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This paper studies certification design and its implications for information disclo-
sure. Our model features a profit-maximizing certifier and the seller of a good of
unknown quality. We allow for common values as the seller’s opportunity cost may
depend on the quality of the good. We compare certifier-optimal with transparency-
maximizing certification design. Certifier-optimal certification design implements the
evidence structure of Dye (1985)—a fraction of sellers acquire information while the
remaining sellers are uninformed—and results in partial disclosure to the market. A
transparency-maximizing regulator prefers a less precise signal, which conveys more
information to the market through a higher rate of certification and unraveling (Gross-
man (1981), Milgrom (1981)) at the disclosure stage.

KEYWORDS: Disclosure, certification, strategic information transmission, informa-
tion design.

1. INTRODUCTION

IN MANY MARKETS, buyers cannot readily observe the quality of the offered goods.
Sellers often respond by voluntarily disclosing verifiable product information in the
form of certificates, labels, or ratings. Sellers obtain such verifiable information from
intermediaries—or certifiers—who evaluate the quality of the goods against a given stan-
dard.

The extent to which sellers disclose information to the market is of central interest to
the analysis of quality certification. Viscusi (1978), Grossman and Hart (1980), Gross-
man (1981), and Milgrom (1981) provide a powerful unraveling argument for complete
information disclosure. However, this result relies on the assumption that all sellers are
informed about the quality of their goods. If some sellers are uninformed, Dye (1985)
shows that disclosure remains partial as sellers of low quality conceal their information to
pool with the uninformed sellers.

In this paper, we study how certification design affects the extent of certification and
information disclosure. In practice, certification schemes are purposefully designed, and
the design choices determine whether sellers buy certification and what they learn in case
they do. Our analysis aims to answer the following questions: How does a monopolistic
certifier optimally design the standard of certification? How many sellers obtain certifica-
tion and what do they disclose under the certifier-optimal design? How do these outcomes
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compare to the case in which the certification standard is devised by a designer who aims
to maximize transparency on the market?

These questions are of high relevance in practice where certification standards are de-
signed by different types of institutions with different objectives. In some markets, the cer-
tifiers design the standard. This is the case in financial markets where credit rating agen-
cies evaluate the risk of financial products. In other markets, the standard designer neither
is the certifier nor shares the certifier’s profit-maximizing objective. The International Or-
ganization of Standardization (ISO)—a nongovernmental organization—provides a large
variety of different standards such as the management quality standard ISO 9001. Stan-
dards may also be designed by governmental bodies such as the United States Environ-
mental Protection Agency, which authored the “Energy Star”-label as a standard for the
energy efficiency of electronic products.1

We consider the following setup. A seller may sell a good on a market composed of
homogeneous buyers. Initially, neither the seller nor the buyers know the quality of the
good. We allow for common values in that the quality influences both the value of the buy-
ers as well as the opportunity cost of the seller. Before entering the market, the seller may
obtain a hard signal about the good’s quality from a monopolistic certifier at a fee. The
certifier incurs a cost from certifying the seller. Upon paying the fee, the seller observes
a realization of the signal and decides whether or not to disclose the signal realization to
the buyers. The buyers do not observe whether the seller obtains the signal and can there-
fore not differentiate between sellers who are uninformed and sellers who are informed
but conceal their signal realization. We model certification design as the choice of a signal
from a set of technologically feasible signals.

We obtain three main results. First, we provide an elegant and useful characteriza-
tion of certifier-optimal certification design. In particular, the certifier’s optimal signal
maximizes the seller’s willingness to pay across all feasible signals. This characterization
holds for any arbitrary set of feasible signals and is irrespective of the probability at which
the seller obtains the optimal signal in equilibrium. Second, we use the characterization
to show that any certifier-optimal signal induces partial certification and, consequently,
partial disclosure in equilibrium. Thus, the information structure of Dye (1985) arises en-
dogenously. Third, we show that certifier-optimal certification design is suboptimal from
the perspective of a regulator who aims to convey as much information to the market as
possible. In particular, we show that by lowering the informativeness of a certifier-optimal
signal, the regulator can increase the information on the market through higher equilib-
rium rates of certification and disclosure. Moreover, we provide conditions under which
the regulator would always optimally choose a signal that induces full certification and
unraveling as in Grossman (1981) and Milgrom (1981).

Two comments regarding these findings are in order. First, our results require the con-
ditions of common values and costly certification. Common values between the seller
and the buyers naturally arise in many markets in which certification is important.2 In
product markets, producers of higher quality often incur higher production costs. In mar-
kets for durable goods, owners of high quality goods derive higher utility from keeping

1Independently of the type of the certification designer, sellers typically obtain certificates from a profit-
maximizing certifier. For instance, the service of certification according to the quality management standard
ISO 9001 is offered by the “Big Four” accounting firms Deloitte, Ernst & Young, KPMG, and PwC. Sellers
who wish to obtain the “Energy Star” label are required to hire a “professional engineer” to review their
application.

2With common values, the valuations of seller and buyers are determined by the same parameter, but need
note be identical. This follows the terminology in Maskin and Tirole (1990, 1992).
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the good. In financial markets, sellers of more profitable financial assets typically expect
higher prices when selling their asset either in the future or through a different chan-
nel. Certification costs seem to be an equally natural condition as a certifier may incur
some costs when signing a contract with the seller, reviewing the seller’s documents, or
providing access to the certificate for potential buyers. Moreover, our results hold even
in the case where certification costs are strictly positive but arbitrarily small.3 Our sec-
ond remark concerns the regulator’s objective to increase the information on the market.
The amount of information on the market is a key metric in the literature on informa-
tion disclosure. However, it does not coincide with social welfare. Indeed, social welfare
and market informativeness are perfectly misaligned in our model as full trade prevails
independently of market information while certification costs are a waste from a social
welfare perspective. However, this stark contrast is an artefact of the simplicity of our
model. If information has social value either due to an ex ante investment of the seller
(Ben-Porath, Dekel, and Lipman (2018)) or an ex post investment of the buyer (Shavell
(1994)), market informativeness and social welfare become much more closely aligned.

We start our analysis by making a case distinction regarding the signal, which is central
to our analysis. We say that a signal induces irrelevant opportunity costs (henceforward
IOC) if the buyers’ expected valuation after the worst signal realization lies weakly above
the seller’s unconditional expected opportunity costs. In this case, the opportunity cost
does not matter as the seller always prefers to trade the good even if the buyers hold the
most pessimistic belief regarding the quality of the good. By contrast, a signal induces
relevant opportunity costs (henceforward ROC) if the buyers’ expected valuation after the
worst signal realization lies strictly below the seller’s unconditional expected opportunity
costs. In this case, the opportunity cost matters as the seller may prefer to keep the good
if the buyers’ belief is sufficiently pessimistic.

We find that the distinction between relevant and irrelevant opportunity costs deter-
mines whether the certifier’s optimal fee implements full or partial disclosure. If a signal
induces IOC, the certifier optimally sells the signal to the seller with probability one. The
unraveling argument of Grossman (1981) and Milgrom (1981) applies and leads to full
disclosure. If a signal induces ROC, the certifier optimally sells the signal with some pos-
itive probability strictly less than one, resulting in partial disclosure and an active market
of uncertified goods as in Dye (1985).

We now provide an intuition for this result. If the seller always buys certification, un-
raveling ensues and the equilibrium price of uncertified goods deflates to the buyers’ val-
uation after the worst signal realization. If the signal induces IOC, an uninformed seller
prefers to sell at this price rather than keeping the good, and thus the seller is willing to
pay a fee up to the difference between the unconditional expected valuation of the buyers
and the lowest posterior mean. If the signal induces ROC, an uninformed seller prefers
to keep the good. Thus, the willingness to pay for the signal equals the difference between
the expectations of the buyers’ and seller’s valuations for the good, that is, the expected
gains from trade. Can the certifier attain a higher profit if the seller buys certification
with less than probability one? As in Dye (1985), disclosure is then partial and the price
for uncertified goods is decreasing in the probability of certification. A higher price for
uncertified goods raises the expected payoff for a seller who obtains certification due to
the option value from concealing bad signal realizations and selling without disclosure. If

3In the main model, we assume that the certifier incurs no costs beyond the aforementioned transaction
costs, that is, costs are uniform across signals. In Section 6.1, we extend our analysis to signal-dependent and
fixed- certification costs and discuss costless certification.
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the signal induces IOC, the expected payoff for an uninformed seller rises more strongly
as the seller always sells without disclosure. Thus, the seller’s willingness to pay for being
informed decreases and the certifier’s profit falls. By contrast, if the signal induces ROC,
the certifier can increase her profit. In particular, suppose the seller buys certification with
a probability such that the price for uncertified goods equals the seller’s expected oppor-
tunity costs. This increases the expected payoff from being informed—due to the option
value from selling without disclosure—and leaves the expected payoff from being unin-
formed unchanged. If the certifier extracts the increased willingness to pay with her fee,
neither the seller nor the buyers earn a positive rent. Thus, the certifier’s profit is higher
than under full unraveling as she extracts all gains from trade by inducing only a fraction
of sellers to acquire certification.

The analysis of optimal signal fees paves the way toward a simple yet powerful char-
acterization of the set of certifier-optimal signals. We show that the certifier’s optimal
profit from selling a given signal is a monotone increasing function of the seller’s maximal
willingness to pay for the signal, and does not depend on other properties of the signal
or the equilibrium—such as the probability of certification. Thus, the certifier picks only
signals that maximize the seller’s maximal willingness to pay across all feasible signals.
The seller’s maximal willingness to pay for a signal inducing ROC is always higher than
for a signal inducing IOC. Hence, the characterization directly implies that any optimal
signal induces ROC and partial disclosure, as in Dye (1985), arises endogenously under
certifier-optimal certification design.

Finally, we analyze regulator-optimal certification design in the case where the certifier
retains the right to set the fee. First and seemingly paradoxical, we show that the reg-
ulator may increase the information on the market by lowering the informativeness of
certification. Indeed, any signal that induces ROC can be garbled into a new signal that
leads—under a certifier-optimal fee—to more information on the market in the sense of
Blackwell (1951, 1953). The increase in information on the market is due to higher proba-
bilities of certification and disclosure. If the certification costs lie below the expected gains
from trade, the transparency-increasing garbling takes a simple form: posterior means be-
low some cut-off are pooled into the same signal realization whereas the posterior means
above the cut-off are perfectly revealed. The cut-off is chosen such that the signal induces
IOC and is therefore sold with probability one and fully disclosed. If some feasible signal
(Blackwell) dominates all other feasible signals, garbling the Blackwell-dominant signal
as just described yields a transparency-maximal signal.

Our analysis sheds light on the subtle relationship between the precision of certifica-
tion and market transparency. Very precise certification designs induce certifiers to set
high fees at which only a fraction of sellers obtain certification. Less precise certificates
induce lower fees from certifiers and may result in more transparency through more cer-
tification and higher disclosure activity. Credit rating agencies use a precise certification
scheme.4 Ali, Haghpanah, Lin, and Siegel (2022) point out the US municipal bonds mar-
ket as an exemplary case in which the sellers, that is, the municipalities, are imperfectly
informed about the relative quality of their good. They report that only about half of US
municipal bonds are sold with a credit rating. This finding shows that—consistent with our
theory—precise certification designs may be coupled with low rates of certification, and
thus low market transparency. The transparency-increasing effect of coarser certification
schemes may also explain why the norm ISO 9001 and the “Energy Star”-label—designed

4Credit rating agencies typically use scales ranging from AAA to C in around 20 steps.
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by nonprofit organizations—are much coarser than credit ratings.5 Also in line with our
theory, the Energy Star label attains high rates of market coverage.6

The paper is organized as follows. In the remainder of this section, we present the
related literature. We present the model in Section 2. In Section 3, we provide a complete
characterization of the seller’s demand for certification. Section 4 presents the analysis of
the certifier’s optimal pricing of a given signal. In Section 5, we study optimal certification
design from the perspectives of the certifier and the regulator. In Section 6, we discuss
extensions of our model to more general certification costs and ex ante information for
sellers. Section 7 concludes. The proofs appear in the Appendix.

1.1. Related Literature

Our paper relates to the literature on voluntary disclosure of verifiable information.
This literature is concerned with the strategic disclosure of evidence by a sender to a re-
ceiver. Viscusi (1978), Grossman and Hart (1980), Grossman (1981), and Milgrom (1981)
consider a perfectly informed sender who can disclose any evidence at no cost. In such an
environment, information unravels as any sender type discloses in equilibrium. Verrec-
chia (1983) shows that unraveling breaks down if disclosure is costly as senders with rela-
tively low values choose to conceal their evidence. Dye (1985) and Jung and Kwon (1988)
show that the unraveling result also fails if the market is uncertain regarding whether or
not the sender possesses evidence as senders with unfavorable evidence pool with un-
informed senders by not disclosing their information. In all of these seminal contribu-
tions, as well as in the more recent literature on disclosure games (Glazer and Rubinstein
(2008), Sher and Vohra (2015), Hart, Kremer, and Perry (2017), Ben-Porath, Dekel, and
Lipman (2019), Lichtig and Weksler (2023)), each sender’s type is exogenously endowed
with a set of evidence that the sender may disclose.

Our paper contributes to the growing literature that studies endogenous evidence struc-
tures. As opposed to our model, most of this literature deals with models that feature only
a sender and a receiver (in a market context, a buyer and a seller). DeMarzo, Kremer, and
Skrzypacz (2019) study a buyer–seller model where the seller is choosing covertly from a
given set of signals. They assume that the signals produce soft information with an ex-
ogenous positive probability, as in the information structure of Dye (1985). For any given
set of signals, they characterize the equilibrium signal as the one that induces the mini-
mal price in case the seller does not disclose. Shishkin (2019) analyzes optimal overt test
design by a sender who wants to persuade a receiver to accept a project. Assuming that
the test yields hard evidence only with a small exogenous probability, he shows that the
optimal test has a simple cut-off structure. In our model, every signal yields a verifiable
result with certainty.7 The evidence structure of Dye (1985) emerges in our analysis as the
result of a profit-maximizing pricing decision of a monopolistic information intermediary.
Dasgupta, Krasikov, and Lamba (2023) analyze a buyer–seller model, where the buyer
overtly designs a signal about her utility from the object for sale. This signal can generate
arbitrarily many hard signal realizations or a soft residual signal realization. They find that

5Certification according to ISO 9001 results in a binary outcome: either the certificate is awarded or not.
Certification according to the “Energy Star” generates three possible grades as goods may either be certified
or not and certified goods may receive the additional distinction “Most Efficient.”

6For instance, in the US dishwasher market, the Energy Star has a market penetration rate of 96% (EPA
(2023)).

7Thus, a seller who acquired a signal can always distinguish himself from a seller who did not.
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the buyer will optimally choose a test that generates the soft signal realization with pos-
itive probability, and, like in our model, a market where hard evidence is not presented
endogenously emerges. Differently from our model, this results from the buyer’s incentive
to avoid full surplus extraction by the monopolistic seller.8

Our paper belongs to the strand of the literature that adds a strategic information in-
termediary to the basic disclosure setup with a seller (sender) and a competitive market
(receiver). We contribute to this literature by studying the implications of common values
on the incentive of the intermediary, an aspect which has previously not been studied.

One important strand of the literature analyzes the optimal behavior of a monopolistic
information intermediary who offers the seller a signal at a fee. Lizzeri (1999) assumes
that the seller is initially fully informed and finds that the intermediary’s optimal signal is
completely uninformative.9  Ali et al. (2022) consider the same question with two major
differences. First, the seller is initially uniformed. Second, in case that the strategy of the
intermediary induces multiple disclosure equilibria, the worst equilibrium from the inter-
mediary’s perspective is chosen. They find that the optimal signal is noisy and features a
continuum of possible scores.10 Our setting includes an initially uninformed seller as in
Ali et al. (2022). Thus, our approach is also in the spirit of the literature on information
design and Bayesian persuasion (Kamenica and Gentzkow (2011)), which it extends to a
framework of verifiable disclosure. We differ from Ali et al. (2022) by assuming a favor-
able equilibrium selection from the intermediary’s perspective as well as by allowing for
common values.

Another strand of this literature considers a regulator who wants as much informa-
tion as possible to be released to the market. Most of this literature deals with the com-
parison between two regulatory disclosure regimes: mandatory disclosure and voluntary
disclosure (Shavell (1994), Bar-Gill and Porat (2020), Weksler and Zik (2023)) or the in-
terplay between these two regimes (Friedman, Hughes, and Michaeli (2020), Bertomeu,
Vaysman, and Xue (2021), Banerjee, Marinovic, and Smith (2021)). An important excep-
tion is Harbaugh and Rasmusen (2018). They consider a model where the information
intermediary is the regulator himself, the seller is initially fully informed, and creating a
signal is costly. Harbaugh and Rasmusen (2018) find that, although the information in-
termediary’s objective is to release as much information as possible, the optimal signal is
not fully informative. By coarsening the signal, the information intermediary is able to in-
duce more types of sellers to acquire the signal, and thus release more information to the
public. Specifically, they find that the optimal signal pools all values below some cut-off
and fully reveals all values above this cut-off. This design induces a high willingness to pay
for the low types while maintaining high transparency. We also consider a transparency-
maximizing regulator whose signal choice we contrast with that of the profit-maximizing
certifier. Importantly, in our framework, the regulator is only in charge of the signal choice

8Also related are Onuchic (2023) and Whitmeyer and Zhang (2022). Both papers compare overt and covert
certification design. Onuchic (2023) studies a model where the sender can commit to the disclosure proba-
bility for each piece of evidence. Whitmeyer and Zhang (2022) study a model where disclosure is costly as in
Verrecchia (1983).

9In a recent paper, Ben-Porath, Dekel, and Lipman (2021) consider a sender/receiver environment with
an initially informed sender that chooses a signal that he can later voluntarily disclose. They take a mecha-
nism design approach to the problem, that is, the receiver has commitment power over his action after each
disclosure.

10Faure-Grimaud, Peyrache, and Quesada (2009) consider a seller who is initially partially informed and
allow the intermediary to charge a testing fee and a disclosure fee that may depend on the signal realization.
They assume that the signal is perfectly revealing and show that the intermediary is able to extract the entire
surplus in this environment.
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while the profit-maximizing certifier remains in charge of selling the signal. However, our
results do have some resemblance as our garbling procedure also pools low signal real-
izations and leaves high signal realizations unchanged. In our case, this garbling improves
transparency as it changes the pricing behavior of the certifier to one that induces unrav-
eling.

2. MODEL

2.1. Market

A risk-neutral seller seeks to sell a good in a competitive market to one of several risk-
neutral buyers. The value of the good to the seller and the buyers depends on the state
of the world v ∈ V ⊂ R. We sometimes refer to the state as quality of the good. The
state is initially unobservable to the seller and the buyers. The set V is compact and its
convex hull is denoted by [v� v]. The state is the realization of a random variable ν with
the commonly known cumulative distribution function F (v) ≡ Pr(ν ≤ v). For v ∈ V , each
buyer values the good by v while the seller values the good by φ(v). Depending on the
context, the opportunity cost of trade φ(v) can be understood as a production cost—such
as with consumption goods—the value of keeping the good—as with durable goods—or
the expected payoff from selling the good at a future date or through a different channel—
as with financial assets.

2.2. Certification

Before going to the market, the seller can obtain hard information about the state of
the world from a certifier. The certifier sets a fee r ≥ 0 at which the seller can observe
the realization of a signal σ . A signal σ is a random variable with generic realization s
in the support Sσ that may be correlated with the state ν.11 For a given signal σ , a signal
realization s ∈ Sσ induces the posterior mean Eσ [ν|s] of the buyers’ value. The signal σ
induces a distribution over the posterior means of the buyers’ value of

Gσ (v) ≡ Pr
(
Eσ [ν|σ] ≤ v

)
�12

The prior distribution F (v) is a mean-preserving spread of Gσ (v) for any signal σ , that
is,13

∫ v

v

v dGσ (v) =E[ν] and
∫ v

v

Gσ (x) dx≤
∫ v

v

F (x) dx ∀v ∈ [v� v]�

Let Vσ be the set of posterior means induced by the signal σ . We assume that the set Vσ is
a closed set in R, and its convex hull is denoted by [vσ� vσ ]. Denote the set of signals that
satisfy these conditions by �F .

11More formally, a signal consists of a Borel-measurable signal space S and a probability measure μ on the
σ-algebra of S × V such that

∫
S×{x∈V :x≤v} dμ= F (v).

12For any measurable function h : Sσ →R, we denote by h(σ) the random variable, which σ induces on the
support {h(s)}s∈Sσ .

13Let the random variable ε satisfy ν =E[ν|σ] +ε. Note that E[ε|σ] =E[ν|σ] −E[[ν|σ]|σ] = 0. Thus, F (v)
is a mean-preserving spread of Gσ (v). The next line follows from Proposition 6.D.2 in Mas-Colell, Whinston,
and Green (1995).
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There is common knowledge regarding the distribution Gσ (v) and the fee r. If the seller
obtains a certificate, the certifier incurs a cost c > 0 and the seller observes a signal real-
ization s ∈ Sσ . If the seller obtains certification and decides to disclose, the buyers observe
the signal realization s. If the seller does not obtain certification or obtains certification
and decides not to disclose, the buyers observe the signal realization N /∈ Sσ .

2.3. Payoffs, Seller’s Strategy, and Market Prices

The parties obtain the following payoffs in some state of the world v ∈ V . A buyer
receives v − p when buying the good at price p ∈ R and zero otherwise. The payoffs of
the seller and the certifier for the price p and the fee r are given by

u= φ(v) + 1(sell)
(
p−φ(v)

) − 1(cert)r and π = 1(cert)(r − c)�

where 1(sell) = 1 if the good is traded and 1(sell) = 0 otherwise, and 1(cert) = 1 if the
seller obtains certification and 1(cert) = 0 otherwise.

Given a signal σ and a fee r, the seller faces the following sequence of decisions. First,
the seller needs to decide whether to obtain certification or not. We denote the probability
to buy certification by a ∈ [0�1]. If the seller does not buy the certificate, she can decide
whether to sell the good or not. We denote by bU ∈ [0�1] the probability with which the
seller sells the good in this case. If the seller obtains certification and observes s ∈ Sσ ,
she has three options: sell the good and disclose s, sell the good without disclosure, or
keep the good. For any s ∈ Sσ , let bD

C (s) ∈ [0�1] be the probability to sell with disclosure
and bN

C (s) ∈ [0�1] the probability to sell without disclosure. The total probability to sell
satisfies bD

C (s) + bN
C (s) ≤ 1. A (behavioral) strategy for the seller is therefore a collection

y = (
a�bU�b

D
C (·)� bN

C (·))�
If the seller decides to sell, the good is either traded uncertified or with some certificate

s ∈ Sσ . Given a strategy y , the probability that the good is traded uncertified is

Pr(N) ≡ aE
[
bN
C (σ)

] + (1 − a)bU�

We say that the market for uncertified goods is active if Pr(N) > 0 and inactive if Pr(N) =
0. We denote by pN the price on the market for uncertified goods. The function pD : Sσ →
R assigns a market price to a good that is sold with the certificate s ∈ Sσ . Thus, the market
prices are given by the collection

p = (
pN�pD(·))�

2.4. Equilibrium Notion

Next, we define an equilibrium given a signal σ and a fee r. Denote the seller’s expected
payoff from a strategy y given the prices p, the signal σ , and the fee r by

U (y�p�σ� r) ≡ a
(
E

[
bD
C (σ)pD(σ) + bN

C (σ)pN + (
1 − bD

C (σ) − bU
C (σ)

)
Eσ

[
φ(ν)|σ

]] − r
)

+ (1 − a)
(
bUp

N + (1 − bU)E
[
φ(ν)

])
�

Our equilibrium notion is the following.
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DEFINITION 1: Given a signal σ and a fee r, an equilibrium is a combination of a strat-
egy y for the seller and market prices p such that:

1. y is optimal for the seller given p, that is,

y ∈ arg max
y′ U

(
y ′�p�σ� r

)
� (1)

2. p is consistent with y , that is,

pD(s) = Eσ [ν|s]� ∀s ∈ Sσ� pN ∈
{{

E[ν|N]
}

if Pr(N) > 0�
[vσ� v̄σ ] if Pr(N) = 0�

(2)

where

E[ν|N] = aE
[
bN
C (σ)Eσ [ν|σ]

] + (1 − a)bUE[ν]
Pr(N)

�

The set of equilibria is denoted by E (σ� r).

The equilibrium notion consists of two conditions. Condition (1) requires that the seller
plays an optimal strategy given the market prices. Condition (2) is a market-clearing con-
dition. As the seller is on the short side of the market, the good is traded at the buyers’
expected value. If the market for uncertified goods is active, the buyers’ expected quality
on this market is determined by Bayes’ rule given the seller’s strategy. If the market for
uncertified goods is inactive, rational expectations do not pin down the buyers’ expected
value. Given the seller’s information, any expectation in the set [vσ� v̄σ ] remains possible
in this case.14

One may provide a game-theoretic foundation for this market equilibrium notion. Con-
sider a game in which the seller first decides whether to offer the good and what to dis-
close, followed by the buyers bidding for the good in a second-price auction. Any (weak)
Bayesian perfect equilibrium15 of this game would then satisfy conditions (1) and (2).

2.5. Certifier’s Pricing Problem

We now describe the certifier’s problem of pricing a given signal σ . To this purpose, we
define the demand Dσ (r) for a given signal σ as a function of the fee r. We introduce
this equilibrium object as it allows us to cast the certifier’s problem in terms of standard
monopoly analysis. We define the demand as the highest probability with which the seller
acquires a signal σ in any equilibrium for a given fee r.

DEFINITION 2: The demand function for a signal σ is Dσ (r) ≡ max(y�p)∈E(σ�r) a.

The definition of the demand function implies certifier-preferred equilibrium selec-
tion—a standard assumption in contract theory and mechanism design.16 For any given

14Note that the buyers form beliefs regarding the type of seller they are facing. A feasible belief must be a
probability distribution over possible types of the seller. Given a signal σ , a seller could be either uninformed
or informed by some realization of the signal σ . It follows that an expected quality outside of [vσ� v̄σ ] is not
possible as it does not correspond to any probability distribution over the seller’s types.

15as defined in Definition 9.C.3 of Mas-Colell, Whinston, and Green (1995).
16See Ali et al. (2022) for an analysis of certification design under adversarial equilibrium selection.
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signal σ and fee r ≥ c, the certifier’s preferred equilibrium satisfies a = Dσ (r). For the
case r < c, the certifier might prefer an equilibrium with a <Dσ (r). However, this is not
problematic as the certifier can always set r sufficiently high to deter the seller from buying
certification.

Thus, the certifier’s optimal fee for a given signal σ solves the monopoly problem

max
r≥0

Dσ (r)(r − c)� (3)

2.6. Certification Design

We capture certification design as the choice of a signal σ from a set of technologically
feasible signals � ⊆ �F . We first study the case in which the certifier chooses the signal
from the set �. We then consider the case in which the signal is chosen by a regulator who
seeks to maximize the information conveyed to the market. In both cases, the signal is
then priced by the certifier according to the solution of problem (3) and sold to the seller.
This assumption is motivated by the structure of certification markets in practice where—
as described in the Introduction—certification is typically provided by profit-maximizing
certifiers while the standard may be designed by a transparency-maximizing institution.

2.7. Assumptions and Discussion

We now specify three assumptions that we maintain throughout the analysis and discuss
the two key conditions of common values and costly certification. Our first assumption
ensures that there are always strictly positive gains from trade.

ASSUMPTION 1: The function φ(·) satisfies φ(v) < v for all v ∈ V .

We denote the expected gains from trade by


 ≡ E[ν] −E
[
φ(ν)

] =
∫ v

v

(
v−φ(v)

)
dF (v)�

Note that Assumption 1 puts very little restrictions on the seller’s opportunity cost, for
example, φ(·) does not have to be continuous nor monotone in the state of the world v.
The second assumption is a technical condition on the set of feasible signals �.

ASSUMPTION 2: The set �⊆ �F satisfies the following conditions:
(i) the set {vσ}σ∈� is closed;

(ii) the set {Gσ (·)}σ∈� is closed under the weak topology.

The assumption ensures the existence of a certifier-optimal signal in the set of feasible
signals �.17 Note that conditions (i) and (ii) are satisfied if the set � is finite or equal to
the set of all signals, that is, � = �F .

Our model features two natural conditions that drive our main results: common values
and costly certification. We make the following assumption, which specifies a minimal
condition for common values to matter in equilibrium.

17See the proof of Proposition 2 for details.
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ASSUMPTION 3: The function φ(·) satisfies E[φ(ν)] > v.

The assumption implies that—under some sufficiently informative signal–the buyers’
belief regarding the quality of uncertified goods may be so pessimistic—and thus the price
for uncertified goods so low—that an uninformed seller prefers to keep the good rather
than selling it without disclosure. In this case, the value of keeping the good influences the
seller’s willingness to pay for the signal and thereby becomes of relevance for the certifier.

As our second key condition, we assume that certification is costly, that is, c > 0. Costs
of contracting, reviewing documents, or disseminating credible certificates suggest this to
be a mild condition, especially as we allow c to be arbitrarily small.18 In Section 6.1.2,
we show how our results can be extended to the case where the certifier faces a signal-
dependent cost of generating information in addition to the transaction cost c.

3. DEMAND FOR A SIGNAL

In this section, we take an intermediate step in our analysis by characterizing the de-
mand Dσ (r) for a given signal σ as a function of the fee r. We first introduce the following
case distinction, which is of relevance throughout the analysis.

DEFINITION 3:
1. A signal σ induces relevant opportunity costs (ROC) if vσ < E[φ(ν)].
2. A signal σ induces irrelevant opportunity costs (IOC) if vσ ≥E[φ(ν)].

If vσ < E[φ(ν)], the buyers’ belief regarding the value of an uncertified good may be
so pessimistic that the price on the uncertified market lies below the uninformed seller’s
expected value from keeping the good. Hence, the seller’s opportunity cost φ(·) may play
an important role as self-consumption is an uninformed seller’s best option in this case.

If vσ ≥ E[φ(ν)], keeping the good is a weakly dominated action for an uninformed
seller as the price on the uncertified market always weakly exceeds the expected value
from keeping the good. In this case, the specific opportunity cost function φ(·) is irrele-
vant, and the analysis is the same as in the case where the seller has no opportunity cost,
that is, φ(·) ≡ 0.

Given a set of feasible signals �, we denote by �ROC the subset of feasible signals that
induce ROC, and by �IOC the complementary subset of signals that induce IOC. Formally,
we define

�ROC ≡ {
σ ∈ � | vσ < E

[
φ(ν)

]}
and �IOC ≡ {

σ ∈ � | vσ ≥E
[
φ(ν)

]}
�

The uninformative signal—if feasible—induces IOC as its support of posterior means is
{E[ν]}. If the fully informative signal is feasible, it induces ROC by Assumption 3 as the
range of posterior means is [v� v̄].

3.1. Equilibrium Analysis

In order to characterize the demand function, we make some important observations
regarding equilibrium strategies and prices. Fix some signal σ . First, recall that the prices

18We discuss the case of costless certification in Section 6.
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for certified goods need to reflect the information provided by the certificate both on and
off the equilibrium path:

pD(s) = Eσ [ν|s]� ∀s ∈ Sσ� (4)

Second, we characterize the equilibrium strategy of the seller for a given market
price pN for uncertified goods. First, suppose the seller has obtained certification. By
Assumption 1, selling the good with disclosure strictly dominates keeping the good as
pD(s) = Eσ [ν|s] > Eσ [φ(ν)|s] for all s ∈ Sσ . Selling with disclosure is optimal if pD(s) =
Eσ [ν|s] ≥ pN and selling without disclosure is optimal if Eσ [ν|s] ≤ pN . Formally, we have
in any equilibrium

bD
C (s) = 1 − bN

C (s) ∈

⎧⎪⎨
⎪⎩

{1} if Eσ [ν|s] >pN�

[0�1] if Eσ [ν|s] = pN�

{0} if Eσ [ν|s] <pN�

(5)

Next, suppose the seller has not obtained certification. The seller can then choose be-
tween keeping the good at an expected payoff of E[φ(ν)] or selling the good without
disclosure. Thus, the seller optimally plays

bU ∈

⎧⎪⎨
⎪⎩

{1} if pN > E
[
φ(ν)

]
�

[0�1] if pN = E
[
φ(ν)

]
�

{0} if pN < E
[
φ(ν)

]
�

(6)

It follows that the seller’s expected equilibrium payoff satisfies

U (y�p�σ� r) = a

(∫
Vσ

max
{
v�pN

}
dGσ (v) − r

)
+ (1 − a) max

{
pN�E

[
φ(ν)

]}
�

The seller’s willingness to pay for the signal σ is a function of the price for uncertified
goods and given by

�σ

(
pN

) ≡
∫
V

max
{
v�pN

}
dGσ (v) − max

{
pN�E

[
φ(ν)

]}
� (7)

The willingness to pay is the difference between the expected option value of an informed
seller from choosing between selling with or without disclosure, and the option value of
an uniformed seller who can choose between selling the uncertified good and keeping it.

Hence, the seller’s optimal decision regarding certification satisfies

a ∈

⎧⎪⎨
⎪⎩

{1} if r < �σ

(
pN

)
�

[0�1] if r = �σ

(
pN

)
�

{0} if r > �σ

(
pN

)
�

(8)

The conditions (5) to (8) characterize the equilibrium strategy of the seller for a given
market price pN for uncertified goods.

As the last step of our equilibrium characterization, we study the equilibrium price pN

given an optimal strategy for the seller. Consider an equilibrium with an active market for
uncertified goods, that is, Pr(N) > 0. The market is populated by uninformed sellers and
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informed sellers of relatively low value goods. The expected value of an uncertified good
to the buyers can be determined by Bayes’ rule, giving us the equilibrium condition

(1 − a)bUE[ν] + a

∫ pN

v

v dGσ (v)

(1 − a)bU + aGσ

(
pN

) = pN�

Consider next an equilibrium with an inactive market for uncertified goods, that is,
Pr(N) = 0. In such an equilibrium, informed sellers do not benefit from concealing their
certificate. This requires pN ≤ vσ . Moreover, uninformed sellers do not benefit from sell-
ing the good instead of keeping it, hence pN ≤E[φ(ν)].

Thus, we obtain the following equilibrium condition for pN given an optimal strategy
of the seller:

pN ∈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{vσ} if Pr(N) = 0 and a > 0�{
v ∈ [vσ� v̄σ ] : v ≤E

[
φ(ν)

]}
if Pr(N) = 0 and a= 0�

{ (1 − a)bUE[ν] + a

∫ pN

v

v dGσ (v)

(1 − a)bU + aGσ

(
pN

) }
if Pr(N) > 0�

(9)

This concludes the equilibrium characterization.

LEMMA 1: For any (σ� r) ∈ �×R, (y�p) ∈ E (σ� r) ⇐⇒ (y�p) satisfies (4)–(9).

Before proceeding to the characterization of demand, it is helpful to revisit the function
�σ (pN) which captures the seller’s willingness to pay for the signal σ as a function of the
price pN on the uncertified market.

LEMMA 2: The function �σ (·) is continuous and strictly quasi-concave on [vσ� v̄σ ]. Its
unique maximum is attained at pN = max{E[φ(ν)]� vσ} and given by

�∗
σ ≡ max

pN∈[vσ �vσ ]
�σ

(
pN

) =

⎧⎪⎨
⎪⎩

+

∫ E[φ(ν)]

vσ

Gσ (v) dv if σ ∈ �ROC�

E[ν] − vσ if σ ∈ �IOC�

If the signal σ induces ROC, the seller’s willingness to pay first increases and then
decreases in the price pN on the segment [vσ� v̄σ ]. An increase in pN always benefits an
informed seller who has the option to conceal the certificate and sell the good at pN .
If pN < E[φ(ν)], an increase in pN does not affect the payoff of an uninformed seller
as self-consumption remains more attractive than selling without disclosure. Thus, the
willingness to pay for a signal increases in pN as long as pN < E[φ(ν)]. If pN > E[φ(ν)],
an increase in pN always benefits an uninformed seller as selling without disclosure is the
uninformed seller’s best choice. Moreover, the increase of pN increases the uninformed
seller’s payoff by more than it increases the informed seller’s payoff as the informed seller
trades at pN only with some probability. An increase in pN therefore reduces the seller’s
willingness to pay in this case.

If the signal induces IOC, the seller’s willingness to pay decreases in the price pN as
any equilibrium price pN needs to exceed E[φ(ν)]. Thus, any increase in pN increases
the payoff of an uninformed seller more than the payoff of an informed seller, resulting
in a lower willingness to pay for the signal.
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3.2. Equilibrium Demand for a Signal

We are now in a position to state our characterization of the demand function Dσ (r).
To this purpose, define for any σ ∈ �ROC the function �−1

σ : [
��∗
σ ] → [E[φ(ν)]�E[ν]] as

�−1
σ (r) ≡ max

{
pN ∈ [

E
[
φ(ν)

]
�E[ν]

] :�σ

(
pN

) ≥ r
}
�19

LEMMA 3:
1. Suppose σ ∈ �ROC. Then

Dσ (r) =

⎧⎪⎪⎨
⎪⎪⎩

1 if r ≤ 
�

E[ν] −�−1
σ (r)

r
if r ∈ (
��∗

σ ]�

0 if r > �∗
σ�

and Dσ (r) is strictly increasing for all r with Dσ (r) ∈ (0�1).
2. Suppose σ ∈ �IOC. Then

Dσ (r) =
{

1 if r ≤E[ν] − vσ�

0 if r > E[ν] − vσ�

To construct the demand curve for a signal σ , we find for each fee r ≥ 0 the equilibrium
with the highest probability of certification. We relegate the formal steps of our analysis
to the Appendix.

The left panel of Figure 1 depicts the demand curve for a signal with IOC. The demand
function is a simple step function. If the seller obtains certification with certainty, we
obtain the information structure of Grossman (1981) and Milgrom (1981). Thus, unrav-
eling occurs and pushes the price of uncertified goods to its lowest possible value, that is,
pN = vσ . At this price, the seller’s willingness to pay for the signal takes its maximal value
E[ν] − vσ . Thus, an equilibrium with full certification exists for r ≤ E[ν] − vσ . Moreover,
the seller is never willing to buy certification if the fee is higher, that is, r > E[ν] − vσ .
Hence, the demand for certification is a step function, as it is typical for settings in which
a monopolist sells a good to a group of homogeneous buyers.

FIGURE 1.—Demand for a signal: The left panel depicts the demand functions for a signal σ , which induces
IOC. The right panel depicts the demand function for two signals σ (solid) and σ̂ (dashed) with both inducing
ROC.

19Note that the function is the inverse of �σ (·) for pN ∈ [E[φ(ν)]�E[ν]].
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The right panel of Figure 1 illustrates the shape of demand curves for signals that induce
ROC. If the seller always buys the signal in equilibrium, unraveling collapses the uncer-
tified price to pN = vσ . At this price, the seller’s willingness to pay is 
. Thus, an equi-
librium with full certification exists if r ≤ 
. If r > 
, there exists an equilibrium without
certification in which the seller always self-consumes and the uncertified price pN = vσ is
supported by the most pessimistic off-path belief following an offer of an uncertified good.
The seller’s willingness to pay does not peak at 
 if the signal induces ROC. Thus, equi-
libria with partial certification can arise if the market for uncertified goods is active. These
equilibria are sustained by the option value brought about by the active market for uncer-
tified goods. Partial certification requires indifference of the seller, that is, r = �σ (pN).
Moreover, the probability with which the seller becomes informed—which is an exo-
geneous parameter in Dye (1985)—needs to be such that the fraction of uninformed
sellers sustains the price pN . Uninformed sellers would self-consume if pN falls below
E[φ(ν)]. Hence, only the prices pN ∈ [E[φ(ν)]�E[ν]]—and the fees r ∈ [�σ (E[ν])��∗

σ ]—
can be supported in such equilibria. As the willingness to pay �σ (pN) is decreasing on
[E[φ(ν)]�E[ν]] and pN is decreasing in the fraction of informed sellers, the equilibria
with partial certification generate an increasing segment of the demand curve. As the
dashed demand curve in Figure 1 shows, demand may even fall to zero for intermediate
fees.20

4. OPTIMAL PRICING OF A SIGNAL

In this section, we study how the certifier optimally prices a signal. We find the follow-
ing solution to the certifier’s pricing problem (3) given the demand curves illustrated in
Figure 1.

PROPOSITION 1:
1. Suppose σ ∈ �ROC. If c < �∗

σ , the certifier attains the optimal profit 
 − (
/�∗
σ)c by

certifying the seller with probability 
/�∗
σ at the uniquely optimal fee r =�∗

σ . If c =�∗
σ ,

a fee is optimal if and only if r ≥ �∗
σ . If c >�∗

σ , a fee is optimal if and only if r > �∗
σ .

2. Suppose σ ∈ �IOC. If c < �∗
σ , the certifier attains the optimal profit E[ν] − vσ − c by

certifying the seller with probability one at the uniquely optimal fee r = E[ν] − vσ . If
c = �∗

σ , a fee is optimal if and only if r ≥ E[ν] − vσ . If c > �∗
σ , a fee is optimal if and

only if r > E[ν] − vσ .

The key insight generated by the proposition concerns the question whether the cer-
tifier prefers unraveling or partial disclosure on the market. We show that the certifier
optimally induces an inactive market for uncertified goods through unraveling (Gross-
man (1981), Milgrom (1981)) if the signal induces IOC. By contrast, the certifier induces
partial disclosure as in Dye (1985) if the signal induces ROC.

In both cases of ROC and IOC, the certifier optimally sets the fee equal to the seller’s
maximal willingness to pay �∗

σ for the signal. Importantly, the optimal fee is independent
of the certification cost c as long as the optimal fee covers the cost. With ROC, the opti-
mal fee induces only a fraction of the sellers to acquire information, with the remaining
fraction of uninformed sellers trading on the market for uncertified goods. With IOC, all
sellers obtain certification and the market for uncertified goods is inactive.

20Formally, this arises for signals σ with 
≤ �σ (E[ν]) and when r ∈ (
��σ (E[ν])].



666 A. ASSEYER AND R. WEKSLER

With ROC, the certifier optimally accommodates an active market for uncertified goods
as in Dye (1985) by inducing only a fraction of sellers to acquire certification. In partic-
ular, the certifier prefers this outcome over the one induced by certifying all sellers and
shutting down the uncertified market. The latter outcome would be optimally induced by
a fee r = 
, which would result in a profit of 
 − c. By setting a fee r ∈ (
��∗

σ ], the cer-
tifier can activate the uncertified market. As the demand function is increasing for these
fees, the optimal fee with an active uncertified market is r = �∗

σ . At this fee, the fraction

/�∗

σ of sellers is certified. Compared to the case of an inactive market for uncertified
goods, the certifier obtains the same revenue of 
 for a strictly smaller certification cost
of (
/�∗

σ)c. By maintaining an active market for uncertified goods, the certifier increases
an informed seller’s option value from concealing the certificate. At the same time, the
active uncertified market does not increase the value of being uninformed as the price pN

on the uncertified market equals the expected value of self-consumption E[φ(ν)].
It is noteworthy that the certifier may be active even if the costs of certification exceed

the expected gains from trade. Indeed, the certifier charges a fee exceeding 
 and realizes
a positive margin even if 
< c <�∗

σ .
With IOC, it is optimal to shut down the market for uncertified goods through un-

raveling as in Grossman (1981) and Milgrom (1981). To prevent unraveling, the certifier
would need to induce a fraction of sellers to remain uninformed and to implement a
price for uncertified goods above vσ . However, the lost revenue could not be recouped
from informed sellers. While increasing the price pN above vσ increases the payoff of
informed sellers due to higher option value, the payoff of uninformed sellers increases
more strongly. Thus, the signal’s value to the seller shrinks.

5. OPTIMAL CERTIFICATION DESIGN

In this section, we analyze optimal certification design as the choice of a signal σ . We
first study the certifier’s optimal choice from the set � and provide a characterization of
certifier-optimal signals. In a second step, we consider a regulator who seeks to maximize
transparency on the market and examine regulator-optimal certification design.

We assume that there exists a technologically feasible signal under which the certifier
can make a positive payoff.

ASSUMPTION 4: There exists a signal σ ∈ � with �∗
σ > c.

By this assumption, which we maintain throughout the remainder of the analysis, we
ensure that certification design is nontrivial.

5.1. Certifier-Optimal Certification Design

We start by analyzing the certifier’s optimal signal choice from the set �. We use the
optimal pricing of signals in Proposition 1 to derive the following result.

PROPOSITION 2: The set of certifier-optimal signals is

�∗ = arg max
�

�∗
σ �

The proposition provides a simple and powerful characterization of the set of certifier-
optimal signals: A signal is optimal if and only if the maximal willingness to pay for this sig-
nal is the highest across all feasible signals—independently of the probability with which
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this signal is sold in equilibrium. Therefore, the set of certifier-optimal signals can be
identified using the statistic of the maximal willingness to pay �∗

σ only.21 In particular,
the set of certifier-optimal signals is independent of the certification cost c. The proof of
the proposition builds on the characterization of optimal fees in Proposition 1 and shows
that signals with higher maximal willingness to pay �∗

σ generate higher revenue and lower
certification cost.

We highlight that the characterization of Proposition 2 holds for arbitrary sets of feasi-
ble signals satisfying the technical conditions of Assumption 2. We do not require further
conditions such as all signals to be feasible, that is, � = �F , or the set � to be Blackwell-
ordered or to contain a Blackwell-dominant signal.

Proposition 2 implies an important corollary: the evidence structure of Dye (1985)
emerges endogenously under certification design.

COROLLARY 1: If �ROC �= ∅, then �∗ ⊆ �ROC. Thus, the seller obtains certification with
probability strictly less than 1 and partial disclosure, as in Dye (1985), prevails as a result of
certifier-optimal certification design.

The maximal willingness to pay �∗
σ for a signal inducing ROC exceeds the maximal

willingness to pay for any signal, which induces IOC. Thus, by Proposition 2, the set of
certifier-optimal signals �∗ contains only signals that induce ROC, whenever at least one
such signal is feasible.

The corollary further simplifies the procedure of finding the set of certifier-optimal
signals if there exist feasible signals which induce ROC. In this case, one can restrict
attention to the set �ROC and identify all signals σ ∈ �ROC that maximize the statistic

∫ E[φ(ν)]

v

Gσ (v) dv�

This strengthening of our characterization is a result of the fact that for every σ ∈ �ROC

the certifier is able to extract all the gains from trade 
 by charging the fee �∗
σ . Thus, it

must be that the probability of selling a certificate is equal to 

�∗
σ

. It follows that a signal
that maximizes �∗

σ also minimizes the certifier’s certification cost, and thereby maximizes
the certifier’s profit.

While the characterization of Proposition 2 applies to arbitrary sets of feasible signals,
we obtain the following corollary if the set � features a most informative signal.

COROLLARY 2: Suppose the set � contains a most informative signal σ̄ , that is,∫ v

v

Gσ (x) dx≤
∫ v

v

Gσ̄ (x) dx� ∀v ∈ [v� v̄]�∀σ ∈ ��

Then, σ̄ ∈ �∗.

The corollary follows directly from Proposition 2 and Lemma 2 as the most informative
signal of a set � induces the minimal lowest posterior mean vσ and the largest value of
the statistic

∫ E[φ(ν)]
v

Gσ (v) dv among all signals.

21Under part (i) of Assumption 2, �∗
σ attains a maximum for � = �IOC. Part (ii) ensures this for � �= �IOC.
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The logic behind the corollary allows us to make a stronger statement. Given any set of
feasible signals �, at least one certifier-optimal signal is in the subset of signals �info ⊆ �
that contains all maximally informative signals, that is, all feasible signals that are not
dominated by a different feasible signal in the sense of Blackwell’s order. Thus, the op-
timizing certifier can restrict attention to the subset of signals �info without any loss of
optimality.

The certifier’s optimal choice of signal and fee follows the principle of maximizing the
sellers’ willingness to pay, even if this requires inducing only a fraction of sellers to acquire
information. If the set of possible signals � comprises only signals with IOC, the certifier
induces unraveling. Moreover, the certifier’s optimal signal minimizes the price on the
uncertified market—the same metric as in the private value model of DeMarzo, Kremer,
and Skrzypacz (2019). By contrast, if there are signals with ROC, minimizing the nondis-
closure price pN is suboptimal. In this case, the certifier cannot increase revenue from
pushing the nondisclosure price below E[φ(ν)] as this would not affect the uninformed
seller’s payoff and lower the informed seller’s payoff. Instead, the certifier activates the
uncertified market to keep revenue constant and to lower the total cost of certification.

EXAMPLE: In order to illustrate the use of our results, we analyze a specific example
of our model. Suppose the state ν is uniformly distributed on V = [0�1] and the seller’s
value is a fraction α ∈ (0�1) of the buyers’ value v, that is, φ(v) = α · v. We consider the
set of feasible signals � to be the set of all binary threshold signals. In particular, for every
t ∈ [0�1], denote by σt the signal that certifies whether the state is above or below t, and
set �={σt}t∈[0�1]. Finally, suppose c < 
 = (1 − α)E[ν] = 1−α

2 .
Note that the set of binary threshold signals is not Blackwell-ordered, nor does it con-

tain a Blackwell-dominant signal. Nevertheless, our results allow us to quickly find the set
of certifier-optimal signals. We first identify the sets of signals inducing ROC and IOC.
We have vσt < E[φ(ν)] = α

2 if and only if t < α. The sets of signals inducing ROC and IOC
are therefore given by �ROC = {σt}t∈[0�α) and �IOC = {σt}t∈[α�1]. Corollary 1 implies that all
certifier-optimal signals must be in �ROC. Using Proposition 2, we can now identify the
optimal signals as those signals that lead to the largest maximal willingness �∗

σt
. The sig-

nal σt induces the posterior means t
2 and 1+t

2 with probabilities t and 1 − t, respectively.
For any signal σt with t < α, we therefore obtain

�∗
σt

= 
+
∫ E[φ(ν)]

vσ

Gσt (v) dv = 1 − α

2
+

∫ α
2

t
2

t dv = 1 − α

2
+ t

(
α− t

2

)
�

Clearly, this function is maximized at t = α
2 . Thus, the set of certifier-optimal signals in

our example is the singleton �∗ ={σα
2
}={σE[φ(ν)]}.

The binary threshold signal σE[φ(ν)] remains optimal in any set of feasible signals in
which it is contained. Corollary 2 implies that the fully revealing signal σ̃—which satis-
fies Gσ̃ (·) = F (·)—is certifier-optimal whenever it is feasible. We argue that the binary
threshold signal σE[φ(ν)] induces the same profit as the fully revealing signal. This follows
from ∫ E[φ(ν)]

v

GσE[φ(ν)] (v) dv = F
(
E

[
φ(ν)

])(
E

[
φ(ν)

] −E
[
ν|ν ≤E

[
φ(ν)

]])

=
∫ E[φ(ν)]

v

(
E

[
φ(ν)

] − v
)
dF (v) =

∫ E[φ(ν)]

v

F (v) dv�
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This argument implies an even stronger result. Indeed, any signal which perfectly reveals
whether the state lies above or below E[φ(ν)] generates a maximal willingness to pay
equal to that of the fully revealing signal, and is therefore certifier-optimal.

5.2. Regulator-Optimal Certification Design

In this section, we consider a regulator who aims to maximize transparency on the mar-
ket. We do not specify the regulator’s preferences any further. Instead, we provide results
based on Blackwell comparisons of the information on the market. In our analysis, the
certifier retains the right to set the fee. This assumption is motivated by the structure
of certification markets in practice as described in the Introduction. In addition, this as-
sumption allows us to identify differences in certifier- and regulator-optimal certification
design independently from distortions that arise from the certifier’s pricing power in the
market for certifications.

We measure the information on the market using the equilibrium distribution over
prices Hσ (v). Given a signal σ and a certifier-optimal fee—as specified in Proposition 1—
the equilibrium induces a distribution over disclosed signal realizations in the set Sσ ∪{N}.
Any of these signal realizations results in a market price reflecting the buyers’ expectation
of the good’s quality. The distribution over prices reflects the precision of the signal, the
fraction of informed sellers, as well as the extent of disclosure. A signal σ leads to a better-
informed market than another signal σ ′ if the distribution Hσ (v) is a mean-preserving
spread of the distribution Hσ ′ (v).

The distribution over prices Hσ (v) is determined as follows. Consider a signal σ with
c ≤ �∗

σ . Assuming that the certifier sets the lowest optimal fee,22 the seller buys certifi-
cation in equilibrium with the probability min{
/�∗

σ�1}. If the signal induces IOC, the
certification is certain and full unraveling occurs. In this case, the distribution over prices
equals the distribution Gσ (v). If the signal induces ROC, the probability of certifica-
tion is strictly interior and informed sellers disclose if the posterior mean weakly exceeds
E[φ(ν)] while they conceal their information otherwise. Thus, the distribution Hσ (v) for
an optimally priced signal σ is given by

Hσ (v) =
{

0 if v < E
[
φ(ν)

]
�

1 − min
{

/�∗

σ�1
} + min

{

/�∗

σ�1
}
Gσ (v) if v ≥E

[
φ(ν)

]
�

When σ induces ROC and the certifier prices the signal optimally, a seller can never
gain from disclosing a signal realization that induces a posterior mean below E[φ(ν)].
Thus, no posterior means below this value arises in equilibrium. Signal realizations above
E[φ(ν)] are always disclosed in equilibrium. The posterior mean of E[φ(ν)] is induced by
the signal N , which is generated if the seller is either uninformed or informed and refrains
from disclosure.

Before we present the first result of this section, we recall the notion of a garbling due to
Marschak and Miyasawa (1968) as a tool to reduce the informational content of a signal.
A signal σ can be garbled through a function γσ : Sσ → 
S, which maps from the set of
signal realizations of σ to the set of probability distributions over some set S of signal
realizations. With slight abuse of notation, we denote the garbled signal by γ(σ) ≡ γσ ◦σ .

22This assumption is innocuous as the tie can be broken at almost no cost.
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Of course, the garbled signal γ(σ) is less Blackwell informative than σ , that is,∫ v

v

Gσ (x) dx≥
∫ v

v

Gγ(σ) (x) dx� ∀v ∈ [v� v̄]�

In the following proposition, we show that garbling a signal with ROC can increase the
information on the market.

PROPOSITION 3: For any σ ∈ �ROC with �∗
σ > c, there exists a garbled signal γ(σ) �= σ ,

which satisfies �∗
γ(σ) ≥ c, conveys weakly more information to the market than σ , that is,

∫ v

v

Hγ(σ) (x) dx≥
∫ v

v

Hσ (x) dx ∀v ∈ [v� v̄]�

and conveys strictly more information to the market than σ if Vσ ∩ (E[φ(ν)]� v̄σ ] is not a
singleton. In this case,∫ v

v

Hγ(σ) (x) dx≥
∫ v

v

Hσ (x) dx ∀v ∈ [v� v̄] and

∫ v

v

Hγ(σ) (x) dx >

∫ v

v

Hσ (x) dx ∀v ∈ (
E

[
φ(ν)

]
� v̄σ

)
�

The proposition shows that the regulator can increase the information on the market by
reducing the informativeness of certification. Given some signal which induces ROC, the
regulator can garble this signal and thereby increase the equilibrium rates of certification
and disclosure. This results in a strict increase in market informativeness if the original
signal features at least two posterior means above the unconditional expected payoff of
keeping the good E[φ(ν)].

Our proof of Proposition 3 is constructive. We show how any signal σ ∈ �ROC can be
garbled into a signal γ∗(σ) that satisfies the properties in the proposition.

The proposition builds on the observation that the price distribution Hσ (v) results from
a suboptimal garbling of the distribution of posterior means Gσ (v). The price distribu-
tion Hσ (v) can be obtained from the following procedure: draw posterior means from
the distribution Gσ (v), disclose posterior means above E[φ(ν)] with probability 
/�∗

σ ,
pool the remaining posterior means above E[φ(ν)] with all the posterior means below
E[φ(ν)]. The uniform treatment of posterior means above E[φ(ν)] is not optimal from
an informational perspective. Market information would increase if conditional on pos-
terior means being above the threshold E[φ(ν)] higher posterior means were disclosed
with a larger probability than lower posterior means.

For c ≤ 
, the garbling γ∗(·) improves upon the price distribution Hσ (v) in the fol-
lowing way. Take the distribution Gσ (v), pool all posterior means below a threshold into
the same signal realization, and perfectly disclose all posterior means above the thresh-
old. The threshold is chosen such that the posterior mean induced by the pooling signal
realization equals the expected value from keeping the good E[φ(ν)]. Thus, the garbled
signal γ∗(σ) induces IOC and results in full certification and unraveling. Moreover, the
distribution of prices Hγ∗(σ) (v) Blackwell dominates Hσ (v) as γ∗(σ) pools only interme-
diate posterior means while perfectly revealing posterior means at the top whereas Hσ (v)
pools posterior means from the whole range and reveals the extreme posterior means
only with some interior probability.
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The garbled signal γ∗(σ) strictly improves the market informativeness over σ when-
ever it changes the composition of posterior means above E[φ(ν)] in the pooling signal
realizations relative to Hσ (v). This is possible if and only if σ induces at least two pos-
terior means above the threshold, that is, the set Vσ ∩ (E[φ(ν)]� v̄σ ] is not a singleton. If
Vσ ∩ (E[φ(ν)]� v̄σ ] is a singleton, the garbled signal has to treat all posterior means above
E[φ(ν)] identically—a trivial statement as there is just one such posterior mean—and
thus it leads to the same market informativeness as the original signal σ .

The garbling γ∗(·) is formally defined in equation (10) in the proof of Proposition 3.
There, we also extends our argument to c > 
. In this case, only signals with ROC can
cover certification costs. Nevertheless, the garbling γ∗(·) still improves upon all signals
generating a positive margin to the certifier, that is, c < �∗

σ , by pooling intermediate pos-
terior means into the same signal realization while fully revealing high and low posterior
means. In the partial disclosure equilibrium for this signal, the pooling signal realization
as well as the high posterior means are disclosed. By contrast, the low posterior means
are concealed and pooled with the fraction of uninformed sellers.

We return to the case of c ≤ 
 for which we obtain the following corollary.

COROLLARY 3: Suppose c ≤ 
, Vσ ∩(E[φ(ν)]� v̄σ ] is not a singleton, and γ∗(σ) ∈ � for all
σ ∈ �ROC. Any regulator-optimal signal induces IOC. Thus, full certification and unraveling
as in Grossman (1981) and Milgrom (1981) prevails under regulator-optimal certification
design.

Corollaries 1 and 3 demonstrate a stark contrast between certifier- and regulator-
optimal certification design. Under relatively mild conditions, any certifier-optimal sig-
nal induces the information structure of Dye (1985) and brings about partial certification
and disclosure, whereas any regulator-optimal signal induces the information structure of
Grossman (1981) and Milgrom (1981) and results in full certification and unraveling.

While Proposition 3 shows how the regulator can improve the information on the mar-
ket by reducing the informativeness of a given signal, it does not specify a regulator-
optimal signal. As we defined the regulator’s preference only with respect to Blackwell’s
partial order, we have to add structure to the feasible set of signals � in order to get such
a result. In the following corollary, we show that if the set of feasible signals contains
a Blackwell-dominant signal, applying the garbling of Proposition 3 yields a regulator-
optimal certification design.

COROLLARY 4: Suppose the set � contains a most informative signal σ̄ , that is,∫ v

v

Gσ (x) dx≤
∫ v

v

Gσ̄ (x) dx� ∀v ∈ [v� v̄]�∀σ ∈ ��

and suppose the garbling γ∗(σ̄) is also an element of �. Then γ∗(σ̄) is regulator-optimal, that
is, ∫ v

v

Hγ̄(σ̄) (x) dx≥
∫ v

v

Hσ (x) dx� ∀v ∈ [v� v̄]�∀σ ∈ ��

Corollaries 2 and 4 study the preferences of the certifier and the regulator regarding a
most informative signal σ̄ . By Corollary 2, the most informative signal is always certifier-
optimal. By Corollary 4, a garbling of the most informative signal is regulator-optimal. By
Corollary 3, this garbling conveys strictly more information to the market than the most
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informative signal σ̄ , whenever σ̄ induces ROC and features at least two posterior means
above the threshold E[φ(ν)].

A reduction in the informativeness of a signal with a single posterior mean above the
threshold E[φ(ν)] cannot improve the information on the market. However, this does
not mean that the contrast between certifier- and regulator-optimal certification design
is not relevant for such signals. In the following, we revisit our example of Section 5.1
in which the set of feasible signals consists of binary threshold signals that have a single
posterior mean above the threshold E[φ(ν)]. We show that the conflict between certifier-
and regulator-optimal certification design remains present in this class of signals.

EXAMPLE: Recall the setup of the example specified in Section 5.1. We argue that any
regulator-optimal signal induces IOC. This stands in contrast to the certifier-optimal sig-
nal σα

2
, which induces ROC. In particular, we show that the signal σα—which provides

evidence as to whether the state lies above or below α and induces IOC—is strictly pre-
ferred by the regulator over any signal that induces ROC.

Recall that �ROC = {σt}t∈[0�α) and σα ∈ �IOC as vσα = α
2 = E[φ(ν)]. We want to show

that the regulator prefers the signal σα over any signal σt with t < α. For every signal
σt with t ≤ α, the distribution Hσt (v) features two posterior means: E[φ(ν)] and some
ρ̄t > E[ν]. As the lower posterior mean is fixed, it is easy to see that the informativeness
of Hσt (v) is strictly monotone in ρ̄t . As ρ̄t = E[ν | ν > t] = 1+t

2 is strictly increasing for
t ≤ α, the distribution Hσα (v) is strictly more informative than Hσt (v) for any t < α. Thus,
any regulator-optimal signal induces IOC.

The insight of the example generalizes. In particular, the binary threshold signal σt̂ with
E[ν|ν ≤ t̂] = E[φ(ν)] is strictly preferred by the regulator over any signal, which induces
ROC and has a single posterior mean above E[φ(ν)] whenever the prior distribution F (v)
is continuous on [v� v̄]. We formally prove this claim in Lemma 9 in the Appendix.

6. DISCUSSION

In this section, we consider two extensions of our model. First, we show that our main
results are robust to different forms of certification costs. In a second step, we discuss the
case in which the sellers possess some soft private information before certification.

6.1. Certification Costs

Throughout the previous sections, we assume that the certifier incurs a strictly positive
and signal-independent certification cost whenever the seller is certified. We now discuss
the implications of different assumptions regarding the certification cost.

6.1.1. Costless Certification and Fixed Certification Costs

A certifier may be able to generate hard information at no cost, possibly after having
incurred fixed costs due to hiring employees, designing a certification scheme, or adhering
to regulatory standards. We now want to argue that certifier-optimal certification design
still endogenizes the information structure of Dye (1985) in these cases.

We start by considering the case of costless certification, that is, c = 0. At first, we
discuss how the absence of certification costs affects the optimal pricing of a given signal
σ . The analysis leading to Proposition 1 can be straightforwardly extended to obtain the
following results. If the signal induces IOC, the fee r =E[ν]−vσ remains uniquely optimal
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due to the demand curve being a simple step function. If the signal induces ROC, both
fees r = �∗

σ and r = 
 are optimal as they lead to the same optimal profit 
. However,
based on our analysis of the case c > 0, one may argue that the fee r = �∗

σ is robustly
optimal as it is remains optimal if the cost c is not exactly zero but slightly positive. Thus,
probabilistic certification and partial disclosure are robustly optimal outcomes for the
certifier.

Assuming that the certifier picks the robustly optimal fee r = �∗
σ for any σ ∈ �ROC, we

consider the problem of certifier-optimal certification design under c = 0. The certifier is
indifferent between all feasible signals in �ROC as they lead to an identical profit of 
. All
signals in �IOC with vσ > E[φ(ν)] lead to a strictly lower profit than 
. Thus, the certifier
never picks any of these signals whenever a signal inducing ROC is feasible. If a signal
σ satisfies exactly the condition of vσ = E[φ(ν)], this signal induces IOC and leads to
the optimal profit 
. Thus, we can conclude that certifier-optimal certification design also
generates the information structure of Dye (1985) for costless certification whenever �
does not contain a signal satisfying the knife-edge condition vσ =E[φ(ν)].

Next, we consider the case in which all certification costs are fixed, that is, the certifier
incurs a cost k > 0 independently of whether or not the seller is certified. If the certifier
enters the market and incurs the fixed cost, certifying the seller leads to no additional cost.
Thus, our previous discussion still applies whenever the certifier is active. Thus, certifier-
optimal certification design leads to the information structure of Dye (1985) if there exists
a feasible signal that induces ROC, the certifier sets robustly optimal fees, the fixed cost
is small enough, that is, k< 
, and there exists no feasible signal σ with vσ =E[φ(ν)].

6.1.2. Signal-Dependent Certification Costs

In this section, we extend our analyses of certifier-optimal signals and regulator-optimal
signals to the case where the cost of certification depends on the signal. For every feasible
signal σ ∈ �, we denote by cσ the cost of certifying the seller. We maintain the assump-
tion from our main model that the certification cost is strictly positive, that is, cσ > 0 for
all σ ∈ �. We interpret the certification cost as consisting of a signal-independent, strictly
positive transaction cost—which may arise from contracting with the seller, reviewing doc-
uments, or providing access to the certificates—and a signal-dependent cost of generating
information. Our assumption of signal-independent certification costs from the previous
sections may therefore be viewed as the case where information can be costlessly gener-
ated within the set of feasible signals �.

Our characterization of the certifier-optimal certification fee in Proposition 1 is unaf-
fected by the signal-dependency of certification costs. Hence, we can use the analysis of
Section 4 to obtain a characterization of certifier-optimal signals under signal-dependent
certification costs. Let the set {(Gσ� cσ)}σ∈� ⊆ {Gσ}σ∈�F

× R be a compact subset under
the induced product topology.23 Additionally, assume there is a signal σ ∈ � such that
�∗

σ > cσ .24 Defining 
σ ≡ min{
�E[ν] − vσ}, we obtain the following characterization.

PROPOSITION 4: The set of certifier-optimal signals under signal-dependent certification
cost is

�∗ = arg max
σ∈�


σ − 
σcσ

�∗
σ

�

23For instance, this holds if cσ = C(Gσ) where C : �F → R is continuous. By Assumption 2, the graph
{Gσ�cσ}σ∈� is then compact under the induced product topology.

24These two assumptions naturally extend Assumptions 2 and 4 to the case of signal-dependent certification
costs.
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With signal-dependent costs, a new trade-off arises as a signal with high maximal will-
ingness to pay �∗

σ may come at a high cost of certification cσ . Within the set of signals
inducing ROC, the probability of certification is weighed against the cost of certification.
In particular, suppose all feasible signals induce ROC, that is, � = �ROC. In this case, the
characterization of Proposition 4 takes the simple form:

�∗ = arg max
σ∈�

�∗
σ

cσ
�

Thus, a signal is optimal if it leads to the highest maximal willingness to pay normalized
by the certification cost. Within the set of signals inducing IOC, the trade-off is between
revenue and cost of certification. For � = �IOC, the set of certifier-optimal signals is

�∗ = arg max
σ∈�

�∗
σ − cσ�

Next, we argue that our analysis of regulator-optimal certification design extends to the
case of signal-dependent certification cost. From the regulator’s point of view, the cost
of a signal σ ∈ � matters only insofar as it determines whether this signal induces non-
negative profits to the certifier, and is thus a viable option. Given a set of feasible signals
�, the regulator determines the subset {σ ∈ � |�∗

σ ≥ cσ} and chooses from this set without
taking the cost of the signals into account any further.

Proposition 3 carries over to the case of signal-dependent costs if we impose the condi-
tion of Blackwell monotonicity on the cost of signals.25

ASSUMPTION 5: The cost of certification is Blackwell monotone, that is,∫ v

v

Gσ ′ (v) dv ≤
∫ v

v

Gσ (v) dv� ∀v ∈ [v� v̄] =⇒ cσ ′ ≤ cσ�

We then obtain the following extension of Proposition 3.

PROPOSITION 5: For any σ ∈ �ROC with �∗
σ > cσ , the garbled signal γ∗(σ) �= σ satisfies

�∗
γ∗(σ) ≥ cγ∗(σ) , conveys weakly more information to the market than σ , that is,

∫ v

v

Hγ∗(σ) (x) dx≥
∫ v

v

Hσ (x) dx ∀v ∈ [v� v̄]�

and conveys strictly more information than σ if Vσ ∩ (E[φ(ν)]� v̄σ ] is not a singleton. In this
case, ∫ v

v

Hγ∗(σ) (x) dx≥
∫ v

v

Hσ (x) dx ∀v ∈ [v� v̄] and

∫ v

v

Hγ∗(σ) (x) dx >

∫ v

v

Hσ (x) dx ∀v ∈ (
E

[
φ(ν)

]
� v̄σ

)
�

25For instance, the popular posterior-separable cost specification (Caplin and Dean (2013)) satisfies Black-
well monotonicity.
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Proposition 3 implies that the garbled signal γ∗(σ) satisfies the above mentioned infor-
mational properties with �∗

γ∗(σ) ≥ cσ . Using Blackwell monotonicity, we obtain �∗
γ∗(σ) ≥

cσ ≥ cγ∗(σ) .
The insights of Corollaries 3 and 4 carry over to the case of signal dependent certifi-

cation costs as well. In particular, both corollaries hold under the condition that cσ ≤ 

for all σ ∈ �. In this case, the regulator still induces full certification and unraveling as
in Grossman (1981) and Milgrom (1981). Moreover, the garbling of the most informative
signal remains a regulator-optimal certification design for any set of feasible signals.

As a next step, we revisit the example and show that our previous results extend to a
natural case of signal-dependent costs.

EXAMPLE: Recall the example introduced in Section 5.1. Suppose that the binary
threshold signals {σt}t∈[0�1] come with a certification cost c(t). Let c(t) be strictly posi-
tive, continuous, single peaked, and symmetric around 1

2 with c( 1
2 ) <
. It is easy to check

that c(t) is a positive, decreasing, and continuous transformation of the quadratic loss
under a signal σt , a standard measure of the informativity of a signal.

We want to show that any certifier-optimal signal induces ROC and any regulator-
optimal signal induces IOC. We first consider certifier-optimal certification design. Write
the set of feasible signals as a set of pairs of feasible signals: � = {(στ�σ1−τ)}τ∈[0� 1

2 ]. By
the symmetry of c(t), each pair has the same certification cost. For any pair of signals
that contains at least one signal, which induces ROC, the certifier’s preferred signal from
the pair induces ROC. This observation follows directly from Corollary 1. If α > 1

2 , any
pair contains at least one signal which induces ROC.26 It follows that any certifier-optimal
signal induces ROC for α > 1

2 .27 If α ≤ 1
2 , the pairs in {(στ�σ1−τ)}τ∈[α� 1

2 ] do not contain a
signal which induces ROC. However—due to c(t) being maximal at 1

2 —the certification
cost of these pairs exceeds the cost of any signal in the set of signals inducing ROC {σt}t<α.
As those signals are preferred by the certifier for a constant cost c, these signals remain
preferred if they come at a lower cost of certification. Thus, any certifier-optimal signal
induces ROC in the case of α≤ 1

2 as well.
Next, we argue that any regulator-optimal signal induces IOC. From our analysis of the

example in Section 5.2, we know that the regulator cares about the signal cost only to the
extent to which it makes some signals viable. Our assumption c( 1

2 ) < 
 implies that all
signals are viable. Thus, the set of regulator-optimal signals is still contained in �IOC =
{σt}t≥α. It follows that our main insight regarding the difference between certifier- and
regulator-optimal certification design remains valid: the former results in Dye’s evidence
structure and partial disclosure while the latter results in Grossman’s and Milgrom’s full
certification and unraveling.

6.2. Ex Ante Informed Seller

In our main model, we assume that the seller and the buyers are initially uninformed
about the state of the world v ∈ V . If the seller holds some information about the state v
when deciding whether to obtain certification, two issues arise. First, the seller may earn
information rents, thereby creating a screening problem for the certifier. Second, a signal-
ing problem arises as the seller may try to convey information other than the certificate to

26Recall that the set of signals inducing ROC is given by {σt}t<α.
27Note that we did not use the assumption of single-peakedness to derive this result.
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the market. Due to these two complications, a full analysis of optimal certification design
with ex ante information is beyond the scope of this paper.

In this section, we argue that a key result of our analysis of certifier-optimal certification
design continues to hold as long as the seller’s initial information is not too precise: under
certifier-optimal certification design, the seller is not always certified and disclosure is
partial. Thus, important features of the information structure of Dye (1985) arise also
with ex ante information.

We consider the following extension of our main model. Before deciding whether to
obtain certification, the seller observes the realization w of the random variable ω, which
is uniformly distributed on [0�1]. Upon observing w ∈ [0�1], the seller updates the belief
about the state to J(v|w�q). The parameter q ≥ 0 measures the informativeness of the ex
ante signal. We assume that (i) J(v|w�q) is continuous in w and q for all v and (ii) as q
becomes small, the informativeness of ω regarding v vanishes, that is, limq→0 J(v|w�q) =
F (v) for all v and w.

PROPOSITION 6: Suppose the fully informative signal is feasible. If the seller’s ex ante in-
formation is sufficiently imprecise, the seller obtains certification with probability strictly less
than 1 and disclosure is partial under certifier-optimal certification design.

To prove the proposition, we first provide upper bounds on the certifier’s profit in equi-
libria in which either the seller is certified with certainty or all certificates are disclosed.
Consider at first an equilibrium in which the seller always obtains certification. We note
that in any such equilibrium, the social surplus is bounded by 
− c as the maximal gains
from trade are given by 
 and the certification cost c is incurred with probability one. As
certification is voluntary, the maximal social surplus of 
 − c is also an upper bound on
the certifier’s profit.

Consider next an equilibrium in which the seller obtains certification only for some val-
ues of w, but all certificates are disclosed. If a seller with ex ante information w always
discloses, the seller’s gross payoff is E[ν|w�q].28 As the seller has the outside option to
keep the good, the seller is willing to pay at most E[ν|w�q] − E[φ(ν)|w�q] for certifica-
tion. As the informativeness of the ex ante signal decreases, this maximal willingness to
pay for the certificate converges to 
 as J(v|w�q) converges to F (v) for all w. Thus, the
certifier’s profit converges to a(
− c) for some a < 1 and, therefore, falls below 
− c if
q is sufficiently small.

The proposition is then implied by the following lemma.

LEMMA 4: Suppose the fully informative signal σ̃ is feasible. There exists q̃ > 0 such that
for all q < q̃ there is a fee r̃ and an equilibrium for (σ̃� r̃) with probabilistic certification and
partial disclosure in which the certifier’s profit strictly exceeds 
− c.

In the proof, we construct an equilibrium under the fully informative signal in which the
certifier’s profit exceeds 
 − c as the ex ante information becomes imprecise. Thus, the
certifier is better off than in any equilibrium with either full certification or full disclosure
for any signal σ . It follows that the certifier optimally induces probabilistic certification
and partial disclosure for any certifier-optimal signal.

28Any signal induces a distribution of posterior means which is a mean-preserving contraction of J(·|w�q).
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7. CONCLUSION

This paper studies how certification design is affected by the objective of the certifica-
tion designer. Profit-maximizing certifiers prefer highly precise certification as it allows
them to charge higher fees and to extract the gains from trade by inducing only a frac-
tion of sellers to acquire certification. By contrast, transparency-maximizing regulators
strike a balance between the precision of certification and the extent of certification and
disclosure. By reducing the precision of the certificate, the regulator induces the certifier
to charge a lower fee, thereby certifying a higher share of sellers, which results in more
information provision to the market.

As a consequence of this logic, profit-maximizing certification design endogenizes
the information structure of Dye (1985) and results in partial disclosure whereas
transparency-maximizing certification design endogenizes the information structure in
Grossman (1981) and Milgrom (1981) and results in full disclosure through unraveling.

APPENDIX: PROOFS

Proof of Lemma 1

Proof follows from the arguments in the main text. Q.E.D.

Proof of Lemma 2

Using integration by parts,

�σ

(
pN

) =
∫
V

max
{
v�pN

}
dGσ (v) − max

{
pN�E

[
φ(ν)

]}

=
∫
V

(
v −φ(v)

)
dGσ (v) +

∫ pN

v

(
pN − v

)
dGσ (v) − max

{
pN −E

[
φ(ν)

]
�0

}

= 
+
∫ pN

v

Gσ (v) dv− max
{
pN −E

[
φ(ν)

]
�0

}
�

Clearly, the function �σ (·) is continuous on [vσ� v̄σ ] for any σ ∈ �. For pN = vσ , the
function takes the value min{
�E[ν] − vσ}. If E[φ(ν)] < vσ , the function is strictly de-
creasing on [vσ� vσ ] as its derivative equals −(1 − Gσ (pN)) < 0. For E[φ(ν)] ≥ vσ ,
the function is strictly increasing on (vσ�E[φ(ν)]) as its derivative equals Gσ (pN). For
pN ∈ (E[φ(ν)]� v̄σ), the function is strictly decreasing as its derivative equals −(1 −
Gσ (pN)). Thus, �σ (·) is strictly quasi-concave and attains its unqiue maximum at pN =
max{E[φ(ν)]� vσ}. Q.E.D.

Proof of Lemma 3

We prove the lemma with the help of the following Lemmata 5 to 8.

LEMMA 5:
1. Suppose σ ∈ �ROC. There exists an equilibrium in which the seller always obtains certi-

fication if and only if r ≤ 
.
2. Suppose σ ∈ �IOC. There exists an equilibrium in which the seller always obtains certifi-

cation if and only if r ≤E[ν] − vσ .
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PROOF: If a = 1 in equilibrium, condition (9) implies pN = vσ . For Pr(N) = 0, this
follows directly from (9). For Pr(N) > 0, the condition in (9) simplifies to

pNGσ

(
pN

) =
∫ pN

vσ

v dGσ (v) ⇐⇒ pN = vσ�

If pN = vσ in equilibrium, condition (8) implies that a = 1 if and only if r ≤ �σ (vσ). If
vσ < E[φ(ν)], �σ (vσ) = 
. If vσ ≥ E[φ(ν)], �σ (vσ) =E[ν] − vσ . Q.E.D.

LEMMA 6:
1. Suppose σ ∈ �ROC. For r > 
, there exists an equilibrium in which the seller obtains

certification with an interior probability if and only if r ∈ (max{
��σ (E[ν])}��∗
σ ]. For

r ∈ (max{
��σ (E[ν])}��∗
σ), the only equilibrium with a > 0 satisfies

a= E[ν] −�−1
σ (r)

r
�

For r =�∗
σ , there exists an equilibrium for any a ∈ (0�
/�∗

σ ].
2. Suppose σ ∈ �IOC. If r > E[ν] − vσ , there is no equilibrium in which the seller obtains

certification with an interior probability.

PROOF: First, consider a signal σ with ROC. Condition (8) implies that r = �σ (pN) in
any equilibrium with a ∈ (0�1). If pN < E[φ(ν)] in such an equilibrium, we have bU = 0
by (6). Due to condition (9), this implies pN = vσ and r = �σ (vσ) = 
. This is compatible
with condition (9) for any a ∈ (0�1). If pN = E[φ(ν)] in such an equilibrium, we have
bU ∈ [0�1] by (6) and condition (9) implies a= bU
/(bU
+∫ E[φ(ν)]

vσ
Gσ (v) dv) ∈ [0�
/�∗

σ ]
and r =�∗

σ . If pN > E[φ(ν)] in such an equilibrium, we have bU = 1 by (6). Condition (9)
implies a= (E[ν] −pN)/�σ (pN). The result follows from the definition of �−1

σ (r).
Second, consider a signal σ with IOC. Condition (8) implies r = �σ (pN) in any equi-

librium with a ∈ (0�1). By Lemma 2, �σ (pN) ≤ �σ (vσ) = E[ν] − vσ . Thus, r ≤ E[ν] − vσ
in any equilibrium with a ∈ (0�1). Q.E.D.

LEMMA 7:
1. Suppose σ ∈ �ROC. There exists an equilibrium in which the seller never obtains certifi-

cation for r > 
.
2. Suppose σ ∈ �IOC. There exists an equilibrium in which the seller never obtains certifi-

cation for r > E[ν] − vσ .

PROOF: If a = 0 in equilibrium, condition (9) implies that either Pr(N) > 0 and pN =
E[ν] or Pr(N) = 0 and pN ∈ [vσ�E[φ(ν)]]. For any equilibrium with Pr(N) > 0 and pN =
E[ν], condition (8) implies that we may have a = 0 if and only if r ≥ �σ (E[ν]). For any
equilibrium with Pr(N) = 0 and pN = vσ , condition (8) implies that we may have a = 0
if and only if r ≥ �σ (vσ) = 
. If vσ < E[φ(ν)], the interval [vσ�E[φ(ν)]] is nonempty,
and thus an equilibrium with a = 0 exists if and only if r ≥ min{
��σ (E[ν])}. If vσ ≥
E[φ(ν)], [vσ�E[φ(ν)]] is empty and an equilibrium with a = 0 exists if and only if r ≥
�σ (E[ν]). Q.E.D.

LEMMA 8: The function E[ν]−�−1
σ (r)

r
is increasing in r on (�σ (E[ν])��∗

σ).
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PROOF: Note first that for pN ∈ (E[φ(ν)]�E[ν]),

sign
(

∂

∂r

E[ν] −�−1
σ (r)

r

)
= sign

(
− ∂

∂pN

E[ν] −pN

�σ

(
pN

) )
�

Moreover, basic manipulations yield for pN ∈ (E[φ(ν)]�E[ν]),

∂

∂pN

E[ν] −pN

�σ

(
pN

) =
−�σ

(
pN

) − ∂�σ

(
pN

)
∂pN

(
E[ν] −pN

)
�σ

(
pN

)2

=
−

∫
max

{
v�pN

}
dGσ (v) +pN + (

1 −Gσ

(
pN

))(
E[ν] −pN

)
�σ

(
pN

)2

=

∫ pN

v

(
v−E[ν]

)
dGσ (v)

�σ

(
pN

)2

where the last term is strictly negative due to pN < E[ν]. Q.E.D.

We argue that Lemma 3 follows directly from the above lemmata. If σ ∈ �ROC, we get
from Lemma 5 that if r ≤ 
 then a = 1 in the equilibrium with maximal probability of
acquiring the signal. From Lemma 6, we get that for r ∈ (max{
��σ (E[ν])}��∗

σ) there
exists a unique equilibrium with strictly positive probability of acquiring the signal, and
thus this is the relevant equilibrium for the characterization of the demand in this range
of fees. For the range of fees that are not covered by the previous cases, we get from
Lemma 7 that the unique equilibrium in this range is an equilibrium with a = 0. Lemma
8 establishes that Dσ (·) is indeed increasing in r on the segment (max{
��σ (E[ν])}��∗

σ).
By using the part of lemmas that corresponds to the case where σ ∈ �IOC in a similar way,
we get our characterization for the case of σ ∈ �IOC. Q.E.D.

Proof of Proposition 1

With ROC, the demand function is weakly increasing for r ∈ (
��∗
σ). Thus, the only

candidates for an optimal fee are r = 
, r =�∗
σ , and r > �∗

σ . At r = 
, the certifier obtains
the profit 
 − c. At r = �∗

σ , the certifier’s profit is 
 − (
/�∗
σ)c > 
 − c. At r > �∗

σ , the
certifier makes zero profit. If c < �∗

σ , r = �∗
σ is strictly optimal. If c = �∗

σ , r = �∗
σ and

r > �∗
σ are optimal. If c > �∗

σ , only r > �∗
σ are optimal. With IOC, demand is a step

function and the only candidates for an optimal fee are r = E[ν] − vσ and r > E[ν] − vσ .
At r = E[ν] − vσ , the certifier makes the profit E[ν] − vσ − c. At r > E[ν] − vσ , the profit
is zero. If c < E[ν] − vσ , r = E[ν] − vσ is strictly optimal. If c = E[ν] − vσ , r = E[ν] − vσ
and r > E[ν] − vσ are optimal. If c > E[ν] − vσ , only r > E[ν] − vσ are optimal. Q.E.D.

Proof of Proposition 2

Define 
σ ≡ min{
�E[ν] − vσ}. By Proposition 1, the certfier’s profit can be expressed
as a function of σ given by max{
σ − (
σ/�

∗
σ)c�0}. By compactness of Vσ and Assump-

tion 2, the function attains a maximum. As any optimal signal induces strictly positive
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profit by Assumption 4, the nonempty set of certifier-optimal signals is

�∗ = arg max
σ∈�


σ − (

σ/�

∗
σ

)
c�

The expression 
σ − (
σ/�
∗
σ)c is increasing in 
σ and �∗

σ for all signals that lead to strictly
positive profit. Thus, the proposition follows from the observation that—due to Lemma 2
and the definition of 
σ—for any two signals σ ′�σ ′′ ∈ � that lead to strictly positive profit,
�∗

σ ′ >�∗
σ ′′ implies 
σ ′ ≥ 
σ ′′ . Q.E.D.

Proof of Corollary 1

The proof follows from the arguments in the main text. Q.E.D.

Proof of Corollary 2

The proof follows from the arguments in the main text. Q.E.D.

Proof of Proposition 3

Consider a signal σ ∈ �ROC with �∗
σ > c. Define the garbled signal γ∗(σ) through the

function

γ∗
σ (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δs if Eσ [ν|s] /∈ [

v′
σ� v

′′
σ

]
�

ξ′δs + (
1 − ξ′)δŝ if Eσ [ν|s] = v′

σ�

δŝ if Eσ [ν|s] ∈ (
v′
σ� v

′′
σ

)
�

ξ′′δs + (
1 − ξ′′)δŝ if Eσ [ν|s] = v′′

σ �

(10)

where ŝ �= s for all signal realizations s in the support of σ , δs denotes the Dirac measure
on the signal realization s, v′

σ and ξ′ solve

∫ E[φ(ν)]

vσ

min
{
Gσ (x)� ξ′Gσ

(
v′
σ

) + (
1 − ξ′)Gσ

(
v′−
σ

)}
dx= max{c −
�0}�

and v′′
σ and ξ′′ solve for given v′

σ and ξ′,

Eγ∗(σ)[ν|ŝ] =E
[
φ(ν)

]
�

From the definition of the garbled signal γ∗(σ), we can determine the distribution
Gγ∗(σ) over posterior means as

Gγ∗(σ) (v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Gσ (v) if v < v′

σ�

ξ′Gσ

(
v′
σ

) + (
1 − ξ′)Gσ

(
v′−
σ

)
if v ∈ [v′

σ�E
[
φ(ν)

]
)�

ξ′′Gσ

(
v′′
σ

) + (
1 − ξ′′)Gσ

(
v′′−
σ

)
if v ∈ [E

[
φ(ν)

]
� v′′

σ)�
Gσ (v) if v ≥ v′′

σ �

Note that �∗
γ∗(σ) = max{
�c}<�∗

σ . Thus, γ∗(σ) �= σ . We next want to establish that

∫ v

v

Hγ∗(σ) (x) dx≥
∫ v

v

Hσ (x) dx ∀v (11)
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and the inequality is strict for some v if and only if Vσ ∩ (E[φ(ν)]� v̄σ ] is not a singleton,
or equivalently Gσ (v̄−

σ ) > Gσ (E[φ(ν)]). Consider a generic signal σ̂ ∈ � and let aσ̂ ≡
min{1�
/�∗

σ̂} be the equilibrium probability of certification given σ̂ and the associated
certifier-optimal fee. Using the formulation of Hσ̂ (v) derived in the main text, we obtain

∫ v

v

Hσ̂ (x) dx=
⎧⎨
⎩

0 if v < E
[
φ(ν)

]
�

(1 − aσ̂)
(
v−E

[
φ(ν)

]) + aσ̂

∫ v

E[φ(ν)]
Gσ̂ (x) dx if v ≥E

[
φ(ν)

]
�

If v < E[φ(ν)], the weak inequality in condition (11) is trivially satisfied. For v ≥ E[φ(ν)],
we can further reformulate the expression as follows:

(1 − aσ̂)
(
v−E

[
φ(ν)

]) + aσ̂

∫ v

E[φ(ν)]
Gσ̂ (x) dx

= v−E
[
φ(ν)

] − aσ̂

(
v−E[ν] +
+

∫ E[φ(ν)]

v

Gσ̂ (x) dx−
∫ v

v

Gσ̂ (x) dx
)

= v−E
[
φ(ν)

] −
+



(
E[ν] − v+

∫ v

v

Gσ̂ (x) dx
)


+
∫ E[φ(ν)]

v

Gσ̂ (x) dx
(12)

= v−E
[
φ(ν)

] −
+



∫ v̄σ̂

v

(
1 −Gσ̂ (x)

)
dx


+
∫ E[φ(ν)]

v

Gσ̂ (x) dx
� (13)

We move from the second line to the third using the equality aσ = 



+∫ E[φ(ν)]
v Gσ (x) dx

, which

follows from Proposition 1. The fourth line can be obtained from the third by integration
by parts of the numerator in the fraction.

First, we compare the functions
∫ v

v
Hσ (x) dx and

∫ v

v
Hγ∗(σ) (x) dx for v ∈ [v′′

σ� v̄σ ]. Note
that (i) the denominator in expression (13) for σ̂ = γ∗(σ) equals max{
�c} whereas the
denominator for σ̂ = σ strictly exceeds both 
 and c by σ ∈ �ROC and �∗

σ > c, and (ii) the
numerator in expression (13) is identical for σ̂ = σ and σ̂ = γ∗(σ) if v ∈ [v′′

σ� v̄σ ], strictly
positive for v ∈ [v′′

σ� v̄σ), and zero for v = v̄σ . The observations (i) and (ii) imply that∫ v

v
Hγ∗(σ) (x) dx and

∫ v

v
Hσ (x) dx are identical for v = v̄σ and that

∫ v

v
Hγ∗(σ) (x) dx strictly

exceeds
∫ v

v
Hσ (x) dx for v ∈ (v′′

σ� v̄σ ].
Second, we compare the functions

∫ v

v
Hσ (x) dx and

∫ v

v
Hγ∗(σ) (x) dx for v ∈ [E[φ(ν)]�

v′′
σ ]. Note that (iii)

∫ v

v
Hγ∗(σ) (x) dx is linear for v ∈ [E[φ(ν)]� v′′

σ] while
∫ v

v
Hσ (x) dx is

weakly convex, and (iv) both functions are zero at v = E[φ(ν)]. If
∫ v

v
Hγ∗(σ) (x) dx strictly

exceeds
∫ v

v
Hσ (x) dx at v = v′′

σ , the observations (iii) and (iv) imply that
∫ v

v
Hγ∗(σ) (x) dx

strictly exceeds
∫ v

v
Hσ (x) dx for v ∈ (E[φ(ν)� v′′

σ), and the two functions are identical for
v = E[φ(ν)]. If

∫ v

v
Hγ∗(σ) (x) dx = ∫ v

v
Hσ (x) dx at v = v′′

σ , the observations (iii) and (iv)
imply that

∫ v

v
Hγ∗(σ) (x) dx strictly exceeds

∫ v

v
Hσ (x) dx for v ∈ (E[φ(ν)� v′′

σ) if there are
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posterior means in (E[φ(ν)� v′′
σ), that is, Gσ (v′′−

σ ) >G(E[φ(ν)]). Otherwise, the two func-
tions are identical for v ∈ [E[φ(ν)]� v′′

σ].
We can conclude that the weak equality of conditions (13) always holds, and that the

two functions are identical if and only if v′′
σ = v̄σ and Gσ (v′′−

σ ) = G(E[φ(ν)]), that is, the
signal σ induces only a single posterior mean above E[φ(ν)], which is equivalent to saying
Gσ (v̄−

σ ) =G(E[φ(ν)]). This concludes the proof. Q.E.D.

Proof of Corollary 3

If c ≤ 
, then for every signal σ ∈ �ROC it holds that γ∗(σ) ∈ �IOC. From the condition
that for every σ ∈ �, there exist more than one posterior above E[φ(ν)], we can deduce
according to Proposition 3 that Hγ∗(σ) is a mean-preserving spread of Hσ . It follows that
for every σ ∈ �ROC the regulator strictly prefers the signal γ∗(σ) ∈ �IOC over the signal
σ ∈ �ROC and so the regulator would always choose a signal that induces IOC. Thus,
according to the certifier-optimal pricing (Proposition 1) full certification and unraveling
prevails. Q.E.D.

Proof of Corollary 4

We want to prove that γ∗(σ̄) is regulator-optimal. For any signal σ ∈ � with 
 +∫ E[φ(ν)]
v

Gσ (v) dv < c, the seller is never certified and γ∗(σ̄) generates more information

on the market. For any signal σ ∈ � with 
+∫ E[φ(ν)]
v

Gσ (v) dv ≥ c, the expression in equa-
tion (12) together with

∫ v

v
Gσ (x) dx≤ ∫ v

v
Gσ̄ (x) dx for all v implies the upper bound

∫ v

v

Hσ (x) dx≤

⎧⎪⎪⎨
⎪⎪⎩

0 if v < E
[
φ(ν)

]
�

v−E
[
φ(ν)

] −
+



(
E[ν] − v+

∫ v

v

Gσ̄ (x) dx
)

c
if v ≥E

[
φ(ν)

]
�

Note that γ∗(σ̄) attains the upper bound for v < E[φ(ν)] and v ≥ v′′
σ̄ . For v ∈ [E[φ(ν)]�

v′′
σ̄ ],

∫ v

v
Hγ∗(σ̄) (x) dx is linear. As

∫ E[φ(ν)]
v

Hσ (x) dx = 0 and
∫ v

v
Hσ (x) dx weakly convex for

all σ , we have
∫ v

v
Hγ∗(σ̄) (x) dx≥ ∫ v

v
Hσ (x) dx for all v ∈ [E[φ(ν)]� v′′

σ̄] and σ ∈ �. Q.E.D.

Proof of Proposition 4

Proposition 1 implies that the certifier’s profit for the signal σ ∈ � is a function of
(Gσ� cσ) given by max{
σ − 
σcσ

�∗
σ
�0}. This function is clearly continuous, and thus attains

a maximum by the compactness of the domain (Gσ� cσ)σ∈�. The result follows then from
our assumption that the certifier’s profit is strictly positive for some signal. Q.E.D.

Proof of Proposition 5

The proof follows from the arguments in the main text. Q.E.D.
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Proof of Lemma 4

The seller’s willingness to pay for the fully revealing signal σ̃ given the ex ante informa-
tion w ∈ [0�1] and the price for the uncertified good pN is

�σ̃

(
pN|w�q

) ≡
∫ v

v

max
{
v�pN

}
dJ(v|w�q) − max

{∫ v

v

φ(v) dJ(v|w�q)�pN

}
�

Let W c ⊆ [0�1] denote the set of seller types who buy certification, and W u ⊆ [0�1] de-
notes the set of seller types who remain uncertified and sell without disclosure. Given the
signal σ̃ and a certification fee r, (W c�W u�pN) constitute an equilibrium if:

(i) �σ̃ (pN|w�q) > r =⇒ w ∈ W c ,
(ii) �σ̃ (pN|w�q) < r ∧pN ≥ E[φ(ν)|w] =⇒ w ∈W u,

(iii) �σ̃ (pN|w�q) < r ∧pN < E[φ(ν)|w] =⇒ w /∈ W c ∪W u, and
(iv) ∫

W c

∫ pN

v

v dJ(v|w�q) dw+
∫
W u

∫ v

v

v dJ(v|w�q) dw∫
W c

J
(
pN|w�q

)
dw+ I

(
W u

) = pN�

where I(·) denotes the uniform measure on [0�1]. We show that there exist a fee r̃ and an
equilibrium for (σ̃� r̃) with pN = p̄N (q) ≡ sup[0�1]{E[φ(ν)|w�q]} if q is sufficiently small.
W c ∪W u = [0�1] is consistent with such an equilibrium by conditions (i) to (iii). Condi-
tion (iv) can be simplified to∫

W c

∫ p̄N (q)

v

J(v|w�q) dvdw =
∫

[0�1]\W c

(
E[ν|w�q] − p̄N (q)

)
dw� (14)

As q becomes small, J(v|w�q) converges to F (v) for all w and q. Thus, p̄N (q) converges
to E[φ(ν)] and E[ν|w�q] converges to E[ν]. It follows that

∫ p̄N (q)
v

J(v|w�q) dv > 0 and

E[ν|w�q]− p̄N (q) > 0, and thus, as ω is continuously distributed, there exists a set Ŵ c(q),
which satisfies condition (14).

Finally, we show that the certifier’s profit under this equilibrium exceeds max{
− c�0}
for small q. The certifier’s profit under the equilibrium above is I(Ŵ c(q))(r̂(q)−c) where
r̂(q) is the unique fee, which is consistent with Ŵ c(q) in equilibrium. Recall that J(v|w�q)
is continuous in w and q. Thus, as q becomes small, the left-hand side of equation (14)
converges to I(Ŵ c)

∫ E[φ(ν)]
v

F (v) dv and the right-hand side converges to (1 − I(W̄ c))
.

Thus, I(Ŵ c) converges to 
/�∗
σ̃ , and r̂(q) converges to �∗

σ̃ . The expected profit therefore
converges to 
− c
/�∗

σ̃ > max{
− c�0} as �∗
σ̃ > c. Q.E.D.

Proof of Proposition 6

The proof follows from the arguments in the main text and Lemma 4. Q.E.D.

Statement and Proof of Lemma 9

LEMMA 9: Suppose the prior F is continuous on [v� v̄]. Then the binary threshold signal
σt̂ with E[ν|ν ≤ t̂] =E[φ(ν)] leads to more market information than any other signal, which
induces ROC and features a single posterior mean strictly above E[φ(ν)].
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PROOF: First, we show the result for binary signals. Recall that any binary signal with
posterior means of ρ ≤ E[φ(ν)] and ρ̄ > E[φ(ν)] generates disclosed posteriors means
of E[φ(ν)] and ρ̄. Thus, the higher ρ̄, the more information is conveyed to the market.
The binary signal with the highest posterior mean from this class solves the optimization
problem

max
ρ̄�ρ

ρ̄ s.t. ρ≤ E
[
φ(ν)

]
� 0 ≤

∫ v

v

F (x) dx−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if v < ρ�

(v− ρ)
ρ̄−E[ν]
ρ̄− ρ

if v ∈ [ρ� ρ̄)�

v−E[ν] if v ≥ ρ̄�

The second constraint ensures that the prior distribution F (v) is a mean-preserving
spread of the binary distribution over ρ and ρ̄, where the probability of ρ can be com-
puted from Pr(ρ)ρ + (1 − Pr(ρ))ρ̄ = E[ν]. Closer inspection of this second constraint
reveals that it is never violated for v < ρ and v > ρ̄ if it is satisfied for v ∈ [ρ� ρ̄]. In
this intermediate range, the right-hand side of the constraint attains a unique minimum
at v̂ defined by the first-order condition F (v̂) = ρ̄−E[ν]

ρ̄−ρ
. As the choice of ρ̄ is only lim-

ited by the second constraint, this constraint needs to bind and we obtain the condition∫ v̂

v
F (v) dv = (v̂ − ρ)F (v̂). Basic manipulations of this condition yield

ρ =

∫ v̂

v

v dF (v)

F (v̂)
= E[ν|ν ≤ v̂] and ρ̄=

∫ v̄

v̂

v dF (v)

1 − F (v̂)
= E[ν|ν > v̂]�

Both posterior means are strictly increasing in v̂. Hence, the constraint ρ ≤E[φ(ν)] binds
in any optimum, that is, v̂ = t̂. Thus, the binary threshold signal σt̂—which induces IOC—
leads to a strictly higher posterior mean ρ̄ than any binary signal that induces ROC.

Second, we argue that the binary threshold signal σt̂ is also preferred by the regulator
to any nonbinary signal σ ′, which induces ROC and generates a single posterior mean
above E[φ(ν)]. This follows from the fact that the signal σ ′ conveys the same information
to the market than the binary signal σ ′

b, which is obtained from σ ′ by pooling all posterior
means below E[φ(ν)] and, therefore, induces ROC. Q.E.D.
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