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In a setting of many-to-one two-sided matching with nontransferable utilities, for ex-
ample, college admissions, we study conditions under which preferences of both sides
are identified with data on one single market. Regardless of whether the market is
centralized or decentralized, assuming that the observed matching is stable, we show
nonparametric identification of preferences of both sides under certain exclusion re-
strictions. To take our results to the data, we use Monte Carlo simulations to evaluate
different estimators, including the ones that are directly constructed from the identifi-
cation. We find that a parametric Bayesian approach with a Gibbs sampler works well
in realistically sized problems. Finally, we illustrate our methodology in decentralized
admissions to public and private schools in Chile and conduct a counterfactual analysis
of an affirmative action policy.
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1. INTRODUCTION

IN A MANY-TO-ONE TWO-SIDED MATCHING MARKET, agents are categorized into two
sides; everyone on one side has preferences over those on the other side; an agent on only
one of the two sides can have multiple match partners from the other side. Many real-
life markets fit this description, for example, the medical resident match (Roth (1984),
Agarwal (2015)) in the U.S., school admissions in Chile (Gazmuri (2017)) and Hungary
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(Aue, Klein, and Ortega (2020)), college admissions in the U.S., and graduate program
admissions in France (He and Magnac (2022)). Such markets often exclude personalized
transfers, even though limited monetary exchanges may exist. Hence, the literature de-
fines it as matching without transfers or matching with nontransferable utility.

While the literature has extensively studied this type of matching theoretically (see,
e.g., Roth and Sotomayor (1992), Azevedo and Leshno (2016)), its econometrics is less
explored. Our paper aims to make a contribution by answering the following questions:
Are the preferences of both sides identified from data on who matches with whom? If so,
how can the preferences be estimated?

To fix ideas, we proceed in the language of college admissions. We derive a set of suffi-
cient conditions under which both student and college preferences are nonparametrically
identified. Our results are obtained from a single market in which there are a continuum
of students and a fixed number of colleges. We use that to approximate a single large
market. Further, we provide an estimation procedure that is practical even in settings
with many agents, allowing for rich observed and unobserved heterogeneity. Understand-
ing agent preferences is often crucial for policymaking, and one may analyze a wide range
of counterfactual policies with estimated preferences. Potentially, our results open a new
avenue of research on such matching markets.

The main challenge in identifying student preferences is that each student’s actual
choice set is unobservable to the researcher. For student i to be able to enroll at col-
lege c, college c needs to accept i. The same difficulty exists in the identification of college
preferences. Moreover, each student’s and each college’s choice sets are endogenously
determined in equilibrium without market-clearing prices.

In our continuum setting, we assume that an observed matching is stable. That is, no
college prefers to reject any of its currently matched students to vacate a seat, and no stu-
dent prefers to leave her current match to become unmatched or matched with a college
that is willing to accept her and, if necessary, reject one of its currently matched students.
Stability is often imposed in the study of various matching markets (see, for a survey,
Chiappori and Salanié (2016)) and is satisfied in equilibrium in our setting in certain
game-theoretical models (Artemov, Che, and He (2023), Fack, Grenet, and He (2019)).

Importantly, there is generically a unique stable matching that is characterized by the
colleges’ admission cutoffs (Azevedo and Leshno (2016)). When college preferences over
individual students are represented by utility functions, a college’s cutoff is the lowest
utility level among its matched students. Cutoffs further define a student’s actual choice
set in equilibrium, called feasible set. A college is in a student’s feasible set if the college’s
utility of being matched with her is higher than its cutoff. Stability implies that a student
is matched with her most-preferred feasible college, similar to a discrete choice problem,
except that feasible sets are unobservable and heterogeneous.

A simple equation, called the i-c match probability, is the key to understanding our
identification result. Specifically, the conditional probability of student i being matched
with college c is the sum of conditional probabilities of i choosing c from a given feasible
set L weighted by the conditional probability of facing L:

P(student i is matched with college c|xi)

=
∑

all possible feasible sets, L

P
(
L is i’s feasible set |xi

)︸ ︷︷ ︸
≡A(college preferences)

· P(
c is i’s most-preferred college in L|L�xi

)︸ ︷︷ ︸
≡B(student preferences)

�
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where xi consists of all observed characteristics of student i (e.g., pair-specific character-
istics like distance to colleges). The equation provides a decomposition of the preferences
of the two sides: for each given L, piece A only depends on the preferences of all colleges
given cutoffs, while B only depends on i’s preferences over all colleges.

We then detail a set of exclusion restrictions, among other regularity conditions, such
that the excluded variables act as “demand shifters” and “feasible-set shifters” (or sup-
ply shifters). Sufficient variation in these excluded variables identifies the preferences of
colleges and students using the i-c match probability described above.

Here are some intuitions. For a college d, an (i� d)-specific demand shifter traces out
how i’s preferences for d affects the i-c match probability. Similarly, an (i� d)-specific
feasible-set shifter traces out how d’s preference for i affects the i-c match probability.
A nonexcluded variable affects the i-c match probability through preferences on both
sides for all colleges. By taking derivatives of the i-c match probability with respect to
(w.r.t.) all the variables, excluded and nonexcluded, we derive systems of linear equations
that link the effects of variations in demand and supply. Hence, the identification problem
reduces to setting up systems of linear equations and ensuring the existence of a unique
solution.

The second objective of our paper is to provide practical methods that can be used to
analyze real-life markets. We achieve this by deriving theoretical guidelines and showcas-
ing a practical estimation method.

When taken to the data, the requirement of a large number of excluded variables may
be difficult to meet. To address this, we theoretically characterize the tradeoff between
exclusion restrictions and the degree of identifiable preference heterogeneity (Proposi-
tion 3.7). The researcher can use this result as a guideline for empirical studies when
having insufficient excluded variables.

We also need a practical estimation method to take these identification results to the
data. In fact, our identification arguments are constructive, leading to nonparametric and
semiparametric estimators. Monte Carlo simulations suggest that estimating the matri-
ces of partial derivatives in the linear systems using the average derivative estimators of
Powell, Stock, and Stoker (1989) performs well in finite samples only when the curse of
dimensionality is not severe. In a reasonably sized problem, we resort to a parametric
Bayesian approach with a Gibbs sampler (Rossi, Allenby, and McCulloch (2012)), re-
sembling applications such as Logan, Hoff, and Newton (2008) for one-to-one two-sided
matching and Abdulkadiroğlu, Agarwal, and Pathak (2017) for a one-sided problem. We
demonstrate its good performance in Monte Carlo simulations with high dimensionality.

As an empirical application, we consider the decentralized admissions to secondary
schools in Chile. To the best of our knowledge, this is one of the first attempts to estimate
the preferences of both sides in a decentralized market of many-to-one two-sided match-
ing without transfers. There is no clearinghouse, and students do not submit rank-order
lists of schools. By allowing flexible preference heterogeneity in the Bayesian approach,
we estimate the preferences of students and schools. We also consider a counterfactual
policy in which students from low-income families are prioritized for admissions to all
schools. Segregation in terms of ability and income decreases, albeit slightly. We find that
simply giving low-income students access to schools may not significantly change matching
outcomes due to student preferences.

Related Literature. This paper is related to the literature on the identification of
matching models; Table I provides an incomplete summary.



752 Y. HE, S. SINHA, AND X. SUN

TABLE I

IDENTIFICATION RESULTS OF MATCHING MODELS.

Transferable Utility (TU) Nontransferable Utility (NTU)

One-to-one The match surplus is identified (see, e.g.,
Choo and Siow (2006), Fox (2010),
Galichon and Salanie (2022)).

The match surplus is identified (see, e.g.,
Dagsvik (2000), Menzel (2015)).

Many-to-one The utility function and the distribution of
the unobservables of both sides are
identified in a homogeneous setting (see,
e.g., Diamond and Agarwal (2017)).

The utility function and the distribution of
the unobservables of both sides are
identified in a homogeneous setting (see,
e.g., Diamond and Agarwal (2017)).

Our paper: The utility functions of both
sides with heterogeneity and the
distribution of the unobservables are
identified.

Many-to-many The match surplus and/or the distribution
of the unobservables are identified (see,
e.g., Fox (2010), Fox, Yang, and Hsu
(2018)).

The match surplus is identified (see, e.g.,
Menzel (2022)).

This literature is split into several strands depending on the preference structures of the
agents—transferable utility (TU) and nontransferable utilities (NTU);1 and the maximum
number of links an agent is permitted to form across sides—one-to-one, many-to-one, and
many-to-many (see Chiappori and Salanié (2016), for a survey).

There is also a close relationship between the one-to-one TU matching model (Choo
and Siow (2006), Diamond and Agarwal (2017), Fox (2010), Galichon and Salanie (2022),
Gualdani and Sinha (2023), Sinha (2015)) and the many-to-one NTU matching model
considered here. Market-clearing college cutoffs in our setting play the role of market-
clearing shadow prices, although the endogenous cutoffs do not determine how the sur-
plus is split among the agents.

Most of the work on identification within the NTU framework focuses on one-to-one
markets (Dagsvik (2000), Menzel (2015)). Allowing for infinitely many agents on both
sides of a many-to-one matching market, Agarwal (2015) and Diamond and Agarwal
(2017) prove identification under a homogeneity restriction on the preferences,2 and Ed-
erer (2022) shows identification by relaxing the homogeneity assumption but still restrict-
ing preferences. Agarwal and Somaini (2023) provide a recent survey on empirical models
of NTU matching.

Many-to-one NTU matching has been empirically studied in the context of secondary
school admissions in Hungary (Aue, Klein, and Ortega (2020)) and graduate program
admissions in France (He and Magnac (2022)). Their data include information on the
preferences of both sides that is reported to a centralized mechanism. Therefore, they
can independently identify and estimate the preferences of each side, essentially reducing
the two-sided matching to two separate one-sided problems.

1See Galichon, Kominers, and Weber (2019) for an example of imperfectly transferable utility (ITU) mod-
els.

2When studying the medical resident match, Agarwal (2015) discusses some intuitions of using exclusion
restrictions to identify heterogeneous preferences on each side of the market.
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Centralized many-to-one NTU matching in the context of school choice has been stud-
ied extensively, both theoretically since Abdulkadiroğlu and Sönmez (2003) and empir-
ically (e.g., Abdulkadiroğlu, Agarwal, and Pathak (2017), Agarwal and Somaini (2018),
Calsamiglia, Fu, and Güell (2020), Fack, Grenet, and He (2019), He (2017)). In this lit-
erature, school preferences are (assumed to be) known because schools rank students
according to certain pre-specified rules. The problem then reduces to identifying and es-
timating student preferences.

Feasible sets in our setting resemble endogenous consideration sets that arise in one-
sided decision problems. In this sense, our paper relates to the growing strand of literature
that studies the econometrics of decision problems under consideration set formation and
unobserved choice set heterogeneity (see Crawford, Griffith, and Iaria (2021), for a sur-
vey). Our contribution here is that we provide a structural two-sided setting where the
consideration probabilities in a student’s decision problem are entirely determined by the
college (supply side) preferences. Along similar lines to ours, Agarwal and Somaini (2022)
study consumer choice models with latent choice-set constraints. Their identification con-
ditions and ours are nonnested (see Section 3).

The remaining paper is organized as follows: Section 2 describes the model and data
generating process; Section 3 discusses the identification of preferences of the agents on
both sides of the market; Section 4 illustrates an empirical analysis of the match between
students and secondary schools in Chile; and Section 5 concludes.

2. MODEL

For the sake of exposition, our model is set up as a college admissions problem. Con-
sider a single market with a continuum of students and finitely many colleges. The set of
all students is I, with a probability measure Q defined over it,3 and the set of all colleges
is C ={1�2� � � � �C}. College c ∈ C has a capacity qc ∈ (0�1).

For i ∈ I, the utility of being matched with college c is uic; for c ∈ C, the utility of being
matched with i is vci. To prepare for our identification results in Section 3, we assume
additive separability and excluded variables in the utility functions,4 although the rest of
the current section applies to more general models.

The utilities uic and vci depend on the vector (zi� yi�wi), which is observable to the
researcher, and εi = (εi1 � � � � εiC) and ηi = (η1i � � � �ηCi), which are unobservable to the
researcher. Specifically, zi ∈Z ⊆ R

dz , yi = (yi1 � � � � yiC) ∈ Y =Y1 ×· · ·×YC ⊆ R
C , and wi =

(w1i � � � �wCi) ∈ W ⊆ R
C . Further, for any c ∈ C, εic and ηci are scalar random variables.

(εi�ηi) are independent and identically distributed (i.i.d.) draws from a joint distribution
F . We make no restrictions on this joint distribution, allowing for arbitrary correlations
within (εi�ηi).

ASSUMPTION 2.1: Let uc : Z → R, rc : Yc → R, and vc : Z → R be nonparametric func-
tions, such that

uic = τic + εic and vci = ιci +ηci�∀c ∈ C� (1)

where τic = uc(zi) + rc(yic) and ιci = vc(zi) +wci.

3Our probability space is (I�B(I)�Q) where B(I) is the Borel set of I, Q : B(I) → [0�1], Q(I) = 1.
4See Supplemental Appendix A (He, Sinha, and Sun (2024)) for our identification results in a more general

nonseparable utility specification.
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Scalar yic is a demand shifter and scalar wci is a supply shifter: yic enters only uic and is
excluded from all other utility functions, and wci enters only vci.

We impose scale normalization on each side. For students, there exists a known value
yc in the interior of its support such that ∂rc (yc)

∂yic
= 1.5 This holds trivially if rc(yic) = yic . For

colleges, we assume wci enters vci linearly with a coefficient normalized to one. As detailed
below, this linearity assumption allows us to vary wi to construct a sufficient number of
equations without increasing the number of unknowns.6 The assumptions on yi and wi

can be switched, that is, having nonlinearity in wi and linearity in yi.
Students can remain unmatched, or equivalently, be matched with an outside option

denoted by “0.” The utility of the outside option is normalized to 0, ui0 = 0 ∀i ∈ I. We
assume that colleges have responsive preferences.7 This implies that the total utility of a
college from being matched with a subset of students (up to its capacity) is increasing in its
utility from each student; for example, the total utility is the sum of the utility from each
of its matched students. College c has an acceptability threshold, Tc , and finds student i
unacceptable if vci < Tc .

With the data from one such continuum market on {(zi� yi�wi)}i, {qc}c , and who
matches with whom, we aim to identify student and college preferences by identifying
{uc� rc� vc�Tc}c and F , although as we shall see, {Tc}c are not always point identified. Note
that (zi� yi�wi) does not include college-specific variables that are constant across stu-
dents, as these will be absorbed by the college-specific utility functions, (uc� rc� vc).

We use the continuum market to approximate a data generating process in a large finite
market as follows: (zi� yi�wi� εi�ηi) is an i.i.d. draw from its joint distribution, college c’s
capacity is a qc-fraction of the total number of students, and {uic� vci� Tc}i�c determines
both sides’ preferences. This approximation is close to the matching outcomes when we
use the equilibrium concept that will be introduced in Section 2.1.8

REMARK 2.2: The location normalization in the functions is worth highlighting because
the joint distribution of (εi�ηi), F , is fully nonparametric. In student preferences, we
already impose the normalization, ui0 = 0, but we need another location normalization
for each c on either uc(zi) + rc(yic) or εic to separately identify the two. Similarly, for each
college c’s preferences, we need to location-normalize two of the three model primitives
(vc(zi)�ηci�Tc) to pin down the third.

5If yic is known to have a negative effect on student preferences, the partial is normalized to −1. The same
applies to wi .

6 The linearity in wci can be relaxed. We can allow wci to enter vci through a nonlinear function, which is
known for some colleges. Namely, assume vci = vc(zi) + sc(wci) + ηci , where sc : Wc → R is a nonparametric
function such that (i) for each c ∈ C ⊂ C, sc is unknown with ∂sc (wc )

∂wci
= 1 for some known value wc ; and (ii) for

each c ∈ C \ C, sc is known. In this specification, our identification relies on varying wci for c ∈ C \ C instead of
all c ∈ C.

7For ε > 0, let Nε(i) and Nε(i′) be a neighborhood of students around vci and vci′ , respectively, such that
Q(Nε(i)) = Q(Nε(i′)). Responsive preferences imply that, for any Ic ⊂ I with Q(Ic) ≤ qc −Q(Nε(i)), Nε(i) ⊂
I \ Ic , and Nε(i′) ⊂ I \ Ic , college c prefers Ic ∪ Nε(i) to Ic ∪ Nε(i′) if and only if vci > vci′ . See Roth and
Sotomayor (1992) for a definition in a case with discrete students.

8In a typical identification argument, the number of observations is taken to infinity while the “game” is
kept constant. Our setting contains one single matching game that changes with the market size. Proposition 3
of Azevedo and Leshno (2016), Proposition 4 of Fack, Grenet, and He (2019), and Corollary 2 of Artemov,
Che, and He (2023) imply that, under certain conditions, the equilibrium outcome in the continuum approxi-
mates well an equilibrium outcome in a large finite market. Such an approximation is also used in the network
literature (e.g., Menzel (2022)).
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In Section 3.1, we identify the derivatives of (uc , rc , vc), so this additional location nor-
malization is not needed. However, it is necessary for identifying Tc and F in Section 3.2,
where we location-normalize uc(zi) + rc(yic), vc(zi), and ηci.

2.1. Matching and Stable Matching

We define a matching function, or simply, a matching, μ : I → C ∪ {0}, such that (i)
μ(i) = c ⇐⇒ i ∈ μ−1(c), and (ii) ∀c ∈ C�μ−1(c) ⊆ I, where 0 ≤Q(μ−1(c)) ≤ qc .

The following concepts are important for our analysis: individual rationality, blocking
pairs, and stability. For notational reasons, we define them in the case with discrete stu-
dents, corresponding to our empirical application. The precise definitions for a model
with a continuum of students can be found in Azevedo and Leshno (2016), with measure-
zero sets of students appropriately dealt with.

A matching μ is individually rational if uiμ(i) ≥ ui0 and vμ(i)i ≥ Tμ(i) for all i ∈ I. A student-
college pair (i� c) ∈ I×C blocks a matching μ if (i) student i strictly prefers college c to her
current match μ(i), uic > uiμ(i); and (ii) either college c has excess capacity, Q(μ−1(c)) <
qc , or college c prefers i to one of its matched students, ∃i′ ∈ μ−1(c)� s.t.� vci > vci′ . Finally,
a matching is stable if it is individually rational and not blocked by any pair (i� c) ∈ I × C.

We assume that the matching in the data is stable.9 A stable matching exists and
is generically unique (Azevedo and Leshno (2016)).10 Moreover, a stable matching is
characterized by college cutoffs. College c’s cutoff is determined by its least-preferred
matched student when its capacity constraint is binding; otherwise, it coincides with the
acceptability threshold. Let δc be college c’s cutoff. Then ∀c ∈ C,

δc = inf
j∈μ−1(c)

vcj if Q
(
μ−1(c)

) = qc; δc = Tc if Q
(
μ−1(c)

)
< qc� (2)

By definition, δc ≥ Tc . Under the assumption of responsive college preferences, to deter-
mine if student i can be accepted by c, we just need to compare vci and δc . With nonre-
sponsive preferences, how c ranks i and j would depend on who else c accepts, and δc

alone would not be sufficient to determine if i could have been accepted by c.
In a stable matching of the continuum market, {uc� rc� vc�Tc}c∈C, and F imply a unique

vector of cutoffs, {δc}c . Therefore, {δc}c is merely a shorthand notation for the expression
in equation (2) rather than additional parameters.11

9Stability can be achieved in certain equilibrium if students apply to all acceptable colleges and if a sta-
ble mechanism, for example, the deferred acceptance (Gale and Shapley (1962)), is used to find the matching.
Theoretically, provided that students know what criteria colleges use to rank them, stability can still be satisfied
in equilibrium, even if students choose not to apply to all acceptable colleges due to application costs (Fack,
Grenet, and He (2019)) or if students make certain application mistakes (Artemov, Che, and He (2023)). Im-
portantly, achieving stability does not require the market to be centralized, as shown in laboratory experiments
(see, e.g., Pais, Pintér, and Veszteg, 2020), and steps in mechanisms such as the deferred acceptance can be
implemented in a decentralized fashion (Grenet, He, and Kübler (2022)).

10We need the regularity condition that the set {i ∈ I : μ(i) is strictly less preferred than c} is open ∀c ∈ C.
This condition implies that a stable matching always allows an extra measure zero set of students into a college
when this can be done without compromising stability.

11As mentioned earlier, especially, in footnote 8, the continuum approximates a large finite market. The
literature cited therein shows that equilibrium cutoffs, hence matching outcomes, in the large market can be
close to {δc}c with agents being practically “cutoff-takers.” That is, each agent’s realized preferences have a
negligible effect on cutoffs in large markets.



756 Y. HE, S. SINHA, AND X. SUN

2.2. Two-Sided Discrete Choice Problem in a Stable Matching

College c is said to be feasible for student i if and only if vci ≥ δc . A student can “choose”
to match with any of her feasible colleges, but not any infeasible college. We call the set
of all feasible colleges of a student her feasible set. Let L be the collection of the 2C

possible feasible sets, L ≡ {L : 0 ∈ L�L \ {0} ⊆ C}. By construction, the outside option
always belongs to every feasible set. A matching is stable if and only if every student is
matched with her most-preferred feasible college (Fack, Grenet, and He (2019)). A classic
issue in two-sided matching is that students’ feasible sets are determined endogenously,
unobserved by the researcher, and heterogeneous across students.

For any given matching μ, the probability that L ∈ L is student i’s feasible set condi-
tional on (zi�wi) is

P(feasible set is L|zi�wi) = P(vci ≥ δc ∀c ∈L;vdi < δd ∀d /∈ L|zi�wi)

≡ λL(ι1i� � � � � ιCi)� (3)

If each student’s feasible set was observed, λL could be identified from the data, and
recovering student and college preferences would follow from standard arguments in the
discrete choice literature. However, we do not observe the feasible sets.

Similarly, for students, P(c = arg maxd∈L uid|L�zi� yi) is the probability that utility-
maximizing students with observables (zi� yi) “choose” c from feasible set L. Conditional
on L, this probability only depends on student preferences. We define

gc�L(τic;τid� d �= c) ≡ P

(
c = arg max

d∈L
uid|L�zi� yi

)
� ∀c ∈ C� (4)

where the first argument of gc�L is always τic . If d /∈L, gc�L does not vary with τid .

3. NONPARAMETRIC IDENTIFICATION

We now turn to nonparametrically identifying the distribution of student and college
preferences given a stable matching μ and covariates (zi� yi�wi) in one market.

A matching is stable if and only if every student is matched with the most-preferred
college in her feasible set. Thus, stability implies, for c ∈ C ∪{0},

σc(zi� yi�wi) ≡ P
(
μ(i) = c|zi� yi�wi

)
=

∑
L∈L

P(feasible set is L|zi�wi) · P
(
c = arg max

d∈L
uid|L�zi� yi

)
=

∑
L∈L

λL(ι1i� � � � � ιCi) · gc�L(τic;τid� d �= c)� (5)

Hence, the conditional match probability, σc(zi� yi�wi), which is the fraction of students
with (zi� yi�wi) matched with c and known in the population data, is linked to the model
through student and college preferences.

Below, we first study the conditions under which the functions {uc� rc� vc}c are non-
parametrically identified; we then identify the joint distribution of (εi�ηi), F . Later in
Section 3.3, we present results that impose fewer requirements on the data.
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3.1. Identifying the Derivatives of the Utility Functions

We nonparametrically identify the derivatives of the functions {uc� rc� vc}c w.r.t. the ob-
servables. With these derivatives identified, the functions are identified up to a constant,
provided that zi and yi have full support. The idea is to use the variation in the excluded
variables to trace out how each argument in equation (5) affects the conditional match
probabilities. Specifically, the excluded variables in student preferences (yi) only shift de-
mand, while the excluded variables in college preferences (wi) shift supply, or feasible
sets. The effect of other variables (zi) that enter both demand and supply can be written
as a combination of the effects of yi and wi. This leads to a system of linear equations in
the derivatives of the conditional match probabilities, whose solution is our parameters
of interest.

3.1.1. A Simple Example With One College

We describe the intuition for identification in a one-college example, C = {1}. Student
utility functions are ui1 = u1(zi) + r1(yi1) + εi1 for college 1 and ui0 = 0 for the outside
option. Here, zi is a scalar and ∂r1(y1)

∂y1
= 1 for a known value, y1. College 1’s utility function

is v1i = v1(zi) +w1i +η1i, and the (unobserved) cutoff is δ1.
To identify ∂u1

∂zi
and ∂v1

∂zi
, we fix yi1 = y1 and consider any value (z�w1) in the inte-

rior of its support. Figure 1(a) shows that the space of (εi1�η1i) is partitioned into
four parts based on the feasibility of college 1 and student i’s preferences (i.e., the
acceptability of college 1 to i). Moreover, μ(i) = 1 if and only if εi1 > −u1(z) −
r1(y1) (college 1 is acceptable to i) and η1i > δ1 − v1(z) − w1 (college 1 is feasible
to i).

Figures 1(b)–(d) depict how the marginal effect of zi on match probability is linked
to the marginal effects of the excluded variables, yi1 and w1i. Panel (b) describes the
marginal effect of yi1. Specifically, decreasing yi1 from y1 to y1 − y makes college 1
less attractive to student i, and the region in which μ(i) = 1 shrinks along the horizon-
tal εi1-axis. The area I1 depicts the set of students whose match differs when yi1 de-
creases. The induced change in the match probability, σ1 = P(μ(i) = 1|(zi� yi1�w1i) =
(z� y1�w1)) ≡ P(μ(i) = 1|z� y1�w1), is the mass that the density of (εi1�η1i) puts on I1,
or for (zi� yi1�w1i) = (z� y1�w1),

∂σ1(z� y1�w1)
∂yi1

= ∂r1(y1)
∂yi1

·
∑
L∈L

λL(ι1) · ∂g1�L(τ1)
∂τi1

=
∑
L∈L

λL(ι1) · ∂g1�L(τ1)
∂τi1

� (6)

where τ1 ≡ u1(z) + r1(y1) and ι1 ≡ v1(z) +w1. By scale normalization, ∂r1(y1)
∂y1

= 1.
Panel (c) shows a similar graph in which decreasing w1i from w1 to w1 − w makes

college 1 less likely to be feasible to student i. Hence, the region μ(i) = 1 shrinks along
the vertical η1i-axis. The change in the match probability induced by the decrease in w1i

is the mass that the density of (εi1�η1i) puts on the area I2, or

∂σ1(z� y1�w1)
∂w1i

=
∑
L∈L

∂λL(ι1)
∂ι1i

· g1�L(τ1)� (7)

In panel (d), the decrease in zi reduces the attractiveness and feasibility of college 1 for
student i, because zi enters both student and college preferences. Besides, how zi changes
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FIGURE 1.—Partitioning the Space of Unobservables in the One-College Case. Notes: Panel (a) describes
the partition of the (εi1�η1i) space given (zi� yi1�w1i) = (z� y1�w1) by student i’s feasible set and preferences.
The other panels show the changes in μ(i) when yi decreases by y and affects only student preferences
(panel b), when w1i decreases by w and affects only feasible set (panel c), and when zi decreases by z
(panel d).

the region of μ(i) = 1 relies on the shape of the functions u1 and v1. The change in the
match probability induced by the change in zi corresponds to the area I3, or

∂σ1(z� y1�w1)
∂zi

= ∂u1(z)
∂zi

·
∑
L∈L

λL(ι1) · ∂g1�L(τ1)
∂τi1

+ ∂v1(z)
∂zi

·
∑
L∈L

∂λL(ι1)
∂ι1i

· g1�L(τ1)� (8)

Our identification result relies on the changes caused by zi, yi1, and w1i. Plugging equa-
tions (6) and (7) into equation (8), we have, for (zi� yi1�w1i) = (z� y1�w1),

∂σ1(z� y1�w1)
∂zi

= ∂u1(z)
∂zi

· ∂σ1(z� y1�w1)
∂yi1

+ ∂v1(z)
∂zi

· ∂σ1(z� y1�w1)
∂w1i

� (9)

This equation reflects the chain rule: the effect of zi on the match probability, ∂σ1
∂zi

, is

realized through its effects on utilities ui1 and v1i, captured by ∂u1

∂zi
and ∂v1

∂zi
, and the effects

of the utilities on the match probability, captured by ∂σ1
∂yi1

and ∂σ1
∂w1i

. In equation (9), the
derivatives of the match probability can be recovered from the population data, and the
two unknowns, ∂u1

∂zi
and ∂v1

∂zi
are the parameters of interest.
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Importantly, when w1i varies, the conditional match probability changes, but the two
unknowns remain constant, a consequence of w1i entering v1i in a known way. If, for
any z, (εi1�η1i) has enough variation such that two distinct values of w1i produce two
linearly independent equations that have a unique solution, we identify the unknowns.
This requirement is formalized as Condition 3.3 later, which imposes a mild restriction
on the distribution of (εi1�η1i) as detailed in Supplemental Appendix C.1.

We then identify ∂r1

∂yi1
, which is not one when yi1 �= y1. For any value (z� y1�w1), plugging

equations (6) and (7) into equation (8), we rearrange and obtain(
∂σ1(z� y1�w1)

∂zi
− ∂v1(z)

∂zi
· ∂σ1(z� y1�w1)

∂w1i

)
· ∂r

1(y1)
∂yi1

= ∂u1(z)
∂zi

· ∂σ1(z� y1�w1)
∂yi1

� (10)

where all the terms except for ∂r1

∂yi1
are either identified or known. For any y1, if ∂σ1

∂zi
− ∂v1

∂zi
·

∂σ1
∂w1i

�= 0 for some value (z�w1), ∂r1

∂yi1
is identified; otherwise, equation (10) implies that

∂σ1
∂yi1

= 0 for all (z�w1), and thus ∂r1

∂yi1
is also identified and equal to zero.

Below, we extend this example to the case with multiple colleges. We derive equa-
tion (9) for each college, in which the marginal effect of zi on the probability of being
matched with each college is the sum of its marginal effects on (uc� vc) for all c. By vary-
ing {wci}c , we form a system of equations in {∂uc

∂zi
� ∂vc

∂zi
}c . The identification of ∂rc

∂yic
is the same

as above and relies on a generalized version of equation (10) because we can identify ∂rc

∂yic

for each c separately by holding ∂rd

∂yid
= 1 for d �= c.

3.1.2. Formal Identification Results

Our nonparametric identification of {∂uc

∂zi
� ∂rc

∂yic
� ∂vc

∂zi
}c extends Matzkin (2019) who uses

excluded variables to identify nonparametric nonseparable discrete choice models.

ASSUMPTION 3.1: (i) zi, yi, and wi are continuously distributed; (ii) for each c ∈ C, the
functions, (uc� rc� vc), are continuously differentiable; and (iii) F is continuously differen-
tiable.

Part (i) of Assumption 3.1 requires that all covariates are continuous (but not necessar-
ily have full support), which is relaxed in Section 3.3.

ASSUMPTION 3.2: (εi�ηi) is distributed independently of (zi� yi�wi).

This exogeneity assumption is made for simplicity. One way to relax this assumption
is to adopt a control function approach. See Supplemental Appendix B for a discus-
sion.

Additionally, we need a condition on the derivatives of match probabilities w.r.t. the
excluded variables. Let �y (zi� yi�wi) be a C × C Jacobian matrix of the match proba-
bilities w.r.t. the excluded variable yi, whose (c�d) element is ∂σc (zi�yi�wi)

∂yid
. Similarly, let

�w(zi� yi�wi) be a C ×C Jacobian matrix w.r.t. the excluded variable wi. Fix yi = y , where
y = (y1� � � � � yC). We then consider a pair of distinct values of wi, ŵ and w̃, and define a
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2C × 2C matrix evaluated at (zi� yi) = (z� y),

�(z� y� ŵ� w̃) ≡
(
�y (z� y� ŵ) �w(z� y� ŵ)
�y (z� y� w̃) �w(z� y� w̃)

)
�

We impose the following testable condition on �(z� y� ŵ� w̃).12

CONDITION 3.3: For a given value z in the interior of Z , there exist two values of wi, ŵ
and w̃, in wi’s support conditional on (zi� yi) = (z� y) such that �(z� y� ŵ� w̃) has rank 2C.

Note that, for any value of zi, Condition 3.3 only needs two values of wi at which
�(z� y� ŵ� w̃) is full-rank. In other words, Condition 3.3 can hold even when there are
infinitely many values of wi at which �(z� y� ŵ� w̃) is not full-rank.

Nevertheless, the condition may fail in some reasonable scenarios. For example, if there
is a college that students with zi = z consider unacceptable for a neighborhood around y ,
Condition 3.3 is violated.13 Similarly, the condition fails if there is a college that always
considers students with zi = z unacceptable for all values of wi.

For a set of sufficient and testable conditions for Condition 3.3, consider ŵ that is large
enough such that all colleges are feasible when wi = ŵ. In this case, the upper half of
�(z� y� ŵ� w̃) corresponds to a one-sided discrete choice model, where the feasible-set
shifter wi has no impact on the matching probabilities, and thus �w(z� y� ŵ) = 0C×C . This
makes �(z� y� ŵ� w̃) a lower triangular block matrix. Then Condition 3.3 holds if and only
if both �y (z� y� ŵ) and �w(z� y� w̃) are invertible, which can be achieved under the con-
nected substitutes conditions (Berry, Gandhi, and Haile (2013), Theorem 2).14, 15 This set
of sufficient conditions suggests that Condition 3.3 holds under common logit or probit
models provided that wi has a reasonably large support. It is worth noting that the large
support of wi above is used to facilitate a clear connection with the connected substi-
tutes conditions, but may be stronger than necessary. In Supplemental Appendix C.2, we

12For a statistical test of Condition 3.3 given a value of zi and a pair of values of wi, one may use
the method proposed by Chen and Fang (2019). Testing H0: rank(�(z� y� ŵ� w̃)) ≤ 2C − 1 against H1:
rank(�(z� y� ŵ� w̃)) > 2C − 1 is a special case of setup (1) in Chen and Fang (2019, p. 1788). In practice,
one needs to find two values of wi satisfying Condition 3.3, which can be achieved by the following proce-
dure: (i) choose m pairs of wi values, (ii) for each pair, apply this test and calculate the p values, and (iii)
use the Holm–Bonferroni method to control the overall size of this multiple hypothesis testing problem and
then determine which null hypothesis, if any, is rejected. The pair of values of wi associated with any rejected
hypothesis satisfies Condition 3.3.

13Specifically, when the match probability with college c is zero for a neighborhood around y and for all
values of wi, its partial derivatives with college c w.r.t. yi (evaluated at y) and wi are always zero. Hence,
�(z� y� ŵ� ŵ) contains two rows of zeros (i.e., the cth and (c + C)th rows). Moreover, the derivatives of all
match probabilities w.r.t. yic (evaluated at y) and wci are always zero. Hence, �(z� y� ŵ� ŵ) also contains two
columns of zeros (i.e., the cth and (c +C)th columns).

14The invertibility of �y (z� y� ŵ) holds under the following two assumptions: (i) for each d ∈ C ∪ {0},
∂σd (zi�yi�wi)

∂yic
≤ 0 for all c ∈ C\{d}; (ii) for any nonempty C ⊆ C, there exists c ∈ C and d /∈ C such that

∂σd (z�y�ŵ)
∂yic

< 0. The invertibility of �w(z� y� w̃) holds under similar assumptions.
15This sufficient condition for Condition 3.3 provides us with a clear comparison with a related study, Agar-

wal and Somaini (2022). Their conditions for the identification of a similar model and our conditions are not
nested. Specifically, they assume large support on wi , impose a substitution condition on �y (z� y�w) stronger
than the one in Berry, Gandhi, and Haile (2013), and require the substitution condition to hold for all but a
finite set of yi values. In contrast, in this sufficient condition for Condition 3.3, with large support of wi , we
need a substitution condition on both �y (z� y�w) and �w(z� y�w) à la Berry, Gandhi, and Haile (2013), but
only for yi = y .



IDENTIFICATION AND ESTIMATION IN MANY-TO-ONE TWO SIDED MATCHING 761

analyze common logit and probit models with two or more colleges. The results suggest
that Condition 3.3 is satisfied for a wide range of values of (ŵ� w̃); in fact, the failure of
Condition 3.3 imposes strict restrictions on the supply, or the conditional probabilities of
different feasible sets.16

PROPOSITION 3.4: For given (z� y) in the interior of Z × Y , under Assumptions 2.1, 3.1,
3.2, and Condition 3.3, {∂uc (z)

∂zki
� ∂vc (z)

∂zki
� ∂rc (yc)

∂yic
}c∈C are identified for k= 1� � � � � dz .

Our identification arguments proceed in two steps. First, to identify ∂uc (z)
∂zki

and ∂vc (z)
∂zki

, we

use the variation in the excluded variables (yi�wi) to derive a system of linear equations
that generalizes equation (9). Fixing yi = y , for any value (z�w) in the interior of Z ×W ,
for each college d ∈ C, and for the kth component of zi, zk

i ,

∂σd(z� y�w)
∂zk

i

=
∑
c∈C

∂σd(z� y�w)
∂yic

· ∂u
c(z)
∂zk

i

+
∑
c∈C

∂σd(z� y�w)
∂wci

· ∂v
c(z)
∂zk

i

� (11)

which gives C linear equations of 2C unknowns. Note that equation (11) is for one value
of wi. By evaluating equation (11) at d = 1� � � � �C and two different values of wi, ŵ� and
w̃, and stacking them together, we have⎛⎜⎜⎜⎝

∂σ (z� y� ŵ)
∂zk

i

∂σ (z� y� w̃)
∂zk

i

⎞⎟⎟⎟⎠ =�(z� y� ŵ� w̃) ·

⎛⎜⎜⎜⎝
∂u(z)
∂zk

i

∂v(z)
∂zk

i

⎞⎟⎟⎟⎠ � (12)

where σ ≡ (σ1� � � � �σC)′, u ≡ (u1� � � � � uC)′, and v ≡ (v1� � � � � vC)′. Both �(z� y� ŵ� w̃)
and the left-hand side are known from the population data. Hence, the invertibility of
�(z� y� ŵ� w̃) in Condition 3.3 guarantees the existence of a unique solution to this sys-
tem, leading to the identification of ∂uc (z)

∂zki
and ∂vc (z)

∂zki
. Importantly, this only requires a pair

of distinct values of wi to satisfy Condition 3.3.
Second, we identify ∂rc (yc)

∂yic
for each c ∈ C by generalizing equation (10) for the one-

college example. See the Appendix for detailed proof.
In certain empirical applications, identifying the above derivatives is sufficient, in which

case a large-support assumption on excluded variables is not needed. When the functions
(uc� vc� rc) must be identified, a full-support condition on their arguments, (zi� yi), is often
imposed. This is the case for our next result of identifying the joint distribution F and
cutoffs δc . Additionally, a full-support assumption on wi is also required. Hence, we will
assume all observables, (zi� yi�wi), have full support.

3.2. Identifying the Cutoffs and Joint Distribution of Unobservables

We now formalize the assumptions that are needed for the identification of the cutoffs,
{δc}c , and the joint distribution of unobservables, F .

16Also, see Supplemental Appendix C.1 for a one-college example, where we show that Condition 3.3 holds
for all distribution of η1i except for the exponential distribution.
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FIGURE 2.—Partitioning the Space of Unobservables in the One-College Case. Notes: This figure shows the
partition of the space of the unobservables (εi1�η1i) by the matching outcome (μ(i) = 0 or 1) in a one-college
setting given (zi� yi1�w1i) = (z� y1�w1).

ASSUMPTION 3.5: For each c ∈ C, (i) the functions uc + rc and vc are identified;17 (ii) yic
and wci possess an everywhere positive Lebesgue density conditional on zi; (iii) the range of
the function rc is the whole real line, and W = R

C ; and (iv) the ρc-quantile of the marginal
distribution of ηci is 0, that is, Quantileηci

(ρc) ≡ inf{ηc : Fηci
(ηc) ≥ ρc} = 0, for an arbitrary

ρc ∈ (0�1).

Part (iv) is a location normalization on college preferences, as mentioned in Re-
mark 2.2, which can be done college-by-college. Alternatively, one may replace part (iv)
by normalizing cutoffs {δc}c to zero.

Before presenting our formal results, we give some intuitions. To identify cutoff δc ,
under the full-support assumption on student preferences (parts (ii) and (iii) of Assump-
tion 3.5), we consider a mass of students to whom all colleges except for c are unaccept-
able. The probability of these students matching with c is 1−Fηci

(δc −vc(zi) −wci). Given
the location normalization of Fηci

(part (iv) of Assumption 3.5), finding the maximum
value of vc(zi) +wci that sets this probability to 1 − ρc identifies δc .

To identify F , we use the conditional probability of being unmatched. Let us illustrate
the intuition in the same one-college example as in Section 3.1.1. For any given value
(z� y1�w1), Figure 2 shows the partition of the space of (εi1�η1i) by matching outcome,
μ(i) = 0 or 1. The corresponding area of μ(i) = 0 can be decomposed into three parts,
R1, R2, and R3. Moreover,

P
(
μ(i) = 0

∣∣(zi� yi1�w1i) = (z� y1�w1)
)

= P
(
εi1 <−u1(z) − r1(y1) or η1i < δ1 − v1(z) −w1|z� y1�w1

)
= P(R1 ∪R2|z� y1�w1) + P(R3 ∪R2|z� y1�w1) − P(R2|z� y1�w1)� (13)

where P(R2|z� y1�w1) is the joint CDF of (εi1�η1i), F (−u1(z) − r1(y1)� δ1 − v1(z) − w1),
our parameter of interest.

Further, P(R1 ∪R2|z� y1�w1) = Fεi1 (−u1(z) − r1(y1)) is the marginal CDF of εi1. It can
be identified by considering the subset of students whose value of w1i is high enough so

17This requires Proposition 3.4, a full support assumption on (zi� yi), and location normalization on uc + rc

and vc for each c. See Remark 2.2 for a discussion on location normalization.
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that the college will be feasible no matter what value η1i takes. That is, we can iden-
tify P(R1 ∪ R2|z� y1�w1) by “shutting down” the effects of college preferences. Similarly,
P(R3 ∪ R2|z� y1�w1) can be identified by focusing on the subset of students whose value
of r1(yi1) is large enough so that those students find college 1 acceptable no matter
what value εi1 takes. As P(μ(i) = 0|z� y1�w1) is known from the population data, once
P(R1 ∪ R2|z� y1�w1) and P(R3 ∪ R2|z� y1�w1) are identified, equation (13) implies that
P(R2|z� y1�w1), and thus F are identified.

PROPOSITION 3.6: Under Assumptions 2.1, 3.2, and 3.5, (i) cutoffs {δc}c are identified;
(ii) the joint distribution of (εi�ηi), F , is identified; and (iii) acceptability threshold Tc for
any college c with vacancies is identified, but Tc for c with a binding capacity constraint is
only partially identified, Tc ≤ δc .

To show part (ii) in a many-college setting, with the full, large support (parts (ii) and (iii)
of Assumptions 3.5), we apply the same argument as in the one-college example to each
college c sequentially, using extreme values of rc(yic) or wci to “shut down” the effects of
students’ preference for college c or c’s preference for students.

Part (iii) is a consequence of part (i) and the definition of cutoffs (equation (2)). If c
reaches its capacity, Tc can be any value below δc and result in the same stable match-
ing. We can identify Tc by imposing additional assumptions, for example, a full-capacity
college having the same acceptability threshold as some college with vacancies.

3.3. Practical Issues

When our identification results are taken to the data, there can be practical issues. For
example, vector zi may include discrete variables such as gender, and the researcher may
not have sufficient excluded variables. Below, we address these issues.

Discrete Random Variables. Our results can be extended to the case where zi con-
tains discrete variables. Suppose that zi = (z1

i � z
2
i ), where z1

i is a vector of discrete vari-
ables and z2

i is a vector of continuous variables. Let the support of z1
i be a finite set of

points {z1�1� z1�2� � � � � z1�J}. For z1
i = z1�j , we define functions (uc�j + rc� vc�j). Conditional

on z1
i = z1�1, we apply the results in Sections 3.1 and 3.2 to identify {uc�1 + rc� vc�1� δc}c and

F , requiring yi and wi being continuous, Assumptions 3.1(ii) and (iii), 3.2, 3.5(ii)–(iv),
Condition 3.3, location normalization on uc�1 + rc and vc�1 for each c, and (yi� z2

i ) having
full support. For j �= 1, conditional on z1

i = z1�j , using the conditional match probability of
a mass of students for whom c is the only acceptable college, we can use F to identify vc�j

for each c; similarly, using the conditional match probability of a mass of students whose
feasible set is {0� c}, we can identify the function uc�j + rc .

Insufficient Excluded Variables. Allowing for college-level heterogeneity implies that
we need to recover 3C preference parameters, {uc� rc� vc}c . As seen in Section 3.1, we
need 2C excluded variables for identification of their derivatives.

The lack of sufficient excluded variables leads to a loss of identification, but not all is
lost. We show that there is a trade-off between the identifiable degree of heterogeneity
and the number of excluded variables. Consider C1�C2 ⊆ C with cardinality κ1 and κ2,
respectively. For all c ∈ C1, there is a single excluded variable in student preferences,
yic = yi∗; for all c ∈ C2, there is a single excluded variable in college preferences, wci =w∗i.
We have the following identification result.
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PROPOSITION 3.7: Suppose the preference heterogeneity is reduced: uc = u∗ and rc = r∗

for all c ∈ C1, and vc = v∗ for all c ∈ C2. For any c ∈ C, the derivatives of (uc� rc� vc) are
identified if: (i) Assumptions 2.1, 3.1, and 3.2 hold; and (ii) the following rank conditions
hold: (a) If C ≤ κ1 + κ2 − 2, for any z in the interior of Z , there exists a value of wi, ŵ, in
wi’s support conditional on (zi� yi) = (z� y) such that (�y (z� y� ŵ)��w(z� y� ŵ)) has column
rank at least 2C − κ1 − κ2 + 2; or (b) if C > κ1 + κ2 − 2, for any z in the interior of Z , there
exist two values of wi, ŵ and w̃, in wi’s support conditional on (zi� yi) = (z� y) such that
�(z� y� ŵ� w̃) has column rank at least 2C − κ1 − κ2 + 2.

In other words, we need only C − κ1 + 1 excluded variables on the student side and
C − κ2 + 1 on the college side to identify the less heterogeneous model.18 Importantly,
this still allows for coefficient heterogeneity across colleges in C1 and C2. For example,
it can be incorporated parametrically by interacting college-specific observables with zi.
For c ∈ C1, let uc(zi) = βpczi, where pc is a college-specific observable. This amounts to
zi having a college-specific parameter βc = βpc .

Since our identification approach is constructive, it directly implies a nonparameteric
estimator. In the Monte Carlo simulations in Supplemental Appendix D, we apply this
estimator in a semiparametric setting to avoid the well-known curse of dimensionality;
yet the curse remains. Instead, we find that a parametric model based on a Bayesian
approach works well. Below, we apply it to a real-life setting.

4. SECONDARY SCHOOL ADMISSIONS IN CHILE

Guided by our identification results, we study the admissions to public and private sec-
ondary schools (grades 9–12) in Chile in 2007. The market is organized similar to college
admissions in the U.S. It is decentralized, both sides have preferences, and students do not
submit rank-order lists of schools. We use a parametric Bayesian approach for preference
estimation and then conduct counterfactual analysis.

4.1. Institutional Background and Data

Since 2003, secondary education has been compulsory for all Chileans up to 21 years
of age. In principle, a public school must accept any student who is willing to enroll; a
private school can be subsidized by the government or nonsubsidized, but in either case,
it can select students based on its preferences.

We focus on a relatively independent market, Market Valparaiso, that includes three
municipalities (Valparaiso, Viña del Mar, and Concon).19 Our data includes the munic-
ipality of a student’s residence and the geographical coordinates of each school, which
identifies every agent in the market. A student is defined to be in Market Valparaiso if in
2008 she resided in a municipality within the boundary of the market. A secondary school
is in Market Valparaiso if it is located in and admits students from the market. In total,
there are 9314 students and 117 schools. This reasonably large size makes it plausible that
the continuum market in Section 3 is a good approximation.

We use the SIMCE data set, provided by the Agency for the Quality of Education
(Ministry of Education of Chile (n.d.)), on all 10th graders in 2008 to identify who started

18Note that the rank condition in Proposition 3.7 is weaker than Condition 3.3.
19In 2007, only 6.0% of 9th graders in Market Valparaiso schools resided outside of the market, while merely

1.6% of 9th graders residing in Market Valparaiso attended schools outside the area.
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secondary school in 2007. The SIMCE is Chile’s standardized testing program and tracks
students’ math and language performance. The data includes students’ parental income,
parental schooling, and other characteristics from a parental questionnaire sent home
with students. Most school attributes are calculated from student characteristics of the
10th graders in a school in 2006, and thus are pre-determined in the 2007 admissions that
we study. As tuition fees are largely fixed within each school and not completely flexible at
the student level, we consider the problem as matching without transfers. See Supplemen-
tal Appendix E for more details on data construction and summary statistics of student
characteristics and school attributes.

4.2. Empirical Model

We allow student preferences to be school-type-specific. For student i, the utility of
attending school c of type t ∈ {public, private nonsubsidized, private subsidized} is

uict = αft × femalei + αmt × malei +X ′
icβt + ζtεic� (14)

where αft is a school-type fixed effect for female students; femalei is a dummy variable for
female; αmt and malei are similarly defined; εic is i.i.d. standard normal; ζt (> 0) allows
type-specific variances; and Xic are student-school-specific variables, including (i) the dis-
tance between i’s residence and school c; (ii) 6 school attributes, and (iii) 3 interactions
between school attributes and student characteristics.

Each student has an outside option, ui0 = εi0, with εi0 being standard normal. We im-
pose the usual scale normalization through ζt = 1 for public school,20 while the location
normalization is imposed by setting the deterministic part of ui0 to zero.

School preferences are also type-specific, but public schools do not have a utility func-
tion because they cannot select students. For private school c of type t (subsidized or
nonsubsidized), its acceptability threshold is Tc = 0, and its utility function is

vcit = θt +Z′
ciγt +ηci� (15)

where θt is a type-specific intercept; ηci is i.i.d. standard normal; and the vector Zci in-
cludes (i) 5 student characteristics and (ii) 3 interactions between student characteristics
and school attributes.

In school preferences, the variance of ηci being one is the scale normalization and Tc =
0 is the location normalization. Allowing the type-specific intercept θt and assuming Tc =
0 imply that schools of the same type have the same acceptability threshold. Because each
type has some schools with vacancies, we can separately identify δc and Tc . Otherwise, we
would lose its identification (Proposition 3.6).

The above specification uses distance as an (i� c)-pair-specific excluded variable in stu-
dent preferences. In school preferences, math and language scores are student-specific
excluded variables, implying that there are insufficient excluded variables to estimate
school-specific utility functions. Using the results in Proposition 3.7, we limit preference
heterogeneity and assume type-specific utility functions for schools. Our scale and loca-
tion normalization is guided by Proposition 3.6 and Remark 2.2, while certain normaliza-
tion is imposed via F .

20The variance of εi0 is also normalized to be one because there is insufficient variation to estimate the
variance of ui0. Only 144 students (out of 9314) choose an outside option (see Table E.III).
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4.3. Estimation and Results

We use a Bayesian approach with a Gibbs sampler for the estimation, which is first
illustrated in Monte Carlo simulations (Supplemental Appendix D.3). We provide the
details on the updating of the Markov Chain in Supplemental Appendices D.3 and F.

The estimation results are summarized in Table II. A caveat is in order when we inter-
pret the results. Because we do not deal with endogeneity issues that may arise due to the
correlation between preference shocks and school attributes or student characteristics,
the estimates may not have a causal interpretation.

Panel A shows the estimates of student preferences. Most coefficients are of an ex-
pected sign. Interestingly, the coefficient on tuition is positive in the utility function for
public schools, and parental income pushes it toward negative. This may reflect the fact
that tuition at public schools is generally low (see Table E.IV) and may be correlated with
unobserved school quality. There are also a few coefficients with an unexpected sign in
school preferences. Panel B shows that nonsubsidized schools negatively value a student’s
parental income and mother’s education. This may be because, on average, students at

TABLE II

ESTIMATION RESULTS: STUDENT AND SCHOOL PREFERENCES.

Private Schools

Public Schools Subsidized Nonsubsidized

coef. s.e. coef. s.e. coef. s.e.

Panel A. Student Preferences
Female −0�175 (0.836) 8�763 (0.581) 10�762 (5.937)
Male −0�183 (0.835) 8�720 (0.576) 9�915 (5.941)
Distance −0�175 (0.004) −0�140 (0.008) −0�673 (0.075)
log(tuition) 0�458 (0.095) −0�446 (0.082) −16�858 (1.680)
log(tuition) × log(income) −0�019 (0.008) 0�047 (0.006) 0�958 (0.093)
log(median income) −0�186 (0.072) −0�524 (0.063) 2�704 (0.613)
Teacher experience 0�000 (0.001) 0�003 (0.001) 0�026 (0.017)
Fraction of female students −0�111 (0.034) −0�380 (0.052) −1�818 (0.833)
Average composite score −1�687 (0.123) −2�451 (0.142) −18�576 (2.753)
Average composite score × Composite score 5�930 (0.219) 5�663 (0.216) 19�642 (1.716)
Average mother’s education 0�065 (0.022) −0�269 (0.023) −1�745 (0.337)
Average mother’s education × Mother’s
education

0�003 (0.001) 0�008 (0.001) 0�056 (0.007)

Standard deviation of the utility shock Normalized to 1 0�986 (0.062) 9�222 (0.920)

Panel B. School Preferences
Constant 3�960 (0.744) 16�947 (3.014)
Female −2�926 (0.193) −1�264 (0.273)
Female × Fraction of female 6�134 (0.353) 1�718 (0.426)
Math score −2�467 (0.473) −6�447 (0.852)
Average math score × Math score 6�953 (0.909) 6�120 (0.908)
Language score −1�026 (0.391) −4�293 (0.813)
Average language score × Language score 3�105 (0.749) 4�655 (1.178)
Mother’s education −0�021 (0.014) −0�101 (0.041)
log(income) −0�302 (0.063) −0�878 (0.190)

Note: This table presents the posterior mean and standard deviation of each coefficient in student and school utility functions
(equations (14) and (15)). The Bayesian approach goes through a Markov Chain 1.75 million times, and the last 0.75 million iterations
are used to calculate these statistics. Our Monte Carlo simulations suggest that the posterior standard deviation provides a useful
estimate of the standard deviation of our estimators, albeit with a slight tendency to underestimate. See Table D.II for more details.
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those schools often have a high income (above 1.4 million CLP; see Table E.III) and a
highly educated mother (above 17 years).

Recall that each school’s acceptability threshold is normalized to zero, so we can use the
estimated school preferences to calculate if a student is acceptable to a private school. On
average, a subsidized school finds 68% of the students acceptable, while a nonsubsidized
school finds 82% acceptable. The higher acceptability rate at nonsubsidized schools does
not imply that students are more often matched with them because their high tuition
lowers their desirability to many students, especially those with a low parental income
(see Table II).

Before conducting counterfactual analysis, we evaluate model fit in Supplemental Ap-
pendix F. It shows that our model fits the data reasonably well when we compare the
observed matching with the one predicted based on our model.

4.4. Counterfactual: Prioritizing Low-Income Students

We consider a counterfactual policy in which students from low-income families are
prioritized for admissions to all schools. A student is of low income if her parental income
is among the lowest 40%.21 Each private school’s preferences over students are made
lexicographical: low-income students are above others, and within each group of students,
a school ranks them as in the current regime; all low-income students are acceptable,
while others’ acceptability is the same as in the current regime. We do not change anything
in student or school preferences beyond the admission priority, which may mitigate the
potential bias in our estimation due to aforementioned unaddressed endogeneity issues.

To simulate the counterfactual outcome, we keep 1500 draws of the utilities in the
Markov Chain in the Bayesian estimation.22 We run the Gale–Shapley deferred accep-
tance with each draw and obtain 1500 sets of counterfactual stable matchings. We then
report the average of these counterfactual matchings; recall that we only have one match-
ing outcome under the current regime—the observed one.

Table III presents the results. There are several noticeable patterns when we move from
the current regime to the counterfactual. First, low-income students are in schools that
have higher-ability and higher-income students in the same cohort, while the opposite is
true for nonlow-income students. Second, some low-income students leave public schools
for private subsidized schools, while crowding out some other students to public schools.
Lastly, the policy benefits low-income students and hurts others. On average, low-income
students’ welfare gain is equivalent to decreasing travel distance (to a public school) by
0.433 km. This gain is concentrated among 16.4% of the low-income students, while oth-
ers are not affected. Correspondingly, 9.1% of the nonlow-income students are worse off,
and none is better off.

These results indicate that low-income students dislike private nonsubsidized schools.
We explore why it is the case. With the 1500 draws of student preferences, we examine
low-income students’ favorite school of each type. We find that low-income students on
average value their favorite public school at 2�25 and private subsidized school at 2�18,
while their favorite nonsubsidized school is only valued at −23�39, in general unaccept-

21This resembles a policy adopted in 2008 in Chile as documented by Gazmuri (2017). It benefits 44%
of elementary school students in 2012 in terms of admission priorities and a tuition waiver. Supplemental
Appendix Table F.V shows summary statistics of the students by income status.

22Specifically, there are 15 blocks of 100 draws. The blocks are equally spaced in the 0.75 million iterations
in the Markov chain that are used to calculate the posterior means and standard deviations.
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TABLE III

SORTING AND STUDENT WELFARE IN THE CURRENT AND COUNTERFACTUAL REGIMES.

Low-Income Students Nonlow-Income Students

Current Counterfactual Current Counterfactual
(1) (2) (3) (4)

Average composite score (same cohort) at matched
school

0.374 0.386 0.586 0.577

Average parental income (same cohort) at matched
school

216,456 224,098 595,031 589,388

Fraction enrolled at each school type:
Public 0.672 0.568 0.230 0.266
Private subsidized 0.310 0.417 0.528 0.490
Private nonsubsidized 0.002 0.002 0.226 0.228
Outside option 0.016 0.013 0.015 0.016

Welfare effects of moving from current to counterfactual:
Average utility change (reduction in distance, km) 0.433 −0.267
Winners (fraction) 0.164 0.000
Losers (fraction) 0.000 0.091
Indifferent (fraction) 0.836 0.909

Note: The outcome in the current regime is the one observed in the data. To simulate the counterfactual outcome, we keep 1500
draws of the utilities in the Markov Chain in the Bayesian estimation and obtain 1500 sets of stable matching outcomes. The statistics
for the counterfactual regime are averages across the 1500 outcomes. The average utility change is measured in terms of willingness
to travel to a public school in kilometers.

able to them. We calculate the contribution of different variables to these differences
by shutting down their effect in the utility functions. The results show that high tuition
at nonsubsidized schools is the main contributor. It is worth noting that tuition could
be correlated with unobserved school quality. Hence, low-income students may dislike a
nonsubsidized school because of its high costs and/or their tastes. Additionally, mother’s
education, both a student’s own and a school’s average, is also an important factor. Stu-
dent ability, measured by their composite score, and distance to each school do not appear
to be as important.

In sum, giving low-income students access to schools fails to significantly change match-
ing outcomes due to their own preferences. Low-income students are deterred from pri-
vate nonsubsidized schools by their high tuition. These findings are in line with the prefer-
ence heterogeneity documented in public school choice (see, e.g., Abdulkadiroğlu, Agar-
wal, and Pathak (2017)), although tuition plays no role there.

5. CONCLUDING REMARKS

We study nonparametric identification of agent preferences in many-to-one two-sided
matching without transfers. We derive a set of sufficient conditions for identification
and provide guidance for empirical studies. For example, our results clarify the data
requirement for the identification of various degrees of preference heterogeneity. To
take our results to the data of a reasonably-sized market, we propose a Bayesian ap-
proach with a Gibbs sampler whose performance is illustrated in Monte Carlo simula-
tions. Our model encompasses many real-life matching markets, such as college admis-
sions and school choice in many countries, in which our identification results and em-
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pirical method can be applied. Hence, this paper opens a new avenue for empirical re-
search.

We illustrate our method in the context of secondary school admissions in Chile. As an
example of the usefulness of the estimates, we consider a counterfactual policy in which
students from low-income families are prioritized for admissions to all schools. Although
the policy benefits low-income students, its effects are small. Such insights are difficult
to obtain without estimating the preferences of both sides. In this sense, our method can
help provide an ex ante evaluation of a range of alternative policies.

APPENDIX

Throughout this Appendix, for notational simplicity, we let xi = (zi� yi�wi).

PROOF OF PROPOSITION 3.4: Equation (5) can be rewritten as

σc(xi) =�c(τi1� � � � � τiC; ι1i� � � � � ιCi) =�c(τi� ιi)�

where τi = (τi1� � � � � τiC), ιi = (ι1i� � � � � ιCi), and �c denotes some unknown function.
Recall that τic = uc(zi) + rc(yic) and ιci = vc(zi) + wci. Under Assumption 3.1, �c , uc ,
rc , and vc are continuously differentiable and the observables are all continuously dis-
tributed.

For colleges c� d ∈ C, taking derivatives of σd(xi) w.r.t. yic , wci, and zk
i (the kth com-

ponent of zi), respectively, one obtains

∂σd(xi)
∂yic

= ∂�d(τi� ιi)
∂τic

∂rc(yic)
∂yic

�
∂σd(xi)
∂wci

= ∂�d(τi� ιi)
∂ιci

� (16)

∂σd(xi)
∂zk

i

=
∑
c∈C

∂�d(τi� ιi)
∂τic

∂uc(zi)
∂zk

i

+
∑
c∈C

∂�d(τi� ιi)
∂ιci

∂vc(zi)
∂zk

i

� (17)

First, we show the identification of the derivatives of the functions uc and vc . We fix
yi = y and consider (z�w) in the interior of Z ×W . Recall that ∂rc (yc)

∂yic
= 1 due to the scale

normalization. Substituting equation (16) into equation (17), we get

∂σd(z� y�w)
∂zk

i

=
∑
c∈C

∂σd(z� y�w)
∂yic

∂uc(z)
∂zk

i

+
∑
c∈C

∂σd(z� y�w)
∂wci

∂vc(z)
∂zk

i

� (18)

Suppose that two different values of the C-dimensional vector of excluded regressors wi,
ŵ and w̃, satisfy Condition 3.3. We define x̂ = (z� y� ŵ) and x̃ = (z� y� w̃). Further, let
σ̂c = P(μ(i) = c|̂x) and σ̃c = P(μ(i) = c|̃x). By evaluating equation (18) at d = 1� � � � �C
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and xi = x̂� x̃, and stacking them together, we have⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂σ̂1

∂zk
i
���

∂σ̂C

∂zk
i

∂σ̃1

∂zk
i
���

∂σ̃C

∂zk
i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸
�
zk
i

(z�y�ŵ�w̃)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂σ̂1

∂yi1
· · · ∂σ̂1

∂yiC

∂σ̂1

∂w1i
· · · ∂σ̂1

∂wCi
���

� � �
���

���
� � �

���
∂σ̂C

∂yi1
· · · ∂σ̂C

∂yiC

∂σ̂C

∂w1i
· · · ∂σ̂C

∂wCi
∂σ̃1

∂yi1
· · · ∂σ̃1

∂yiC

∂σ̃1

∂w1i
· · · ∂σ̃1

∂wCi
���

� � �
���

���
� � �

���
∂σ̃C

∂yi1
· · · ∂σ̃C

∂yiC

∂σ̃C

∂w1i
· · · ∂σ̃C

∂wCi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

�(z�y�ŵ�w̃)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u1(z)
∂zk

i
���

∂uC (z)
∂zk

i

∂v1(z)
∂zk

i
���

∂vC (z)
∂zk

i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (19)

The first C rows of the matrix �(z� y� ŵ� w̃) contain derivatives of the conditional match
probabilities w.r.t. the excluded regressors, evaluated at xi = x̂. The second C rows of
�(z� y� ŵ� w̃) are constructed similarly, evaluating the derivatives at xi = x̃.

Under Condition 3.3, there always exist ŵ and w̃ such that �(z� y� ŵ� w̃) in equa-
tion (19) is invertible. We then identify the derivatives of uc and vc for all c by solving
the system of linear equations. Formally, let �c

zki
(z� y� ŵ� w̃) be the matrix formed by re-

placing the cth column of matrix �(z� y� ŵ� w̃) by the vector �zki
(z� y� ŵ� w̃) (defined in

equation (19)). By the Cramer’s rule, for any c ∈ C,

∂uc(z)
∂zk

i

=
∣∣�c

zki
(z� y� ŵ� w̃)

∣∣∣∣�(z� y� ŵ� w̃)
∣∣ �

∂vc(z)
∂zk

i

=
∣∣�c+C

zki
(z� y� ŵ� w̃)

∣∣∣∣�(z� y� ŵ� w̃)
∣∣ �

So far, we have only considered zi that shows up in the utility functions for all colleges
and for both sides. For any element of zi that is excluded from certain utility functions,
the identification is a special case of the above proof by noting that some derivatives of
the utility functions are zero.

Second, we identify the derivative of the function rc for all c. We start with r1 and fix
yic = yc for c ∈ C\{1}; under the scale normalization, ∂rc (yc)

∂yic
= 1 for c ∈ C\{1}. For any

(y1� z�w) in the interior of Y1 ×Z ×W , substituting equation (16) into equation (17), for
each d ∈ C, we obtain(

∂σd

∂zk
i

−
∑
c∈C

∂σd

∂wci

∂vc

∂zk
i

−
∑

c∈C\{1}

∂σd

∂yic

∂uc

∂zk
i

)
∂r1

∂yi1
= ∂σd

∂yi1

∂u1

∂zk
i

� (20)

where all the terms except for ∂r1(y1)
∂yi1

are known or already identified. If ∂σd
∂zki

−∑
c∈C

∂σd
∂wci

∂vc

∂zki
−∑

c∈C\{1}
∂σd
∂yic

∂uc

∂zki
�= 0 for certain (z�w) and some d ∈ C, ∂r1(y1)

∂yi1
is identified from equa-

tion (20); otherwise, equation (20) implies that ∂σd
∂yi1

= 0 for all values (z�w) and all d ∈ C,

and thus ∂r1(y1)
∂yi1

is also identified and equal to zero. The derivative of the function rc for
c ∈ C \{1} can be identified in the same manner. Q.E.D.
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PROOF OF PROPOSITION 3.6: We start with the identification of the cutoffs {δc}c , that
is, part (i). Because of the large support assumption on rc (parts (ii) and (iii) of Assump-
tion 3.5) for each c ∈ C, there exists Jc ⊆X such that for any xi ∈Jc , c is the only accept-
able college with probability one, and that Q(i ∈ I : xi ∈Jc) > 0. Then

P
(
μ(i) = 0|xi ∈Jc

) = P
(
vc(zi) +wci +ηci < δc|xi ∈Jc

) = Fηci
(δc − ιci)�

where the last equality is due to ιci = vc(zi) + wci and the independence between ηci

and xi (Assumption 3.2). There exists a unique ι∗
c such that δc − ι∗

c = Quantileηci
(ρc) =

inf{(δc − ιci) : Fηci
(δc − ιci) ≥ ρc}. By Assumption 3.5(iv), δc − ι∗

c = 0, which identifies δc .
To show part (iii), we use the definition of cutoffs, equation (2).

To prove part (ii), the identification of the distribution F , following equation (5) for
c = 0, the conditional probability of being unmatched can be rewritten as

P
(
μ(i) = 0|xi

) =�0(τi1� � � � � τiC; ι1i� � � � � ιCi) = �0(τi� ιi)� (21)

Given that the functions {uc + rc� vc}c are identified (part (i) of Assumption 3.5), the
arguments in equation (21), {τic� ιci}c , are known. Because P(μ(i) = 0|xi) is observed from
the population data, the function �0 is identified.

For each c ∈ C, define Aic ≡ {uic < 0} = {τic + εic < 0} = {εic < −τic}, and Bci ≡ {vci <
δc} = {ιci +ηci < δc} = {ηci < δc − ιci}. By the independence between (εi�ηi) and xi (As-
sumption 3.2), the parameter of interest can be written as

F (−τi1� � � � �−τiC�δ1 − ι1i� � � � � δC − ιCi) = P
(∩C

c=1(Aic ∩Bci)|xi

)
�

Further, the conditional probability of being unmatched is

�0(τi� ιi) = P

(
C⋂
c=1

(Aic ∪Bci)|xi

)

= P

(
C−1⋂
c=1

(Aic ∪Bci) ∩ (AiC ∪BCi)|xi

)

= P

((
C−1⋂
c=1

(Aic ∪Bci) ∩AiC

) ∪
(

C−1⋂
c=1

(Aic ∪Bci) ∩BCi

)∣∣∣xi

)

= P

(
C−1⋂
c=1

(Aic ∪Bci) ∩AiC|xi

)
+ P

(
C−1⋂
c=1

(Aic ∪Bci) ∩BCi|xi

)

− P

((
C−1⋂
c=1

(Aic ∪Bci) ∩AiC ∩BCi

)∣∣∣xi

)
=�0(τi1� � � � � τiC; ι1i� � � � � ι(C−1)i�∞) +�0(τi1� � � � � τi(C−1)�∞; ι1i� � � � � ιCi)

− P

((
C−1⋂
c=1

(Aic ∪Bci) ∩AiC ∩BCi

)∣∣∣xi

)
� (22)
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Let HC (τi� ιi) ≡ P((
⋂C−1

c=1 (Aic ∪Bci) ∩AiC ∩BCi)|xi). It is identified from equation (22)
because �0 is identified. Moreover, similar derivations yield

HC (τi� ιi)

= P

(
C−2⋂
c=1

(Aic ∪Bci) ∩Ai(C−1) ∩AiC ∩BCi|xi

)

+ P

(
C−2⋂
c=1

(Aic ∪Bci) ∩B(C−1)i ∩AiC ∩BCi|xi

)

− P

((
C−2⋂
c=1

(Aic ∪Bci) ∩Ai(C−1) ∩B(C−1)i ∩AiC ∩BCi

)∣∣∣xi

)
=HC (τi1� � � � � τiC; ι1i� � � � ι(C−2)i�∞� ιCi) +HC (τi1� � � � � τi(C−2)�∞� τiC; ι1i� � � � � ιCi)

− P

((
C−2⋂
c=1

(Aic ∪Bci) ∩Ai(C−1) ∩B(C−1)i ∩AiC ∩BCi

)∣∣∣xi

)
� (23)

where in the penultimate line, the effects of ι(C−1)i and τi(C−1) are “shut down” in the
two terms, respectively. Equation (23) then identifies HC−1(τi� ιi) ≡ P((

⋂C−2
c=1 (Aic ∪Bci) ∩

Ai(C−1) ∩B(C−1)i ∩AiC ∩BCi)|xi).
Repeat the above argument and define a sequence of functions recursively until

H2(τi� ιi) = H2(τi1� � � � � τiC;∞� ι2i� � � � � ιCi) +H2(∞� τi2� � � � � τiC; ι1i� � � � � ιCi) −H1(τi� ιi),
where on the RHS, the effects of ι1i and τi1 are “shut down” in the first two terms, respec-
tively. Every function in the sequence is identified.

It then follows that F (−τi1� � � � �−τiC� δ1 − ι1i� � � � � δC − ιCi) = P(
⋂C

c=1(Aic ∩ Bci)|xi) ≡
H1(τi� ιi) is identified. Q.E.D.

PROOF OF PROPOSITION 3.7: We use the same argument as in the proof of Proposi-
tion 3.4, except that the matrix in equation (19) reduces in dimension due to the addi-
tional homogeneity restrictions. Specifically, with some abuse of notation, suppose that
vector u consists of u∗ and uc ∀c ∈ C \ C1, and that v consist of v∗ and vc ∀c ∈ C \ C2.
The vectors yi and wi are defined similarly, and suppose that (�y (z� y� ŵ)��w(z� y� ŵ))
has eliminated the duplicated elements accordingly. Fix (yi�wi) = (y� ŵ) and consider z
in the interior of Z . We can rewrite equation (18) as

∂σd

∂zk
i

= ∂σd

∂yi∗

∂u∗

∂zk
i

+
∑

c∈C\C1

∂σd

∂yic

∂uc

∂zk
i

+ ∂σd

∂w∗i

∂v∗

∂zk
i

+
∑

c∈C\C2

∂σd

∂wci

∂vc

∂zk
i

� (24)

Stacking equation (24) for all d ∈ C, we obtain

∂σ (z� y� ŵ)
∂zk

i

= (
�y (z� y� ŵ)��w(z� y� ŵ)

) ×

⎛⎜⎜⎜⎝
∂u(z)
∂zk

i

∂v(z)
∂zk

i

⎞⎟⎟⎟⎠ � (25)
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When the number of parameters 2C − κ1 − κ2 + 2 is at most C , equation (25) implies
identification; otherwise, we can identify the parameters by considering a pair of distinct
values of wi, as in the proof of Proposition 3.4. Q.E.D.
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