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We study the propagation of monetary shocks in a sticky-price general equilibrium
economy where the firms’ pricing strategy features a complementarity with the deci-
sions of other firms. In a dynamic equilibrium, the firm’s price-setting decisions depend
on aggregates, which in turn depend on the firms’ decisions. We cast this fixed-point
problem as a Mean Field Game and prove several analytic results. We establish exis-
tence and uniqueness of the equilibrium and characterize the impulse response func-
tion (IRF) of output following an aggregate shock. We prove that strategic complemen-
tarities make the IRF larger at each horizon. We establish that complementarities may
give rise to an IRF with a hump-shaped profile. As the complementarity becomes large
enough, the IRF diverges, and at a critical point there is no equilibrium. Finally, we
show that the amplification effect of the strategic interactions is similar across models:
the Calvo model and the Golosov–Lucas model display a comparable amplification, in
spite of the fact that the non-neutrality in Calvo is much larger.

KEYWORDS: Strategic complementarities, mean field games, menu costs, impulse
response analysis, monetary shocks.

1. INTRODUCTION

IN SPITE OF SUBSTANTIVE PROGRESS IN THE THEORY AND EMPIRICS of general equilib-
rium models with sticky prices, the need for tractability leads most analyses to abstract
from the interactions between firms’ decisions in price setting. Yet such complementari-
ties are appealing because they amplify the non-neutrality of nominal shocks, as argued
by Nakamura and Steinsson (2010) and Klenow and Willis (2016), and because of their
empirical relevance.1 Existing general equilibrium analyses proceed by exploring these
effects numerically, as in Nakamura and Steinsson (2010), Klenow and Willis (2016),
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and Mongey (2021), or abstracting from the decision about the timing of adjustments,
as in Wang and Werning (2022), or abstracting from idiosyncratic shocks, as in Caplin and
Leahy (1997). In this paper, we develop a new analytic approach to study a general equi-
librium where the dynamic path of aggregates influences individual decisions, and vice
versa. The results provide a thorough characterization of a sticky-price equilibrium in a
state-dependent model featuring both idiosyncratic shocks and strategic complementari-
ties, or substitutabilities, in pricing decisions. The approach is amenable to applications
to other fields of macroeconomics.

A rigorous treatment of strategic complementarities in a general equilibrium model is
involved: decisions depend on aggregate variables, which in turn depend on individual
decisions. This fixed-point problem is especially difficult in models with lumpy behavior,
where the optimal decisions are non-linear (Ss rules) and time-varying. A recent analysis
by Wang and Werning (2022) presents analytic results for a dynamic oligopoly model.
In this insightful paper, tractability is obtained by assuming that the timing of the firm’s
price adjustments is exogenous, à la Calvo. Our approach shares with Caplin and Leahy
(1997) and Wang and Werning (2022) a quest for analytic results. A main difference with
respect to these papers is that we consider a problem where the firm’s decisions are state-
dependent and where idiosyncratic shocks feature prominently at the firm level.2

We present several analytic results that characterize the firm’s optimal policy and the
general equilibrium in a dynamic environment featuring strategic complementarities (or
substitutabilities) and state-dependent decisions. The key breakthrough is obtained by
casting the problem using the mathematical structure of Mean Field Games (MFG), as
laid out by Lasry and Lions (2007). The problem takes the form of a system of two coupled
partial differential equations: one Bellman equation describing individual decisions, and
one Kolmogorov equation describing aggregation. The usefulness of employing the MFG
framework to study the dynamic behavior of high-dimensional cross-sections was high-
lighted by Achdou, Han, Lasry, Lions, and Moll (2022), Ahn, Kaplan, Moll, Winberry,
and Wolf (2018) where numerical methods were discussed. Relative to the MFG litera-
ture, and its applications to economics, this paper innovates in two dimensions. First, we
focus on an analytic characterization of the dynamics that ensue following a perturbation
of the stationary equilibrium.3 The presence of strategic complementarities can create,
even in simple static models, lack of equilibrium or multiplicity, which makes analytical,
as opposed to purely numerical methods, necessary.4 Second, we consider an impulse
control problem, instead of one with drift control, that is, we deal with the case of lumpy
adjustments. This case, appearing in several economic contexts, motivates our interest
and is mathematically more delicate since it requires to solve a problem with time-varying
boundaries.

We consider an economy with random menu costs of the Calvo-plus type considered in
Nakamura and Steinsson (2010). This model spans price-setting models in between the

2Absent idiosyncratic shocks, all price changes are either increases or decreases at a point in time. Instead,
idiosyncratic shocks allow us to relate to the micro-data on price changes, which have been shown to encode
information about shock propagation.

3We often refer to this one-off perturbation as to an “MIT shock”. This requires solving for the equilibrium
dynamics triggered by a small unexpected perturbation of the stationary distribution. See Boppart, Krusell,
and Mitman (2018) for numerical techniques to solve for a similar type of perturbation, and for the same
interpretation of the resulting equilibrium as an impulse response.

4Note that the well-known “monotonicity condition” for uniqueness, developed by Lasry–Lions and used in
almost all papers in this area, corresponds to the case of strategic substitutability and thus is not useful for the
solution of the economically more interesting case of strategic complementarities.
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pure Ss model of Golosov and Lucas (2007) and the pure time-dependent model of Calvo
(1983). The dynamic equilibrium for an economy without strategic interactions was solved
analytically in Alvarez and Lippi (2022). We follow Klenow and Willis (2016) and extend
that model to capture both micro and macro complementarities in the decision problem
of the firm. These originate from the fact that the firm’s flow profit depends on its own
markup and the markup (or price) of the average firm, with a non-zero cross derivative.
Our framework allows us to study analytically the effect of such interactions on the firm’s
optimal Ss rules after the shock as well as its effect on the aggregate dynamics.

Main Results. First, we establish conditions for the existence and uniqueness of the
equilibrium and analytically characterize the impulse response function (IRF) of output
to a once and for all nominal shock. If an equilibrium exists, it is unique. We show, more-
over, that as the strategic complementarity becomes larger, the output’s IRF increases
at each horizon, in a convex fashion, that is, increasing more as the complementarity
increases. Indeed, the IRF becomes arbitrarily large as the strategic complementarity ap-
proaches a critically high value. At that value, the equilibrium does not exist, and for
strictly larger values the equilibrium is not well-posed; for example, it is not continuous
as a function of the parameters. Around the critical values at which the equilibrium does
not exist, the equilibrium outcomes change dramatically (i.e., they “have a pole”). On the
other hand, the equilibrium always exists when the interactions involve substitutability (as
opposed to complementarity) and the IRF converges to zero as substitutability becomes
arbitrarily large, that is, the economy behaves as one with flexible prices. It may seem sur-
prising that, even with a large degree of strategic complementarities, there are no multiple
equilibria. Instead, the way that “excessively large” complementarities manifest is by the
equilibrium being “ill-posed.” The underlying reason is that the best response functions
are linear, in a sense properly defined in Section 3 for the Calvo model and in Section 6.2
for the general case.

Second, we show that the presence of a sufficiently large strategic complementarity
makes the IRF hump-shaped as a function of time elapsed since the shock, while if there is
no complementarity, the IRF is monotone decreasing. This is a novel result that illustrates
the substantive economic consequences of strategic interactions.

Third, we note that while most of the analysis focuses on a small monetary shock, our
results can be used to study the impulse response following any perturbation of the initial
distribution. For instance, we can study the response to a markup shock or to a volatility
shock or, in general, to a one-off perturbation that affects the economy’s steady-state
distribution.

Fourth, while the core of the analysis focuses on the effect of a single shock and the
associated impulse response, we also characterize the unconditional variance of output
if monetary shocks are i.i.d., an experiment similar to the one in the classic articles by
Caplin and Leahy (1997) and by Nakamura and Steinsson (2010). We show that, in this
case, the unconditional variance of output is an increasing function of the strength of
strategic complementarity.

Fifth, we show that for the models in the Calvo-plus class, the strategic complementari-
ties amplify the Cumulative Impulse Response (CIR) by a measure that is approximately
the same for all models within this class. For instance, the Calvo model and the Golosov–
Lucas model display a comparable amplification, in spite of the fact that the level of the
CIR in these models differs by a factor of 6. A simple analytic expression for the general
case is given in equation (61).

Sixth, all the results described above also hold for the pure time-dependent Calvo
model, which we study in Section 3 to introduce the tools used for the general case.
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Related Literature. Our modeling of strategic complementarities shares with the classic
article by Caplin and Leahy (1997) that the firm’s profit function depends on both its own
markup as well as on the average markup. One difference is that our economy features
idiosyncratic shocks, while theirs does not. While they studied an equilibrium where the
aggregate nominal shocks follow a drift-less Brownian motion, we mostly focus on an
impulse response after a once and for all shock, which makes it easy for us to connect to,
for example, the VAR evidence.5

Our work is closely related to Nakamura and Steinsson (2010) and Klenow and Willis
(2016). The DSGE models in both papers consider an input-output structure that makes
the (sticky) price of other industries part of the cost of each industry (i.e., “macro strate-
gic complementarities”). Both papers, as well as ours, consider a frictionless labor market,
idiosyncratic shocks at the firm level, and menu cost paid by firms to adjust prices. Naka-
mura and Steinsson (2010) allow, as we do, for a random menu cost. Klenow and Willis
(2016) allow, as we do, for a non-constant demand elasticity at the firm level, which yields
what they called “micro-strategic complementarities.” We show that, up to second order,
micro and macro complementarities are additive, so we capture both of them through
a single parameter. Both papers use numerical techniques to characterize the effect of
monetary shocks on aggregate output, while we provide analytic results.

Our analysis also relates to Wang and Werning (2022), who analyze the propagation
of shocks in a sticky-price economy with strategic complementarities. They present an
analytic solution assuming firms follow a time-dependent rule à la Calvo. Some features
of the underlying environment are similar: the forces creating complementarities (vari-
able demand elasticity, decreasing returns, non-zero Frisch elasticity) are fully summa-
rized by a single parameter. Other modeling aspects are different: first, they consider a
dynamic oligopoly without idiosyncratic shocks, while we focus on oligopolistically com-
petitive markets with idiosyncratic shocks, a useful feature to connect to the distribution
of price changes in the data. Second, the timing of adjustment is exogenous in their pa-
per, while the firms in our setup choose both the timing as well as the size of the price
adjustments. The simplification of the exogenous-timing and no-idiosyncratic shocks al-
lows them to connect with the New Keynesian Phillips curve and to study the importance
of strategic complementarities. Third, their setup features a finite number of firms (per
sector), allowing them to analyze the role of concentration within an industry, a feature
that we cannot address.

Another related contribution is Auclert, Rigato, Rognlie, and Straub (2022), who solve
a discrete-time model with strategic complementarities for a time-dependent and for a
state-dependent pricing model. A main difference is that they restrict the strength of
the strategic complementarity to a specific value (corresponding to the case where θ =
−1 in our model). Their main novel theoretical result is to represent the outcomes of
the state-dependent model as the sum of two time-dependent models. They obtain the
equations that the system must obey, whose parameters have to be solved numerically.
They use this decomposition, among other things, to evaluate how closely the Calvo model
approximates standard versions of the state-dependent model.

A related contribution in the Mean Field Game literature is Bertucci (2018), who ana-
lyzed a problem with impulse control. His problem is simpler in that the decision maker
considers only one adjustment, and that the target to which it adjusts is pre-specified. Ad-
ditionally, he focuses on existence and uniqueness, using a slightly different notion of the
solution.

5An interesting feature of Caplin and Leahy (1991, 1997) is to produce a state-dependent reaction to mon-
etary shocks, perhaps the only model where a clear notion of “overheating” due to monetary policy appears.
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Organization of the Paper. The next section lays out the general equilibrium environ-
ment of the problem and the microfoundations of strategic interactions in price setting.
Section 3 uses a Calvo model to introduce our approach and to display some new results.
Section 4 sets up the dynamic equilibrium as a MFG. Section 5 studies a linearized version
of the MFG and derives analytic results that are key for the equilibrium analysis. Section 6
characterizes the dynamic equilibrium and discusses the economic implications of strate-
gic interactions. Section 7 concludes and discusses future work. The Appendix may be
found in the online Supplemental Material (Alvarez, Lippi, and Souganidis (2023)).

2. GENERAL EQUILIBRIUM SETUP AND COMPLEMENTARITIES

This section presents an economy where households maximize the present value of life-
time utility and firms maximize profits subject to costly price adjustments. We show that
non-negligible complementarities between the price-setting strategies of firms can arise
through two channels, possibly coexisting: first, from consumers’ preferences that yield a
demand system with a non-constant price elasticity, a phenomenon the literature dubbed
micro-complementarities, as in Kimball (1995); second, a production structure with sticky-
price intermediate goods, as in Klenow and Willis (2016) and Nakamura and Steinsson
(2010), referred to as macro-complementarities. We establish that the effects of both chan-
nels on the firm’s pricing strategy are summarized by a single parameter and that, at a
symmetric equilibrium, the firm’s problem is approximated by a quadratic return function
that depends on the own price and the aggregate price, as in the classic work of Caplin
and Leahy (1997).

Households. We consider a continuum of households with time discount ρ and utility∫ ∞
0 e−ρt(U (C(t)) − aL(t) + log M(t)

P(t) ) dt, where U denotes a CRRA utility function over
the consumption composite C, the labor supply is L, M is the money stock, P is the con-
sumption deflator, and a > 0 is a parameter. The linearity of the labor supply and the
log specification for real balances are convenient simplifications also used in Golosov and
Lucas (2007) and many other papers. We follow Kimball (1995) in modeling the con-
sumption composite C using an implicit aggregator over a continuum of varieties k as
follows: 1 = (

∫ 1
0 ϒ( ck(t)

C(t) Ak(t)) dk), where Ak denotes a preference shock for variety k,
and ϒ(1) = 1, ϒ′ > 0, and ϒ′′ < 0. The Kimball aggregator defines C implicitly, yielding
an elasticity of substitution that varies with the relative demand ck/C. The standard CES
demand is obtained as a special case when ϒ is a power function.

The representative household chooses ck, money demand, and labor supply to maxi-
mize lifetime utility subject to the budget constraint

M(0) +
∫ ∞

0
e− ∫ t

0 R(s) ds

[
�̃(t) + (1 + τL)W (t)L(t) −R(t)M(t) −

∫ 1

0
p̃k(t)ck(t) dk

]
dt = 0�

where R(t) is the nominal interest rates, W (t) the nominal wage, τL a constant labor
subsidy, �̃(t) is the sum of the aggregate (net) nominal profits of firms and the lump sum
nominal transfers from the government, and p̃k the price of each variety.

Firms. There is a continuum of firms, indexed by k ∈ [0�1], that use a labor (Lk) and
intermediate-good inputs (Ik) to produce the final good yk with a constant returns to
scale technology (omit time index) as follows: yk = ck + qk = (Lk/Zk)αI1−α

k . Note that
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final goods are used by consumers, ck, and also as an input in the production of the in-
termediate good Q = ∫ 1

0 Ik dk through the production function 1 = ∫ 1
0 ϒ( qk

Q
Ak) dk. The

aggregates Q and C have the same unit price, P , since they are produced with identical
inputs and the same function ϒ. The labor productivity of firm k is 1/Zk and we assume
that Zk = exp (σWk) where Wk are standard Brownian motions, independent and iden-
tically distributed across firms, so that the log of Zk follows a diffusion with variance σ2.
The households’ labor supply L is used to produce each of the k goods and the price-
adjustment services Lp, so L= ∫ 1

0 Lk dk+Lp.

The Demand for Final Goods. The first-order conditions of consumers and interme-
diate-good producers yield the demand system, whose form depends on the function ϒ.
Given a total expenditure E, the demand for variety k, evaluated at a symmetric equilib-
rium, is

yk = 1
ϒ−1(1)

E

PAk

D

(
p

P

)
where D

(
p

P

)
≡ (
ϒ′)−1

(
p

P
ϒ′(ϒ−1(1)

))
and p≡ p̃/A


The Firm’s Profit Function. Let the nominal wage W be the numeraire, and p̃k = pAk

be the firm’s price. Notice that the firm’s marginal (and average) cost is χ≡ (ZkW )αP1−α,
where P is the price of intermediate inputs. We can write the firm’s (nominal) profit as
yk · (pAk − (ZkW )αP1−α). Assuming that Zα

k = Ak, that is, that preference shocks are
proportional to marginal cost shocks, then we have that each firm maximizes �(p�P) =
ykAkW ( p

W
− ( P

W
)1−α) so the profits of the individual firm do not depend on Ak since

ykAk = E
Pϒ−1(1)D(p

P
).6 The notation emphasizes that the firm’s decision depends on both

the own price, p, and the aggregate price P , and that prices are homogeneous in W .
Let us write the firm’s profit in terms of the demand D(p/P) and the cost func-

tion χ = χ(P), giving the marginal cost. We have �(p�P)
W

= E
Pϒ−1(1)D(p/P)(p − χ(P)).

The first-order condition for optimality implicitly defines the pricing function: p∗(P) =
η(p/P)
η(p/P)−1χ(P), where η(p/P) ≡ − p

D(p/P)
∂D(p/P)
∂p

so η is the elasticity of the demand with
respect to the own price p. We have the following:

PROPOSITION 1: Consider a value for P such that p∗(P̄) = P̄ . Assume thatD is decreasing
and that �(p�P) is strictly concave at (p∗(P̄)� P̄) = (P̄� P̄). We have

P̄

p∗(P̄)
∂p∗(P̄)
∂P

= 1

1 + η′(1)
η(1)

(
η(1) − 1

)
[

η′(1)
η(1)

(
η(1) − 1

)︸ ︷︷ ︸
micro elasticity

+ P

χ(P)
∂χ(P)
∂P︸ ︷︷ ︸

macro elasticity

]
� (1)

where η(1) > 1 and 1 + η′(1)
η(1)(η(1)−1) > 0. Expanding the profit function around (P̄� P̄):

�(p�P)
�(P̄� P̄)

= 1 −B
(
p− P̄
P̄

+ θP − P̄
P̄

)2

+ ι(P) + o
(∥∥∥∥p− P̄

P̄
�
P − P̄
P̄

∥∥∥∥2)
� (2)

6The assumption Zα
k =Ak allows the problem to be described by a scalar stationary state variable, the price

gap x. This is used to write the dynamic programming problem of the firm as well as to keep the expenditure
shares stationary across goods in the presence of permanent idiosyncratic shocks. This is the “price to pay” to
formulate the problem using Caballero and Engel’s “price gaps.” This assumption is also used in Woodford
(2009), Bonomo, Carvalho, and Garcia (2010), Midrigan (2011).
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where ι(·) is a function that does not depend on p, and where

B≡ −1
2
�11(P̄� P̄)
�(P̄� P̄)

P̄2 =
[
η′(1) +η(1)

(
η(1) − 1

)]
2

> 0 and

θ≡ �12(P̄� P̄)
�11(P̄� P̄)

= − P̄

p∗
∂p∗

∂P

∣∣∣∣
p∗=P̄




A few remarks are in order. First, equation (2) shows that the profit maximization
problem of the firm is approximated by the minimization of the quadratic period return
B(x+ θX)2, where x≡ p−P̄

P̄
and X ≡ P−P̄

P̄
denote the percent deviation from the symmet-

ric equilibrium of the own and the aggregate price, respectively.
Second, the extent of strategic interactions between the own price and the aggregate

price is captured by the parameter θ. Notice that static profits are maximized by setting
x= −θX . The firm’s strategy exhibits strategic complementarity if θ < 0, and it exhibits
strategic substitutability if θ > 0. Clearly, if θ �= −1, the only static equilibrium is X = 0.

Third, in the absence of macro complementarity, for example, if ∂χ

∂P
= 0, we have

θ = − η′
η(η−1)+η′ so that θ < 0 occurs if η′ > 0. This condition has a clear economic in-

terpretation: if η′ > 0, a higher P lowers the demand elasticity, which induces the firm
to raise its markup. Thus, η′ > 0 implies that the own price and the aggregate price are
strategic complements. Note, moreover, that if ∂χ

∂P
= 0, the strength of strategic comple-

mentarities is bounded, since θ > −1. Instead, if ∂χ

∂P
> 0, we can have θ < −1, a case of

interest in the discussion of the equilibrium characterization and existence (see Section 3
and Section 6).

Impulse Response of Output to a Monetary Shock. Note that an increase in the ag-
gregate nominal wage for all firms reduces the average deviation of markups from its
optimal value, that is, it lowers X . One of the most interesting objects is the path of X(t)
after a small displacement of the stationary distribution, given by the initial condition
m0(x) = m̃(x+ δ), where m̃ is the stationary density. The value of X(t) is inversely pro-
portional to the deviation from steady-state output t periods after the monetary shock δ.
Below, we also consider a more general perturbation m0(x) = m̃(x) + δν(x).

3. A SIMPLE BENCHMARK: THE CALVO CASE

This section discusses a problem with strategic complementarities and Calvo’s (1983)
pricing. Due to its tractability, this is the most common case analyzed in the sticky-price
literature. The model offers a simple setup to introduce the essential elements of the anal-
ysis and to discuss some key results, such as existence, uniqueness, and the non-monotone
impulse response profiles, that will also appear in the state-dependent problem.7

The economy features a continuum of atomistic firms. Each firm takes as given the path
of average deviation of markups X(t) for all times t ≥ 0. The firm can change its price
only at random times {τ̄k}, given by a Poisson process with parameter ζ. We refer to these
times as adjustment opportunities, and to the state chosen at those times as the optimal
reset value. After resetting its price at time t, the firm’s markup gap x(t) evolves as a drift-
less Brownian motion with variance σ2. The markup jumps right after a price change at

7We are thankful to an anonymous referee for suggesting that we study the Calvo problem.
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t = τ̄k by the amount J̄k; thus, the markup gap evolves as

x(s) = x(t) + σ[W (s) −W (t)
]+

∑
k:τ̄k≤s

J̄k for all s ∈ [t�T ]� (3)

where W is a standard Brownian motion.
We assume that the strategic complementarities are at work only up to horizon T , and

allow T to be finite or infinite. In particular, for t < T , the period flow cost is B(x +
θX)2 with B > 0, which feature strategic interactions, corresponding to the description in
Proposition 1. Each firm minimizes the expected discounted value of the flow cost—with
discount rate ρ—taking the path X(t) for t ∈ [0�T ) as given. At time t = T , a firm with
state x has a continuation uT (x), independent of θ and X(t). We will assume that uT
equals the steady-state value function ũ(x) = B

(ρ+ζ) (σ
2

ρ
+ x2) (see the proof of Lemma 1).

Optimal Price Setting. For t ∈ [0�T ), the state of the firm is (x� t), the value function is
u(x� t), and the optimal reset value at t is x∗(t). The firm takes as given uT : R → R and
X : [0�T ) → R, and its value function u :R× [0�T ) →R solves

u(x� t) = min
{J̄k}∞

k=1

E

[∫ T

t

e−ρ(s−t)B
(
x(s) + θX(s)

)2
ds+ e−ρ(T−t)uT

(
x(T )

)∣∣∣x(t) = x
]
� (4)

where the state evolves subject to equation (3).

LEMMA 1: The value function u :R× [0�T ) → R solves the PDE:

ρu(x� t) = B(x+ θX(t)
)2 + σ2

2
uxx(x� t) + ut (x� t) + ζ

(
min
z
u(z� t) − u(x� t)

)
� (5)

with terminal condition u(x�T ) = ũ(x) for all x, and the optimal reset x∗ : [0�T ) →R solves
x∗(t) = arg minz u(z� t), and it is given by

x∗(t) = −(ρ+ ζ)θ
∫ T

t

e−(ρ+ζ)(s−t)X(s) ds for all t ∈ [0�T )
 (6)

The value function u(x�0) is finite for all x if and only if∫ T

0
e−ρtB

(
x∗(t) + θX(t)

)2
dt <∞
 (7)

The optimal policy at the times when t = τ̄k is for x to jump to x∗(t), that is, J̄k =
x∗(t) − x(t−). Three features will hold, with appropriate modifications, in the general
case: the PDE in equation (5), the condition that 0 = ux(x∗(t)� t), and that the optimal
decision rule x∗(t) is a (linear) function of the path of futureX ’s. One difference with the
state-dependent model is that neither B nor σ2 affects the optimal reset price in equation
(5). If the condition in equation (7) is violated, the expected discounted profits of the firm
diverge; this condition, given equation (6), restricts the path of X(t). Furthermore, for
future reference, note that the integral equation (6) is equivalent to the following ODE
and boundary condition:

ẋ∗(t) = (ρ+ ζ)
(
x∗(t) + θX(t)

)
for all t ∈ [0�T ) and e−(ρ+ζ)Tx∗(T ) = 0
 (8)
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Aggregation. For the models of interest, X(t) is the cross-sectional average of the x’s.
Consider a discrete-time version with a (short) interval of length dt. In this interval, a
fraction of firm ζ dt change its price, so their markup becomes x∗(t). The remaining firms
keep their (expected) value since x evolves as a drift-less Brownian motion. Thus, X(t +
dt) = (1 − ζ dt)X(t) + ζ dtx∗(t). Taking the limit as dt → 0, we obtain

Ẋ(t) = ζ(x∗(t) −X(t)
)

for all ∈ [0�T )� with X(0) = −δ� or equivalently (9)

X(t) =X(0)e−ζt + ζ
∫ t

0
e−ζ(t−s)x∗(s) ds for all t ∈ [0�T )
 (10)

Next, we define the equilibrium:

DEFINITION 1: An equilibrium for an initial condition X(0) = −δ is two paths
{x∗(t)�X(t)} for t ∈ [0�T ) that solve the integral equation (6), encoding optimality, the
integral equation (10), encoding aggregation, and satisfy the finite-value condition in
equation (7). Alternatively, one could replace the two integral equations with the o.d.e’s
and boundary conditions in equation (8) and equation (9).

A few comments are in order. First, the initial condition X(0) = −δ has the interpre-
tation of the impact effect of a once and for all shock to nominal wages, caused by an
expansionary monetary shock. In what follows, we normalize δ= 1 and focus on the im-
pulse response with initial condition X(0) = −1. This is without loss of generality since
the impulse response in Calvo is linear in the shock size.

Second, optimal decisions are “forward looking,” and are solved backward from the
terminal condition x∗(T ) = 0. Aggregation is “backward looking,” and is solved forward
given the initial condition X(0). Third, the (integral) equation (6) and equation (10) are
both linear, so the equilibrium is the fixed point of a linear operator. Fourth, for the case
of T = ∞, there is a constraint on the square discounted integral of the paths.

We define the effect on the steady-state deviation of output after a monetary shock of
(normalized) size δ = 1 to be Yθ(t�T ) ≡ −X(t), since the output deviation from steady
state is, up to first order, the negative of the (average) markup deviation.

Next, we present a characterization of the equilibrium based on the solution of the
system of ODE’s. Later, we discuss the equivalent solution based on solving the integral
equation and the characterization of its kernel. We note that defining the equilibrium
as the solution of the integral equation is less conventional in economics than using the
(equivalent) system of ODE’s. Nevertheless, the analysis of the kernel previews ideas
that will be used in the state-dependent case where the system of ODE’s is not a viable
equilibrium description.

LEMMA 2: Fix ρ≥ 0, ζ > 0, T <∞, and let γ ≡ ζ

ζ+ρ . The solution of the two-dimensional
system in (8) and (9) features two eigenvalues, λ1(θ), λ2(θ), given by

λ1(θ) = ζ
(
1 − γ−�(θ)

)
2γ

�

λ2(θ) = ζ
(
1 − γ+�(θ)

)
2γ

where �(θ) ≡
√

(1 + γ)2 + 4γθ
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The critical value θ∗ solves �(θ∗) = 0; it is given by −1 ≥ θ∗ = − (1+γ)2

4γ . If θ �= θ∗, the solution
for output, Yθ(t�T ) ≡ −X(t), is

Yθ(t;T ) = (
1 + c(θ�T )

)
eλ2(θ)t − c(θ�T )eλ1(θ)t for t ∈ (0�T )� (11)

c(θ�T ) ≡
(
1 + γ+�(θ)

)
eλ2(θ)T(

1 + γ−�(θ)
)
eλ1(θ)T − (

1 + γ+�(θ)
)
eλ2(θ)T 


If θ= θ∗, the solution for output, Yθ(t�T ) ≡ −X(t), is

Yθ∗ (t;T ) = eρ2 t
⎛
⎜⎜⎝1 − ζt

ζT + 2γ
1 + γ

⎞
⎟⎟⎠ for t ∈ (0�T )
 (12)

We then have:
1. If θ > θ∗, then �(θ), λ1(θ), λ2(θ) are real, c(θ�T ) is finite. The solution Yθ∗ (t;T ) is

given by equation (11).
2. If θ = θ∗, then �(θ∗) = 0, and λ1(θ∗) = λ2(θ∗) = ρ/2. The solution Yθ∗ (t;T ) is given

by equation (12).
3. If θ < θ∗, then �(θ) is purely complex; the roots λ1(θ), λ2(θ) are complex conjugates.

The solution Yθ∗ (t;T ) is given by equation (11). The coefficient c(θ�T ) is finite if and
only if θ �= θj , where the sequence {θj}∞

j=1 is given by

θj = θ∗ − (�j)2

4γ
where �j solves �j = −(1 + γ) tan

(
�j
ζT

2γ

)
and

θ1 ≈ θ∗ − γ
⎛
⎜⎝ π

ζT + 2
γ

(1 + γ)

⎞
⎟⎠

2

for large ζT and θ1 → θ∗ as ζT → ∞


4. Define θ0 ∈ (θ1� θ
∗) as that value of θ that solves 0 = λ2(θ) + c(θ�T )(λ2(θ) − λ1(θ)).

Then, for θ = θ0, we have ∂Yθ(t�T )
∂t

|t=0 = 0, so that when θ = θ0, the output impulse re-
sponse has a zero derivative at t = 0.

The equilibrium impulse response is given in equation (11), provided that the equation
is well defined. Note that all impulse responses start at Yθ(0;T ) = 1. Inspection of the
equation shows that the equilibrium exists provided the coefficient c(θ�T ), defined in
equation (11), is finite, either real or complex. The lemma defines the critical thresholds
−1 > θ1 > θ2 > · · · , where the equilibrium does not exist. It also defines the threshold
{θ0}, satisfying θ1 < θ0 < θ

∗ ≤ −1, that is useful to determine the region for hump-shaped
impulse responses.

The next proposition uses Lemma 2 to characterize the equilibrium as a function of the
degree of strategic complementarities θ and of the time horizon T .

PROPOSITION 2: Fix ρ≥ 0 and ζ > 0. Let λ1(θ), λ2(θ), γ, θ∗, and {θj}∞
j=1 be as defined in

Lemma 2. The equilibrium output solving equation (8) and equation (9), Yθ(t;T ) ≡ −X(t),
is given by equation (11) for θ �= θj ; it is given by equation (12) for θ= θ∗. We have:
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FIGURE 1.—IRF for the Calvo model in the well-posed region (θ > θ1).

1. Whenever an equilibrium exists, it is unique.
2. If T <∞ and θ > θ1, the equilibrium exists, it is a continuous function of θ, and it is

well-posed, that is, Yθ(t�T ) > 0. Moreover, we have (recall θ1 < θ0 < θ
∗):

(2.a) For θ > θ0, then Yθ(t�T ) is decreasing in t. For T → ∞, then Yθ(t�T ) → eλ1(θ)t .
(2.b) For θ ∈ (θ1� θ0), then Yθ(t�T ) is “hump shaped” in t, that is, ∂Yθ(t�T )

∂t
|t=0 > 0.

3. If T < ∞ and θ ≤ θ1, the equilibrium exists provided θ �= θj , for j = 1�2� 
 
 
 . The
equilibrium is not well-posed over this region, that is, Yθ(t�T ) has countably many jump
discontinuities at θ= θj . In particular:
(3.a) If θ≤ θ1, the equilibrium Yθ(t�T ) oscillates with frequency |�(θ)|(ρ+ζ)

4π , and ampli-
tude eρt/2. Moreover, for any t > 0, then Yθ(t�T ) does not converge as T → ∞.

(3.b) If θ= θj for some j ≥ 1, there is no equilibrium. Fix t > 0; the function Yθ(t�T )
has a pole at θ= θj , so it changes sign and satisfies limθ→θj Yθ(t�T ) = ±∞.

4. If T = ∞:
(4.a) If θ > θ∗, there is a unique equilibrium given by Yθ(t�∞) = eλ1(θ)t . Fix any t > 0;

then Yθ(t�∞) is strictly increasing and convex in (−θ), converges to 1 for all t as
θ→ θ∗, and converges to zero for all t as θ→ ∞. As ρ→ 0, the impulse response
coefficient is λ1 = −ζ√1 + θ.

(4.b) If θ≤ θ∗, there is no equilibrium.

A few remarks are in order, beginning with the case where T is finite. First, the proposi-
tion shows that if an equilibrium exists (i.e., if c(θ�T ) is finite), then it is unique. Multiple
equilibria cannot occur as the system of differential equations has at most one solution.

Second, over the region θ ∈ (θ1�∞), the equilibrium exists, it is well-posed, that is,
Yθ(t;T ) > 0, and it is continuous as a function of the parameter θ. For T finite, the state
space is divided in two regions. For θ > θ0, the equilibrium output Yθ(t;T ) is monotone
decreasing in t, while for θ ∈ (θ1� θ0), it is hump-shaped in t, as shown in Figure 1. In
Appendix A of the Supplemental Material, we display how the interval (θ1� θ0) depends
on the value of T . The economics of this result is that large strategic complementarities
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induce firms to over-react to the initial shock. If the aggregate markup falls by 1%, the
firm now wants to react by lowering it by more than 1%. This amplifies the effect of the
original shock and produces oscillations.

Third, as θ→ θ+
1 , the equilibrium values diverge to +∞; at θ= θ1, there is no equilib-

rium; and as θ→ θ−
1 , the equilibrium values diverge to −∞; see the left panel of Figure 2.

In other words, around the critical value θ1, as well as all other critical values θ2� θ3� 
 
 
 ,
the equilibrium is not continuous as a function of the parameters and output displays an
oscillatory behavior. In the region θ < θ1, output crosses the steady-state value (Y = 0)
with a frequency that increases with −θ, and diverges as θ approaches θj ; see the right
panel of Figure 2. Additionally, for ρ > 0, the amplitude of these oscillations increases
with time. As T → ∞, there is no solution to these equations.

Finally, we note that when T = ∞, the equilibrium only exists for θ > θ∗ > θ1. In this
case, the IRF is a single exponential, as in Wang and Werning (2022). Indeed, as ρ→ 0,
the impulse response is an exponential with coefficient λ1 = −ζ√1 + θ.

An Alternative Solution Approach. The next lemma analyzes the kernel of the system
of integral equations. This alternative method will be used for the general model.

LEMMA 3: The paths {x∗(t)�X(t)} are an equilibrium if and only if the path {X(t)} satis-
fies

∫ T
0 e

−ρtX(t)2 ds <∞ and solves the integral equation

X(t) =X(0)e−ζt + θ
∫ T

0
K(t� s)X(s) ds for all t ∈ [0�T ) (13)

obtained by substituting equation (6) in equation (10). The kernel K(t� s) is given by

K(t� s) ≡ ζ(ρ+ ζ)
2ζ + ρ

(
1 − e(2ζ+ρ) min{t�s}

)
e−ζ(t+s)−ρs for all (t� s) ∈ [0�T )2


FIGURE 2.—IRF for the Calvo model in the ill-posed region.
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The kernel satisfies: (i) K(t� s) ≤ 0; (ii) K(t� s)e−ρt is symmetric in (t� s); (iii) for all T :
supt

∫ T
0 |K(t� s)|ds ≤ 1; (iv)

∫ T
0

∫ T
0 K(t� s)2 ds dt = B(T ) <∞, and B(T ) → ∞ as T →

∞; (v) for T <∞, the kernel has countably many eigenvalues μj < 0. They are ordered as
|μ1|>|μ2|>|μ3|· · · , and |μj|→ 0 as j → ∞. The corresponding eigenfunctions, φj , form
an orthonormal base.

The lemma yields all the results obtained with the ODE system, as we briefly sketch
next. In the case of T = ∞, existence and uniqueness of the solution follow by a contrac-
tion mapping argument, provided that θμ1 < 1; moreover, using that K ≤ 0 and μj < 0,
one immediately gets the monotonicity of the solution. For T <∞, and any θ, the “Fred-
holm alternative theorem” implies that if θ �= θj ≡ 1/μj for all j, then there is a unique
solution given by X(t) =∑∞

j=1
〈φj�X0〉
1−θμj φj(t) = −Yθ(t), where φj are the eigenfunctions of

K, where X0 ≡ X(0)e−ζt , and 〈·� ·〉 is the corresponding inner product. Alternatively, if
θ= θj ≡ 1/μj , there is no solution. Since by the Perron–Frobenius theorem φ1 is the only
positive eigenfunction, one can see that, as θ converges to 1/μ1, there must be a hump
on Yθ(t) = −X(t). Moreover, from the expansion in term of eigenfunctions, one can see
that when θ crosses θj the solution goes through a pole, that is, it is discontinuous at that
critical θj . Thus, if θ < θ1, the solution is ill-posed. Notice the complete equivalence with
the θj where the equilibrium fails to exist and the IRF behavior discussed in Proposition 2.

In the more general menu cost problem discussed below, where the firm chooses the
optimal adjustment times, analyzing the linear operator defined by an integral equation
similar to the one discussed here is the only available solution. Indeed, in the treatment of
the model with fixed costs discussed below, Lemma 8 is the analogous result to Lemma 3.
Moreover, the analysis of the T = ∞ and T < ∞ cases follows the same steps in Sec-
tion 6.1 and Section 6.2 as the one sketched here, where we obtain a similar characteriza-
tion of the solution in terms of the eigenfunctions in equation (59).

4. EQUILIBRIUM AS A MEAN FIELD GAME: GENERAL CASE

This section introduces the elements to set up the general equilibrium of the problem
as a mean field game. We first describe the problem of a firm whose value function u
depends on the state x and time t. The firm minimizes the discounted value of the sum
of flow cost B(x + θX)2 with B > 0 as derived in Proposition 1 and the fixed cost of
adjustment ψ, where ρ ≥ 0 is the discount rate. Additionally, with a Poisson probability
rate ζ > 0, a “free adjustment opportunity” arrives at time τ̄k and the firm can change its
price without paying a cost. The possibility of adjusting at any time by paying the fixed
cost ψ is the crucial difference with the Calvo model described above.

The firm takes as given a path for {X(t)} for t ∈ [0�T ), and a terminal value function
uT (x). As in the previous section, we will assume that uT equals the steady-state value
function ũ described below. We study the cases when T is finite, and also the limit as
T → ∞. The firm chooses stopping times and adjustments {τi� Ji}, as well as adjustments
{J̄k} at the exogenously given times {τ̄k}. The firm value function solves

u(x� t) = min
{J̄k�Ji�τi}

E

[∫ T

t

e−ρ(s−t)B
(
x(s) + θX(s)

)2
ds+ψ

∞∑
i=1�τi≤T

e−ρτi

+ e−ρ(T−t)uT
(
x(T )

)∣∣∣x(t) = x
]
�
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where the state evolves as

x(s) = x(t) + σ[W (s) −W (t)
]+

∑
i:τi≤s

Ji +
∑
k:τ̄k≤s

J̄k for all s ∈ [t�T ]�

where W is a standard Brownian motion. The reason why the state of the firm includes
time t is the time dependence ofX(t). The value function solves the following variational
inequalities for all x and t ∈ [0�T ):

ρu(x� t) = min
{
ρ
(
ψ+ min

z
u(z� t)

)
�

B
(
x+ θX(t)

)2 + σ2

2
uxx(x� t) + ut (x� t) + ζ

(
min
z
u(z� t) − u(x� t)

)}
� (14)

with u(x�T ) = uT (x) for all x. The first term in the RHS of equation (14) gives the possi-
bility of paying the fixed cost and adjusting. The second has the flow cost plus the continu-
ation, which consists of the effect of uncontrolled changes in x, changes in time t, and the
expected change if there is a free adjustment opportunity. The optimal decision rule of
the firm at each time t consists of dividing the state space in a region where control is not
exercised, the inaction region, and a complementary region where control is exercised and
the state is reset by an impulse. Three time paths describe the decision rule: ¯x(t), x̄(t),
and x∗(t) for t ∈ [0�T ). At a given time t, the optimal rule is represented by the interval
[¯x(t)� x̄(t)] so that if x(t) is in this interval, the firm does not exercise control, that is,
inaction is optimal, but if x(t) /∈ (¯x(t)� x̄(t)), then t = τi, and the firm exercises control,
immediately changing its price with a jump Ji from x(t−) to x(t+) = x∗(t). Additionally,
the firm will reset its price to x∗(t) if t is a time when a free adjustment opportunity oc-
curs, that is, if t = τ̄k. We refer to ¯x(t) and x̄(t) as the boundaries of the range of inaction,
to x∗(t) as the optimal return point.

Mean Field Game (MFG) Definition. Given initial and terminal conditions m0, uT , a
mean field game consists of the functions u, m, mapping R × [0�T ] to R, and functions

¯x, x̄, x∗, X mapping [0�T ] to R. The equilibrium is given by the solution of the coupled
system of partial differential equations: the HJB equation for the firm’s value function u,
and the KFE for the cross-sectional densitym. For all t ∈ [0�T ] and for all x ∈ [¯x(t)� x̄(t)],
the equations are

0 = ut (x� t) − ρu(x� t) + σ2

2
uxx(x� t) +B(x+ θX(t)

)2

+ ζ[u(x∗(t)� t
)− u(x� t)

]
� (15)

0 = −mt (x� t) + σ2

2
mxx(x� t) − ζm(x� t) for x �= x∗(t)� (16)

where

X(t) =
∫ x̄(t)

¯x(t)
xm(x� t) dx and x∗(t) = arg min

x
u(x� t)
 (17)
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The boundary and terminal conditions for u are

ux
(
x̄(t)� t

)= ux
(
¯x(t)� t

)= ux
(
x∗(t)� t

)= 0 for all t ∈ [0�T ]� (18)

u
(
x̄(t)� t

)= u(¯x(t)� t
)= u(x∗(t)� t

)+ψ for all t ∈ [0�T ]� (19)

u(x�T ) = uT (x) for all x
 (20)

The boundary and initial conditions for m are

0 =m(x̄(t)� t
)=m(¯x(t)� t

)
for all t ∈ [0�T ]� (21)

ζ = σ2

2
[
mx

(
x∗−(t)� t

)−mx

(
x∗+(t)� t

)+mx

(
x̄(t)� t

)−mx

(
¯x(t)� t

)]
for all t ∈ [0�T ]� (22)

m(x�0) =m0(x) for all x
 (23)

We now comment on the assumptions used above. First, the boundary conditions for
the HJB in equation (18) are typically referred to as “smooth pasting” and “optimal re-
turn point,” and the ones in equation (19) are referred to as “value matching.” They fol-
low from optimality and are a consequence of our assumption that, for each t, the value
function u(·� t) is once differentiable for all x, and twice differentiable in the range of
inaction. In particular, for any x outside the range of inaction, the value function must
satisfy u(x� t) = u(x∗(t)� t) +ψ.

Second, we will assume throughout that the inaction region is connected, that is, given
by a single interval [¯x(t)� x̄(t)], which is without loss of generality for our purposes. Third,
the density outside the inaction region, that is, where u(x� t) =ψ+ u(x∗(t)� t), is zero. In
particular, m(x� t) = 0 for all x /∈ [¯x(t)� x̄(t)]. Then, assuming continuity of m(·� t) for all
x, we obtain the boundary condition in equation (21). This is the condition to be expected
at the boundaries of the range of inaction, since no density can accumulate at these “exit”
points. Fourth, the Kolmogorov forward equation does not hold at x = x∗(t) since this
is an “entry” point, at which mx(·� t) is discontinuous. The condition in equation (22)
equates the flow that probability entering at x∗(t) with the sum of the probability per
unit of time that comes from the exit points x̄(t) and ¯x(t) plus the one that comes from
free adjustments from everywhere. As a consequence of these boundary conditions, the
probability is preserved, that is,

1 =
∫ x̄(t)

¯x(t)
m(x� t) dx for all t ∈ [0�T ]
 (24)

See Bertucci (2020) for a derivation of the boundary conditions for m for related prob-
lems.

Fifth, the equilibrium features a fixed point. The value function and its optimal policy
{u� ¯x�x

∗� x̄} are solved for a given path X , and likewise the density m is solved for a given
policy {¯x�x

∗� x̄}. They are coupled by requiring that the average value is consistent with
both: X(t) = ∫ x̄

¯x
xm(x� t) dx in equation (17).

Sixth, recall that the condition θ < 0 corresponds to the case of strategic complemen-
tarities, and θ > 0 to the case of strategic substitutability. We are particularly interested
in θ < 0, but we will cover both cases. The standard case treated in the MFG literature
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considers θ > 0, which corresponds to the “monotonicity” condition that is at the center
of the argument for uniqueness.8

Steady State: Initial and Terminal Conditions. We describe the stationary version of the
MFG. Let x̄ss, ¯xss, and x∗

ss be three time-invariant thresholds, and let ũ and m̃ be two
time-invariant functions with domain in [¯xss� x̄ss] solving

0 = −ρũ(x) + σ2

2
ũxx(x) +B(x+ θXss)2 + ζ(ũ(x∗

ss

)− ũ(x)
)

for all x ∈ [¯xss� x̄ss]� (25)

0 = σ2

2
m̃xx(x) − ζm̃(x) for all x ∈ [¯xss� x̄ss]�x �= x∗

ss�

where Xss = ∫ x̄ss

¯xss
xm̃(x) dx, with boundary conditions: ũx(x̄ss) = ũx(¯xss) = ũx(x∗

ss) = 0,
ũ(x̄ss) = ũ(¯xss) = ũ(x∗

ss) +ψ, and 0 = m̃(¯xss) = m̃(x̄ss).
When ζ > 0, we have the symmetric stationary distribution m̃ given by

m̃(x) = �

2
e�(2x̄ss−x) − e�x(

1 − e�x̄ss
)2 for x ∈ [0� x̄ss]� (26)

where m̃(x) = m̃(−x) for x ∈ [−x̄ss�0], and �≡
√

2ζ
σ2 . We have the following:

PROPOSITION 3: If θ �= −1, then Xss = 0 is the only stationary state and it is independent
of θ. If θ= −1, then any Xss is a steady state.

5. SOLVING THE MFG AFTER A “SMALL SHOCK”

In this section, we develop results to analyze the dynamic response to a monetary shock
in the presence of strategic interactions. We analyze the effect of a small shock by solving
an equilibrium starting with an initial condition different from the steady state, what is
sometimes referred to as an MIT-shock. In our case, the state is given by an infinite-
dimensional object, that is, a cross-sectional distribution. To preserve analytic clarity and
tractability, we analyze the equilibrium that follows a perturbation of the economy at the
steady state.

The section is organized in three parts. In Section 5.1, we linearize the HJB equation
for the firm’s problem and solve it analytically. In Section 5.2, we linearize the KFE for
the dynamics of the cross-sectional distribution and solve it analytically. In Section 5.3, we
derive the fixed point implied by the HJB and the KFE equations and provide a charac-
terization of the resulting kernel that will be central in the analysis of the equilibrium.

8In terms of the notions used in the MFG literature, lettingmi be an arbitrary measure andXi ≡
∫
xdmi , the

definition of monotonicity applied to the period return B(x+ θX)2 is that, for any two m1 �=m2, the following
inequality must hold: 0 <

∫
(B(x+ θX1)2 − B(x+ θX2)2)(dm1(x) − dm2(x)) = 2Bθ(X1 −X2)2. Hence, the

monotonicity condition in MFGs corresponds to θ > 0, or strategic substitutability.
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Terminal and Initial Conditions for MFG. We use the stationary solution to define the
initial densitym0 and the terminal value function uT . For the initial condition, we consider
a perturbation ν of the stationary density m̃, where we use the parameter δ to index the
size of the perturbation, so

m0(x) = m̃(x) + δν(x)� where
∫ x̄ss

¯xss

ν(x) dx= 0� for all x ∈ [¯xss� x̄ss]
 (27)

A particular perturbation that we will consider, because of its prominence in the mon-
etary economics literature, is one corresponding to an unanticipated aggregate nominal
shock that changes the nominal costs of all firms by an amount δ, so that the density
before any decision is taken is m0(x) = m̃(x+ δ). In this case, ν(x) = m̃x(x).9

For the terminal condition, we set uT (x) = ũ(x) for all x ∈ [¯xss� x̄ss] and uT (x) =
ũ(x∗

ss) +ψ for all x /∈ [¯xss� x̄ss] so that at time t = T , the continuation corresponds to the
steady-state value function. The interpretation of the terminal condition uT (x) = ũ(t) is
that the problem of the firm can be regarded as an infinite-horizon problem. In this case,
T measures the horizon over which the strategic interactions apply.

Normalization. To simplify the exposition, we normalize the parameters of the prob-
lem so that, at steady state, x̄ss = 1. In particular, given {σ2�B�ρ�ζ}, we set the fixed cost
ψ so that x̄ss = 1. This amounts to measuring the shock δ in units of standard deviation of
steady-state price changes, that is, in units of

√
Var(�p). Moreover, we also define

k≡ σ2

2
� η≡

√
ρ+ ζ
k

� �≡
√

2ζ
σ2 
 (28)

For future reference, the average number of price changes in steady state is given by
N = ζ( cosh(�)

cosh(�)−1 ) for � > 0 and N = 2k for �= 0.

The Benchmark Initial Condition. In general, m0 : [−1�1] → R given by equation (27)
for some ν(x). As mentioned, in most of the analysis, we focus on ν(x) = m̃x(x) to relate
to the effects of a permanent monetary shock. Direct computation on equation (26) gives

m̃x(x) = −�
2

2
e�(2−x) + e�x(

1 − e�)2 if � > 0� or

m̃x(x) = −1 if �= 0� for all x ∈ (0�1]�

(29)

where, for x ∈ [−1�0), we use that m̃x is antisymmetric, that is, m̃x(x) = −m̃x(−x).

Equilibrium for Symmetric Initial Conditions. Next, we establish that if the initial dis-
placed distribution m0 is symmetric, that is, if m0(x) = m0(−x), then the equilibrium
cross-section average has no dynamics X(t) = Xss = 0, that is, a flat impulse response.
This result is important because it will allow us to ignore the symmetric component of the
initial perturbation ν(x), and to focus on the antisymmetric part. We have the following:

9The interpretation of this initial condition is that, after the monetary shock δ, the nominal cost jumps
immediately and hence the value of the state x for each firm jumps from x to x− δ.
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PROPOSITION 4: Let m0(x) be a symmetric distribution with support on [−1�1], that is,
m0(x) =m0(−x) and

∫ 1
−1m0(x) dx= 1. Then there exists an equilibrium with X(t) =Xss =

0, x̄(t) = x̄ss = 1, ¯x(t) = ¯xss = −1, and x∗(t) = x∗
ss = 0 for all t ∈ [0�T ] and where m(x� t) is

symmetric in x for all t ∈ [0�T ]. This equilibrium is unique in the class of symmetric m.

A few comments are in order. First, while X(t) = Xss = 0, the distribution m(·� t)
evolves through time. Second, the proposition establishes uniqueness of the equilibrium
only among those in which m is symmetric. A symmetric displacement can be generated
by shocking, for example, the variance of the fundamental shocks (σ2), or the market
power of firms (B).

5.1. Linearization and Solution of the HJB Equation

This section derives a linearization of the HJB with respect to the shock δ. We con-
sider an equilibrium with {x̄(t� δ)� ¯x(t� δ)�x∗(t� δ)�X(t� δ)�u(x� t� δ)�m(x� t� δ)}, where
δ indexes the perturbation of the initial condition for a given ν. We differentiate all the
equilibrium objects with respect to δ and evaluate them at δ = 0. For all t ∈ [0�T ], we
denote these derivatives as follows:

v(x� t) ≡ ∂

∂δ
u(x� t� δ)

∣∣∣∣
δ=0

for all x ∈ [−1�1]�

n(x� t) ≡ ∂

∂δ
m(x� t� δ)

∣∣∣∣
δ=0

for all x ∈ [−1�1]�x �= 0�

z̄(t) ≡ ∂

∂δ
x̄(t� δ)

∣∣∣∣
δ=0

� ¯z(t) ≡ ∂

∂δ ¯x(t� δ)
∣∣∣∣
δ=0

� z∗(t) ≡ ∂

∂δ
x∗(t� δ)

∣∣∣∣
δ=0

and

Z(t) ≡ ∂

∂δ
X(t� δ)

∣∣∣∣
δ=0




Once these derivatives are solved for, all objects of interest can be computed as, for
example, u(x� t� δ) ≈ ũ(x) + δv(x� t), m(x� t�δ) ≈ m̃(x) + δn(x� t), or X(t� δ) ≈ δZ(t)
since we consider a perturbation around the steady state, where the approximation error
is of order smaller than δ.

We study the evolution of the derivative of the value function, v(x� t), as function of
the path of the average price gap {Z(t)}. To do so, we first obtain the PDE and boundary
conditions that v(·� t) satisfies. We then look for an explicit solution of v(·� t), which we
use to compute the thresholds {¯z(t)� z∗(t)� z̄(t)} as a function of the path of {Z(t)}.

Linearization of the HJB and Its Boundary Conditions. We differentiate u(x� t� δ),
x∗(t), and X(t) in the HJB equation (15) with respect to δ for x ∈ [−1�1], t ∈ (0�T ),
and evaluate the derivatives at δ= 0, to obtain

0 = vt (x� t) − (ρ+ ζ)v(x� t) + kvxx(x� t) + 2BθxZ(t) + ζv(0� t)

for x ∈ [−1�1]� t ∈ (0�T )� (30)

where 2BθxZ(t) is the derivative with respect to δ of the flow cost, and where we use that
ux(x∗� t) = 0 for all t.
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Differentiating the value matching conditions in equation (19) with respect to δ, for
example, u(x̄(t� δ)� t� δ) =ψ+ u(x∗(t� δ)� t� δ), and evaluating them at δ= 0, we get10

v(−1� t) = v(0� t)� v(1� t) = v(0� t) for all t ∈ (0�T )� (31)

where we use that u(x� t� δ)|δ=0 = ũ(x) and that ũx(−1) = ũx(0) = ũx(1) = 0. Using the
boundary condition at t = T , that is, that the firm’s value function is independent of δ,
gives

0 = v(x�T ) all x ∈ [−1�1]
 (32)

Solution of the HJB Equation. We prove two intermediate results before characterizing
the dynamics of the optimal thresholds.

LEMMA 4: The function v(x� t) is antisymmetric in x for each t, that is, v(x� t) =
−v(−x� t) for all x ∈ [−1�1] and t ∈ [0�T ], and hence it satisfies the boundary condition:

0 = v(−1� t) = v(1� t) = v(0� t) all t ∈ (0�T )
 (33)

We can solve the PDE for v in equation (30) for all t, x, which is the heat equation with
source 2BθxZ(t), with a zero space boundary at t = T given by equation (32), and the
boundary conditions given in equation (33). We summarize this in the following lemma.

LEMMA 5: Given the source Z(t) for all t ∈ [0�T ], then the unique solution of the heat
equation (30) with the Dirichlet boundary conditions in equation (33) for all t ∈ [0�T ], and
with terminal space condition v(x�T ) = 0 for all x ∈ [0�1], is

v(x� t) = −4Bθ
∫ T

t

∞∑
j=1

e(η2+(jπ)2)k(t−τ)Z(τ)
(−1)j

jπ
sin(jπx) dτ� (34)

where the constants η and k are defined in equation (28).

Differentiating the smooth pasting conditions in equation (18) with respect to δ, for
example, ux(x̄(t� δ)� t� δ) = 0, and evaluating it at δ = 0 gives vx(1� t) + ũxx(1)z̄(t) = 0.
This equation, together with Lemma 5, allows us to characterize the dynamics of the op-
timal thresholds {¯z(t)� z̄(t)}. The next proposition summarizes the nature of the optimal
decision rules for a firm facing a path of future values for the cross-sectional average price
gap or markup.

PROPOSITION 5: Taking as given a path Z(t) for t ∈ [0�T ], the solution to the firm’s prob-
lem implies the following path for its optimal thresholds {¯z(t)� z∗(t)� z̄(t)}:

z̄(t) = T̄ (Z)(t) ≡ θĀ
∫ T

t

H̄(τ− t)Z(τ) dτ for all t ∈ [0�T )� (35)

z∗(t) = T ∗(Z)(t) ≡ θA∗
∫ T

t

H∗(τ− t)Z(τ) dτ for all t ∈ [0�T )� (36)

10For example, the derivative at the high threshold gives v(1� t) + ũx(1)z̄(t) = v(0� t) + ũx(0)z∗(t).
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where ¯z(t) = z̄(t) and where H̄ and H∗ are defined as

H̄(s) ≡
∞∑
j=1

e−(η2+(jπ)2)ks > 0�

H∗(s) ≡
∞∑
j=1

e−(η2+(jπ)2)ks(−1)j < 0 for all s > 0�

(37)

and

Ā≡ 4B
ũxx(1)

= k 2η2[
1 −η coth(η)

] < 0�

A∗ ≡ 4B
ũxx(0)

= k 2η2[
1 −η csch(η)

] > 0


(38)

The ratio A∗/|Ā| is strictly increasing in η, with η2

[1−η csch(η)] → 6, | η2

[1−η coth(η)]|→ 3 as η→ 0.

A few comments are in order. First, the current value of the thresholds z∗(t) and z̄(t)
depends on future values of the average price gap Z(τ) with τ ∈ (t�T ). In this sense, this
mapping is forward-looking.

Second, the result that z̄(t) = ¯z(t) means that the width of the inaction region, but not
its position, is constant through time. The economics of this result is that the width of
the inaction region reflects the option value of waiting, which is mainly affected by σ2,
the curvature of the payoff function, and the fixed costs. Since none of these objects is
affected by the monetary shock, the width of the inaction region stays constant. While the
width is constant, its position and the location of the optimal return point within it change
through time.

Third, θ only appears multiplicatively in the expressions for z∗ and z̄, since neither Ā,
A∗ nor H̄,H∗ depend on it. Thus, in the special case without strategic interactions, θ= 0,
the thresholds are kept at the steady-state values, that is, z∗ = z̄ = 0.

Fourth, given the sign of the expressions above, if there is strategic complementarity
(θ < 0), a firm facing higher values of Z(τ) for τ ≥ t sets a higher value of the optimal
return z∗(t), and a larger value of both the upper and lower thresholds of the inaction
band, z̄(t), ¯z(t). If θ > 0, the result is the opposite. The strength of the result depends on
θ as well as on η ≡ √

2(ρ+ ζ)/σ2. Also, as expected, values of Z(τ) closer to t receive
higher weight in the firm’s optimal decisions {z̄� z∗}. The parameter η also enters into the
expressions for Ā andA∗, which reflect how the curvature of the value function changes as
η changes. The reason that ũxx appears in the expressions is because we are perturbing the
economy around the steady state. Equation (38) shows that the curvature of the steady-
state value function ũxx, characterized in Lemma 10, affects the speed of convergence.

5.2. Linearization and Solution of the KF Equation

In this subsection, we study the evolution of n(x� t) as function of the path of thresholds
{¯z(t)� z∗(t)� z̄(t)}. To do so, we first obtain the PDE and boundary conditions that n(·� t)
satisfies. We then look for an explicit solution of n(·� t), which we use to compute Z(t) as
a function of the path of thresholds {¯z(t)� z∗(t)� z̄(t)}.
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Linearization of the KFE and Its Boundary Conditions. We differentiate the KFE for
m(x� t�δ) given in equation (16) with respect to δ at each (x� t) to obtain

0 = −nt (x� t) + knxx(x� t) − ζn(x� t) in x ∈ [−1�1]� t ∈ (0�T )�x �= 0
 (39)

Differentiating the boundary condition m(x̄(t� δ)� t� δ) = 0 in equation (21) with respect
to δ for each t, we get 0 = n(1� t) + m̃x(1)z̄(t). Likewise, differentiating the boundary
condition m(¯x(t� δ)� t� δ) = 0 with respect to δ, we get 0 = n(−1� t) + m̃x(−1)¯z(t). Then
the boundary conditions are

n(1� t) = −m̃x(1)z̄(t) and n(−1� t) = −n(1� t) all t ∈ (0�T )� (40)

where we used that z̄(t) = ¯z(t) from Proposition 5. The reason why m̃x appears is because
we are perturbing the economy around the steady state.

Differentiating the mass preservation equation (24) with respect to δ, we obtain: 0 =∫ 1
−1 n(x� t) dx for all t ∈ (0�T ). Differentiating this equation with respect to time and using

the KFE in equation (39), we have

0 = nx(1� t) − nx
(
0+� t

)+ nx
(
0−� t

)− nx(−1� t) all t ∈ (0�T )
 (41)

The initial condition for n comes from differentiating m0(x) with respect to δ; this gives

n(x�0) = ν(x) for x ∈ (−1�1)� (42)

which in the benchmark case of the small monetary shock is n(x�0) = m̃x(x), whose ex-
pression was given by equation (29). Given n, we can compute Z(t) as

Z(t) =
∫ 1

−1
xn(x� t) dx all t ∈ (0�T )
 (43)

Equilibrium of the Perturbed Mean Field Game. The equilibrium of the MFG with ini-
tial condition given by the perturbation ν is described by functions {Z� z̄� z∗� n} that solve
equations (35), (36), (39), (40), (41), (42), and (43).

Irrelevance of the Symmetric Component of the Perturbation ν. Any perturbation ν can
be written as the sum of a symmetric component and an antisymmetric component. Given
the linearity of the system, the equilibrium for a given ν is obtained as the sum of the
equilibrium that corresponds to each of the components. The next corollary highlights a
straightforward consequence of Proposition 4.

COROLLARY 1: Let ν(x) be symmetric around x= 0. Then there is an equilibrium for this
initial condition with Z(t) = 0 for all t ∈ [0�T ]. This equilibrium is unique in the class of
symmetric n(x� t).

Proposition 4 established the result for an equilibrium with an arbitrary symmet-
ric initial condition, not just a perturbation. The perturbation can be obtained using
n(x� t) = (m(x� t) − m̃(x))/δ, including ν(x) = (m0(x� t) − m̃(x))/δ. Intuitively, a sym-
metric displacement of the steady-state distribution has no effect on the mean of the
distribution, Z. Given the symmetric law of motion for x, the mean remains at the steady-
state value.
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Solution of the KFE for an Antisymmetric ν. We will look for a solution of n that satis-
fies the PDE given in equation (39), its boundary condition in equation (40), mass preser-
vation as given by equation (41), and the initial condition for n(·�0).

First, we define the left and right limits of n(·� t) as a(t) and b(t), respectively:

n
(
0+� t

)= b(t) all t ≥ 0 and n
(
0−� t

)= a(t) all t ≥ 0


Given the boundary behavior and the initial conditions, it is natural to look for anti-
symmetric solutions. Indeed, the next lemma shows that this has to be the case.

LEMMA 6: If the initial condition is antisymmetric, that is, ν(x) = −ν(−x), and a(t) +
b(t) is continuous on (0�T ], and n satisfies equation (39), equation (40), equation (41),
then n(x� t) is antisymmetric in x for all t, and thus a(t) = −b(t) for all t ∈ [0�T ].

Next, we use the antisymmetric nature of n to find an expression for b(t) −a(t) in terms
of the threshold z∗(t).

LEMMA 7: Assume that m(x∗(t� δ)� t� δ) is continuous, and right- and left-differentiable
at δ= 0. Then z∗(t) = a(t)−b(t)

2m̃x(0+) .

The antisymmetric nature of n and Lemma 7 have the important implication that

b(t) = n(0+� t
)= −m̃x

(
0+)z∗(t) = −n(0−� t

)= −a(t) for all t ≥ 0


Next, we present a PDE that n(x� t) must satisfy. The key simplification is that, due to
the antisymmetric nature of n(x� t), it suffices to define it for x ∈ (0�1], for every t. More-
over, being antisymmetric, the mass preservation is satisfied. Finally, the characterization
in Lemma 7 gives us a boundary condition at x= 0 for all t. Hence, the system given by
equation (39), (40), (41), and (42) becomes the following system:

nt(x� t) = knxx(x� t) − ζn(x� t) for x ∈ [0�1] and t > 0� (44)

n(1� t) = −m̃x(1)z̄(t) and n(0� t) = −m̃x

(
0+)z∗(t) for all t > 0� (45)

n(x�0) = ν(x) for x ∈ [0�1]
 (46)

The above system is well understood. It corresponds to a one-dimensional heat equation
with a bounded spatial domain, an initial spatial condition, and a specification of time-
varying values on the boundaries of the domain (see Chapter 6 in Cannon (1984)). The
initial condition is given by ν and the time-varying boundaries are given by z∗ and z̄.
This equation has a unique solution that can be written in terms of these three functions.
The solution is a linear functional of z∗, z̄, and ν, it is algebraic intensive, and explicit
expressions are given in Lemma 11 in Appendix B. We use this explicit solution to write
the impulse response of the mean Z(t) for given path of the thresholds {z̄(t)� z∗(t)}, using
the expression for Z(t) in equation (43). We have the following:

PROPOSITION 6: Taking as given the paths of {z∗(t)� z̄(t)}, and an initial condition given
by an antisymmetric perturbation ν(x), the solution of the KFE gives the following path for
the average value {Z(t)}:

Z(t) = TZ
(
z∗� z̄

)
(t) ≡Z0(t) + 4k

∫ t

0
G∗(t − τ)z∗(τ) dτ+ 4k

∫ t

0
Ḡ(t − τ)z̄(τ) dτ (47)
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for all t ∈ [0�T ] and where Ḡ, G∗, and Z0, are defined as

Ḡ(s) ≡ −m̃x(1)
∞∑
j=1

e−(�2+(jπ)2)ks > 0 and G∗(s) ≡ −m̃x

(
0+) ∞∑

j=1

(−1)j+1e−(�2+(jπ)2)ks > 0

for all s ≥ 0, m̃x(1) and m̃x(0+) are given in equation (29), and

Z0(t) ≡ −4
∞∑
j=1

(−1)j
e−(�+(jπ)2)kt

jπ

∫ 1

0
sin(jπx)ν(x) dx� (48)

where the constants k and � are defined in equation (28).

This proposition gives the evolution of the average price gap or markup, Z(t), as a
function of the path of decisions up to time t. The current value of Z(t) depends on
past values of the thresholds {z∗(τ)� z̄(τ)} with τ ∈ (0� t). In this sense, the mapping is
backward-looking. Given our normalization, the mapping TZ depends only on k≡ σ2/2
and �.

A few remarks are due. We note that the expression for Z(t) is made of two parts. The
first one, Z0(t), gives the dynamics of the average price gap due to the displacement ν
of the initial distribution when the thresholds are constant, that is, z̄ = z∗ = 0. It corre-
sponds to the impulse response of the average price gap in an economy where there are no
strategic interactions, that is, θ= 0. The other part, given by the two integrals, describes
the effect on Z(t) caused by past changes of the thresholds.

Second, the mapping is monotone, as larger values of past thresholds lead to larger
values of the average markup Z(t), that is, G∗(s) > 0 and Ḡ(s) > 0 for all s > 0. Also
note that the pairs {z∗(τ)� z̄(τ)} for τ closer to t receive a higher weight than those further
away in time.

Third, for the benchmark initial condition for a monetary shock, where ν = m̃x, as in
equation (29), and without strategic interactions θ= 0, Alvarez and Lippi (2022) showed
that

Z0(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
∞∑
j=1

�2

�2 + (jπ)2

(
(−1)j

(
1 + e2�

)− 2e�(
1 − e�)2

)
e−(�2+(jπ)2)kt for � > 0�

4
∞∑
j=1

[
(−1)j − 1

]
(jπ)2 e−(jπ)2kt for �= 0


(49)

We note that Z0(0) = −1, and that Z(t) is increasing and converges to zero as t → ∞.

5.3. Deriving the Fixed Point

In this section, we put together the solution for the HJB equation and the KFE derived
in Proposition 5 and in Proposition 6, respectively, to arrive to a single linear equation
that {Z(t)} must solve. We denote the fixed point by Z = T (Z). The mapping T is the
composition of TZ with T̄ and T ∗ described above, that is, T (Z) = TZ(T ∗(Z)� T̄ (Z)).
Direct computation gives the following:
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PROPOSITION 7: Let ν be an arbitrary perturbation. The equilibrium of a MFG must solve
Z = T (Z) given by

Z(t) = T (Z)(t) ≡Z0(t) + θ
∫ T

0
K(t� s)Z(s) ds all t ∈ [0�T ]� (50)

where Z0 is given by

Z0(t) ≡ −2
∞∑
j=1

(−1)j
e−(�+(jπ)2)kt

jπ

∫ 1

−1
sin(jπx)ν(x) dx� (51)

and where the kernel K is

K(t� s)

= 4
∞∑
j=1

∞∑
i=1

[
Ā� −A∗

�(−1)j+i
][e[(jπ)2+(iπ)2+η2+�2]k(t∧s) − 1

]
e−(jπ)2kt−�2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 +η2 + �2 � (52)

where the constants η, k, � are defined in equation (28), Ā� ≡ −m̃x(1)Ā < 0 and A∗
� ≡

−m̃x(0+)A∗ > 0; m̃x is given in equation (29), and Ā < 0 and A∗ > 0 in equation (38).

Equation (50) is a non-homogeneous Fredholm integral equation of the second kind,
where the parameter is given by θ. The path {Z0} is the solution of the MFG when there
are no strategic interactions, that is, when θ= 0, and the perturbation is given by ν. In our
benchmark case of a monetary shock, ν = m̃x, and then Z0 is given by equation (49).

An important result is that the kernel K, given in equation (52), is independent of θ, as
well as of the initial perturbation ν. This means that we can analyze the impulse responses
for different values of θ, or different values of initial shocks (as embedded in Z0 through
the perturbation ν), using a single kernel.11 We will exploit this property in the charac-
terization of the equilibrium in Proposition 12. This result reveals a surprisingly simple
structure of the workings of strategic complementarities. It is also extremely convenient
in exploring the results numerically.12

We define three objects that will be used below. The first is a notion of inner product
between vectors, which we apply to functions of time. For any two functions V , W , we
define the inner product 〈·� ·〉 using weights given by the time discount as follows:

〈V �W 〉 ≡ ρ

1 − e−ρT

∫ T

0
V (t)W (t)e−ρt dt
 (53)

The second is a linear operator, K, akin to a matrix multiplication:

K(V )(t) ≡
∫ T

0
K(t� s)V (s) ds for all t ∈ [0�T ] (54)

11Notice that since the kernel K arises from the composition of a backward and a forward operator, then
K(t� s) is different from zero for all t, s.

12While the equilibrium condition for Z in equation (50) uses functional analysis techniques, in Appendix C
we use a finite-dimensional approximation, based on standard linear algebra, that has the same structure. This
gives an easy to implement numerical method to compute the equilibrium.
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for any function V : [0�T ] → R. The third is a bound on the kernel K. This comes in two
types that are used for different analyses of the fixed point. One is a Lipschitz bound and
the other is a form of L2 bound:

LipK ≡ sup
t∈[0�T ]

∫ T

0

∣∣K(t� s)
∣∣ds and

‖K‖2
2 ≡ ρ2(

1 − e−ρT )2

∫ T

0

∫ T

0
K2(t� s)e−ρ(t+s) dt ds


(55)

The next lemma gathers important properties of the kernel K that will be used to char-
acterize the equilibrium, as discussed below. The lemma considers the case where �= 0,
which corresponds to the pure Ss model, as well as the case where � > 0, which typically
regularizes the kernel.

LEMMA 8: Consider the kernel in (52) and the inner product in (53), and the constants η,
� defined in equation (28). We have:

1. K is symmetric if ρ= 0, that is, K(t� s) =K(s� t) for all (t� s). For ρ≥ 0, the operator
K is self-adjoint, that is, for any V , W , we have 〈KV �W 〉 = 〈V �KW 〉:

∫ T

0

∫ T

0
K(t� s)V (s)W (t)e−ρt ds dt =

∫ T

0

∫ T

0
K(t� s)W (s)V (t)e−ρt ds dt


2. All elements of K are negative, that is, K(t� s) < 0 for all (t� s) ∈ (0�T )2.
3. K is negative semidefinite, 〈KV �V 〉 ≤ 0, that is,

∫ T
0

∫ T
0 K(t� s)V (t)V (s)e−ρt dt ds ≤ 0.

4. If �= 0, then LipK <
η2

18 ( 1
1−η csch(η) − 4

1−η coth(η) ). Moreover, for small ρ, we have LipK <
1 − 7

180η
2 + o(η2).

5. Let K(t� s;η��) be the kernel as a function of η, �. Then |K(t� s;η��)|≤|m̃x(0+)|×
|K(t� s;η�0)| for all t� s ∈ [0�T ].

6. If �= 0, and ρ≥ 0, then ‖K‖2
2 < c0

ρ2T

(1−e−ρT )2 ( η2

[1−η csch(η)] − η2

[1−η coth(η)] ) for a constant c0 >

0 independent of any other parameters.
7. If �≥ 0 and ρ > 0, then ‖K‖2

2 < ρ[ 1−e−2ρT+6ρ
(1−e−ρT )2 ]c1 for a constant c1 > 0 independent of ρ

and T .

A few remarks are in order. The lemma establishes that the operator K is self-adjoint
(point 1). This property is key for the existence of an orthonormal basis for the operator,
and to represent the impulse response using standard eigenvalue-eigenfunction projec-
tion methods. The negative-definiteness of K (point 2) implies that all the eigenvalues
are negative. Second, the fact that K is negative for all t, s implies the monotonicity of
the equilibrium for θ < 0. Third, the Lipschitz bound (points 4 and 5) gives values of
θ for which the right-hand side of equation (50) is a contraction for T unbounded (in
Proposition 10). Likewise, the bound for the norm ‖K‖2

2 (points 6 and 7) establishes the
compactness of the operator K, which together with the self-adjointness, allows us to give
conditions for existence, uniqueness, and a characterization of the solution for a finite,
arbitrarily large, T (in Proposition 12).
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6. EQUILIBRIUM CHARACTERIZATION FOR THE MONETARY SHOCK

In this section, we characterize the dynamic equilibrium. As initial condition, we con-
sider a perturbation ν to the stationary density, focusing on the monetary shock described
in equation (29). We cover both the pure Ss model (ζ/k≡ �2 = 0) as in Golosov and Lu-
cas (2007) and Klenow and Willis (2016), as well as the Calvo-plus model (ζ/k≡ �2 > 0)
as in Nakamura and Steinsson (2010) and Alvarez, Le Bihan, and Lippi (2016). In these
models, output is negatively proportional to price gaps, so that, denoting by Yθ(t) the
impulse response of output to a small monetary shock, we have Yθ(t) = −Z(t) where we
index the impulse response by the parameter θ and Y0(t) ≡ −Z0(t). The impulse response
function solves Yθ = T Yθ as follows:

Yθ(t) = (T Yθ)(t) ≡ Y0(t) + θ
∫ T

0
K(t� s)Yθ(s) ds all t ∈ [0�T ]
 (56)

Section Contents. We study the existence and uniqueness of Yθ, solving the integral
equation (56), for different cases. Each of these cases provides new insights on the nature
of the solution. In Section 6.1, we restrict |θ| to be bounded and allow T to be infinite
provided that ρ > 0. A key result in Proposition 10 shows that the equilibrium exists, it is
unique, and it is well posed if |θ| is bounded. We give a characterization of the impulse
response as a function of θ, showing that the size of the response to a monetary shock at
any given time t is bigger the larger the strength of strategic complementarity (smaller θ).
In Section 6.2, we restrict T <∞ and consider θ arbitrary and ρ ≥ 0: the finite T allows
us to use a spectral theorem and to represent the equilibrium impulse response Yθ(t)
analytically using the eigenvalues and eigenfunctions of K; see Proposition 12. We show
that the impulse response is hump-shaped if the complementarity is sufficiently large.
In Section 6.3, we show that larger strategic complementarities increase the variance of
output due to monetary shocks. In Section 6.4, we show that the amplification effect of
strategic complementarities is similar across the models of the Calvo-plus type.

Our motivation to explore both an infinite horizon, T → ∞ in Section 6.1, as well as
a finite arbitrary large T in Section 6.2, is to provide a thorough characterization of the
results. The case with T → ∞ allows us to use a contraction theorem to prove the equilib-
rium existence in Proposition 9 and characterize some properties of the IRF (decreasing
and convex in θ) that cannot be proven otherwise. The finite T assumption is used to
establish that the operator K is compact, and is thus key to obtain the spectral represen-
tation of the impulse response used in Proposition 11 (see the discussion after Lemma 8).

6.1. Equilibrium With Bounded |θ|

In this section, we analyze the case where the strength of the strategic interactions θ is
bounded. For future reference, we define the series

Sθ(t) =
∞∑
r=0

θr (K)r (Y0)(t) for all t ∈ [0�T ]� (57)

where (K)r+1(V )(t) ≡ ∫ T
0 K(t� s)(K)r(V )(s) ds is the rth iteration of K defined in equa-

tion (54). Our first simple result shows that all impulse responses start at the same point,
independent of θ:
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PROPOSITION 8: Let Yθ(t) be the solution of equation (57). Then, at t = 0, we have
Yθ(0) = Y0(0) = 1.

The next proposition establishes a bound for |θ|, in terms of the fundamental model
parameters, that gives a sufficient condition for existence and uniqueness. In particular,
we use Lemma 8 to verify the conditions for the Banach contraction fixed-point theorem.
This establishes existence and uniqueness of the solution of equation (56) for a range of θ
including both positive (strategic substitution) and negative (strategic complementarity)
values. Additionally, the proposition allows for any arbitrary initial perturbation ν.

PROPOSITION 9: Assume that T <∞ if ρ= 0, but otherwise these parameters take arbi-
trary values. Consider any perturbation ν. A sufficient condition for the existence and unique-
ness of the equilibrium IRF, that is, of the uniqueness and existence of a solution to equation
(56) in L1([0�T ]), is that |θ|LipK < 1. In this case, Yθ(t) = Sθ(t) as in equation (57). A suf-
ficient condition |θ|LipK < 1 is

|θ|�
2

2
e2�(

1 − e�)2

η2

18

(
1

1 −η csch(η)
− 4

1 −η coth(η)

)
< 1


For the special case of �= 0, this gives |θ|η
2

18 ( 1
1−η csch(η) − 4

1−η coth(η) ) < 1.

The proof of this proposition is an immediate application of the contraction theorem.
The modulus of the contraction is given by the θLipK bound characterized in Lemma 8
(points 4 and 5). For the pure Ss case, that is, when �= 0, we can use the approximation
for small ρ in part 4 of Lemma 8 to obtain an expression for small η: |θ|(1 − 7

180η
2) < 1.

Thus, for practical purposes in the pure Ss case, we can take the sufficient condition for
a contraction to be |θ|≤ 1.13 We note that the proposition gives a sufficient condition for
the infinite sum in equation (57) to converge. When the sufficient condition is violated,
there may still be solutions to equation (56), although they cannot be represented by the
infinite series in equation (57).

The next proposition gives a characterization of the equilibrium for the case of strategic
complementarity (θ < 0) and for an initial perturbation such that Y0(t) > 0.

PROPOSITION 10: Assume that T <∞ if ρ = 0, but otherwise these parameters take ar-
bitrary values. Let ν be any perturbation such that Y0(t) > 0, and ‖Y0‖∞ <∞ and Y0(t) is
continuous. Let θ ∈ (¯θ�0], where ¯θ is such that the series Sθ in equation (57) converges. The
unique solution of equation (56) has the following properties:

1. For each t ∈ (0�T ), the fixed point is positive, that is, Yθ(t) > 0.
2. For each t ∈ (0�T ), the fixed point Yθ(t) is (strictly) monotone decreasing in θ.
3. For each t ∈ (0�T ), the fixed point Yθ(t) is (strictly) convex in θ.

The proof of this proposition uses that K ≤ 0 (Lemma 8), and thus for θ < 0 we have
that θK is monotone, it has a Lipschitz bound, and preserves the sign of Y0. The positivity,
the monotonicity, and convexity with respect to θ < 0, follow since each term of the series

13For this case, 2k ≡ σ2 = NVar(�p) = N , where N is the expected number of price changes per unit of
time in steady state, and where we use the normalization x̄ss = 1 and the definition of k. Thus, when η2 = ρ/k,
we can write the bound as 1

|θ| > 1 − 7
90

ρ
N

.
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FIGURE 3.—Output response to a monetary shock.

for Sθ satisfies these properties. A few comments are in order. First, if ν = m̃x(x), then
Y0 > 0 as assumed in the proposition (see equation (49)). Second, and most importantly,
this proposition shows that as the strategic complementarity gets larger (more negative
θ), then the aggregate response to the shock is larger, that is, Yθ(t) is decreasing in θ at
each date t. The proposition also shows that Yθ(t) is a convex function of θ at each t. The
monotonicity and convexity properties yield the following important corollary:

COROLLARY 2: The assumptions of Proposition 10 imply that there is a −∞< ¯θ < 0 such
that Sθ(t) = +∞.

Thus, for sufficiently strong strategic complementarity, the series Sθ does not converge.
This, in itself, does not imply that there is no equilibrium. We return to this question in
the next section, where we show that, indeed, for values of θ sufficiently large (in absolute
value), the model is not well posed: it may fail to have an equilibrium or, even when it has
one, the equilibrium may not change continuously as a function of the parameters.

In Figure 3, we present the impulse responses produced by different values of θ, while
keeping the average frequency of price adjustment constant across models. In the left
panel, we display the IRF Yθ for four values of θ and for � ≈ 0, so it is essentially the
pure Ss model, with unit kurtosis as in the Golosov–Lucas model. The figure illustrates
Proposition 10: it can be seen that Yθ(t) decreases in θ at each t, in a convex fashion.
Also, all IRFs start at the same value, that is, Yθ(0) = 1, and it is evident that for larger
strategic complementarity, the IRF is more persistent. The right panel displays the IRF
for a version of the Calvo-plus model with a kurtosis of about 5 (given by a large value
of �). This model is thus quite close to Calvo, where kurtosis is 6. As in the pure Ss case,
the IRFs are decreasing and convex in θ for each t. Comparing the two IRFs for the same
θ across the two figures, it can be seen that the Calvo-plus model has a larger IRF than
the one for the pure Ss model.
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6.2. Equilibrium Characterization With a Finite T

In this section, we focus on a finite horizon T <∞ and analyze how the equilibria vary
as a function of θ. A main result is to provide an expression for the IRF Yθ in terms of
the projections onto an orthonormal base, and the associated eigenvalues, implied by the
kernel of K. We begin by introducing a norm for linear operators, the HS norm, which is
equivalent to the sum of the squared eigenvalues:

‖K‖2
HS ≡

∑
i�j

∣∣〈Kfi� fj〉∣∣2 =
∑
i�j

(
ρ

1 − e−ρT

∫ T

0

∫ T

0
K(t� s)fi(s)fj(t)e−ρt ds dt

)2

� (58)

where {fj} is any orthonormal base for the linear separable Hilbert space H of functions
V : [0�T ] → R with 〈V �V 〉<∞. Recall that {μj�φj} is an eigenvalue-eigenfunction pair
of the operator K if the function φj ∈ H solves the linear equation μjφj = Kφj for the
scalar μj . The next proposition, which uses the results of Lemma 8, gives the necessary
preliminary results.

PROPOSITION 11: Assume that T <∞. The HS norm is bounded by ‖K‖2
HS ≤ T 2‖K‖2

2.
In this case, the operator K is self-adjoint and compact, and thus it has countably many
eigenvalues and eigenfunctions that we denote by {μj�φj}∞

j=1. The eigenvalues μj are real,
negative, and ordered as |μ1|>|μ2|>|μ3|> · · · , and they converge to zero |μj|→ 0 as j→
∞. There are at most finitely many eigenfunctions associated with each non-zero eigenvalue.
The eigenfunctions {φj}∞

j=1 form an orthonormal base for H.

The proposition is an instance of the spectral theorem for compact self-adjoint opera-
tors, a basic result in functional analysis; see Section 5 of Chapter II in Conway (2007).
That the operator is self-adjoint was shown in part 1 of Lemma 8. That the operator is
compact follows from finite Hilbert–Schmidt norm, which, as stated in equation (58), is
equal to the L2 norm of the kernel found in part 7 of Lemma 8. That the eigenvalues
are negative follows from part 3 of Lemma 8. In Appendix C of the Supplemental Mate-
rial, we develop a finite-dimensional approximation, which converts the equilibrium into
a simple linear algebra problem where K is a matrix, and hence it is easily computed.
There, we also show the convergence rate of the approximation.

The next proposition provides a main result of this paper: it identifies a range of θ
where the equilibrium exists and is unique, and it presents a partial characterization of the
impulse response function written in terms of the eigenvalues and eigenfunctions of K.

PROPOSITION 12: Assume that T <∞. Then
1. If θμ1 < 1, there exists a unique equilibrium solving equation (56) given by

Yθ(t) =
∞∑
j=1

〈φj�Y0〉
1 − θμj φj(t) for all t ∈ (0�T )
 (59)

2. If θ→ +∞, then Yθ(t) → 0 for all t ∈ (0�T ).
3. If θ= 1/μ1, and ν is such that Y0 ≥ 0, then there is no solution to equation (56), that is,

there is no equilibrium. Moreover, there is a pole at θ= 1/μ1, that is, for all t ∈ (0�T ),

lim
θ↓1/μ1

Yθ(t) = +∞ and lim
θ↑1/μ1

Yθ(t) = −∞
 (60)
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FIGURE 4.—IRF for θ near the boundary of the ill-posed region.

4. There are at most countably many values of θ ≤ 1/μ1 for which the equilibrium does
not exist, and where Yθ has a pole at that value. Let j∗ = min{j : 〈Y0�φj〉 �= 0}; the
equilibrium is well posed only for θ ∈ ( 1

μj∗
�∞).

A few comments are in order. This proposition shows that an equilibrium exists and
is unique if θ > 1/μ1, or equivalently that the equilibrium exists if θ ∈ (1/μ1�∞). This
result extends Proposition 9, since the existence result also covers θ > 0, that is, all values
of strategic substitutability. Second, the result complements Proposition 10, showing that
as θ gets large, the IRF converges to the flexible price case.

Third, we note that the strategic complementarity parameter affects the problem exclu-
sively through the 1 −θμj terms, in equation (59). This leads to some interesting insights:
as θ→ 1/μ+

1 , the IRF Yθ(t) gets arbitrarily large as the weight term 1/(1 − θμ1) in equa-
tion (59) diverges to +∞. Moreover, the left panel of Figure 4 shows that in this case,
the IRF becomes hump-shaped, as the IRF is essentially an inflated version of the eigen-
function φ1 (this happens since, as θ→ 1/μ+

1 , the weight assigned to φ1 in equation (59)
diverges).14 Notice the scale of the vertical axis in the right panel of Figure 4: the original
impulse responses (starting at Yθ(0) = 1) now appear like a horizontal dashed line.

Fourth, the right panel of the figure illustrates the lack of continuity established by point
3 of the proposition. Note how the impulse response changes its sign as θ approaches the
critical value 1/μ1 from above versus from below (compare the dotted vs the dash-dotted
line). The impulse response for θ→ 1/μ−

1 features large negative values of output (the
dash-dotted yellow line). To gauge some economic intuition about the existence, the size,
and the change in the sign of the equilibrium output response, consider a game where the
best response of an agent, y∗ to the actions of the other agents, y , is y∗ = y0 + θμy where
y0 > 0, μ < 0, and θ are all scalars. The equilibrium condition y∗ = y yields yθ = y0

1−θμ .
This example shows that yθ is positive as long as θμ < 1, does not exist if θμ= 1, and is

14It can be shown that the shape of the eigenfunction φj is akin to a sine function, with j − 1 zeros.
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negative if θμ > 1. As the value of θ approaches the critical point 1/μ, the size of the
equilibrium outcome diverges. As θ crosses the critical point 1/μ, the slope of the best
response flips, changing the sign of the equilibrium output from positive to negative.

Note that these patterns are recurrent: as θ approaches 1/μ2, the IRF is given by a
blown-up version of the second eigenfunction φ2, shown in the right panel of Figure 4.
The impulse response has countably many points where its values diverge, as μ→ 1/μj ,
and the sign of the impulse response jumps from being positive to negative as θ crosses
these critical points. To further illustrate this feature, in Figure 5 we show that the cumu-
lated IRF is a continuous function of θ for θ > 1/μ1. We also show that, for θ < 1/μ1, the
cumulated value of output (denoted by a diamond) becomes a discontinuous function of
θ, displaying huge swings every time that θ crosses the poles corresponding to the eigen-
values 1/μj (marked by thin vertical lines). The diverging values and the swings in sign
of the impulse response lead us to refer to the region where θ < 1/μ1 as one where the
problem is ill-posed.

Finally, we note that all the properties of the solution Yθ hold in the finite-dimensional
approximation developed in Appendix C, where the infinite sum in equation (59) is re-
placed by a finite one.

6.3. Unconditional Output’s Variance due to Monetary Shocks

Starting with the seminal analysis of Caplin and Leahy (1997), several papers have used
the output variance induced by monetary shocks as a summary measure of monetary non-
neutrality, as in, for example, Nakamura and Steinsson (2010) and Midrigan (2011).

The linear expression for the impulse response given in equation (59) can be used to
define a stochastic process for the deviation of output outside of the steady state. In par-
ticular, assume that the random monetary shocks are given by {dε(τ)}, where ε(τ) is
a continuous-time process with independent changes and E[dε] = 0 and E[dε] = σ2

δ dt
for some parameter σδ > 0. Our preferred example is a composite Poisson process for
{ε(τ)}, where with probability � > 0 per unit of time, ε(τ) has a jump of size ±δ,
each jump with probability 1/2. In this case, σ2

δ = �δ2. The process for {ε(τ)} gener-
ates the stationary stochastic process {y} by y(t) = ∫ t

−T Yθ(t − τ) dε(τ) for all t ≥ 0, us-
ing the impulse response Yθ(t). The unconditional variance of this process is given by
Varθ(y) = σ2

δ

∫ T
0 Y

2
θ (s) ds.

PROPOSITION 13: Assume that ρ= 0, T <∞, and that θ > 1/μ1. Assume the monetary
shocks are i.i.d. and bounded. Then the unconditional variance of output Varθ(y) decreases

with θ, that is, Varθ(y) =∑∞
j=1

〈φj�Y0〉2

(1−θμj)2 and 0 > 1
Varθ(y)

∂Varθ(y)
∂θ

= 2
∑∞

j=1ωj(θ) μj

1−θμj > 2 μ1
1−θμ1

,

where ωj(θ) ≡ 〈φj�Y0〉2

(1−θμj)2 Varθ(y) are the weights.

This proposition shows that the strength of strategic complementarities increases the
unconditional variance of output—recall that θ < 0 for strategic complementarities, and
θ > 0 for substitutability. This proposition complements the result in Proposition 10 that,
at each t, the impulse response increases with the strength of strategic complementar-
ity. Note that in the expression for Varθ(y), the parameter θ only enters in the factors
1/(1 − θμj)2, since Y0, φj , μj do not depend on it. The functions Y0, φj , μj depend on
the particular price-setting model, that is, Golosov–Lucas, Calvo, or any variant of Calvo-
plus.
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FIGURE 5.—The CIR over the ill-posed and the well-posed region.

6.4. Strategic Complementarity and Selection Effects

In this section, we return to the analysis of the Calvo-plus, that is, the model where we
let � > 0. The Golosov–Lucas model is obtained as �→ 0, and the pure Calvo model as
�→ ∞. We are interested in the relationship between strategic interactions, as measured
by θ, and the selection effect in the price-setting behavior, measured by �. We focus on
the cumulative impulse function CIRθ as a summary measure of the effect of a monetary
shock.

Recall that, absent strategic interactions, that is, when θ = 0, Alvarez, Le Bihan, and
Lippi (2016) showed that the cumulative response function CIR0 ≡ ∫ ∞

0 Y0(t) dt depends
only on � and the frequency of price adjustment N . Indeed, in that paper, it is shown
that CIR0(��N) ≈ Kurt(�)/(6N), where Kurt(�) is the steady-state kurtosis of the price
changes, a statistic that depends only on �. Motivated by these observations, we analyze
the cumulative impulse response for different values of � while keeping the steady-state
number of price changes N constant. This implies that the difference between the CIR0

in Calvo versus Golosov–Lucas is large, proportional to the different kurtosis of these
models, equal to 6 in Calvo and 1 in Golosov–Lucas. In spite of this large difference,
we will show that the effect of strategic interactions on aggregate output is approximately
multiplicative, so that the percentage effect relative to the case of no interactions is similar
across models.

Figure 5 plots the normalized cumulative impulse response CIRθ(��N)/CIR0(��N) −
1, so that the value is larger than zero if the CIRθ is larger than CIR0, and equals zero
in the baseline case of no strategic complementarities (θ = 0). The notation emphasizes
that the CIR depends on θ, on the frequency of price changes, N , and on the model
type �. We fix N = 1 and focus on the effect of θ across different �. The region where the
problem is well-posed, namely, θ > 1/μ1, reports the normalized CIR for the Golosov–
Lucas model (dashed line) as well as for the Calvo model (thick line). The range of θ
considered includes both strategic substitutes (θ > 0) and complements (θ < 0).
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Comparing the CIR for the Golosov–Lucas model (� ≈ 0) with the one for the Calvo
model (large �), over a range of values for θ, it appears that the CIRθ is decreasing and
convex in θ, diverges towards +∞ as θ approaches the reciprocal of the dominant eigen-
value (1/μ1), and converges to zero as θ→ ∞.15 What is remarkable is that the effect
of θ in both models is similar over the whole domain. The figure shows that across sev-
eral models, from the pure Ss to the Calvo model, the effect of strategic interactions is
approximately multiplicative across a large range of values of θ. This means that in spite
of the large level differences of the CIR in these models, as in, for example, Calvo being
approximately six times larger than the Ss model when θ≈ 0, the introduction of strategic
interactions affects these models in a quantitatively similar way. The similar amplifica-
tion effect between the models can also be given an analytic characterization. The next
proposition shows the effect of a small change of θ on the cumulative response function
CIRθ.16

PROPOSITION 14: Assume that � = 0. Consider the CIRθ for the undiscounted case in a
long horizon. Then

lim
ρ↓0

lim
T→∞

1
CIRθ

dCIRθ

dθ

∣∣∣∣
θ=0

= 192
∑

m=1�3�5�




(
1
mπ

)5[
csch(mπ) − coth(mπ)

]≈ −0
578


Likewise, using the characterization of Proposition 2, we compute the CIRθ for the
pure Calvo model, where ζ =N , obtaining

lim
ρ↓0

lim
T→∞

CIRCalvo
θ = 1

N
√

1 + θ
� and lim

ρ↓0
lim
T→∞

1

CIRCalvo
θ

dCIRCalvo
θ

dθ

∣∣∣∣
θ=0

= −1
2



Note that in the Calvo model, the proportional effect of θ on the cumulative impulse
response CIRθ at θ≈ 0 is slightly smaller but overall very close to the value obtained for
the pure Ss model. In the Calvo model, this elasticity is −0
5, while in the baseline Ss
model, the elasticity is about −0
6, as shown above.

We use three results to derive the CIR for the general case: first, that CIR0(��N) =
Kurt(�)/(6N) in models without strategic complementarities, that is, θ= 0; second, that
CIRCalvo

θ = 1
N

√
1+θ ; third, that CIRθ(��N)/CIR0(��N), as a function of θ, is approximately

the same function across models (see Figure 5). Given these results, we write an approxi-
mation for the CIR for the general case, namely,

CIRθ(��N) ≈ Kurt(�)

6N
√

1 + θ

 (61)

Hence, the CIR depends on three determinants, {N���θ}, in a simple multiplicative way.

7. CONCLUDING REMARKS

We analyzed the propagation of monetary shocks in a sticky-price general equilibrium
model where firms’ pricing decisions feature strategic interactions with the decision of

15Since CIRθ → 0, then (CIRθ − CIR0)/CIR0 → −1, as in the figure.
16The approximation is obtained by differentiating Yθ(t) = Y0(t) + θ

∫ T
0 K(t� s)Yθ(s)ds with respect to θ

and evaluating it at θ= 0, obtaining ∂
∂θ
Yθ(t)|θ=0 = ∫ T

0 K(t� s)Y0(s)ds.
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other firms. This problem is involved and no encompassing analytic characterization of
the determinants of the resulting equilibrium dynamics exists. We cast the fixed-point
problem defining the equilibrium as a Mean Field Game (MFG) and establish several an-
alytic results on equilibrium existence and on the analytic characterization of an impulse
response.

The framework developed in this paper is useful to study the dynamics of equilibrium
in related problems. In Alvarez, Ferrara, Gautier, LeBihan, and Lippi (2021), we used the
equilibrium characterization developed in this paper to analyze the impulse response to
shocks with a transitory component, as opposed to the once and for all shocks typically
considered in the literature. Such an extension is important to map the model to the data,
where nominal interest rate shocks typically feature a mean-reverting component.

We are also extending the framework to study higher-order perturbations. This should
be key in the comparison between time- and state-dependent models, since these models
react differently to large versus small shocks.

REFERENCES

ACHDOU, YVES, JIEQUN HAN, JEAN-MICHEL LASRY, PIERRE-LOUIS LIONS, AND BENJAMIN MOLL (2022):
“Income and Wealth Distribution in Macroeconomics: A Continuous-Time Approach,” The Review of Eco-
nomic Studies, 89 (1), 45–86. [2006]

AHN, SEHYOUN, GREG KAPLAN, BENJAMIN MOLL, THOMAS WINBERRY, AND CHRISTIAN WOLF (2018):
“When Inequality Matters for Macro and Macro Matters for Inequality,” NBER Macroeconomics Annual,
32, 1–75. [2006]

ALVAREZ, FERNANDO, AND FRANCESCO LIPPI (2022): “The Analytic Theory of a Monetary Shock,” Econo-
metrica, 90 (4), 1655–1680. [2007,2027]

ALVAREZ, FERNANDO, FRANCESCO LIPPI, AND PANAGIOTIS SOUGANIDIS (2023): “Supplement to ‘Price Set-
ting With Strategic Complementarities as a Mean Field Game’,” Econometrica Supplemental Material, 91,
https://doi.org/10.3982/ECTA20797. [2009]

ALVAREZ, FERNANDO E., ANDREA FERRARA, ERWAN GAUTIER, HERVE LEBIHAN, AND FRANCESCO LIPPI
(2021): “Empirical Investigation of a Sufficient Statistic for Monetary Shocks,” Working Paper 29490,
NBER. [2038]

ALVAREZ, FERNANDO E., HERVE LE BIHAN, AND FRANCESCO LIPPI (2016): “The Real Effects of Monetary
Shocks in Sticky Price Models: A Sufficient Statistic Approach,” The American Economic Review, 106 (10),
2817–2851. [2030,2036]

AMITI, MARY, OLEG ITSKHOKI, AND JOZEF KONINGS (2019): “International Shocks, Variable Markups, and
Domestic Prices,” The Review of Economic Studies, 86 (6), 2356–2402. [2005]

AUCLERT, ADRIEN, RODOLFO RIGATO, MATTHEW ROGNLIE, AND LUDWIG STRAUB (2022): “New Pricing
Models, Same Old Phillips Curves?” Report, Stanford University. [2008]

BERTUCCI, CHARLES (2018): “Optimal Stopping in Mean Field Games, an Obstacle Problem Approach,”
Journal de Mathématiques Pures et Appliquées, 120, 165–194. [2008]

(2020): “Fokker–Planck Equations of Jumping Particles and Mean Field Games of Impulse Control,”
Annales de l’Institut Henri Poincare, Analyse non lineaire, 37 (5), 1211–1244. [2019]

BONOMO, MARCO, CARLOS CARVALHO, AND RENE GARCIA (2010): “State-Dependent Pricing Under Infre-
quent Information: A Unified Framework,” Staff Reports 455, Federal Reserve Bank of New, York. [2010]

BOPPART, TIMO, PER KRUSELL, AND KURT MITMAN (2018): “Exploiting MIT Shocks in Heterogeneous-Agent
Economies: The Impulse Response as a Numerical Derivative,” Journal of Economic Dynamics and Control,
89 (C), 68–92. [2006]

CALVO, GUILLERMO A. (1983): “Staggered Prices in a Utility-Maximizing Framework,” Journal of Monetary
Economics, 12 (3), 383–398. [2007,2011]

CANNON, JOHN ROZIER (1984): The One-Dimensional Heat Equation. Encyclopedia of Mathematics and Its
Applications. Cambridge University Press. [2026]

CAPLIN, ANDREW, AND JOHN LEAHY (1991): “State-Dependent Pricing and the Dynamics of Money and
Output,” The Quarterly Journal of Economics, 106 (3), 683–708. [2008]

(1997): “Aggregation and Optimization With State-Dependent Pricing,” Econometrica, 65 (3), 601–
626. [2006-2009,2035]

CONWAY, JOHN (2007): A Course in Functional Analysis (Second Ed.). New York: Springer-Verlag. [2033]

https://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AHLLM22&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Ahnetal18&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/AlvLip21&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://doi.org/10.3982/ECTA20797
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/ALL16&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/AIK19&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/Ber18&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/Ber20&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/BKM18&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/Cal83&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/CapLea91&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/CapLea97&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AHLLM22&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/AHLLM22&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Ahnetal18&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:2/Ahnetal18&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/AlvLip21&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/ALL16&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:6/ALL16&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:7/AIK19&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:9/Ber18&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/Ber20&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:10/Ber20&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/BKM18&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:12/BKM18&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:13/Cal83&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:15/CapLea91&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/CapLea97&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:16/CapLea97&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S


PRICE SETTING WITH STRATEGIC COMPLEMENTARITIES AS A MFG 2039

COOPER, RUSSELL, AND JOHN HALTIWANGER (1996): “Evidence on Macroeconomic Complementarities,”
The Review of Economics and Statistics, 78 (1), 78–93. [2005]

GOLOSOV, MIKHAIL, AND ROBERT E. JR. LUCAS (2007): “Menu Costs and Phillips Curves,” Journal of Political
Economy, 115, 171–199. [2007,2009,2030]

GOPINATH, GITA, AND OLEG ITSKHOKI (2011): “In Search of Real Rigidities,” NBER Macroeconomics Annual,
25, 261–310. [2005]

KIMBALL, MILES S. (1995): “The Quantitative Analytics of the Basic Neomonetarist Model,” Journal of Money,
Credit and Banking, 27 (4), 1241–1277. [2009]

KLENOW, PETER J., AND JONATHAN L. WILLIS (2016): “Real Rigidities and Nominal Price Changes,” Eco-
nomica, 83 (331), 443–472. [2005,2007-2009,2030]

LASRY, JEAN-MICHEL, AND PIERRE-LOUIS LIONS (2007): “Mean Field Games,” Japanese Journal of Mathe-
matics, 2, 229–260. [2006]

MIDRIGAN, VIRGILIU (2011): “Menu Costs, Multi-Product Firms, and Aggregate Fluctuations,” Econometrica,
79 (4), 1139–1180. [2010,2035]

MONGEY, SIMON (2021): “Market Structure and Monetary Non-Neutrality,” Working Paper 29233, National
Bureau of Economic Research. [2006]

NAKAMURA, EMI, AND JON STEINSSON (2010): “Monetary Non-Neutrality in a Multisector Menu Cost
Model,” The Quarterly Journal of Economics, 125 (3), 961–1013. [2005-2009,2030,2035]

WANG, OLIVIER, AND IVAN WERNING (2022): “Dynamic Oligopoly and Price Stickiness,” American Economic
Review, 112 (8), 2815–2849. [2006,2008,2016]

WOODFORD, MICHAEL (2009): “Information-Constrained State-Dependent Pricing,” Journal of Monetary Eco-
nomics, 56, s100–s124. [2010]

Co-editor Charles I. Jones handled this manuscript.

Manuscript received 9 May, 2022; final version accepted 1 April, 2023; available online 7 August, 2023.

The replication package for this paper is available at https://doi.org/10.5281/zenodo.8200032. The Journal
checked the data and codes included in the package for their ability to reproduce the results in the paper and
approved online appendices.

https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/CooHal96&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/GolLuc07&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/GopIts11&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/Kim95&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/KleWil16&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/LasLio07&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/Mid11&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/NakSte10&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/WanWer22&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:28/Woo09&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://doi.org/10.5281/zenodo.8200032
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:18/CooHal96&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:19/GolLuc07&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:20/GopIts11&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:21/Kim95&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:22/KleWil16&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:23/LasLio07&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:24/Mid11&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:26/NakSte10&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:27/WanWer22&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S
https://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:28/Woo09&rfe_id=urn:sici%2F0012-9682%282023%2991%3A6%3C2005%3APSWSCA%3E2.0.CO%3B2-S

	Introduction
	Main Results
	Related Literature
	Organization of the Paper

	General Equilibrium Setup and Complementarities
	Households
	Firms
	The Demand for Final Goods
	The Firm's Proﬁt Function
	Impulse Response of Output to a Monetary Shock

	A Simple Benchmark: The Calvo Case
	Optimal Price Setting
	Aggregation
	An Alternative Solution Approach

	Equilibrium as a Mean Field Game: General Case
	Mean Field Game (MFG) Deﬁnition
	Steady State: Initial and Terminal Conditions

	Solving the MFG After a "Small Shock"
	Terminal and Initial Conditions for MFG
	Normalization
	The Benchmark Initial Condition
	Equilibrium for Symmetric Initial Conditions
	Linearization and Solution of the HJB Equation
	Linearization of the HJB and Its Boundary Conditions
	Solution of the HJB Equation

	Linearization and Solution of the KF Equation
	Linearization of the KFE and Its Boundary Conditions
	Equilibrium of the Perturbed Mean Field Game
	Irrelevance of the Symmetric Component of the Perturbation nu
	Solution of the KFE for an Antisymmetric nu

	Deriving the Fixed Point

	Equilibrium Characterization for the Monetary Shock
	Section Contents
	Equilibrium With Bounded |theta|
	Equilibrium Characterization With a Finite T
	Unconditional Output's Variance due to Monetary Shocks
	Strategic Complementarity and Selection Effects

	Concluding Remarks
	References

