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A COMMENT ON:
“A Modern Gauss–Markov Theorem”

BENEDIKT M. PÖTSCHER
Department of Statistics, University of Vienna

DAVID PREINERSTORFER
SEPS-SEW, University of St. Gallen

We show that Theorem 4 in Hansen (2022) applies to exactly the same class of esti-
mators as does the classical Aitken theorem. We furthermore point out that Theorems
5–7 in Hansen (2022) contain extra assumptions not present in the classical Gauss–
Markov or Aitken theorem, and thus the former theorems do not contain the latter
ones as special cases.

1. INTRODUCTION

HANSEN (2022) contains several results from which he drew the conclusion that the lin-
earity condition can be dropped from the Aitken theorem or from the Gauss–Markov
theorem. We argue that this conclusion is unwarranted, as the results on which this con-
clusion rests either (i) turn out to be equivalent to the classical Aitken or the classical
Gauss–Markov theorem, with linearity being reintroduced indirectly, or (ii) add extra as-
sumptions to the Aitken or Gauss–Markov theorem.

We thus argue that one should not follow Hansen’s advice to drop the linearity condi-
tion in teaching the Gauss–Markov theorem or the Aitken theorem: Depending on which
formulation of the Aitken theorem one starts with (Theorem 3.1 or 3.2 given below),
dropping linearity from the formulation of that theorem either leads to a result that is
equivalent to the classical Aitken theorem (if one starts from Theorem 3.2), or leads to
an incorrect result (if one starts from Theorem 3.1). The same goes for the Gauss–Markov
theorem.

After the first version of Pötscher and Preinerstorfer (2022), on which the current pa-
per is based, had been circulated, we learned about Portnoy (2022), which establishes,
independently and at the same time, a result closely related to our Theorem 3.4 using ar-
guments different from the ones we use; for more discussion see Remark 3.6 in Section 3.

2. THE FRAMEWORK

As in Hansen (2022), we consider throughout the paper the linear regression model

Y = Xβ+ e� (1)
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where Y is of dimension n × 1 and X is a (nonrandom) n × k design matrix with full
column rank k satisfying 1 ≤ k< n. It is assumed that

Ee= 0 (2)

and

Eee′ = σ2�� (3)

where Ee′e <∞ (0 ≤ σ2 < ∞ and � a real symmetric nonnegative definite n×n matrix).1
While Hansen (2022) did not explicitly assume σ2 > 0 and positive definiteness of �, both
properties are frequently used in his paper. For this reason, we shall in the sequel always
assume 0 <σ2 <∞ and that � is a symmetric and positive definite n× n matrix.

This model implies a distribution F for Y , which, for the given X , depends on β and
the distribution of e, in particular on σ2 and �. Now, for every �, define F2(�) as the
class of all such distributions F when β varies through R

k and the distribution of e varies
through all distributions compatible with (2) and (3) for the given � (and arbitrary σ2,
0 < σ2 < ∞). We furthermore introduce the set F2 as the larger class where we also vary
� through the set of all symmetric and positive definite n× n matrices. In other words,

F2 =
⋃
�

F2(�)�

where the union is taken over all symmetric and positive definite n × n matrices.2 [Of
course, F2(�) as well as F2 also depend on the given X , but this dependence is not shown
in the notation.] In the following, EF (VarF , respectively) will denote the expectation
(variance-covariance matrix, respectively) taken under the distribution F . A word on no-
tation: Given F ∈ F2, there is a unique β, denoted by β(F), and a unique σ2�, denoted
by (σ2�)(F), compatible with the distribution F .

3. AITKEN AND GAUSS–MARKOV THEOREMS

Let β̂GLS = β̂GLS(�) = (X ′�−1X)−1X ′�−1Y denote the generalized least-squares esti-
mator using the matrix � (of course, for β̂GLS to be feasible, � has to be known). Recall
that linear estimators are of the form β̂ = AY , where A is a (nonrandom) k × n matrix.
Aitken’s theorem in its usual form (see, e.g., Theil (1971), Section 6.1, Goldberger (1991),
Sections 27.1&27.3, Gourieroux and Monfort (1995), Section 6.4.1, Rao and Toutenburg
(1995), Theorem 4.4, Hayashi (2000), Proposition 1.7), expressed in the notation of the
present paper, reads as follows.

THEOREM 3.1: Let � be an arbitrary symmetric and positive definite n× n matrix. If β̂ is
a linear estimator that is unbiased under all F ∈ F2(�) (meaning that EFβ̂ = β(F) for every
F ∈ F2(�)), then

VarF (β̂) � VarF
(
β̂GLS(�)

)
1Writing the error covariance matrix as σ2� is not essential, and we do so only to follow the pertinent

literature. Certainly, without a further assumption such as, for example, ‘� is known (and nonzero)’, the de-
composition of Eee′ into σ2 and � is not unique.

2Note that F2(�1) ∩ F2(�2) = ∅ iff �1 and �2 are not proportional. And F2(�1) = F2(�2) iff �1 and �2 are
proportional.
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for every F ∈ F2(�). [Here, � denotes Loewner order, i.e., for symmetric matrices �1 and �2

of the same dimension, �1 ��2 signifies nonnegative definiteness of �1 −�2.]

The theorem can alternatively be reformulated in the following way.

THEOREM 3.2: Let � be an arbitrary symmetric and positive definite n × n matrix. If β̂
is a linear estimator that is unbiased under all F ∈ F2 (meaning that EFβ̂ = β(F) for every
F ∈ F2), then

VarF (β̂) � VarF
(
β̂GLS(�)

)
(4)

for every F ∈ F2(�).

In the latter theorem, the unbiasedness is requested to hold over the larger class F2

of distributions rather than only over F2(�). Of course, this is immaterial here and the
two theorems are equivalent, because the estimators are required to be linear in both
theorems and thus their expectations depend only on the first moment of Y and not on
the second moments at all.

We note that the preceding theorem is equivalent to Theorem 3 in Hansen (2022). To
see the equivalence, note that the (implicit) all-quantor over � in Theorem 3.2 can be “ab-
sorbed” by replacing F2(�) in that theorem with F2, provided the quantity σ2� appearing
in the expression VarF (β̂GLS(�)) = σ2(X ′�−1X)−1 = (X ′(σ2�)−1X)−1 in (4) above is un-
derstood as (σ2�)(F). [Such an understanding is necessary in any case for Theorem 3
in Hansen (2022) to represent a mathematically well-defined statement: Observe that the
product σ2�, on which the r.h.s. of the inequality in Theorem 3 in Hansen (2022) depends
(note that σ2 and � enter the expression only via the product), is unspecified, and needs to
be interpreted as (σ2�)(F), the variance-covariance matrix of the data under the relevant
F w.r.t. which the variance-covariances in this inequality are taken. The same comment
applies to Theorems 4 and 5 in Hansen (2022).]

We next discuss what happens if one eliminates the linearity condition in the two equiv-
alent theorems given above. Dropping the linearity conditions leads to the following state-
ments, which will turn out to be no longer equivalent to each other:

Statement A: Let � be an arbitrary symmetric and positive definite n× n matrix. If β̂ is
an estimator (i.e., a Borel-measurable function of Y ) that is unbiased under all F ∈ F2(�)
(meaning that EFβ̂= β(F) for every F ∈ F2(�)), then

VarF (β̂) � VarF
(
β̂GLS(�)

)
(5)

for every F ∈ F2(�).
Statement B: Let � be an arbitrary symmetric and positive definite n × n matrix. If β̂

is an estimator that is unbiased under all F ∈ F2 (meaning that EFβ̂ = β(F) for every
F ∈ F2), then

VarF (β̂) � VarF
(
β̂GLS(�)

)
for every F ∈ F2(�).

Before proceeding with the discussion of Statements A and B, we need to make a re-
mark on the interpretation of inequalities like (5).
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REMARK 3.3: (i) In Theorems 3.1 and 3.2, the objects VarF (β̂) as well as VarF (β̂GLS(�))
are well-defined as real matrices because all estimators considered are linear, and hence
EF (‖β̂‖2) < ∞, EF (‖β̂GLS(�)‖2) < ∞ holds for every F ∈ F2(�), where ‖�‖ denotes the
Euclidean norm. In contrast, in Statements A and B, estimators β̂ with EF (‖β̂‖2) = ∞
for some F ∈ F2(�) are permissible. [Note that EF (‖β̂‖2) = ∞ for some F ∈ F2(�) and
EF (‖β̂‖2) < ∞ for some other F ∈ F2(�) may occur.] This necessitates some discussion
how Statements A and B are then to be read. For the subsequent discussion, note that in
both statements EF (β̂) is well-defined and finite for every F ∈ F2(�) as a consequence of
the respective unbiasedness assumption (and because F2(�) ⊆ F2).

(ii) In the scalar case (i.e., k = 1), there is no problem as the object VarF (β̂) is well-
defined for every F ∈ F2(�) as an element of the extended real line, regardless of whether
EF (‖β̂‖2) <∞ or not. Hence, inequality (5) always makes sense in case k= 1.

(iii) For general k, in case the estimator β̂ satisfies EF (‖β̂‖2) <∞ for a given F ∈ F2(�),
the object VarF (β̂) is well-defined as a real matrix. Note that the inequality (5) can then
equivalently be expressed as VarF (c′β̂) ≥ VarF (c′β̂GLS(�)) for every c ∈ R

k.
(iv) In the case k > 1, the object VarF (β̂) is not well-defined if EF (‖β̂‖2) = ∞ (F ∈

F2(�)), and hence it is not immediately clear how (5) should then be understood. How-
ever, the inequalities VarF (c′β̂) ≥ VarF (c′β̂GLS(�)) for every c ∈ R

k still make sense in
view of (ii) above. We hence may and will interpret (5) (with F ∈ F2(�)) as a symbolic
shorthand notation for VarF (c′β̂) ≥ VarF (c′β̂GLS(�)) for every c ∈ R

k (which works both
in the case EF (‖β̂‖2) < ∞ and in the case EF (‖β̂‖2) = ∞). We have chosen to write in-
equality (5) as given (abusing notation), rather than the more conventional and more
precise VarF (c′β̂) ≥ VarF (c′β̂GLS(�)) for every c ∈ R

k, in order for our discussion to be
easily comparable with the presentation in Hansen’s paper, which is silent on this issue.

(v) The above discussion would become moot if one would introduce the extra assump-
tion EF (‖β̂‖2) < ∞ for every F ∈ F2(�) into Statements A and B. However, such an ad-
ditional assumption, which has little justification, would (potentially) narrow down the
class of estimators competing with β̂GLS(�). As we shall see later on, such an extra as-
sumption actually would have no effect on Statement B (and thus on the corresponding
Theorem 4 in Hansen (2022)) at all in view of our Theorem 3.4. The effect it would have
on Statement A (and some other results) is discussed in Appendix B of Pötscher and
Preinerstorfer (2022).

We now turn to discussing Statements A and B. Not unexpectedly, Statement A is incor-
rect in general.3 This is known; see, for example, Gnot, Knautz, Trenkler, and Zmyslony
(1992), Knautz (1993, 1999), and references therein. For the benefit of the reader, we pro-
vide a counterexample and attending discussion in Appendix A. In particular, we see that
in the Aitken theorem as it is usually formulated (Theorem 3.1), one can not eliminate
the linearity condition in general.

Concerning Statement B, observe first that it is equivalent to Theorem 4 in Hansen
(2022); this is seen in the same way as the equivalence of Theorem 3.2 above with The-
orem 3 in Hansen (2022). A natural question now is why Statement B (i.e., Theorem 4
in Hansen (2022)) would be correct while Statement A is incorrect in general, given that
both statements are obtained by dropping one and the same condition (i.e., linearity) from

3That is, there exist design matrices X such that the statement is false.



COMMENT 917

the two equivalent theorems (Theorems 3.1 and 3.2) given above. The answer lies in the
fact that Statement B is requiring a stricter unbiasedness condition, namely unbiasedness
over F2 rather than only unbiasedness over F2(�). While the two unbiasedness conditions
effectively coincide for linear estimators as discussed before, this is no longer the case
once we leave the realm of linear estimators. Hence, the correctness of Statement B (i.e.,
of Theorem 4 in Hansen (2022)) crucially rests on imposing the stricter unbiasedness con-
dition, a condition not used in the Aitken theorem as presented in the references given
prior to Theorem 3.1. Note that the class of competitors to β̂GLS(�) figuring in Statement
A is, in general, larger than the class of competitors appearing in Statement B. Hansen
(2022) is quiet on the use of this stricter unbiasedness condition, and no discussion of or
motivation for this salient feature of his Theorem 4 is provided.

Having understood what distinguishes Statement B (i.e., Theorem 4 in Hansen (2022))
from (the incorrect) Statement A, the question remains what the scope of the former
statement is, that is, how much larger than the class of linear (unbiased) estimators the
class of estimators covered by Statement B (i.e., Theorem 4 in Hansen (2022)) really is.
We answer this now: As we shall show in the subsequent Theorem 3.4, the only estimators
β̂ satisfying the unbiasedness condition of Statement B (i.e., Theorem 4 in Hansen (2022))
are linear estimators. Consequently, Statement B (i.e., Theorem 4 in Hansen (2022)) is
equivalent to the Aitken theorem (i.e., Theorem 3.1 above), as both results give optimal-
ity in exactly the same class of estimators.4 [While the word ‘linear’ does not appear in
the formulation of Theorem 4 in Hansen (2022), linearity of the estimators is introduced
indirectly through the stricter unbiasedness condition.]5

We quickly comment on the case where � = In. In this case, Theorem 3.1 reduces to
the classical Gauss–Markov theorem, while Theorem 3.2 represents an unusual equiva-
lent reformulation of the Gauss–Markov theorem. Again, Statement A (with � = In) is
incorrect in general; see Appendix A. Similarly to the case of general �, the correctness
of Statement B (with � = In) is bought by imposing the stricter unbiasedness condition
on the estimators that requires the estimators not only to be unbiased in the model with
uncorrelated and homoskedastic errors (which is the model one is studying in the context
of the Gauss–Markov theorem) but also under correlated and/or heteroskedastic errors
(i.e., under structures that are ‘outside’ of the model that is being studied). Why one
would want to impose such a requirement seems to be debatable. As already mentioned,
the stricter unbiasedness condition employed in Statement B in fact eliminates all nonlin-
ear estimators from consideration (cf. our Theorem 3.4).

What has been said so far also serves as a reminder that one has to be careful with
statements such as “best unbiased equals best linear unbiased.” While this statement is
incorrect in the context of Statement A in general, it is certainly correct in the context of
Statement B (i.e., of Theorem 4 in Hansen (2022)) as a consequence of the subsequent
Theorem 3.4.

An upshot of the discussion in this section seems to be that—despite advice to the con-
trary in Hansen (2022)—one should not drop ‘linearity’ from the pedagogy of the Aitken
or Gauss–Markov theorem: It will lead to an incorrect statement, if one starts from the
usual formulation of the classical Aitken theorem (i.e., from Theorem 3.1); otherwise, if

4Recall from before that, for linear estimators, the unbiasedness conditions in Theorems 3.1 and 3.2 are
equivalent.

5Adding the extra condition EF (‖β̂‖2) < ∞ for every F ∈ F2(�) would have no effect on Statement B in
view of our Theorem 3.4. The effect this extra condition would have on Statement A is discussed in Appendix
B of Pötscher and Preinerstorfer (2022).
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one starts from Theorem 3.2, it will lead to a correct statement which actually is equiv-
alent to the classical Aitken theorem. The same comment applies to the Gauss–Markov
theorem.

We now provide the theorem alluded to above.

THEOREM 3.4: If β̂ is an estimator (i.e., a Borel-measurable function of Y ) that is un-
biased under all F ∈ F2 (meaning that EFβ̂ = β(F) for every F ∈ F2), then β̂ is a linear
estimator (i.e., β̂= AY for some k× n matrix A).6

PROOF: It suffices to establish β̂(y + z) = β̂(y) + β̂(z) as well as β̂(cz) = cβ̂(z) for
every y and z in R

n and every c ∈ R. For every m ∈N with m ≥ 2, every V = (v1� � � � � vm) ∈
R

n×m, and α ∈ (0�1)m such that
∑m

i=1 αi = 1, define a probability measure (distribution)
via

μV �α :=
m∑
i=1

αiδvi �

where δz denotes unit point mass at z ∈ R
n. The expectation of μV �α equals V α, and its

variance-covariance matrix equals V diag(α)V ′ − (V α)(V α)′. Denote the expectation op-
erator w.r.t. μV �α by EV �α. Note that in case V α = 0 and rank(V ) = n, the measure μV �α

has expectation zero and a positive definite variance-covariance matrix; thus, μV �α corre-
sponds to an F ∈ F2 which has β(F) = 0. From the unbiasedness assumption imposed on
β̂, we obtain that

V α = 0 and rank(V ) = n implies 0 = EV�α(β̂) =
m∑
i=1

αiβ̂(vi)� (6)

Step 1: Fix z ∈ R
n and define α(1) = 2−1(n−1� � � � � n−1)′ ∈ R

2n, α(2) = 2−1((n + 1)−1� � � � �
(n + 1)−1)′ ∈ R

2(n+1), V1 = (In�−In), and V2 = (In�−In� z�−z). Clearly V1α
(1) = V2α

(2) = 0
and rank(V1) = rank(V2) = n. Furthermore,

μV2�α
(2) = n

n+ 1
μV1�α

(1) + 1
2(n+ 1)

(δz + δ−z)� (7)

which implies

EV2�α
(2) (β̂) = n

n+ 1
EV1�α

(1) (β̂) + 1
2(n+ 1)

(
β̂(z) + β̂(−z)

)
�

Applying (6) to EV2�α
(2) (β̂) and EV1�α

(1) (β̂) now yields 0 = β̂(z) + β̂(−z), that is, we have
shown that

β̂(−z) = −β̂(z) for every z ∈R
n; (8)

in particular, β̂(0) = 0 follows.
Step 2: Let y and z be elements of Rn. Define the matrix

A(y� z) = (
(y1 + z1)e1(n)� � � � � (yn + zn)en(n)

)
�

6By unbiasedness, such an A must then also satisfy AX = Ik.
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where ei(n) denotes the ith standard basis vector in R
n, and set

V = (
A(y� z)�−y�−z� In�−In

)
and α= (3n+ 2)−1(1� � � � �1)′ ∈ R

3n+2�

Then, we obtain V α = 0 and rank(V ) = n. Using (6) and (8), it follows that

0 =
n∑

i=1

β̂
(
(yi + zi)ei(n)

) + β̂(−y) + β̂(−z)�

which by (8) is equivalent to

β̂(y) + β̂(z) =
n∑

i=1

β̂
(
(yi + zi)ei(n)

)
� (9)

Using (9) with y replaced by y + z and z replaced by 0 yields

β̂(y + z) + β̂(0) =
n∑

i=1

β̂
(
(yi + zi)ei(n)

)
�

Since β̂(0) = 0 as shown before, we obtain

β̂(y) + β̂(z) = β̂(y + z) for every y and z in R
n� (10)

That is, we have shown that β̂ is additive, that is, is a group homomorphism between the
additive groups Rn and R

k. By assumption, it is also Borel-measurable. It then follows by
a result due to Banach and Pettis (e.g., Theorem 2.2 in Rosendal (2009)) that β̂ is also
continuous. Homogeneity of β̂ now follows from a standard argument, dating back to
Cauchy, so that β̂ is in fact linear. We give the details for the convenience of the reader:
Relation (10) (which contains (8) as a special case) implies β̂(lz) = lβ̂(z) for every integer
l. Replacing z by z/l (l �= 0) in the latter relation gives β̂(z)/l = β̂(z/l) for integer l �= 0.
It immediately follows that β̂(pz/q) = (p/q)β̂(z) for every pair of integers p and q (q �=
0). Let c ∈ R be arbitrary. Choose a sequence of rational numbers cs that converges to c.
Then by continuity of β̂,

β̂(cz) = lim
s→∞

β̂(csz) = lim
s→∞

(
csβ̂(z)

) =
(

lim
s→∞

cs
)
β̂(z) = cβ̂(z)�

This concludes the proof. Q.E.D.

REMARK 3.5: Inspection of the proof above shows that it does not make use of the
full force of the unbiasedness condition (EFβ̂ = β(F) for every F ∈ F2), but only exploits
unbiasedness for certain strategically chosen discrete distributions F , each with finite sup-
port and satisfying β(F) = 0.

REMARK 3.6: Portnoy (2022) used a somewhat weaker unbiasedness condition than the
one used in our Theorem 3.4 (but see Remark 3.5), and then established only Lebesgue
almost everywhere linearity of the estimators rather than linearity. This is a distinction
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worth noting for the following reason: The results in Hansen (2022) allow also for dis-
crete distributions. For such distributions, positive probability mass can fall into the ex-
ceptional Lebesgue null set, showing that any attempt to enforce linearity by appropri-
ately redefining the estimator on the exceptional null set will in general not preserve the
statistical properties of the estimator. In particular, the claim in Comment (a) in Section 3
of Portnoy (2022) that his result “implies Hansen’s result” is not warranted. Furthermore,
at several instances in the discussion in Portnoy (2022), linearity is incorrectly claimed
although only linearity Lebesgue almost everywhere is actually established in his paper.
For a discussion of other aspects of Portnoy (2022), see Remark 3.6(ii) in Pötscher and
Preinerstorfer (2022).

REMARK 3.7: In Appendix B, we give a “proof” of our Theorem 3.4 above based on
Theorem 4.3 in Koopmann (1982) (also reported as Theorem 2.1 in Gnot et al. (1992)),
but see the discussion in Appendix B for a caveat.

4. CONCLUSION

We have shown that the stricter unbiasedness condition employed in Theorem 4 in
Hansen (2022) implies linearity of the estimators. It follows that Theorem 4 in Hansen
(2022) applies to exactly the same class of estimators as the Aitken theorem. Thus, Theo-
rem 4 in Hansen (2022), although in its formulation new to the literature, is equivalent to
the Aitken theorem. Theorems 5–7 (as well as Theorem 1) in Hansen (2022) are results
modeled on the Gauss–Markov or Aitken theorem but employ extra conditions such as,
for example, independence assumptions. (A more detailed discussion of these results and
their scope can be found in Section 5 of Pötscher and Preinerstorfer (2022).) As a con-
sequence, the conclusion drawn in Hansen (2022), that his theorems show that the label
“linear estimator” can be dropped from the Gauss–Markov or Aitken theorem, seems to
be debatable. We thus repeat our warning against dropping the linearity assumption from
the pedagogy of the Gauss–Markov or Aitken theorem.

APPENDIX A: COUNTEREXAMPLES

Here we provide a counterexample to Statement A. Further counterexamples can be
found in Appendix A of Pötscher and Preinerstorfer (2022). They all rest on the following
lemma which certainly is not original, as similar computations can be found in the liter-
ature; see, for example, Gnot et al. (1992), Knautz (1993, 1999), and references therein.
Counterexamples can also be easily derived from results in the before mentioned papers.
In this appendix, we always maintain the model from Section 2 and assume that � = In
holds. Counterexamples for � �= In can then easily be obtained by a standard transforma-
tion argument. In the following, β̂OLS = (X ′X)−1X ′Y .

LEMMA A.1: Consider the model as in Section 2, additionally satisfying � = In.
(a) Define estimators via

β̂α = β̂OLS + α
(
Y ′H1Y� � � � �Y

′HkY
)′
� (11)

where the Hi’s are symmetric n× n matrices and α is a real number. Suppose tr(Hi) = 0 and
X ′HiX = 0 for i = 1� � � � �k. Then EF (β̂α) = β(F) for all F ∈ F2(In).
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(b) Suppose the Hi’s are as in Part (a). If CovF (c′β̂OLS� c
′(Y ′H1Y� � � � �Y

′HkY )′) �= 0 for
some c ∈ R

k and for some F ∈ F2(In) with finite fourth moments, then there exists an α ∈ R

such that

VarF
(
c′β̂α

)
< VarF

(
c′β̂OLS

); (12)

in particular, β̂OLS then does not have smallest variance-covariance matrix (w.r.t. Loewner
order) over F2(In) in the class of all estimators that are unbiased under all F ∈ F2(In).7

(c) Suppose the Hi’s are as in Part (a). For every c ∈ R
k and for every F ∈ F2(In) (with

finite fourth moments) under which β(F) = 0, we have

CovF

(
c′β̂OLS� c

′(Y ′H1Y� � � � �Y
′HkY

)′) =
n∑

j=1

n∑
l=1

n∑
m=1

dj

(
k∑
i=1

cihlm(i)

)
EF (ejelem)� (13)

where d = (d1� � � � � dn)′ =X(X ′X)−1c and hlm(i) denotes the (l�m)th element of Hi.
(d) Suppose the Hi’s are as in Part (a). For every c ∈ R

k and for every F ∈ F2(In) (with
finite fourth moments) under which (i) β(F) = 0 and under which (ii) the coordinates of Y
are independent (equivalently, the errors ei are independent),

CovF

(
c′β̂OLS� c

′(Y ′H1Y� � � � �Y
′HkY

)′) =
n∑

j=1

dj

(
k∑
i=1

cihjj(i)

)
EF

(
e3
j

)
� (14)

PROOF: The proof of Parts (a), (c), and (d) is by straightforward computation. Since

VarF
(
c′β̂α

) = VarF
(
c′β̂OLS

) + 2αCovF

(
c′β̂OLS� c

′(Y ′H1Y� � � � �Y
′HkY

)′)
+ α2 VarF

(
c′(Y ′H1Y� � � � �Y

′HkY
)′)

� (15)

the claim in (b) follows immediately as the first derivative of VarF (c′β̂α) w.r.t. α and eval-
uated at α= 0 equals 2 CovF (c′β̂OLS� c

′(Y ′H1Y� � � � �Y
′HkY )′). Note that all terms in (15)

are well-defined and finite because of our fourth moment assumption. Hence, whenever
this covariance is nonzero, we may choose α �= 0 small enough such that (12) holds. Q.E.D.

We now provide a counterexample that makes use of the preceding lemma.

EXAMPLE A.1: Consider the location model, that is, the case where k = 1 and X =
(1� � � � �1)′. Choose H1 as the n× n matrix which has h11(1) = −h22(1) = 1 and hij(1) = 0
else. Then the conditions on H1 in Part (a) of Lemma A.1 are satisfied, and hence β̂α is
unbiased under all F ∈ F2(In). Setting c = 1, we find for the covariance in (14)

n−1
(
EF

(
e3

1

) −EF

(
e3

2

)) �= 0

for every F ∈ F2(In) (with finite fourth moments) under which β(F) = 0, the errors ei
are independent, and EF (e3

1) �= EF (e3
2) hold. Such distributions F obviously exist.8 As a

7Recall the convention discussed in Remark 3.3.
8For example, choose e2� � � � � en i.i.d. N(0�σ2) and e1 independent from e2� � � � � en with mean zero, variance

σ2, third moment not equal to zero, and finite fourth moment.
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consequence, β̂OLS is not best (over F2(In)) in the class of all estimators β̂ that are unbi-
ased under all F ∈ F2(In). In particular, Statement A (with � = In) is false for this design
matrix.

For the argument underlying the preceding example, it is key that the errors are not
i.i.d. under the relevant F . In fact, in the location model (i.e., X = (1� � � � �1)′), we
have VarF (β̂OLS) � VarF (β̂α) for every real α, for every choice of H1 as in Part (a) of
Lemma A.1, and for every F ∈ F2(In) (with finite fourth moments) under which the er-
rors ei are i.i.d., since then CovF (β̂OLS�Y

′H1Y ) = 0 as is easily seen. [This is in line with a
result of Halmos (1946) discussed in Section 6 of Pötscher and Preinerstorfer (2022).] For
other design matrices X , the argument, however, works even for i.i.d. errors as we show
in Example A.2 in Pötscher and Preinerstorfer (2022). Compare Section 4.1 of Gnot et al.
(1992) for related results and more.

Many more counterexamples can be generated with the help of Lemma A.1 as discussed
in Remark A.2 of Pötscher and Preinerstorfer (2022).

APPENDIX B: AN ALTERNATIVE “PROOF”

We here give a “proof” based on Theorem 4.3 in Koopmann (1982) (also reported as
Theorem 2.1 in Gnot et al. (1992)). There is a caveat, however: Theorem 4.3 in Koop-
mann (1982) is proved by reducing it to Theorem 3.1 (via Theorems 3.2, 4.1, and 4.2) in
the same reference. Unfortunately, a full proof of Theorem 3.1 is not provided in Koop-
mann (1982); only a very rough outline is given. Thus, the status of Theorem 4.3 in Koop-
mann (1982) is not entirely clear. For this reason, we have given a direct proof of our
Theorem 3.4 in the main text which does not rely on any result in Koopmann (1982).9

“PROOF”: The unbiasedness assumption of the theorem obviously translates into

EFβ̂= β(F) for every F ∈ F2(�)� (16)

for every symmetric and positive definite � of dimension n × n; specializing to the case
� = In, we, in particular, obtain10

EFβ̂= β(F) for every F ∈ F2(In)� (17)

Condition (17), together with Theorem 4.3 in Koopmann (1982) (see also Theorem 2.1 in
Gnot et al. (1992)11,12), implies that β̂ is of the form

β̂=A0Y + (
Y ′H0

1Y� � � � �Y
′H0

kY
)′
� (18)

9Alternatively, one could try to provide a complete proof of the result in Koopmann (1982). We have not
pursued this, but have chosen the route via a direct proof of our Theorem 3.4.

10Instead of In, we could have chosen any other symmetric and positive definite n× n matrix �0 instead.
11Note that X− in that reference runs through all possible g-inverses of X .
12Gnot et al. (1992) assumed σ2 > 0 whereas Koopmann (1982) allowed also σ2 = 0. However, both the-

orems are equivalent as unbiasedness under every F ∈ F2(In) also implies unbiasedness under the point dis-
tributions at Xβ (i.e., the distributions corresponding to σ2 = 0). This is easily seen by considering those
distributions in F2(In) that correspond to Xβ+ e with the components of e being independent and identically
distributed according to εm(δ−1 +δ1)/2 + (1 −εm)δ0. Here, εm, 0 < εm < 1, converges to zero for m → ∞ and
δx denotes point mass at x ∈R. A similar argument applies in the case of F2(�).
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where A0 satisfies A0X = Ik and H0
i are matrices satisfying tr(H0

i ) = 0 and X ′H0
i X = 0

for i = 1� � � � �k. It is easy to see that we may without loss of generality assume that the
matrices H0

i are symmetric (otherwise replace H0
i by (H0

i + H0′
i )/2). Inserting (18) into

(16) yields

EF

(
A0Y + (

Y ′H0
1Y� � � � �Y

′H0
kY

)′) = β(F) for every F ∈ F2(�)�

and this has to hold for every symmetric and positive definite �. Standard calculations
involving the trace operator and division by σ2 now give

(
tr

(
H0

1�
)
� � � � � tr

(
H0

k�
))′ = 0 for every symmetric and positive definite �� (19)

For every j = 1� � � � � n, choose now a sequence of symmetric and positive definite matri-
ces �(j)

m (each of dimension n × n) that converges to ej(n)ej(n)′ as m → ∞, where ej(n)
denotes the jth standard basis vector in R

n (such sequences obviously exist). Plugging this
sequence into (19), letting m go to infinity, and exploiting properties of the trace-operator,
we obtain (

ej(n)′H0
1ej(n)� � � � � ej(n)′H0

kej(n)
)′ = 0 for every j = 1� � � � � n.

In other words, all the diagonal elements of H0
i are zero for every i = 1� � � � �k. Next, for

every j� l = 1� � � � � n, j �= l, choose a sequence of symmetric and positive definite matrices
�{j�l}

m (each of dimension n×n) that converges to (ej(n) +el(n))(ej(n) +el(n))′ as m → ∞
(such sequences obviously exist). Then exactly the same argument as before delivers

((
ej(n) + el(n)

)′
H0

1

(
ej(n) + el(n)

)
� � � � �

(
ej(n) + el(n)

)′
H0

k

(
ej(n) + el(n)

))′ = 0

for every j �= l.

Recall that the matrices H0
i are symmetric. Together with the already established fact that

the diagonal elements are all zero, we obtain that also all the off-diagonal elements in
any of the matrices H0

i are zero; that is, H0
i = 0 for every i = 1� � � � �k. This completes the

proof. Q.E.D.

REMARK B.1: A slightly different version of this “proof” can be obtained as follows.
Theorem 4.3 in Koopmann (1982) (together with Footnote 12) shows for every given
(fixed) � that any β̂ satisfying (16) is of the form AY + (Y ′H1Y� � � � �Y

′HkY )′, where
AX = Ik, the Hi’s satisfy tr(Hi�) = 0, and X ′HiX = 0 for i = 1� � � � �k. Again, it is easy
to see that we may assume the matrices Hi to be symmetric. Note that the matrices A
and Hi flowing from Theorem 4.3 in Koopmann (1982) in principle could depend on �.
The following argument shows that this is, however, not the case (after symmetrization of
the Hi’s) in the present situation: If β̂ had two distinct linear-quadratic representations
with symmetric Hi’s, then the difference of these two representations would be a vector
of multivariate polynomials (at least one of which is nontrivial) that would have to vanish
everywhere, which is impossible since the zero-set of a nontrivial multivariate polynomial
is a Lebesgue null-set. Given now the independence (from �) of the matrices Hi, one
can then exploit the before mentioned relations tr(Hi�) = 0 in the same way as is done
following (19) above.
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