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This supplement contains additional results related to platform design. It contains
results related to (i) revenue sharing, (ii) endogenous platform fees, and (iii) two dif-
ferent kinds of Dynamic Price Directed Prominence.

1. REVENUE SHARING

IN SECTION 1 OF THE MAIN TEXT, we focused on per-unit fees, but in practice some
platforms take a fraction of any revenues generated by sellers. We now show that under
certain conditions our main theoretical insights extend to this case. Suppose that, for given
ω ∈ [0�1], the platform’s payoff in period t is
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where N t is again the set of displayed firms, and where r < 1 is the platform’s revenue
share. As we did with per-unit fees, we take r as fixed so as to focus on platform design.
We can write the profit of firm i when it is displayed in period t as(
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where ĉ = c̃/(1 − r) > 0 is now the effective marginal cost.
Our existing results for how PDP and DPDP affect prices and consumer surplus hold

exactly as stated in the main text, once c is replaced by ĉ. The reason is that, from the
perspective of each firm, what matters is the effective marginal cost and the platform’s
design rule (if any). For this reason, in the remainder of this section we focus on the
platform’s objective �̂.

The impact of PDP and DPDP on the platform’s payoff �̂ depends on parameters. For
example, if the platform places full weight on its own fees (ω= 1) and ĉ is sufficiently close
to zero, then PDP (in a competitive market) and DPDP (with ADV sufficiently large) both
reduce the platform’s payoff. The reason is that platform design reduces prices down to
ĉ, such that when ĉ is small revenue must fall.
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Nonetheless, there are also circumstances in which our platform design tools raise the
platform’s payoff �̂ and perform well relative to more sophisticated rules. To see this,
start with the case of PDP in a competitive market. Let �̂PDP and �̂BN be the platform’s
payoffs under PDP and Bertrand–Nash, respectively. Similarly, conditional on each seller
earning nonnegative profit in each period, let �̂Max be the highest achievable platform
profit.

REMARK 1: Suppose the market is competitive, revenue sharing is in effect, and either
(i) ĉ is sufficiently high, or (ii) a < ĉ and product differentiation μ is sufficiently low.

Then PDP with k= n− 1 increases the platform’s payoff and, moreover,

�̂PDP

�̂Max
≥ 1 − 1

n
and

�̂PDP − �̂BN

�̂Max − �̂BN
≥ 1 − e

n(e− 1)
− μ

ĉ
� (3)

Remark 1 provides some conditions under which PDP performs well under revenue-
sharing.1

These conditions ensure that PDP increases industry revenue, and hence also the plat-
form’s total commissions; the platform therefore gains from implementing PDP (given
that PDP increases consumer surplus as well). Intuitively, under these conditions, mar-
ket prices without PDP exceed the revenue-maximizing level. Thus, PDP brings prices
closer to those that maximize industry revenue and, moreover, this beneficial effect is
large enough to outweigh the variety loss.

Under these conditions, PDP also performs well relative to more sophisticated platform
rules. In fact, we obtain similar bounds on PDP’s performance as with per-unit fees.2

However, closely following our analysis of per-unit fees, we also find that PDP can
perform poorly under revenue-sharing when the market is cartelized.

REMARK 2: Suppose δ is large enough that full collusion is sustainable (with or without
PDP). Then PDP (for any k = 1� � � � � n− 1) decreases the platform’s payoff.

The intuition is straightforward. Proposition 4 showed that under full collusion, PDP
reduces both prices and total industry output. Hence, PDP necessarily decreases industry
revenue, and thus total commissions as well. Since PDP also decreases consumer surplus
under full collusion (again, from Proposition 4), it reduces the platform’s payoff.

Finally though, under certain conditions, Dynamic PDP also works well under revenue
sharing. A simple example of this is the following.

1When the platform puts enough weight 1 − ω on consumer surplus, and sellers compete, PDP also raises
the platform’s payoff (irrespective of ĉ and μ). This is simply because PDP (with k = n − 1) always benefits
consumers. For the same reason, at high 1 − ω PDP also satisfies performance bounds similar to those from
our earlier Proposition 2.

2The first performance bounds in equations (4) in the main text and (3) above coincide. This is because
prices under PDP, as well as the platform’s ideal prices under revenue-sharing, are both equal to effective
marginal cost ĉ (under the conditions in Remark 1). Thus, intuitively, a comparison of platform payoffs under
PDP and the platform’s ideal scenario reduces to a comparison of total industry output, just as in the per-unit
fee case. The second performance bounds in equations (4) in the main text and (3) above do not perfectly
coincide, however. This is because under Bertrand–Nash prices strictly exceed ĉ, whereas under PDP and the
platform’s ideal scenario they equal ĉ—and so the second performance bound does not reduce to a simple
comparison of industry outputs. Indeed the resulting bounds differ by μ/ĉ, which is related to the percentage
mark-up over ĉ under Bertrand–Nash.
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REMARK 3: Suppose δ is sufficiently high that, absent platform design, firms would
fully collude. Suppose also that n = 2, and either (i) ĉ is sufficiently high, or (ii) a < ĉ and
product differentiation μ is sufficiently low. Then Dynamic PDP with sufficiently large
ADV raises the platform’s payoff.

Closely following earlier intuition, the conditions on ĉ and μ ensure that the prices
charged by a fully collusive cartel exceed those that maximize industry revenue. There-
fore, Dynamic PDP, by reducing price closer to the level that maximizes industry revenue,
increases total revenue—and hence the platform’s commissions—despite the reduction in
variety. Since Dynamic PDP is guaranteed to benefit consumers when n = 2 (see Propo-
sition 6), it raises the platform’s total payoff.

2. ENDOGENOUS PLATFORM FEES

So far, we have studied the impact of platform design when the per-unit fee f or the
revenue share r are taken as given. We now show that our main insights are robust when
these fees are chosen optimally by the platform. We assume throughout that sellers are
treated symmetrically, meaning that given a particular design rule, each seller faces the
same per-unit fee f or revenue share r.

Start with per-unit fees and recall the platform’s payoff �(p) defined in equation (3) in
the main text.

REMARK 4: Suppose the market is competitive and that the platform chooses the per-
unit platform fee f to maximize �(p). Suppose also that k/n > e−1. Then PDP increases
the payoff of both the platform and consumers.

The intuition behind this result is as follows. Fixing the per-unit fee at the optimal
level under Bertrand–Nash, Proposition 1 shows that in a competitive market PDP raises
the payoffs of both the platform and consumers. Since the platform can then further
reoptimize its fee under PDP, it is guaranteed to benefit. Moreover, one can show that
even accounting for the platform’s reoptimized fee, PDP continues to benefit consumers.

PDP also continues to perform well in competitive markets relative to more sophisti-
cated rules. To see this, let �∗PDP denote the platform’s payoff under PDP (with k= n−1)
when f is chosen optimally. Similarly, let �∗Max denote the highest achievable platform
payoff when f is chosen optimally, subject to the condition that each firm makes nonneg-
ative profit in each period; by the usual argument, �∗Max must involve all n firms being
displayed and pricing at c̃ + f , where f is optimally chosen by the platform. It is easy to
see that

�∗PDP

�∗Max ≥ 1 − 1
n
� (4)

because fixing the per-unit fee at the optimal level in the platform’s ideal scenario, Propo-
sition 2 shows that PDP obtains at least a share 1 − 1/n of �∗Max. Since the platform can
reoptimize its fee under PDP, the share of �∗Max that it achieves can only increase further.3

3Note that this reoptimization argument is not sufficient to establish the second performance bound in
Proposition 2, because our measure of the relative performance of PDP contains three different optimal levels
of f .
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REMARK 5: Suppose δ is sufficiently high that, absent platform design, firms would
fully collude. Suppose the platform chooses the per-unit platform fee f to maximize �(p).
Suppose also that ADV is sufficiently large that, with exogenous fees, Dynamic PDP leads
to marginal cost pricing, and it also would benefit the platform and consumers (e.g., the
condition in Proposition 6 is satisfied). Then Dynamic PDP also benefits the platform and
consumers with endogenous fees.

The intuition is the same as for Remark 4. In particular, start with full collusion. Sup-
pose that, fixing the per-unit fee, a shift toward Dynamic PDP increases the platform’s
payoff. Since the platform can then reoptimize its fee, it is guaranteed to be better off.
Moreover, one can show that when reoptimizing, the platform either reduces its per-unit
fee or else does not increase it by too much—and so consumers also still gain from Dy-
namic PDP.

Now consider revenue-sharing and recall the platform’s payoff �̂(p) from equation (1).

REMARK 6: Suppose the market is competitive and that the platform chooses the rev-
enue share r to maximize �̂(p). Suppose also that either (i) c̃ is sufficiently high, or (ii)
a < c̃ and product differentiation μ is sufficiently low. Then PDP (with k = n − 1) in-
creases the payoff of the platform.

The intuition behind this result closely follows the above case of per-unit fees. Suppose
that c̃ is sufficiently large, or that a < c̃ and μ is sufficiently small, that Remark 1 applies.
Note that for any revenue share, ĉ ≥ c̃. Fixing the optimal revenue share under Bertrand–
Nash, PDP therefore increases the platform’s payoffs. Since the platform can reoptimize
its revenue fee under PDP, its payoff can only further increase. Similarly, and following
the same logic as for per-unit fees, one can also show that PDP performs well relative to
more sophisticated rules. Specifically,

�̂∗PDP

�̂∗Max
≥ 1 − 1

n
� (5)

where �̂∗PDP and �̂∗Max are, respectively, the platform’s payoff under PDP and in the
platform’s ideal scenario when r is endogenous.

One important difference with the per-unit case is that consumers do not always gain
from PDP when r is endogenous. However, a sufficient condition for consumers to gain
is that the platform places enough weight (1 − ω ≥ 1/2) on their surplus.4 Moreover,
numerical computations show that consumers can gain much more widely, including for
many parameterizations where the platform places full weight (ω = 1) on its own total
commissions.

Finally, and again following earlier intuitions, one can derive similar results on the
performance of Dynamic PDP under full collusion. For example, if c̃ is sufficiently large,
or a < c̃ and μ is sufficiently small, and the other conditions in Remark 3 hold, then
Dynamic PDP benefits the platform even with an endogenous revenue share r due to
reoptimization of the revenue share.

4We already know that, fixing r at the platform-optimal level under Bertrand–Nash, PDP benefits con-
sumers. When ω ≤ 1/2, the platform’s optimal revenue share is weakly lower under PDP, which further benefits
consumers.
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3. A RICHER FORM OF DYNAMIC PDP: RANDOM TURNOVER OF THE ADVANTAGE

So far, we have focused on a simple version of Dynamic PDP where, once a firm is
displayed, it continues to be displayed forevermore provided that it neither raises its price
nor is substantially undercut by its rivals. Here, we consider a richer form of Dynamic
PDP in which the pricing advantage exogenously turns over from time to time.

In particular, consider the following modified version of Dynamic PDP.

DEFINITION 1—Dynamic PDP with Random Turnover of the Advantage: In period t =
0, firms set prices and one firm with the lowest price is the only firm shown to consumers,
and is given an “advantage” in period 1.

At the start of any period t > 0, with probability τ ∈ (0�1) the platform decides to favor
the advantaged firm, and with probability 1 − τ decides not to favor it. Firms observe this
and then set prices.

Suppose the platform has chosen in period t not to favor the advantaged firm. Then
one firm with the lowest price is the only firm shown to consumers in period t, and it is
given an advantage in period t + 1.

Suppose the platform has chosen in period t to favor the advantaged firm. Suppose it is
firm i that has the advantage in period t. Then firm i is the only firm shown to consumers,
and also receives the advantage in period t + 1, so long as:

(1) firm i has not raised its price in period t compared to its price in period t − 1, and
(2) no rival in period t undercuts firm i by strictly more than a fixed value ADV > 0.

If either of these two conditions is violated, then in period t a firm with the lowest price
is the only firm shown to consumers, and that firm also receives the advantage in period
t + 1.

In this modified version of Dynamic PDP, with some probability 1 − τ ∈ (0�1) the plat-
form decides at the start of a period to “reset” the advantage and treat all firms on an
equal footing—thereby making it easier for a firm that was not displayed in the previous
period to nevertheless be shown to consumers in the current period.

We now show that under certain conditions this modified version of Dynamic PDP
also leads to marginal cost pricing, even if absent platform design the market would be
cartelized.

REMARK 7: Consider Dynamic PDP with an advantage 0 < ADV ≤ pm(1).
(1) There exists a δ̂ ≥ δ̂1 such that if δ < δ̂, then in any pure-strategy subgame-perfect

Nash equilibrium the transaction price equals effective marginal cost in all periods.
(2) Moreover, for any δ, there exist ADV and τ sufficiently large such that the equilib-

rium transaction price is marginal cost in all periods.

Intuitively, when τ is sufficiently large, firms compete fiercely for the display slot when-
ever it is up for grabs, because they anticipate being able to occupy it for a relatively long
amount of time; this fierce competition then leads to marginal cost pricing.

4. A RICHER FORM OF DYNAMIC PDP: SHOWING k > 1 FIRMS

So far, we have assumed that under Dynamic PDP a single firm is displayed each period.
We now show that, depending on parameters, Dynamic PDP can be extended such that
multiple firms are displayed each period and marginal cost pricing again ensues.

Consider the following modified version of Dynamic PDP.
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DEFINITION 2—Dynamic PDP with k > 1 Displayed Firms: In period t = 0, firms set
prices and k of the firms with the lowest prices are shown to consumers, and given an
“advantage” in period 1. In any period t > 0 in which firm i has an advantage, firm i is
shown to consumers and also receives an advantage in period t + 1, so long as:

(1) firm i has not raised its price in period t compared to its price in period t − 1, and
(2) no rival in period t undercuts firm i by strictly more than a fixed value ADV > 0.

Let Kt denote the set of firms with the advantage in period t that satisfy both of these
conditions. If |Kt|<k, then in period t the k−|Kt| lowest-priced firms not in Kt are also
displayed to consumers and receive an advantage in period t + 1.

The modified version of Dynamic PDP in Definition 2 works in a similar way to the ver-
sion considered in the main text. In particular, in the initial period the platform displays
k > 1 of the lowest-priced firms, breaking any ties randomly. In each subsequent period,
a firm that was just displayed continues to be shown to consumers provided it has not
raised its price and is not undercut by more than a fixed advantage ADV. Any firm that
violates these conditions temporarily loses its “display slot”; any vacant display slots are
then offered to the lowest-priced firms currently without a slot.

Focusing for simplicity on the case of high ADV, we now show that under certain con-
ditions marginal cost pricing again ensues. To interpret the following result, recall that
pm(k) is the optimal price charged by a k-product monopolist.

REMARK 8: Consider the modified version of Dynamic PDP in Definition 2, and sup-
pose ADV ≥ pm(k). If k(k − 1) exp(a/μ) < n − k, then in any pure-strategy subgame
perfect Nash equilibrium the k products displayed to consumers in each period are priced
at c.

Remark 8 shows that marginal cost pricing ensues provided the number of displayed
firms k is below a threshold which depends on the demand parameters a and μ. To il-
lustrate the intuition as simply as possible, suppose that firms try to implement a fully
collusive cartel by charging pm(k) on each displayed product every period, and rotating
demand so that each firm gets the same share of monopoly profits. Intuitively, an increase
in k helps cartel stability in two ways. First, a higher k means that the profits from par-
ticipating in collusion are higher. Second, a higher k means that if a firm cheats on the
cartel by undercutting pm(k) (in the initial period, say) then in future periods it will be
displayed alongside more firms that can punish it with a low price.

Finally, if the parameters are such that k = n− 1 is achievable, the same performance
bounds derived earlier in Proposition 2 also hold for Dynamic PDP.

5. PROOFS OF SUPPLEMENTAL RESULTS

We begin with the following preliminary lemma.

LEMMA 1: Suppose all n firms are displayed. Industry revenue is maximized with symmet-
ric prices, p1 = p2 = · · · = pn = p. Industry revenue is quasiconcave in p. Moreover, p< ĉ if
(i) ĉ is sufficiently high, or (ii) a < ĉ and product differentiation μ is sufficiently low.

PROOF OF LEMMA 1: Note that industry revenue is equal to industry profit when firms
have zero marginal cost. Therefore, symmetry and quasiconcavity follow from the proof of
Lemma 2 in the main text. Condition (i) is obvious because the revenue-maximizing price
is independent of ĉ. Condition (ii) follows from inspection of the first-order condition for
profit maximization given in (20) in the main text (setting c = 0 and k = n). Q.E.D.
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We now prove the main results from our analysis of revenue sharing.

PROOF OF REMARK 1: Let RPDP and RBN denote industry revenue under, respectively,
PDP in a competitive market (with k = n − 1) and Bertrand–Nash. Let RMax denote the
highest possible industry revenue subject to each firm earning nonnegative profit in each
period. Let Q̂PDP, Q̂BN, and Q̂Max be the associated industry outputs.

We start by showing that PDP increases revenue in a competitive market, under the
stated conditions. Using Lemma 1 in the main text, under PDP the n− 1 displayed firms
charge ĉ and, therefore,

Q̂PDP =
(n− 1) exp

(
a− ĉ

μ

)
(n− 1) exp

(
a− ĉ

μ

)
+ 1

and RPDP = ĉQ̂PDP�

Now consider Bertrand–Nash. We know from Lemma 3 in the main text that p∗
BN > ĉ+μ.

Meanwhile, Lemma 1 implies that, when all n firms are displayed and charge the same
price p> ĉ, industry revenue is strictly decreasing in p. Hence,

RBN <RBN
† = (ĉ +μ)Q̂BN

† where Q̂BN
† =

nexp
(
a− ĉ

μ

)
exp(−1)

nexp
(
a− ĉ

μ

)
exp(−1) + 1

�

Combining the above and simplifying, we find that

RPDP −RBN >

ĉ exp
(
a− ĉ

μ

)
(n− 1) exp

(
a− ĉ

μ

)
+ 1

×

⎡⎢⎢⎣n− 1 − nexp(−1)

(
1 + μ

ĉ

)[
(n− 1) exp

(
a− ĉ

μ

)
+ 1

]
nexp

(
a− ĉ

μ

)
exp(−1) + 1

⎤⎥⎥⎦ �

Under the stated conditions in (i) and (ii), it is straightforward to show that the square-
bracketed term is strictly positive, and hence RPDP >RBN. Recall from Proposition 1 that
consumers also benefit from PDP (with k = n− 1), UPDP >UBN. The platform therefore
also gains since its payoff is �̂ =ωrR+ (1 −ω)U .

Now consider the performance bounds. Lemma 1 implies that, when all n firms are
displayed and make nonnegative profit, industry revenue is maximized when each charges
ĉ. Hence,

Q̂Max =
nexp

(
a− ĉ

μ

)
nexp

(
a− ĉ

μ

)
+ 1

and RMax = ĉQ̂Max�
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Using the expressions for Q̂PDP and Q̂Max and simplifying, we find that

RPDP −
(

1 − 1
n

)
RMax = ĉ

[
Q̂PDP −

(
1 − 1

n

)
Q̂Max

]
≥ 0� (6)

where the inequality can be proved in exactly the same way as the one in equation (11)
(from the proof of Proposition 2). In addition, Proposition 2 shows that UPDP/UMax >
1 − (1/n). Therefore, for ω< 1 or r > 0 (or both), we have

�̂PDP

�̂Max
= ωrRPDP + (1 −ω)UPDP

ωrRMax + (1 −ω)UMax ≥ 1 − 1
n
�

Now consider the second performance bound. We will first prove that

(
RPDP −RBN

) −
[

1 − e

n(e− 1)
− μ

ĉ

](
RMax −RBN

) ≥ 0� (7)

To show this, note that the left-hand side is decreasing in RBN, and hence it is sufficient to
prove that the following is positive:

(
RPDP −RBN

†

) −
[

1 − e

n(e− 1)
− μ

ĉ

](
RMax −RBN

†

)
�

Using the definitions of RPDP, RBN
† , and RMax and rearranging, this equals

ĉ

{(
QPDP −QBN

†

) −
[

1 − e

n(e− 1)

](
QMax −QBN

†

)}
+μQMax −

[
1 + e

n(e− 1)
+ μ

ĉ

]
μQBN

† �

The curly-bracketed term is positive by the same steps used to sign (15) in the proof of
Proposition 2. The remaining terms are in sum positive. To see this, rewrite them as

μnY

nY + 1

{
1 −

[
1 + e

n(e− 1)
+ μ

ĉ

]
exp(−1)

nY + 1
nY exp(−1) + 1

}
�

where Y ≡ exp( a−ĉ
μ

), and note that under the conditions stated in (i) and (ii) this is pos-
itive. Using (18) in the main text, as well as (7), and assuming either ω < 1 or r > 0 (or
both), we then have that

�̂PDP − �̂BN

�̂Max − �̂BN
= ωr

(
RPDP −RBN

) + (1 −ω)
(
UPDP −UBN

)
ωr

(
RMax −RBN

) + (1 −ω)
(
UMax −UBN

)
≥ 1 − e

n(e− 1)
− μ

ĉ
�

Q.E.D.

We begin with the following preliminary lemma.

LEMMA 2: Suppose the platform levies a per-unit fee f . Bertrand–Nash and fully collusive
prices exhibit pass-through rates less than one: ∂p∗

BN/∂f < 1 and ∂pm(n)/∂f < 1.
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PROOF OF LEMMA 2: Start with the Bertrand–Nash price. Using equation (5) in the
main text, p∗

BN solves

p∗
BN − c̃ − f

μ
=

nexp
(
a−p∗

BN

μ

)
+ 1

(n− 1) exp
(
a−p∗

BN

μ

)
+ 1

�

On the way to a contradiction, suppose that ∂p∗
BN/∂f ≥ 1. The left-hand side of this equa-

tion would increase in f while the right-hand side would strictly decrease in f . But this is
impossible. Hence, ∂p∗

BN/∂f < 1.
Next, consider the fully collusive price. Using equation (20) in the main text, pm(n)

solves

nexp
(
a−pm(n)

μ

)
+ 1 −

(
pm(n) − c̃ − f

μ

)
= 0�

On the way to a contradiction, suppose that ∂pm(n)/∂f ≥ 1. The left-hand side of this
equation would strictly decrease in f , which is impossible. Hence, ∂pm(n)/
∂f < 1. Q.E.D.

PROOF OF REMARKS 4 AND 5: The claims that PDP (in a competitive market) and
DPDP (with sufficiently large ADV) increase the platform’s payoff follow directly from
arguments that follow the two remarks. Therefore, here we prove that consumer surplus
also increases.

Using equation (3) in the main text and the fact that U (p) = −μ log(1 − Q(p)), the
platform’s payoff can be written as

�(f ) =ωfQ
(
p(f )

) − (1 −ω)μ log
[
1 −Q

(
p(f )

)]
� (8)

where p(f ) denotes the (common) price charged by the displayed firms as a function of f .
Differentiating (8) and noting that Q′(p) = −Q(p)[1 −Q(p)]/μ, we obtain

�′(f ) =Q
(
p(f )

){
ω

[
1 −

[
1 −Q

(
p(f )

)]
fp′(f )

μ

]
− (1 −ω)p′(f )

}
� (9)

First, consider the comparison between Bertrand–Nash and PDP (Remark 4). Let f BN

and f PDP denote the corresponding optimal fees. To show that consumers are better off
under PDP, it is sufficient to prove that QPDP >QBN. Under PDP p(f ) = c̃+ f , and so the
curly-bracketed term in (9) simplifies to

ω

[
1 −

[
1 −Q

(
p(f )

)]
f

μ

]
− (1 −ω)� (10)

When evaluated at f = 0, (10) is negative if and only if ω ≤ 1/2. Note also that [1 −
Q(p(f ))]f is strictly increasing in f . Therefore, when ω ≤ 1/2 the optimal fee is f PDP = 0,
and when ω > 1/2 the optimal fee f PDP is strictly positive and obtained by setting (9)
(equivalently, (10)) to zero.

We now prove that QPDP >QBN.
Start with the case ω ≤ 1/2. Fixing f = f BN, we know from Proposition 1 that switching

from Bertrand–Nash to PDP strictly increases total output. Reoptimizing the fee under
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PDP can only further increase total output; this is because we have just established that
f PDP = 0, and hence f PDP ≤ f BN, while total output under PDP is decreasing in the fee.

Now consider the case ω > 1/2. Toward a contradiction, suppose that QPDP ≤ QBN. It
is immediate from Proposition 1 that, in order for this to be true, we must have f PDP >
f BN. We also know that p′(f ) = 1 under PDP, and p′(f ) < 1 under Bertrand–Nash (from
Lemma 2). We also established that (9) must be zero under PDP. But then by inspection
(9) must be strictly positive under Bertrand–Nash, which is impossible.

We have therefore established that QPDP > QBN, and hence consumers are better off
under PDP than Bertrand–Nash.

Second, consider the comparison between full collusion and Dynamic PDP (Remark 5).
The proof follows the same steps as above, because under Dynamic PDP p(f ) = c̃ + f
for ADV sufficiently large. Q.E.D.

PROOF OF REMARK 6: The proof follows from arguments in the text and so is omitted.
Q.E.D.

Finally, we prove the claim that when ω ≤ 1/2 and fees are endogenous, PDP (with k =
n − 1) in a competitive market with revenue sharing is guaranteed to benefit consumers
when the conditions in Remark 6 are satisfied.

As a first step, we prove that for ω ≤ 1/2 the optimal revenue share under PDP is zero.
Let

Z = (n− 1) exp
(a− c̃

1 − r
μ

)
�

and note that this implies that

c̃

1 − r
= a−μ log

(
Z

n− 1

)
and r =

a−μ log
(

Z

n− 1

)
− c̃

a−μ log
(

Z

n− 1

) � (11)

Recall that under PDP firms Bertrand compete down to effective marginal cost c̃/(1 − r).
Hence, the platform’s payoff is

�̂PDP = ωr
c̃

1 − r

Z

Z + 1
+ (1 −ω)μ log(Z + 1)

= ω

[
a−μ log

(
Z

n− 1

)
− c̃

]
Z

Z + 1
+ (1 −ω)μ log(Z + 1)� (12)

where the second equality uses (11) to simplify the first term. The first derivative of (12)
with respect to Z is

1
(Z + 1)2

{
ω

[
a−μ log

(
Z

n− 1

)
− c̃

]
+ (1 − 2ω)(Z + 1)μ

}
�

The first term inside curly-brackets is strictly positive for any r > 0 (given equation (11)),
while the second term inside curly-brackets is also positive for ω ≤ 1/2. Hence, when



PLATFORM DESIGN 11

ω ≤ 1/2 the platform wishes to increase Z as far as possible, which is equivalent to setting
rPDP = 0.

It is then straightforward to see that consumers benefit from PDP when ω ≤ 1/2 and
the platform’s commissions are from revenue sharing. Specifically, fixing r at the optimal
level under Bertrand–Nash, we know from Proposition 1 that consumers benefit from a
move to PDP (with k = n − 1). Since we have just proved that rPDP = 0, when the plat-
form re-optimizes under PDP it weakly reduces its revenue share, which further benefits
consumers.

PROOF OF REMARK 7: Consider a pure-strategy subgame perfect Nash equilibrium
(SPNE), and let p̂t denote the price of the product displayed to consumers in period t
along the equilibrium path (for a given history of whether the platform favored the ad-
vantaged firm or not).

Again, let π̃(p) denote per-period profit of a firm that charges p and is the only firm
shown to consumers, and recall that π̃(p) is strictly increasing in p up to pm(1). Let δ̂ be
the unique solution to

πm(1)
n

= (1 − δ)πm(1) + δτ(1 − δ)
1 − δτ

π̃
(
max{c�ADV}

)
� (13)

Note for future reference that δ̂= 1 − 1/n when ADV ≤ c. Note also that when ADV > c
then 1 − 1/n < δ̂ < (n− 1)/(n− τ). To see the latter, note that the right-hand side of (13)
is strictly larger than the left-hand side when δ= 1−1/n, and because π̃(max{c�ADV}) ≤
πm(1), the right-hand side of (13) is also both strictly decreasing in δ and weakly smaller
than the left-hand side when δ= (n− 1)/(n− τ).5

We start with part (1) of the remark. Assume for this part of the proof that δ < δ̂.
We first prove that p̂t ≤ pm(1) for all t. On the way to a contradiction, suppose this

is not true, and let t ′ denote the first (realized) period in which p̂t > pm(1). Note that
a firm with the lowest price in period t ′ will be displayed and get the advantage going
into the following period. (This is immediate if t ′ = 0, or t ′ > 0 and the platform chose
at the start of the period not to favor the advantaged firm. If t ′ > 0 and the platform
decided at the start of the period to favor the advantaged firm, then the firm that was
displayed last period must have raised its price—and so all firms are treated on an even
footing.) Note also that in period t ′, along the equilibrium path all firms are charging
strictly more than pm(1). Hence, any firm could charge pm(1) in period t ′ and be displayed
for sure, and then (i) if ADV < c, charge c in all future periods, and (ii) if ADV ≥ c,
charge ADV and keep the slot until the next period in which the platform chooses not
to favor the advantaged firm, and then charge c thereafter. Therefore, in period t ′ the n
firms’ combined discounted payoff is at least

n

[
πm(1) +

∞∑
r=1

(δτ)r π̃
(
max{c�ADV}

)]

5In more detail, to see that the right-hand side of (13) is strictly decreasing in δ, rewrite it as

(1 − δ)πm(1) +
[
δ− δ(1 − τ)

1 − δτ

]
π̃

(
max{c�ADV}

)
�

and note that π̃(max{c�ADV}) ≤ πm(1).



12 J. P. JOHNSON, A. RHODES, AND M. WILDENBEEST

=
n

[
(1 − δ)πm(1) +

[
δ− δ(1 − τ)

1 − δτ

]
π̃

(
max{c�ADV}

)]
1 − δ

>

n

[
(1 − δ̂)πm(1) +

[
δ̂− δ̂(1 − τ)

1 − δ̂τ

]
π̃

(
max{c�ADV}

)]
1 − δ

= πm(1)
1 − δ

�

where the strict inequality uses δ < δ̂ and the fact that the square-bracketed term on
the right-hand side of the first line is strictly decreasing in δ, and the final equality uses
equation (13). But this is a contradiction, because the joint profit in each period cannot
exceed πm(1). Hence, p̂t ≤ pm(1) for all t.

It also follows that the supremum p≤ pm(1) over equilibrium transaction prices exists.
We now prove that p= c.

On the way to a contradiction, suppose that p ∈ (c�pm(1)]. For any given 
 ∈ (0�p−c),
let t ′′ be the first (realized) period t in which p̂t ∈ (p− 
�p]. Using the same arguments
as above, in period t ′′ along the equilibrium path all firms are charging strictly more than
p − 
 and, moreover, a firm with the lowest price will be displayed in period t ′′ and get
the advantage in the following period. Hence, any firm could charge p − 
 in period t ′′

and be displayed, and then (i) if ADV > c, charge min{p−
�ADV} and keep being dis-
played until the next period where the platform decides to not favor the advantaged firm,
and then charge c thereafter, and (ii) if ADV ≤ c, charge c from period t ′′ + 1 onwards.
Because this is true for all firms, in period t ′′ the n firms’ combined discounted payoff is
at least

n

[
π̃(p−
) +

∞∑
r=1

(δτ)r π̃
(
min

{
p−
�max{c�ADV}

})]

= n

1 − δ

[
(1 − δ)π̃(p−
)

+
[
δ− δ(1 − τ)

1 − δτ

]
π̃

(
min

{
p−
�max{c�ADV}

})]
� (14)

Because δ < δ̂, when evaluated at 
 = 0 this is strictly more than π̃(p)/(1 − δ). To show
this, there are three cases to consider. First, if ADV ≤ c, then δ̂ = 1 − (1/n) while (14)
simplifies to nπ̃(p) and the claim follows from δ < δ̂. Second, if c < p ≤ ADV, then (14)
simplifies to

nπ̃(p)
1 − δ

[
1 − δ

1 − δτ

]
>

nπ̃(p)
1 − δ

[
1 − δ̂

1 − δ̂τ

]
≥ π̃(p)

1 − δ
�

where the inequalities use the fact that (1 −δ)/(1−δτ) is strictly decreasing in δ and also
δ < δ̂ ≤ (n− 1)/(n− τ). Third, consider c < ADV <p. Since the square-bracketed term
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in (14) is strictly decreasing in δ, and because δ < δ̂, (14) is strictly larger than

n

1 − δ

[
(1 − δ̂)π̃(p−
) +

[
δ̂− δ̂(1 − τ)

1 − δ̂τ

]
π̃

(
min

{
p−
�max{c�ADV}

})]
= n

1 − δ

[
(1 − δ̂)π̃(p) +πm(1)

[
1
n

− (1 − δ̂)
]]

≥ π̃(p)
1 − δ

�

where the equality uses (13), and the inequality uses δ̂ > 1 − 1/n and πm(1) ≥ π̃(p).
Hence, we have shown that (14) evaluated at 
 = 0 strictly exceeds π̃(p)/(1 − δ). By

continuity, this implies that, for p̂t ≤ p sufficiently close to p, firms’ combined payoffs
strictly exceed π̃(p)/(1 − δ), a contradiction. We have therefore established that p ≤ c.
But since p< c is impossible, it must be that p = c.

We now construct a SPNE where firms charge c in each period. Consider the following
strategy:

(1) In period 0, or any period t > 0 in which the platform has decided to not favor the
advantaged firm, all firms charge c.

(2) Consider a period t + 1 in which the platform has decided to favor the advantaged
firm:
(a) Suppose that the firm that was displayed in period t charged weakly less than c

in period t. Then in period t + 1 all firms charge c.
(b) Suppose that the firm that was displayed in period t charged strictly more than

c in period t. Then in period t + 1 that firm charges the minimum of min{c +
ADV�pm(1)} and its price from period t, while all other firms charge c.

Using the one-shot deviation principle, it is straightforward to check that this strategy
forms a SPNE. Moreover, along the equilibrium path the product that is displayed to
consumers has price c in every period.

Finally, we prove part (2) of the remark. Note that the right-hand side of (13) is strictly
decreasing in δ and strictly increasing in τ and ADV (conditional on ADV > c). Hence,
δ̂ is strictly increasing in τ and ADV when ADV > c. Moreover, note that when ADV =
pm(1) equation (13) implies that δ̂ = (n− 1)/(n− τ), and so δ̂ → 1 as τ → 1. Hence, for
any δ < 1 we can find ADV and τ sufficiently large that δ < δ̂. Q.E.D.

Before proving Remark 8, we need the following preliminary result.

LEMMA 3: Suppose that k(k − 1) exp(a/μ) < n − k. Then if a firm charges some price
p > c, its profit is strictly higher (i) when it is displayed for sure alongside k − 1 rivals that
charge zero, compared to (ii) when it is displayed with probability k/n, and the other displayed
firms have a weakly lower price.

PROOF OF LEMMA 3: The firm’s profit under the first scenario is

(p− c)
exp

(
a−p

μ

)
exp

(
a−p

μ

)
+ (k− 1) exp

(
a

μ

)
+ 1

� (15)
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The firm’s profit under the second scenario is highest when the k−1 other firms charge p.
Therefore, profit in the second scenario is bounded from above by

k

n
(p− c)

exp
(
a−p

μ

)
kexp

(
a−p

μ

)
+ 1

� (16)

After some algebra, (15) strictly exceeds (16) provided that

k(k− 1) exp
(
a

μ

)
< n− k+ k(n− 1) exp

(
a−p

μ

)
�

and a sufficient condition for this to hold is that k(k− 1) exp(a/μ) < n− k. Q.E.D.

We are now ready to prove the main result.

PROOF OF REMARK 8: Consider a pure-strategy subgame perfect Nash equilibrium
(SPNE), and let p̂t denote the price of the highest-priced product that is displayed to
consumers in period t along the equilibrium path.

Let π̃(p�0;1) denote per-period profit of a firm that charges p and is displayed for
sure alongside k − 1 firms that charge 0. Let π̃(p�p;k/n) denote per-period profit of a
firm that charges p and is displayed with probability k/n alongside k − 1 firms that also
charge p.

We first prove that p̂t ≤ pm(k) for all t. On the way to a contradiction, suppose this is
not true, and let t ′ denote the first period in which p̂t > pm(k). Note that either t ′ = 0, or
t ′ > 0 and at least one firm that was displayed last period has raised its price. Note also
that in period t ′, along the equilibrium path at least n − k + 1 firms are charging strictly
more than pm(k). Hence, by the definition of (the modified version of) Dynamic PDP,
any firm could charge pm(k) in period t ′ and be displayed for sure, and also charge pm(k)
in all future periods and be displayed forevermore. Therefore, in period t ′ the n firms’
combined discounted payoff is at least nπ̃(pm(k)�0;1)/(1 − δ), because the worst out-
come for a displayed firm is that all other displayed firms charge the lowest possible price
of zero. However, by Lemma 3 this strictly exceeds nπ̃(pm(k)�pm(k);k/n)/(1 − δ). But
this is impossible because the latter is the discounted profit of a k-product monopolist.
Hence, p̂t ≤ pm(k) for all t.

It also follows that the supremum p≤ pm(k) over equilibrium transaction prices exists.
We now prove that p= c.

On the way to a contradiction, suppose that p ∈ (c�pm(k)]. For any given 
 ∈ (0�p−c),
let t ′′ be the first period t in which p̂t ∈ (p − 
�p]. Note that either t ′′ = 0, or t ′′ > 0 and
at least one firm that was displayed in the previous period has raised its price. Hence, by
the definition of (the modified version of) Dynamic PDP any firm could charge p− 
 in
period t ′′ and be displayed for sure, and also charge p − 
 in all future periods and be
displayed forevermore. Because this is true for all firms, in period t ′′ the n firms’ com-
bined discounted payoff is at least n× π̃(p−
�0;1)/(1 −δ), because the worst outcome
for a displayed firm is that all other displayed firms charge the lowest possible price of
zero. However, by Lemma 3 this strictly exceeds nπ̃(p − 
�p − �;k/n)/(1 − δ), and so
by continuity for p̂t sufficiently close to p it also strictly exceeds nπ̃(p�p;k/n)/(1 − δ).
However, this is a contradiction—because by adapting the proof of Lemma 2 in the main
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text, it is straightforward to show that a k-product monopolist, which is constrained to
charge less than p ≤ pm(k), charges exactly p on each product and earns discounted
profit nπ̃(p�p;k/n)/(1 − δ).

We have therefore established that p≤ c. But since p< c is impossible, it must be that
p = c.

We now construct a SPNE where firms charge c in each period, and so along the equilib-
rium path the k displayed products are priced at c in each period. Consider the following
strategy:

(1) In period 0, all firms charge c.
(2) Suppose that in period t firm i either was not displayed, or was displayed at a price

weakly below c. Then in period t + 1 firm i charges c.
(3) Suppose that in period t firm i was displayed at a price pi�t > c. Then in period

t + 1, firm i charges min{pi�t�p
BR
i�t } where pBR

i�t is firm i’s (static) best response to the
prices of the k− 1 other firms being displayed in period t + 1.

Using the one-shot deviation principle, it is straightforward to check that this strategy
forms a SPNE. We omit a full proof and focus on part (3). Note that if such a firm i were to
charge weakly less than c in period t+1 then it would be displayed but would earn weakly
negative discounted profit. If instead such a firm i were to charge strictly more than pi�t ,
then it would not be displayed and would earn zero discounted profit. Instead if it charges
min{pi�t�p

BR
i�t }, it maximizes its profit in this period conditional on being displayed, and

it is displayed because pBR
i�t < pm(1) < pm(k) and so firm i is not undercut by more than

ADV ≥ pm(k) (and moreover this choice of price ensures that this firm’s continuation
payoffs equal the discounted sum of period t’s profits). Instead charging strictly less than
min{pi�t�p

BR
i�t } both lowers the firm’s profits in period t while also weakly decreasing the

prices (and hence profits) of all firms in future periods according the posited strategies.
(Note that if firm i was the only firm to be displayed in period t at a price strictly above c,
then min{pi�t�p

BR
i�t } is clearly well-defined. Note if instead multiple firms were displayed

in period t at a price strictly above c, then we can view these firms as choosing a price on
[c�min{pi�t�p

m(1)}]; since each firm’s action set is compact and its profit continuous in
all prices and quasiconcave in its own price, by the Fan–Glicksberg theorem this pricing
game has at least one Nash equilibrium.) Q.E.D.
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