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There is substantial empirical evidence showing that peer effects matter in many ac-
tivities. The workhorse model in empirical work on peer effects is the linear-in-means
(LIM) model, whereby it is assumed that agents are linearly affected by the mean action
of their peers. We develop a new general model of peer effects that relaxes the linear as-
sumption of the best-reply functions and the mean peer behavior and that encompasses
the spillover, conformist model, and LIM model as special cases. Then, using data on
adolescent activities in the United States, we structurally estimate this model. We find
that for many activities, individuals do not behave according to the LIM model. We run
some counterfactual policies and show that imposing the mean action as an individual
social norm is misleading and leads to incorrect policy implications.
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1. INTRODUCTION

INDIVIDUALS INTERACT in all kinds of ways. In particular, they imitate and learn from
the behavior of others, especially those close to them, such as their friends, neighbors,
and colleagues. The impact of these interactions on individual behavior is referred to
as peer effects. The decisions individuals take in the presence of peer effects generate
externalities. There is substantial empirical evidence showing that peer effects matter in
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many contexts, such as education, crime, and program participation.1 The overwhelming
majority of empirical research assumes that individuals are affected by a linear function of
the mean behavior of their peers and is silent about the underlying behavioral foundation
generating the estimated peer effects.

Indeed, most peer-effect studies use the standard linear-in-means (LIM) model.2 For
example, the criminal activity of an individual is assumed to depend on the average crim-
inal activity of the neighborhood where she lives. In education, each student compares
herself with the average performance of students in her classroom, and so forth. The
game-theoretic foundation of the LIM model is a network model such that the best-reply
function of each agent is linear in the mean action of her peers.3 Moreover, it is now well
recognized that the LIM model can be equivalently microfounded by games assuming
either conformist preferences or positive spillovers.4 With conformist preferences, indi-
viduals pay a cost for deviating from the average effort of their peers (their social norm),
while with spillover preferences, agents always benefit from a higher social norm.

In this paper, we develop a new general model of peer effects that relaxes the assump-
tions of linearity of the best-reply functions and the mean peer behavior of the LIM model
and encompasses the spillover and conformist models as special cases. Instead of assum-
ing that the social norm of each agent is given by the average action of her peers, we
allow for more flexibility and define the social norm using a CES function with elasticity
parameter β. In this model, the individual outcome is referred to as “effort,” whether it
is a positive (e.g., GPA) or a negative outcome (e.g., risky behavior). When β is equal
to 1, we revert to the LIM model. When β is very large, we obtain the “max” model in
which agents only care about the agents who exert the most effort (e.g., the highest-ability
students in the case of GPA) in their network, while when β is very negative, the “min”
model prevails in which agents only care about the agents who exert the least effort (e.g.,
the lowest-ability students) in their network. The main advantage of providing a model in
which the individual action/outcome is a function of a CES of peer actions is that it con-
tains the LIM model, as well as the min and the max model, as special cases but provides
flexibility in modeling, since the relevant peer group is estimated from the data.

We show that, contrary to the linear case, the best-response function for the general
model with flexible β is not necessarily contracting. However, by relying on the literature
on supermodular games (Milgrom and Roberts (1990)) and by studying the structure of
the smallest and largest equilibria, we show that there always exists a unique Nash equilib-
rium. Our proof of existence and uniqueness of a Nash equilibrium applies to any social
norm function that is homogeneous of degree 1, increasing in individual action, and sat-
isfies either global convexity or global concavity; it includes the CES function as a special
case.

Then, using data on teenagers in the United States from the National Longitudinal
Survey of Adolescent Health (AddHealth), we structurally estimate this general model.
We estimate the value of β to determine the relevant peer reference group and estimate

1See, for example, Calvó-Armengol, Patacchini, and Zenou (2009), Sacerdote (2011), Dahl, Løken, and
Mogstad (2014), and Lee, Liu, Patacchini, and Zenou (2021).

2Manski (1993) was among the first to highlight the identification issues in estimating the LIM model, in
particular, the reflection problem.

3See, for example, Patacchini and Zenou (2012), Blume, Brock, Durlauf, and Jayaraman (2015), Boucher
(2016), Kline and Tamer (2020), and Ushchev and Zenou (2020).

4See Blume et al. (2015) and Boucher and Fortin (2016). In particular, Boucher and Fortin (2016) have
highlighted the fact that both the conformist and spillover models can microfound the LIM model; they also
have suggested, but not implemented, a way to identify them separately using isolated individuals.
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which model best matches the data. We find that for GPA, social clubs, self-esteem, and
exercise, the spillover effect strongly dominates, while for risky behavior, study effort,
fighting, smoking, and drinking, conformism plays a stronger role. We also find that for
many activities, individuals do not behave according to the LIM model. Indeed, for GPA,
self-esteem, exercise, and study effort, individuals have peer preferences skewed toward
the right-hand side of the distribution (i.e., agents who exert relatively high effort), while
for trouble behavior at school, fighting, and drinking, the peers that matter are those who
exert little effort. This confirms the fact that imposing the mean action as an individual
social norm is misleading and may lead to incorrect policy implications.

In order to quantitatively evaluate the policy implications in the context of our data, for
each activity, we simulate a counterfactual tax/subsidy policy that restores the first best.
In particular, we contrast the differences between a planner that uses the LIM model and
one that uses the general results obtained in our structural estimations. We show that the
differences are large. In general, with the LIM model, the planner tends to uniformly tax
or subsidize all agents in the network. In contrast, with the general model, it targets some
key agents; the choice of which agents are targeted depends on whether the spillover or
the conformist model dominates, and on the value of β. Consider, for example, GPA,
which is a spillover model for which β is much greater than 1; this means that peer pref-
erences are skewed toward students with the highest GPA. In contrast to the LIM model,
we find in our policy simulations that in the general model, there is a large mass at zero
because these individuals do not provide any positive spillover to their neighbors (they
are not the highest-ability friends), and there is therefore little social value in subsidiz-
ing them. We also show that some individuals obtain very large positive subsidies; this is
when the social norm is made up of very low-performing students, and thus it becomes
valuable to give large subsidies to the highest-ability peers because they will generate large
spillover effects.

We consider the baseline situation in which the network is exogenous and not affected
by policy shocks. This allows us to focus on the impact of the behavioral foundations
(conformism or spillovers) and nonlinearity for public policies when the network is fixed.
We find that the policy recommendations resulting from conformism or spillover effects
differ wildly and that nonlinearities have a huge influence on who should be targeted by
the policies. We provide an estimator that allows us to identify the behavioral foundation
and the nonlinearity from the data.

Our main contribution is to provide a general structural framework to study peer ef-
fects in a context in which peers do not necessarily react to the average of their peers’
behavior, and that enables identification of the behavioral foundation of the estimated
peer effects. Even though the vast majority of papers have used the LIM model to esti-
mate peer effects, some have considered the maximum peers, namely the leaders, shin-
ing lights, or high achievers (Carrell, Page, and West (2010), Tao and Lee (2014), Diaz,
Patacchini, Verdier, and Zenou (2021), Islam, Vlassopoulos, Zenou, and Zhang (2021)),
some have included the minimum peers, namely the bad apples or low-ability individuals
(Bietenbeck (2020), Hahn, Islam, Patacchini, and Zenou (2020)), and some have incorpo-
rated both (Hoxby and Weingarth (2005), Tatsi (2015)).5 However, none of these papers
have developed a general theoretical framework with different mechanisms (spillover or
conformism) and different peer-group references. In contrast, our proposed framework

5See also Brock and Durlauf (2001b) who looked at a variety of models of peer behavior and suggested
some nonlinearities in some applications, and Blume, Brock, Durlauf, and Ioannides (2011) who classified
these different peer effects.
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allows us to identify which mechanism and which peer group matter most. Our main
conclusion confirms the fact that ex ante imposing the mean (max or min) action as an
individual social norm is misleading and leads to incorrect policy recommendations.

2. THEORY

2.1. Linear-in-Means Models

Before presenting our general model, we describe our setup using the well-known
linear-in-means model. Our main specification is presented in Section 2.2. Consider n ≥ 2
individuals who are embedded in a network g. The adjacency matrix G = [gij] is an (n×n)-
matrix with {0�1} entries that keeps track of the direct connections in the network. By
definition, agents i and j are directly connected if and only if gij = 1; otherwise, gij = 0.
We assume that the network is directed (i.e., gij and gji are potentially different)6 and
has no self-loops (i.e. gii = 0). Ni = {j | gij ∈ g} denotes the set of i’s neighbors. The car-
dinal of Ni is di, the degree or the number of direct neighbors of individual i, so that
di := ∑n

j=1 gij = |Ni|. Finally, G̃ = [g̃ij] denotes the (n×n) row-normalized adjacency ma-
trix defined by g̃ij := gij/di if di > 0 and g̃ij := 0 otherwise.

Assume that each individual has at least one neighbor, namely di > 0 for all i. Consider
the following class of best-response functions:

yi = αi + λy−i� (1)

where yi is the effort or outcome in some activity (such as GPA in education); αi = xiγ+εi
is a vector of individual characteristics that includes both the observable (xi)7 and unob-
servable (εi) characteristics of individual i; λ is the peer-effect propagation rate (common
for all individuals in the group); and

y−i =
n∑

j=1

g̃ijyj (2)

is the average effort of i’s neighbors (excluding i). In Equation (1), individuals choose
their effort yi as a function of their own characteristics αi and also as a function of the
effort of the other individuals y−i in the population. The model in (1) with the norm y−i

defined in (2) is referred to as the linear-in-means (LIM) model and can thus be written
as

yi = xiγ + λ

n∑
j=1

g̃ijyj + εi� (3)

2.2. A Model With General Social Norms

So far, following the LIM model, we assumed that peers operate through a linear and
an average effect, that is, the social norm y−i is the average effort of i’s peers. This is a
strong assumption, especially for empirical applications. The empirical literature has been
partially addressing this issue by not only looking at the effect of the average peer, but
instead also the minimum or maximum. In this section, we relax the linearity assumption
and provide a more general and flexible structure of peer preferences.

6We can easily generalize our results to undirected and weighted networks.
7xi is a (1 × k) vector of k observable characteristics, and γ is a (k× 1) vector, so that xiγ = ∑k

l=1 xlγl .
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2.2.1. A General Social Norm

For each individual i, we generalize the social norm y−i given in (2) by considering the
following CES social norm:8

ỹ−i(β) =
(

n∑
j=1

g̃ijy
β
j

) 1
β

� (4)

We can easily see that the social norm in the LIM model defined in (2) is a special case
of (4) when β = 1, that is, y−i ≡ ỹ−i(1) = ∑n

j=1 g̃ijyj . Our social norm is general, since (4)
allows for any β, that is, β ∈ [−∞�+∞]. We argue that this parameter, β, captures peer
preference. Consider, for example, the study effort yi of each student i. Then, if we set
β= +∞, (4) becomes

lim
β→+∞

ỹ−i(β) = max
j∈Ni

{yj}�

that is, the social norm is defined with respect to the most studious agents in the network.
Under β = −∞, (4) becomes

lim
β→−∞

ỹ−i(β) = min
j∈Ni

{yj}�

that is, the social norm is defined with respect to the least studious agents. Other possible
values of β ∈R capture a rich spectrum of intermediate cases.9 We have

∂ỹ−i(β)
∂yj

= g̃ij

(
n∑

j=1

g̃ijy
β
j

)( 1
β−1)

yβ−1
j �

while in the LIM with the social norm given by Equation (2), we have ∂y−i

∂yj
= g̃ij .

The main advantage of providing a model in which the individual action is a function of
a CES function of peer actions is that it contains the LIM, the min and max models, and
any combination of them as a special case.

2.2.2. A General Model

Define y−i := (y1� � � � � yi−1� yi+1� � � � � yn)T the vector of effort without the effort of
agent i. The utility function for each non-isolated individual i is given by10

Ui(yi� y−i�g) = αiyi + θ1yiỹ−i(β)︸ ︷︷ ︸
benefit

− 1
2

[
y2
i + θ2

(
yi − ỹ−i(β)

)2]︸ ︷︷ ︸
cost

� (6)

8Observe that, in the theory, we focus (and provide conditions) on equilibria for which yi > 0, for all i. Thus,
Equation (4) is well-defined for all yi > 0.

9When β< 0, expression (4) reads as follows:

ỹ−i(β) =

⎧⎪⎪⎨⎪⎪⎩
(

n∑
j=1

g̃ijy
β
j

) 1
β

� yj > 0 for all j ∈ Ni;

0� yj = 0 for some j ∈ Ni�

(5)

10For an isolated individual i, her utility is equal to Ui = αiyi − 1
2 y

2
i , so that her optimal action is yi = αi .



548 BOUCHER, RENDALL, USHCHEV, AND ZENOU

where the social norm ỹ−i(β) is defined in (4) and αi > 0. The term θ1yiỹ−i(β) corre-
sponds to the spillover model (Brock and Durlauf (2001a), Glaeser and Scheinkman
(2002), Boucher and Fortin (2016), Reif (2019)), while the term − 1

2θ2(yi − ỹ−i(β))2 cor-
responds to the conformism model (Akerlof (1997), Bernheim (1994), Patacchini and
Zenou (2012), Boucher (2016), Ushchev and Zenou (2020)). Thus, this utility function
has the conformist model (when θ1 = 0) and the spillover model (when θ2 = 0) as special
cases.11

Denote λ1 := θ1/(1 + θ2) and λ2 := θ2/(1 + θ2). Then, the first-order condition can be
written as

yi = (1 − λ2)αi + (λ1 + λ2)ỹ−i(β)� (7)

or equivalently,

yi = (1 − λ2)αi + (λ1 + λ2)

(
n∑

j=1

g̃ijy
β
j

) 1
β

� (8)

The main difference with the LIM model (where β = 1) is that the first-order conditions
(8) are not linear anymore. Thus, when estimating (8), in particular, β, we can determine
whether the correct model is the LIM (i.e., β = 1) and, if not, which peers matter. We
have the following result.

PROPOSITION 1: Assume that the utility function of each individual i = 1� � � � � n is given by
(6), with 0 < λ1 +λ2 < 1 and 0 < λ1 < 1, and her social norm ỹ−i(β) has the CES functional
form (4). Then, there exists a unique Nash equilibrium.

The proof of Proposition 1 is given in Appendix A. It is not obvious because, contrary
to the LIM model, the best-reply mapping is neither linear nor a contraction. First, for
the existence of equilibrium, we use the fact that the game is supermodular and solve for
a fixed point theorem. To prove uniqueness, we use the fact that there always exist a max-
imum and a minimum equilibrium and show that they are equal. To achieve this, we need
to differentiate between concave and convex norms and demonstrate this equality; thus,
the equilibrium is unique. In fact, we show that the existence and uniqueness of the equi-
librium of this game is true for more general norms than the CES one, since we only need
to assume that the social norm is monotone increasing, continuous, linear homogeneous,
and normalized (see Assumption 1 and the proof of Proposition 1 in Appendix A).

3. STRUCTURAL ESTIMATION

3.1. Empirical Strategy

The model has two main components: the nonlinearity of the social norm, and the
nesting of conformity and spillover effects. We are interested in structurally estimating (i)
the intensity of the spillover effect, λ1; (ii) the taste for conformity, λ2; and (iii) the peer
preference, β. We can formulate the equilibrium effort of individual i by

yis = (1 − λ2)xisγ + (λ1 + λ2)ỹ−is(β) + ζs + εis� (9)

11As highlighted by Boucher and Fortin (2016), when y−i ≡ ỹ−i(1), the LIM model corresponds to the best-
response function of two, observationally equivalent, types of social preferences: spillover or conformism.
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Equation (9) is the equivalent of the first-order condition (7), where, as above, αis :=
xisγ + ξs + εis captures the observable and unobservable characteristics of i as well as the
school fixed effects ξs, where ζs := (1 − λ2)ξs, and εi := (1 − λ2)εi. Indeed, as we discuss
in Section 3.3 below, students in the data are assumed to interact within their school. We
therefore added the subscript s to denote each school s in our data. Thus, compared to
(7), we control for school fixed effects, ξs, which will absorb any factor that is common to
all students within a given school, including the effect of the school itself. We assume that
εis, the error term, is such that E(εis|X�G) = 0 for all i, implying an exogenous network.

For comparison purposes, we will also provide results for the reduced-form LIM model
(Equation (3)),

yis = xisγ + λy−is + εis� (10)

where yis is the effort or outcome in some activity (e.g., GPA), and y−is is the average
effort of i’s neighbors (excluding i), instrumented by their friends’ characteristics, x−is

(Bramoullé, Djebbari, and Fortin (2009)).

3.2. Identification

We show in Appendix B how to formally estimate θ = [γ ′�λ1�λ2�β]′ by deriving the
appropriate generalized method of moments (GMM) estimator. Let us provide some in-
tuition for the estimation procedure. Equation (9) does not allow us to separately identify
λ2 from γ or λ1. However, we can consider two types of individuals in the data: (a) isolated
and (b) non-isolated individuals. Isolated individuals are individuals without friends. This
separation allows us to break the estimation problem into two parts and consequently
identify λ2 and γ separately. This strategy rests on the assumption that isolated and non-
isolated individuals are similar in that the impact of their individual characteristics (e.g.,
age, gender) on the private benefit of effort is similar. This is a classical assumption, even
in models with endogenous network formation (e.g., Lee et al. (2021)).

First, note that isolated individuals have a simplified version of the general first-order
condition (9), given by

yis = xisγ + ξiso
s + εis� (11)

where ξiso
s , the school fixed effect specific to isolated individuals, has been added. This

equation is independent of any social norm and, therefore, of β, λ1, and λ2. Thus, in our
specification, the identification of γ can be obtained from isolated individuals, under the
independence assumption of the error term, E(εisxis) = 0. Note, identification does not
allow us to estimate separate γ ’s for isolated and non-isolated students. However, we al-
low the school fixed effect to differ between the two types of students. We acknowledge
that assuming γ to be identical for isolated and non-isolated individuals can be a strong
assumption. In Section 3.4, we consider a robustness exercise by estimating a model that
does not identify separately the conformist and spillover model, so that the peer prefer-
ence parameter β can be estimated without isolated individuals.

Second, to identify θ̃ = [λ1�λ2�β], we require three further moment conditions. Let us
define three instruments, zis for non-isolated individuals that satisfy the moment condi-
tions, E(εiszis) = 0. First, we can identify (1−λ2)γ , and thus λ2, given the result of γ from
the solution of isolated individuals. Consequently, our first instrument is the set of covari-
ates, xis. Second, if ŷs is the OLS predictor of ys, on the covariates, xis,12 then, given λ2,

12Because yis is potentially endogenous, we estimate the reduced form of yis on xis to obtain the predicted ŷs
for each i. Thus, ŷs is an exogenous predictor and independent of β. While we use a simple OLS predictor for
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the identification of λ1 comes from the moment ỹ−is(ŷs�β) for non-isolated individuals—
our second instrument. Finally, the identification of β comes from the derivative of the
social norm with respect to β, ∂ỹ−is (ŷs�β)

∂β
= ỹ ′

−is(ŷs�β)—our last instrument. The intuition
behind this instrument is that the slope of the social norm with respect to β should in-
form the directional movement of search for the parameter that minimizes the objective
function during the numerical simulation. Also note that the choice of ỹ ′

−is(ŷs�β) as a
moment condition is justified by the fact that ỹ ′

−is(ŷs�β) is equal to the first-order condi-
tion for the nonlinear least-squares estimator of a model in which ỹis(β) is substituted by
ỹis(ŷs�β).13 Thus, the set of instruments for all non-isolated individuals can be summa-
rized by zis = [xis� ỹ−is(ŷs�β)� ỹ ′

−is(ŷs�β)], with the assumption that E(εiszis) = 0.
Note that our additional moment conditions are evaluated at ŷs, the OLS predictor of

ys. While it is standard to use the entire matrix of observable characteristics as instru-
ments, namely G̃X (Bramoullé, Djebbari, and Fortin (2009)) when β = 1, this approach
is not suitable for the general model when β could be substantially different to 1. Indeed,
suppose that β = +∞, so that ỹ−is = maxj:gij�s=1 yj�s. While z̄i�s = maxj:gij�s=1 ŷj�s is likely a
good predictor of ỹ−i�s, it may well be the case that none of the maximum of character-
istics of i’s friends, taken individually (i.e., maxj:gij�s=1 x

l
j�s, l = 1� � � � �k), would be a good

predictor of ỹ−i�s. Evaluating the instruments at ŷs is therefore a simple and effective way
to ensure strong instruments, irrespective of the value of β.

We therefore have four sets of moment conditions, one from isolated individu-
als (i.e., E(εisxis) = 0) and three from non-isolated individuals (i.e., E(εisxis) = 0,
E(εisỹ−is(ŷs�β)) = 0, and E(εisỹ

′
−is(ŷs�β)) = 0). Notice that the moment conditions for

γ and for (λ1�λ2�β) are not based on the same number of observations (isolated and
non-isolated individuals). Thus, the estimations for isolated and non-isolated individuals
are performed jointly using the sum of the GMM objective functions for both sets of mo-
ments, leading to an observation-weighted average of the two sets of moment conditions
(Angrist and Krueger (1992), Arellano and Meghir (1992)). Lastly, since the first-order
condition is linear in γ , we can use the model and the objective function to derive γ as a
function of the three remaining parameters [λ1�λ2�β] for both isolated and non-isolated
individuals. This allows us to concentrate the objective function around these remaining
three parameters, θ̃ = [λ1�λ2�β], which are numerically estimated. For further estimation
details, see Appendix B.

3.3. Data Description

Our analysis is based on a well-known database of friendship networks from the Na-
tional Longitudinal Survey of Adolescent Health (AddHealth). The AddHealth survey
has been designed to study the impact of the social environment (i.e., friends, family,
neighborhood, and school) on adolescents’ behavior in the United States by collecting
data on students in grades 7–12 from a nationally representative sample of more than 130
private and public schools in years 1994–1995 (Harris et al. (2019)). AddHealth provides
a wealth of information regarding students’ activities and outcomes. We extracted a large
number of the activities available in the in-school interview sample to test our theory. For

simplicity, any predictor of yi (potentially non-parametric) that is based on the exogeneous variables X would
be admissible.

13For a textbook treatment of the nonlinear least-squares estimator, see Section 5.8.2 in Cameron and
Trivedi (2005). For an in-depth discussion of the optimal moment conditions for nonlinear GMM, see also
Section 6.3.7 in Cameron and Trivedi (2005).
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the purpose of studying peer effects, AddHealth data also record friendship information,
which is based upon actual friends’ nominations. Pupils were asked to identify their best
friends from a school roster (up to five males and five females). Our estimation sample
comprised over 70,000 students, from 134 schools.

We use the AddHealth data set because it is one of the few data sets that both provides
the exact network of all students and has information on multiple activities, so we can
illustrate our theory with different values of β and consider their policy implications.
Nonetheless, we acknowledge that AddHealth poses some limitations in terms of network
endogeneity. However, our aim is methodological, as we want to illustrate the importance
of having a microfoundation in estimating peer effect models. Thus, we assume that the
network G is conditional exogenous.

In Section 3.4, we report the estimation results for 10 activities: (1) grade point average
(GPA), (2) social clubs, (3) self-esteem, (4) risky behavior, (5) exercise, (6) study effort,
(7) fighting, (8) smoking, (9) drinking, and (10) trouble behavior. We also use a series
of students’ individual characteristics, such as age, gender, racial group, and mother’s
education and occupation.

Activities are reported consistently across schools, with summary statistics similar
across standard demographic characteristics (e.g., age, gender, race). All activities are
based on increasing activity levels; for example, a higher value for self-esteem reflects an
increased level of self-esteem. Importantly, 14–15 percent of students did not report any
friends, and we labeled them isolated.14�15

3.4. Empirical Results

For each activity in the data, we estimate the value of β to determine the relevant peer
reference group, and we test which model (conformist or spillover) is the most appro-
priate one. The aim here is not to study the quantitative impact of specific peer effects,
but rather to illustrate the importance of using a generalized theory of peer effects when
trying to estimate their economic impact and, consequently, design adequate policies that
improve agents’ outcomes. Thus, to provide a broad view of our theory, we pick from a
wide range of activities documented in AddHealth. That is, we provide estimation results
for θ̃= [λ1�λ2�β] for the 10 activities described in Section 3.3.

Table I shows the GMM results of (9) for the general model with estimated peer pref-
erences, that is, the β’s. For comparison purposes, the table also shows the general LIM
model, whereby we impose the social norm of the average peer (i.e., β= 1), and reduced-
form estimates from Equation (10). Lastly, the table reports two ways of testing the valid-
ity of the general model relative to the LIM model: (1) we report the significance of the
hypothesis test of H0 : β �= 1, and (2) we report the objective value of each GMM proce-
dure, as well as the likelihood-ratio statistic, 2N(QLIM(λ1�λ2) −Q(λ1�λ2)), comparing it
to the general model. This latter measure is a simple way of establishing the relevant peer

14We follow Boucher and Houndetoungan (2023) in dropping individuals who are potentially falsely classi-
fied as having no friends. Friendship nominations in the data are not always reciprocal, even when restricting
to the set of individuals for whom we can identify all of their nominated friends.

15The activity or outcome values often included an outcome of zero (e.g., non-smokers never smoke). Equa-
tion (4) is not defined for values of zero if peer preference is skewed to the least active agent, β< 0. To avoid
this computational error, we have added in the estimation a value of 1 for each activity or outcome. For com-
parability, we did this for all activities. Results without adding 1 in instances where β> 1 are comparable and
available upon request.
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preference in the estimation, as it compares the goodness of fit for a model with β �= 1
and β= 1.

Just two of the ten activities have marginal cases regarding the most appropriate general
model choice (spillover, conformism, or both). As the coefficient on λ2 for self-esteem
and exercise is statistically zero, the general model exclusively estimates spillover effects.
As the objective value is, by construction, always lowest for the general model with both
spillovers and conformism, we report it as our baseline.16

Table I also shows that activities have varying degrees of peer preference. Overall, we
find a wide range of values for β= [−386�372]. Thus, peer preference does not necessar-
ily conform to the average peer, as per the assumption in the commonly used LIM model.
For example, GPA, self esteem, exercise, and study effort have peer preferences skewed
toward the right of the distribution (i.e., agents who exert relatively high effort). Trouble
behavior at school, fighting, and drinking are skewed toward the left of the distribution
(i.e., agents who exert relatively low effort), while social clubs, risky behavior, and smok-
ing are close to the LIM assumption of β = 1. However, only for risky behavior we cannot
reject that β= 1.

With varying degrees of peer preference, the resulting estimates on total peer effects,
as well as the magnitudes of spillover versus conformism effects, change in non-negligible
ways across activities. We find the difference in total peer effects (λ1 + λ2) between the
general model (GM) and the general LIM model to be large for (i) trouble behavior at
school (36 percent), (ii) GPA and drinking (30 percent), (iii) study effort and fighting
(20 percent), (iv) exercise (30 percent), and (v) self-esteem, risky behavior, exercise, and
smoking (10 percent).17 Only for social clubs and self-esteem do the total peer effects
remain unchanged.

Thus, estimating the general model compared to imposing the reduced-form model has
implications on behavior through changing (i) the shape of the distribution of individuals’
social norms, and/or (ii) the distribution of individuals’ total peer effect exposure. We
illustrate this further with three distinct examples: risky behavior, study effort, and GPA
outcomes.

As for risky behavior, the estimated peer preference is close to 1 while the density
distribution of social norms is similar in the general model and LIM model. However,
given the sizable difference between the estimates on λ in the reduced form and (λ1 +λ2)
in the general model, the distribution of peer effects interacted with individuals’ social
norms in the reduced form has considerably more mass to the left.

The distribution of the social norm of study effort, for which the coefficient is above 1
(i.e., β = 3�9), shows a slight skewedness toward the right for the general model. More-
over, even stronger than for risky behavior, the total peer effect (λy−i) or (λỹ−i) has large
variance across the three models, with the general model strongly skewed toward higher
peer effect outcomes.

Lastly, GPA outcomes serve as an example where peer preference is highly skewed to-
ward the highest-ability students (i.e., β = 372). Thus, the distribution of the social norm
in the general model is skewed toward the right, with several distinct peaks, but still far
from the highest-ability students. Peaks appear because individuals might naturally have
peers who do not achieve the highest (4.0) GPA, but something just below it, such as from

16For the two instances of self-esteem and exercise, the corresponding estimates of λ1 and β for the general
model with only spillovers are very similar to the general model reported here.

17Formally, the difference in peer preference reported is |1 − λGM
1 +λGM

2
λLIM

1 +λLIM
2

|.
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3.0 to 4.0. In comparison, the LIM model will have a perfectly hump-shaped distribu-
tion following the average peer social norm. The intensity of peer preference across the
models greatly exacerbates differences between the general model and the LIM model.
As peer preference increases toward the highest-ability agents in the general model, the
conformism effect mostly disappears. That is, for GPA, the friends with the best academic
success will influence one’s outcomes through positive spillovers, while friends with aver-
age academic outcomes will have no effect. Moreover, individuals do not try or succeed
in conforming to their peers’ academic outcomes.

These three different examples highlight the importance of moving toward a general
theory of peer effects. There is a large range of peer preference estimates. These differ-
ences translate into vastly different social norms that cannot be consistently approximated
by either the average, the max, or the min. That is, moving from the reduced form to a
general LIM model (with both spillover and conformism behavior) but without relaxing
the functional form of the social norm is not enough to provide a general theory of peer
effects.

Finally, to illustrate the validity of our assumption of using isolated individuals to iden-
tify a common γ , we estimate a model with general social norms, but with only one type of
peer effect (spillover or conformism) without isolated individuals. Without distinguishing
between spillover and conformism, Equation (9) simplifies to

yis = xisγ
niso + λỹ−is(β) + ξs + εis� (12)

where the superscript niso refers to non-isolated individuals. Identification of θ̃ = [λ�β]
comes exclusively from non-isolated individuals. The last two columns of Table I show
the results of estimating Equation (12) by GMM without isolated individuals compared
to the benchmark results. The results confirm that, for all activities, the average peer
model is rejected, that is, β is not equal to 1. Moreover, for the majority of activities, the
peer preference, β, is similar to the general model, although the precision of estimates
is generally weaker. This confirms the fact that relying on both isolated and non-isolated
individuals for the estimation of β is not crucial for our results.

4. POLICY IMPLICATIONS

4.1. Policy Implications: Theory

The decisions individuals make in the presence of peer effects generate externalities
and thus inefficiencies. This creates room for a benevolent social planner to intervene.
The planner chooses the actions y1� y2� � � � � yn of each of the n agents that maximizes the
welfare W (y�g) = ∑

i Ui(yi� y−i�g), where each agent i’s utility Ui(yi� y−i�g) is given by
(6). In Appendix C, we determine the first-best outcome (Equation (24)) and show that
it is unique (Proposition 6). Because of different externalities, the market (Nash) equi-
librium is inefficient. For the spillover model (λ2 = 0), agents exert too little effort at the
Nash equilibrium as compared to the social optimum outcome because each agent ig-
nores the positive impact of her effort on the effort choices of others. For the conformist
model (λ1 = 0), at the Nash equilibrium, when deciding her individual effort, each agent
does not take into account the effect of her effort on the social norm of her peers, which
creates an externality that can be positive or negative.
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It is then straightforward to determine which subsidies restore the first best; the planner
needs to give to each agent i the following subsidy:18

SG
i = yo

i − yN
i

1 − λ2
= 1

1 − λ2

[
λ1

∑
j

yo
j

∂ỹo
−i(β)
∂yo

i

+ λ2

∑
j

(
yo
j − ỹo

−i(β)
)∂ỹo

−i(β)
∂yo

i

]
� (13)

4.2. Policy Implications: Simulations

We now illustrate the importance of microfounding a model of peer effects through
our estimated activities. We proceed in two steps. First, following the general estimation
procedure, we simulate the Nash equilibrium and the social optimum (first best) for the
LIM spillover and conformist models. Second, we simulate the Nash and social optimum
for the general LIM model and the general model.

In Figure 1, we display the (kernel) density of the subsidies required for all non-isolated
individuals to reach the first best for each model (see Equation (13) and Appendix C for
details). We use the same three activities as above for illustration, that is, risky behavior,
study effort, and GPA outcomes; the results for all the other activities are available upon
request. In the left panels of Figure 1, we show the subsidies in the LIM spillover and
conformist models, while in the right panels, we show the subsidies in the general LIM
model (i.e., β= 1) and the general model (i.e., β can take any value).

Technically, we simulate the best-response outcomes yi for all students within each
school based on their individual characteristics, estimated school fixed effects, and a trun-
cated normally distributed error term using the parameter estimates from Table I.19 We
then proceed in steps to find the social optimum outcome and subsidy. First, we guess
an initial value of the first-best subsidy, Ŝ0, based on the Nash outcome using (13). Sec-
ond, we compute the subsidized Nash outcome yi with subsidy Ŝ0. Third, we recompute
the first-best subsidy Ŝ1 based on this new subsidized Nash outcome. Fourth, we repeat
the second and third steps until we have convergence of the first-best subsidy. In the
spillover model, with positive peer effects, subsidies can potentially become unbounded
if the cost of exerting effort is smaller than the peer effect. To avoid such an issue, we
limit the amount of subsidy such that the first-best outcomes never exceed the high-
est outcome observed in the data. Thus, subsidies are bounded for each individual by
Si ∈ [min{ydata

i }i − yN
i �max{ydata

i }i − yN
i ].

From the theory (see Section 4.1), we know that the spillover model requires only pos-
itive subsidies, while, in the conformist model, the planner can tax or subsidize agents.
Consequently, policy prescriptions are vastly different depending on the selected micro-
foundation. Consider the left panels in Figure 1, where we compare the subsidies/taxes in
the LIM spillover and the LIM conformist model. As predicted by the theory, to reach the
first best (social optimum) in the conformism model, the planner subsidizes some agents
and taxes others, while in the spillover model, all agents are subsidized. For both risky
behavior and study effort, peer effects are all driven by conformism (dashed line in left
panels of Figure 1), while GPA is almost exclusively driven by spillover effects (solid line).
However, picking between the conformism (right dashed line) and spillover (solid line),

18A variable with the superscript o denotes its optimal value while a variable with the superscript N denotes
its Nash equilibrium value.

19Errors come from the same normal distribution with mean zero, but truncation is individual specific, based
on the natural bounds of each outcome (e.g., the outcomes for GPA lie between 1 and 4).
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FIGURE 1.—First-best subsidies (Examples).

subsidy schedules do not necessarily reflect the correct policy intervention, as we have so
far ignored the degree of peer preference.

Let us now focus on the right panels of Figure 1, in which we compare the policy that
restores the first best for the general LIM model (imposing β= 1) and the general model
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with flexible peer preferences.20 We observe a wide range of results, which is consistent
with the large variation we obtained in the peer preference estimates of β in Section 3.4.
An activity that has peer preferences close to the average peer (i.e., β= 1) displays similar
subsidy schedules between the general model and general LIM model (i.e., risky behav-
ior). As peer preferences skew toward the right or the left of the distribution of agents’
efforts, policy prescriptions start to differ more (e.g., study effort, GPA).

More specifically, in panel (b), for risky behavior, since peer preferences are close to 1
(β= 0�8), the general model policy implications seem to be similar to those of the general
LIM model. There is, however, one subtle difference: The general model mostly taxes in-
dividuals, while the general LIM model does also subsidize a share of individuals, some
of them with relatively large subsidies. Indeed, since for risky behavior, the conformist
model is the most prominent one, and since peer preferences are slightly skewed toward
the agents who do not engage in risky activities, there is little use in subsidizing indi-
viduals to increase their risky behavior. Therefore, to reach the first-best outcomes, it is
optimal to tax the most risk-loving agents because it will induce them to decrease their
risky behavior. In contrast, in the general LIM model, as the social planner tries to move
individuals closer to their average peers’ risky behavior, it is beneficial to increase some
individuals’ risky behavior, as each friend’s behavior has an equal impact on one’s social
norm. Thus, the planner finds it optimal to subsidize some individuals to engage in more
risky behavior.

In panel (d), study effort requires, in general, greater levels of subsidy to reach the
social optimum (the mean of the distribution of subsidies is larger for the general model).
In the LIM model, since study effort is driven by conformism, the social planner needs
to tax high-effort students. However, in the general model, since peer preferences are
skewed toward the right (i.e., β = 4), the social planner can implement more targeted
policies that require less taxation and overall higher utility outcomes. Thus, in the general
model, while the social planner still taxes some of the most studious students, the number
of students who need to be taxed to reach the first best are fewer while the number of
students receiving a subsidy increases. This results in higher overall study effort and also
higher utility.

Lastly, in panel (f), since GPA is driven by spillover effects, for the general LIM model,
the social planner gives every individual λy−i, namely the social norm times the peer ef-
fect. In contrast, in the general model, since peer preferences are skewed toward the
highest-ability agents (i.e., β = 372), there is a large mass at zero because these individ-
uals do not have any positive spillover effect (they are not the highest-ability friends),
and there is therefore little social value in subsidizing them. The general model also has
some instances of very large positive subsidies, which are cases where the social norm is
made up of very low-performing students. Indeed, from the social planner’s perspective,
it is valuable to greatly subsidize the highest-ability peers, even if they are low-performing
students. This is because, within their friendship group, being the highest performer will
generate large spillover effects for their poorly performing peers. For example, take two
groups, one where all peers have a GPA between 3.3 and 3.8 and one where all peers have
a GPA between 1.2 and 1.5. For both of these groups, the social planner will give most sub-
sidies to the peers with the highest GPA because peer preferences are skewed toward the
highest-ability agents. A student with a lower GPA (1.5) in the second group will receive a
considerably higher subsidy than a student with a higher GPA (3.8) in the first group. This
is mechanical since subsidies are capped by the natural limit of 4.0 (the highest achievable

20Note the general LIM model represents the full effect (spillover, conformism, or both) from the left panel.



558 BOUCHER, RENDALL, USHCHEV, AND ZENOU

GPA). Observe that since the model has mostly spillover effects, no agent is taxed. More
generally, policies are very different between the LIM and the general model. In partic-
ular, compared to the LIM model, with the general model, the planner gives no subsidy
to a large share of agents because they do not have the highest GPA in their peer group,
but she does give larger subsidies; that is, the curve is flatter but more spread for the gen-
eral model, compared to the LIM model. In other words, with peer preferences skewed
toward high-GPA students, the most effective way of reaching the social optimum in the
general model is by subsidizing only a selected number of individuals.

We acknowledge that, as an applied exercise, there are limitations in our policy implica-
tions (in particular, potential network endogeneity). We therefore do not recommend to
take the exact estimates at face value. However, we urge researchers to acknowledge that
individuals do not necessarily respond to the mean of the peer group action and it is likely
a function of whether a conformism or spillover game is at play. These have important
policy implications that can be tested, since nonlinearity and behavioral foundations can
be inferred from data.

5. CONCLUSION

Most papers that estimate peer effects use the LIM model, which assumes that impact
on outcomes is linear and that the mean peers’ outcomes matter. In this paper, we have
argued that to prescribe adequate policies, one needs to determine the correct peer ref-
erence group (or social norm) and know which model microfounds the LIM model. We
have developed a general model that embeds the spillover and the conformist model and
a general social norm for which the LIM model is a special case.

We structurally estimated this model for ten different activities and showed which
model mattered the most for each activity. We found that, for most activities, individu-
als did not behave according to the LIM model; that is, their social norm was not the
average outcome of their peers. For example, for GPA, self-esteem, exercise, and study
effort, we found that individuals cared mostly about the agents who made a relative high
effort among their peers, while for trouble behavior, fighting, and drinking, the peers
that mattered were the ones who exerted relatively low effort in each activity. We then
implemented some counterfactual policies; that is, we determined for each activity the
taxes/subsidies that would restore the first best. We found that in most cases, it was opti-
mal to target some individuals in the network. For example, for GPA, the most effective
way of reaching the social optimum would be to only subsidize a selected number of
individuals, while, in the LIM model, the planner should give the same subsidy to all indi-
viduals. This implies that by imposing the LIM model, the policy recommendations may
be very wrong and lead to inefficient outcomes.

More generally, our aim in this study was mainly methodological, as we wanted to show
the potential mistakes made by using the (reduced-form) LIM model. While we consid-
ered a tax/subsidy policy that would restore the first best, other policies could be imple-
mented. For example, we could consider a policy for which the planner would either max-
imize (for positive activities such as GPA or self-esteem) or minimize (for negative activi-
ties such as risky behavior or drinking) total outcome (instead of welfare) under a budget
constraint. Since in our estimations, we show that the peer reference group greatly varies
between different activities and very rarely corresponds to the mean peers’ outcomes, the
discrepancy between the LIM and our general model in terms of policy recommendations
would still be very large.
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The takeaway from our study is that a tighter link between theory, econometric meth-
ods, and data is necessary to deeply understand how peer effects work and which policy
to recommend.

APPENDIX A: EXISTENCE AND UNIQUENESS OF EQUILIBRIUM (PROPOSITION 1)

A.1. Existence of Nash Equilibrium

Define the social norm mapping ỹ :Rn
+ → R

n
+ as follows:21

ỹ(y) := (̃
y1(y)� ỹ2(y)� � � � � ỹn(y)

)
� (14)

ASSUMPTION 1: For all i = 1�2� � � � � n, agent i’s social norm ỹi(y) : Rn
+ → R+, is mono-

tone increasing, continuous, linear homogeneous, and normalized: ỹi(1) = 1.22

Clearly, the CES norm (4) satisfies Assumption 1 for any β ∈ [−∞�+∞]. The best-
reply (BR) mapping is given by (7) or, in matrix form:

y = b(y) := (1 − λ2)α+ (λ1 + λ2)̃y(y)� (15)

Let μ := (λ1 + λ2) ∈ (0�1). For each i = 1�2� � � � � n, define

α̃i := 1 − λ2

1 −μ
αi and α̃ := (̃α1� α̃2� � � � � α̃n)� (16)

Then, the BR mapping (15) can be written as follows:

y = b(y) := (1 −μ)α̃+μ ỹ(y)� (17)

For any n-dimensional vector x = (x1�x2� � � � � xn), define

xmin := min
1≤i≤n

{xi}� xmax := max
1≤i≤n

{xi}�

LEMMA 2: Under Assumption 1, the following inequalities hold for any y ∈R
n
+:

ymin ≤ ỹmin(y) ≤ ỹmax(y) ≤ ymax� (18)

PROOF: By Assumption 1, ỹ(·) is increasing over Rn
+. Furthermore, linear homogeneity

and the normalization together imply that ỹ(c1) = c1 for any scalar c ≥ 0. Hence:

ymin(y)1 = ỹ
(
ymin(y)1

) ≤ ỹ(y) ≤ ỹ
(
ymax(y)1

) = ymax(y)1�

which is equivalent to (18). This completes the proof. Q.E.D.

PROPOSITION 3: For any α̃ ∈ R++, any μ ∈ (0�1), any network g, and any norm satisfying
Assumption 1, the set of Nash equilibria is non-empty and contains a minimum equilibrium
y∗ and a maximum equilibrium y∗∗.

21For the ease of the presentation, the social norm of individual i is denoted by ỹi(y) ≡ ỹ−i(β) ≡ ỹ−i(y−i�β).
22Here, and everywhere below, 1 stands for the n-dimensional vector of ones.
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PROOF: Consider a game with payoffs (6), social norms (14), and each agent’s strategy
space [̃αmin − ε� α̃max + ε], where ε > 0 is small. Clearly, this is a supermodular game.23

Hence, the set of Nash equilibria of the restricted game contains a minimum equilibrium
y∗ and a maximum equilibrium y∗∗ (Topkis, 1998, Theorem 4.2.1). Also, the set of Nash
equilibria in the original game is the same as in the restricted game. To see this, using the
BR (17), concavity of the min-function (resp., convexity of the max-function), and Lemma
2, for any agent i, we find that

bi

(
y∗) ≥ min

1≤i≤n

{
(1 −μ)α̃i +μỹi

(
y∗)} ≥ (1 −μ)α̃min +μỹmin

(
y∗)

≥ (1 −μ)α̃min +μy∗
min =⇒ bi

(
y∗) ≥ α̃min;

bi

(
y∗) ≤ max

1≤i≤n

{
(1 −μ)α̃i +μỹi

(
y∗)} ≤ (1 −μ)α̃max +μỹmax

(
y∗)

≤ (1 −μ)α̃min +μy∗
max =⇒ y∗

max ≥ α̃max�

Thus, every Nash equilibrium in both the restricted game and the unrestricted game is
interior and satisfies α̃min ≤ y∗

i ≤ α̃max for all i = 1�2� � � � � n. Hence, restricting the strategy
space of each player to [̃αmin −ε� α̃max +ε] does not change the set of Nash equilibria. This
completes the proof. Q.E.D.

A.2. Uniqueness of Nash Equilibrium

A.2.1. Uniqueness of Nash Equilibrium for Convex Norms

ASSUMPTION 2: The social norm mapping ỹ : Rn
+ → R

n
+ is globally convex, that is, the

inequality ỹ((1 − γ)x + γz) ≤ (1 − γ)̃y(x) + γ̃y(z) holds for any γ ∈ [0�1] and for any x� z ∈
R

n
+.

PROPOSITION 4: Let the social norm mapping ỹ : Rn
+ → R

n
+ satisfy Assumptions 1 and 2.

Then, (17), and hence (15), has a unique fixed point.

PROOF: Let ‖·‖∞ be the standard sup-norm over Rn, that is,

‖z‖∞ := max
i=1�2�����n

|zi|� for all z = (z1� z2� � � � � zn) ∈ R
n�

For all x� z ∈R
n
+, the following relations are readily verified:24

‖z − x‖∞ = ‖x ∨ z − x ∧ z‖∞; (19)

−z ≤ x ≤ z =⇒ ‖x‖∞ ≤ ‖z‖∞; (20)∥∥̃y(z)
∥∥

∞ ≤ ‖z‖∞� (21)

23A game with strategies in R is a supermodular game if (i) each player’s strategy space is compact; (ii)
each player’s utility is upper semi-continuous; (iii) each player’s utility function has increasing differences.

24We use standard notation of lattice theory: for all x� z ∈R
n,

x ∨ z := (
max{x1� z1}�max{x2� z2}� � � � �max{xn� zn}

)
�

x ∧ z := (
min{x1� z1}�min{x2� z2}� � � � �min{xn� zn}

)
�

Observe that the inequality (21) is an immediate implication of Lemma 2.
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From the monotonicity of the BR mapping (17), we have

b(x ∧ z) − b(x ∨ z) ≤ b(z) − b(x) ≤ b(x ∨ z) − b(x ∧ z)�

Using consecutively (20), (17), the homogeneity and convexity of ỹ(·), (21), and (19), we
obtain ∥∥b(z) − b(x)

∥∥
∞ ≤ ∥∥b(x ∨ z) − b(x ∧ z)

∥∥
∞ = μ

∥∥̃y(x ∨ z) − ỹ(x ∧ z)
∥∥

∞

= μ
∥∥̃y(x ∧ z + x ∨ z − x ∧ z) − ỹ(x ∧ z)

∥∥
∞

= μ

∥∥∥∥2̃y
(

1
2

x ∧ z + 1
2

(x ∨ z − x ∧ z)
)

− ỹ(x ∧ z)
∥∥∥∥

∞

≤ μ
∥∥̃y(x ∧ z) + ỹ(x ∨ z − x ∧ z) − ỹ(x ∧ z)

∥∥
∞

= μ
∥∥̃y(x ∨ z − x ∧ z)

∥∥
∞ ≤ μ‖x ∨ z − x ∧ z‖∞ = μ‖z − x‖∞�

that is, for all x� z ∈ R
n
+, the following inequality holds: ‖b(z)−b(x)‖∞ ≤ μ‖z−x‖∞. There-

fore, as μ ∈ (0�1), b(·) is a contraction over the complete metric space (Rn
+�ρ), with the

distance ρ(x� z) := ‖x − z‖∞ for all x� z ∈ R
n
+. By the contraction mapping theorem, b(·)

has a unique fixed point y∗ ∈ R
n
+. This completes the proof. Q.E.D.

A.2.2. Uniqueness of Nash Equilibrium for Concave Norms

ASSUMPTION 3: The social norm mapping ỹ : Rn
+ → R

n
+ is globally concave, that is, the

inequality ỹ((1 − γ)x + γz) ≥ (1 − γ)̃y(x) + γ̃y(z) holds for any γ ∈ [0�1] and for any x� z ∈
R

n
+.

PROPOSITION 5: Let the social norm mapping ỹ : Rn
+ → R

n
+ satisfy Assumptions 1 and 3.

Then, (17), and hence (15), has a unique fixed point.

PROOF: We proceed by contradiction. From Proposition 3, there exist the minimum
equilibrium y∗ and the maximum equilibrium y∗∗. Assume that y∗∗ �= y∗, so that the set
I :={i|y∗∗

i > y∗
i } of agents is non-empty. For each i ∈ I , define τi by

τiy
∗∗
i + (1 − τi)y∗

i = 0 =⇒ τi := 1 − y∗∗
i

y∗
i

< 0�

Pick j ∈ I such that τj = max{τi|i ∈ I}. It is readily verified that25

τjy∗∗ + (1 − τj)y∗ ≥ 0 =⇒ bj

(
τjy∗∗ + (1 − τj)y∗) ≥ bj(0) > 0� (22)

From (22), and by definition of τj , we get26

bj

(
τjy∗∗ + (1 − τj)y∗) > 0 = τjy

∗∗
j + (1 − τj)y∗

j

=⇒ bj

(
τjy∗∗ + (1 − τj)y∗) > τjbj

(
y∗∗) + (1 − τj)bj

(
y∗)� (23)

25Here bj (·) is the jth component of (17). We use monotonicity of bj (·) and bj (0) = (1 −μ)α̃i > 0.
26Because y∗ and y∗∗ are Nash equilibria, τjbj (y∗∗) + (1 − τj)bj (y∗) = τjy

∗∗
j (1 − τj)y∗

j .
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However, applying bj(·) to both parts of the identity, we obtain

y∗ = −τj

1 − τj
y∗∗ + 1

1 − τj

(
τjy∗∗ + (1 − τj)y∗)�

and using concavity of bj(·), we get

bj

(
y∗) ≥ −τj

1 − τj
bj

(
y∗∗) + 1

1 − τj
bj

(
τjy∗∗ + (1 − τj)y∗)

=⇒ bj

(
τjy∗∗ + (1 − τj)y∗) ≤ (1 − τj)bj

(
y∗) + τjbj

(
y∗∗)�

which contradicts (23). This completes the proof. Q.E.D.

It is now straightforward to prove Proposition 1.
Case 1: β ∈ (1�+∞]. In this case, the social norm mapping ỹ : Rn

+ → R
n
+ is convex. The

existence and uniqueness result follows from Proposition 4.
Case 2: β ∈ [−∞�1]. In this case, the social norm mapping ỹ :Rn

+ →R
n
+ is concave. The

existence and uniqueness result follows from Proposition 5.

APPENDIX B: ADDITIONAL DETAILS STRUCTURAL ESTIMATION

Weighted Average GMM. Given the moment conditions are based on two distinct
groups, we follow the estimation strategy of Arellano and Meghir (1992). Formally, let
ŷ be the OLS predictor of y (or any exogenous predictor of y, i.e., an object that is only
a function of x), and let ỹ ′

−is(ŷs�β) denote the derivative of ỹ−is(ŷs�β) with respect to β.
Further, define the set of instruments as zi = [xi� ỹ−is(ŷs�β)� ỹ ′

−is(ŷs�β)]. There are two
orthogonality assumptions on the error term: (1) E(εizi) = 0 for all non-isolated individ-
uals, and (2) E(εixi) = 0 for all isolated individuals. The orthogonality conditions follow
directly from the assumption that E(εi|Z�G) = 0 for all i as ŷ is only a function of x. Then,
the method of moments estimator θ = [γ ′�λ1�λ2�β]′ is the solution of

Q(θ) = h1(θ)W1h
′
1(θ) + h2(θ)W2h

′
2(θ)�

where

h1(θ) = 1
N1

N1∑
i=1

[
yi − (1 − λ2)xiγ − (λ1 + λ2)ỹ−is(y−is�β))

]
zi

and

h2(θ) = 1
N2

N2∑
i=1

[yi − xiγ]xi

for non-isolated and isolated individuals, respectively. Note, N1 is the number of non-
isolated individuals and N2 is the number of isolated individuals. Note, the identifica-
tion of θ relies on both moment conditions so we need to ensure that both are asymp-
totically not-negligible, that is, limN1+N2→∞

N1
N1+N2

= r1 ∈ (0�1) (which is equivalent to
limN1+N2→∞

N2
N1+N2

= r2 ∈ (0�1)).
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Concentrated GMM. For estimation purposes, as the moment functions are linear in
γ , we can concentrate the objective function around [λ1�λ2�β]. Taking the first-order
condition of Q(θ) with respect to γ , we obtain (after long, but straightforward algebra):

γ̂(λ1�λ2�β) =
[

(1 − λ2)2

N2
1

X′
1Z1W1Z′

1X1 + 1
N2

2

X′
2X2W2X′

2X2

]−1

×
[

(1 − λ2)
N2

1

X′
1Z1W1Z′

1

(
y1 − (λ1 + λ2)φ1(y−i�β)

) + 1
N2

2

X′
2X2W2X′

2y2

]−1

�

where for any (row) vector ai = (xi� zi�wi� yi), the matrix A1 = (X1�Z1�W1) is obtained by
staking ai for all non-isolated individual i, and A2 = (X2�Z2�W2) is obtained by staking ai

for all isolated individual i.
The concentrated objective function is therefore Q̃(θ̃) = Q̃([λ1�λ2�β]) = Q([γ̂ ′(λ1�λ2�

β)�λ1�λ2�β]), where θ̃ = [λ1�λ2�β]. The function is minimized numerically in Sec-
tion 3.4.

APPENDIX C: SOCIAL OPTIMUM (FIRST BEST)

Consider a standard welfare function W (y�g) = ∑
i Ui(yi� y−i�g), where each agent i’s

utility Ui(yi� y−i�g) is given by (6). The planner chooses the actions y1� y2� � � � � yn of each
of the n agents that maximizes W (y�g). The first best is equal to

yo
i = (1 − λ2)αi + (λ1 + λ2)ỹ−i(β) + λ1

∑
j

yj
∂ỹ−i(β)

∂yi

+ λ2

∑
j

(
yj − ỹ−j(β)

)∂ỹ−i(β)
∂yi

� (24)

PROPOSITION 6: Assume that λ1 + λ2 < 1. Then, the first-best outcome is unique.

PROOF: To render the notations more explicit, denote ỹ−i(β) ≡ ỹ−i(z�β). Let us restate
(24) in vector-matrix form:

y = (1 − λ2)α+ λ1F(y) + λ2G(y)� (25)

where the mappings F(y) = (F1(y)�F2(y)� � � � �Fn(y)) and G(y) = (G1(y)�G2(y)� � � � �
Gn(y)) are defined, respectively, as follows:

Fi(y) := ỹ−i(y−i�β) +
∑
j

yj(y−j)
∂ỹ−i(y−j�β)

∂yi
�

Gi(y) := ỹ−i(y−i�β) +
∑
j

(
yj − ỹ−i(y−j�β)

)∂ỹ−i(y−j�β)
∂yi

�

At the extreme case of λ1 = λ2 = 0, the fixed point condition (25) has a unique solution
yO = α. Furthermore, since the right-hand side of (25) is continuously differentiable with
respect to λ1, λ2 and, since at λ1 = λ2 = 0, (λ1�λ2� y) = (0�0�α), by the implicit function
theorem, there exist threshold values λ̂1 > 0 and λ̂2 > 0 of λ1 and λ2, respectively, such
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that (25) defines a single-valued function yO(λ1�λ2) for all (λ1�λ2) ∈ [(0�0); (̂λ1� λ̂2)].
Moreover, we need to impose that λ1 + λ2 < 1 for each model to be well-defined, which
implies that 0 < λ̂1 + λ̂2 < 1. It remains to prove that yO(λ1�λ2) is a unique solution to
(25). We proceed by contradiction. Assume that there exists a sequence (λk

1 �λ
k
2 ) → 0,

such that, for any (λk
1 �λ

k
2 ), there exists ŷ(λk

1 �λ
k
2 ) �= yO(λk

1 �λ
k
2 ). Two cases may arise.

Case 1: the sequence ŷ(λk
1 �λ

k
2 ) converges to α. This case is impossible since it implies

the existence of two distinct branches of the fixed point correspondence defined by (25),
which violates the implicit function theorem.

Case 2: the sequence ŷ(λk
1 �λ

k
2 ) has a subsequence, which does not converge to α but

converges to some ξ �= α. This leads to a contradiction since both the left-hand side
and the right-hand side of (25) are continuous with respect to (λ1�λ2� y) at (λ1�λ2� y) =
(0�0�ξ). Taking the limit on both sides of (25) under (λk

1 �λ
k
2 � ŷ(λk

1 �λ
k
2 )) → (0�0�ξ), we

conclude that y = ξ must be a solution to (25) in the extreme case of λ1 = λ2 = 0. But we
have assumed ξ �= α, and (25) clearly has no solutions other than α, a contradiction.

This completes the proof. Q.E.D.
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