that the dominance state assumption holds with θ = |�|. The interpre-
tation is that action 0 is to attack the regime while action 1 is to abstain from attacking.

game theory, in particular the core of the supermodular set function (hence cooperative game) S �→ �(1S� θ
∗)

(where for S ⊂ I, 1S denotes the action profile a such that ai = 1 if and only if i ∈ S).
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The regime collapses if the number of attackers (action 0 players) is larger than k(θ), or
equivalently, the number of non-attackers (action 1 players) is smaller than |I|− k(θ).
Given a−i ∈ A−i, attack (action 0) yields a gross benefit 1 (resp. 0) upon regime change,
that is, if n(a−i) <|I|− k(θ) (resp. upon status quo, i.e., if n(a−i) ≥|I|− k(θ)), with cost
ci, while the payoff of abstention (action 1) is always 0. This is a finite-state, finite-player
version of the continuous-state, continuum-player regime change game studied by Morris
and Shin (1998, 2004) and analyzed in the context of information design by Inostroza and
Pavan (2022) and Li, Song, and Zhao (2023).

This game has a potential:

�(a�θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
i∈S(a)

ci −
(|I| − k(θ)

)
if n(a) ≥ |I| − k(θ)�∑

i∈S(a)

ci − n(a) if n(a) < |I| − k(θ)�

It satisfies convexity if and only if c1 = · · · = c|I|.
Suppose that the designer’s objective is to maximize the probability of maintaining the

status quo:34

V (a�θ) =
{

1 if n(a) ≥ |I| − k(θ)�
0 if n(a) < |I| − k(θ)�

Since �(a�θ) > �(1� θ) holds only when n(a) < |I| − k(θ) (i.e., when the regime col-
lapses), this objective function V satisfies restricted convexity.

A.4.2. Proof of Proposition A.2

Suppose that the base game admits a potential �. By Proposition A.1, it suffices to show
that ν ∈ �(A × �) satisfies condition (A.5) in Proposition A.1 if and only if it satisfies
condition (A.8) in Proposition A.2.

The “only if” part: Suppose that ν satisfies sequential obedience (resp. strict sequen-
tial obedience) and hence condition (A.5). Fix any a ∈ A such that S(a) � I(ν). Define
(λa

i )i∈I ∈ RI
+ by λa

i = 1 if i ∈ I \ S(a) and λa
i = 0 if i ∈ S(a). Note that λa

i > 0 for some
i ∈ I(ν).

Consider any (a′� θ) ∈ A × �. By supermodularity, any sequence that maximizes∑
i∈S(a′) λ

a
i di(a−i(γ)� θ) = ∑

i∈S(a′)\S(a) di(a−i(γ)� θ) over sequences γ such that a(γ) = a′

ranks all players in S(a′) ∩ S(a) earlier than those in S(a′) \ S(a). Let γ′ = (i1� � � � � i|S(a′)|)
be any such sequence, where {i1� � � � � i|S(a′)∩S(a)|}= S(a′) ∩ S(a). Thus, we have

max
γ:a(γ)=a′

∑
i∈S(a′)

λa
i di

(
a−i(γ)� θ

) =
|S(a′)|∑

�=|S(a′)∩S(a)|+1

(
�

((
1� a−i�

(
γ′))� θ) −�

((
0� a−i�

(
γ′))� θ))

= �
(
a′� θ

) −�
(
a∧ a′� θ

)
�

34This objective is studied in the regime change applications of Inostroza and Pavan (2022) and Li, Song,
and Zhao (2023) (Inostroza and Pavan (2022) also considered some more general objectives).
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Therefore, we have

�ν(1) −�ν(a) =
∑

a′∈A�θ∈�
ν
(
a′� θ

)(
�

(
a′� θ

) −�
(
a∧ a′� θ

))
=

∑
a′∈A�θ∈�

ν
(
a′� θ

)
max

γ:a(γ)=a′

∑
i∈S(a′)

λa
i di

(
a−i(γ)� θ

)
�

which is nonnegative (resp. positive) by condition (A.5).
The “if” part: Suppose that ν satisfies condition (A.8). We want to show that ν sat-

isfies condition (A.5). Fix any (λi)i∈I ∈ RI
+ such that λi > 0 for some i ∈ I(ν). Let

γλ = (i1� � � � � i|I|) be a permutation of all players such that {i1� � � � � i|I(ν)|} = I(ν) and
λi1 ≤ · · · ≤ λi|I(ν)|. Then, we have

(LHS of (A.5))

≥
∑

a′∈A�θ∈�
ν
(
a′� θ

) ∑
i∈S(a′)

λi

(
�

((
1� a−i

(
γλ

)) ∧ a′� θ
) −�

((
0� a−i

(
γλ

)) ∧ a′� θ
))

=
∑
i∈I

λi

∑
a′∈A�θ∈�

ν
(
a′� θ

)(
�

((
1� a−i

(
γλ

)) ∧ a′� θ
) −�

((
0� a−i

(
γλ

)) ∧ a′� θ
))

=
∑
i∈I

λi

(
�ν

(
1� a−i

(
γλ

)) −�ν

(
0� a−i

(
γλ

)))
=

|I|∑
k=1

(λik − λik−1 )
|I|∑
�=k

(
�ν

(
1� a−i�

(
γλ

)) −�ν

(
0� a−i�

(
γλ

)))

=
|I|∑
k=1

(λik − λik−1 )
(
�ν(1) −�ν(1{i1�����ik−1})

)
�

which is nonnegative (resp. positive) by condition (A.8) as desired, where we set λi0 = 0.

A.4.3. Proof of Proposition 2

By Proposition A.2, sequential obedience is equivalent to condition (A.8) (with weak
inequality) in a potential game. The “only if” part is obvious. The “if” direction follows
from convexity of � since for a perfect coordination outcome ν, we have

�ν(1) −�ν(a) =
∑
θ∈�

ν(1� θ)
(
�(1� θ) −�(a�θ)

)
≥

(
1 − n(a)

|I|
)∑

θ∈�
ν(1� θ)�(1� θ) =

(
1 − n(a)

|I|
)
�ν(1) ≥ 0

for any a �= 1.

A.5. Proof of Theorem 2

Suppose that � satisfies convexity and V satisfies restricted convexity with respect to �.
As already noted, ν∗ satisfies consistency (4.4b), sequential obedience (4.4c), and obedi-
ence, and hence is in SI.
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First, we show that (ν∗(1� θ))θ∈� is an optimal solution to the problem (4.4). Let
(ν(1� θ))θ∈� be such that 0 ≤ ν(1� θ) ≤ μ(θ) and

∑
θ∈� ν

∗(1� θ)V (1� θ) <
∑

θ∈� ν(1� θ) ×
V (1� θ). For simplicity, we assume that V (1� θ) > 0 for all θ ∈ �.35 Define ξ = (ξ(θ))θ∈�,
ξ∗ = (ξ∗(θ))θ∈�, and ξ∗∗ = (ξ∗∗(θ))θ∈� by ξ(θ) = ν(1� θ)V (1� θ) for all θ ∈ �, ξ∗(θ) =
ν∗(1� θ)V (1� θ) for all θ ∈ �, and ξ∗∗(θ∗) = ξ∗(θ∗) + ∑

θ∈� ν(1� θ)V (1� θ) −∑
θ∈� ν

∗(1� θ)V (1� θ) > ξ∗(θ∗) and ξ∗∗(θ) = ξ∗(θ) for all θ �= θ∗.
Since

∑
θ′≥θ ξ(θ′) ≤ ∑

θ′≥θ ξ
∗∗(θ′) for all θ ∈ � and

∑
θ∈� ξ(θ) = ∑

θ∈� ξ
∗∗(θ) by the con-

struction of ν∗ and �(1�θ)
V (1�θ) is nondecreasing in θ, we have

∑
θ∈�

ν(1� θ)�(1� θ) =
∑
θ∈�

ξ(θ)
�(1� θ)
V (1� θ)

≤
∑
θ∈�

ξ∗∗(θ)
�(1� θ)
V (1� θ)

�

But we have∑
θ∈�

ξ∗∗(θ)
�(1� θ)
V (1� θ)

=
∑
θ∈�

ξ∗(θ)
�(1� θ)
V (1� θ)

+ (
ξ∗∗(θ∗) − ξ∗(θ∗))�(

1� θ∗)
V

(
1� θ∗) < 0�

since the first term in the right-hand side of the equality equals 0 by (4.6), and �(1� θ∗) <
0. This means that (ν(1� θ))θ∈� is not feasible. This implies that (ν∗(1� θ))θ∈� is an optimal
solution to the problem (4.4).

Next, we show that ν∗ is an optimal outcome of the adversarial information design
problem. For this, it suffices to show that for any outcome ν ∈ SI, there exists a perfectly
coordinated outcome ν′ that satisfies the constraints of consistency (4.4b) and sequential
obedience (4.4c) and whose value is no smaller than that of ν. For each (a�θ), define
α(a�θ) ∈ [0�1] by

α(a�θ) =

⎧⎪⎨⎪⎩
1 if �(a�θ) ≤�(1� θ)�
n(a)
|I| if �(a�θ) >�(1� θ)�

Then, for all (a�θ), we have �(a�θ) ≤ α(a�θ)�(1� θ) (by convexity) and V (a�θ) ≤
α(a�θ)V (1� θ) (by monotonicity and restricted convexity).

Take any ν ∈ SI. By Theorem 1 and Proposition A.2, ν satisfies consistency and condi-
tion (A.8) in Proposition A.2. Define ν′ ∈ �(A×�) by

ν′(a�θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
a′∈A

(
1 − α

(
a′� θ

))
ν
(
a′� θ

)
if a= 0�∑

a′∈A
α
(
a′� θ

)
ν
(
a′� θ

)
if a= 1�

0 if a �= 0�1�

which satisfies the perfect coordination property. Since ν is consistent with μ, so is ν′.
Since ν satisfies condition (A.8), we also have∑

θ∈�
ν′(1� θ)�(1� θ) =

∑
a∈A�θ∈�

α(a�θ)ν(a�θ)�(1� θ)

35Otherwise, define (ν′(1� θ))θ∈� by ν′(1� θ) = ν∗(1� θ) if V (1� θ) = 0 and ν′(1� θ) = ν(1� θ) otherwise. Then
the following argument will go through with ν′ in place of ν.
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≥
∑

a∈A�θ∈�
ν(a�θ)�(a�θ) =�ν(1) ≥ 0�

Therefore, ν′ satisfies (4.4c). For the value of the objective function, we have∑
θ∈�

ν′(1� θ)V (1� θ) =
∑

a∈A�θ∈�
ν(a�θ)α(a�θ)V (1� θ) ≥

∑
a∈A�θ∈�

ν(a�θ)V (a�θ)�

This completes the proof of Theorem 2.

A.6. S-Implementation With Public Signals

In this section, we discuss implementation with public signals for the example from
Section 2. The game (2.1) is a special case of the investment game, where its potential
satisfies convexity (Example A.1). The designer wants to maximize the expected number
of players who choose action 1, that is, V (a�θ) = n(a) for all a ∈ A and θ ∈ �, so that
restricted convexity is satisfied.

When the information structure is generated by public signals, the players share the
same posterior belief over � = {b�g}. Let q denote the posterior probability of g. Given
q, the average game is given by

Not Invest

Not 0, 0 0, 9q− 8
Invest 9q− 7, 0 9q− 4, 9q− 5

� (A.10)

which has a convex potential

Not Invest

Not 0 9q− 8
Invest 9q− 7 18q− 12

.

FIGURE A.1.—Optimal values: concavification.



IMPLEMENTATION VIA INFORMATION DESIGN 811

FIGURE A.2.—Optimal values: comparison.

Note that due to the convexity of the potential, pure equilibria of this game are always
either (Not Invest�Not Invest) or (Invest� Invest), or both. The profile (Invest� Invest) is
the smallest (hence unique) equilibrium if and only if q > 7

9 . By a concavification argu-
ment from Bayesian persuasion, the optimal value under S-implementation with public
signals as a function of μ(g) is given by the solid line segments in Figure A.1 with q∗ = 7

9

and V ∗ = 9
7 . When μ(g) = 1

2 (= 5
14 ×0+ 9

14 × 7
9 ) as in Section 2, the optimal outcome under

S-implementation with public signals is approached, as δ→ 0, by

b Not Invest

Not 5
14 + δ 0

Invest 0 1
7 − δ

g Not Invest

Not 0 0
Invest 0 1

2

with the value arbitrarily close to 9
7 ≈ 1�3, which is S-implemented (in fact fully imple-

mented) by the direct information structure. Indeed, it is induced, for example, by the
ordered outcome ν� such that ν�(∅�b) = 5

14 + δ, ν�(12�b) = 1
7 − δ, and ν�(12�g) = 1

2 (and
ν�(γ�θ) = 0 otherwise) which satisfies the “strict public sequential obedience” condition∑

θ∈� ν�(12� θ)di(a−i(12)� θ) > 0 for all i ∈ I, where in the limit as δ → 0, only the condi-
tion for player 1 binds.

Now, (Invest� Invest) is a (weakly) risk dominant equilibrium, or equivalently a (weak)
potential maximizer, in the average game (A.10) if and only if q ≥ 2

3 . Indeed, if μ(g) = q ≥
2
3 , the ordered outcome given by ν�(12�b) = 2

3 (1 − q), ν�(21�b) = 1
3 (1 − q), ν�(12�g) =

2
3q, and ν�(21�g) = 1

3q (and ν�(γ�θ) = 0 otherwise) satisfies sequential obedience. When
μ(g) = 1

2 (= 1
4 × 0 + 3

4 × 2
3 ), the 1

4 - 3
4 convex combination of the ordered outcome that

assigns probability 1 to (γ�θ) = (∅�b) and the above ordered outcome with q = 2
3 satisfies

sequential obedience and induces the optimal outcome (2.2) under S-implementation
with private signals, as shown in Section 3.1, with the value arbitrarily close to 3

2 = 1�5
(let q∗ = 2

3 and V ∗ = 3
2 in Figure A.1). Figure A.2 depicts the optimal values under S-

implementation with private signals V ∗
private (solid line) and S-implementation with public
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signals V ∗
public (dashed line). In particular, when μ(g) = 1

2 , no outcome close to outcome
(2.2) can be S-implementable with public signals.
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