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APPENDIX OA: MODEL WITH STOCHASTIC DISASTER ARRIVAL RATES

THE DISASTER ARRIVAL RATE in our baseline model of Section 2, while unobservable, is
constant. In this section, we generalize the baseline model to allow for the unobservable
disaster arrival rate to be stochastic.1 We assume that the disaster arrival rate follows a
two-state continuous-time Markov chain taking two possible values, λG in state G and
λB > λG in state B. Let ϕG denote the transition rate from state G to state B and ϕB
denote the transition rate from state B to stateG. That is, over a small time period �t, the
transition probability from the G state to the B state is ϕG�t and similarly the transition
probability from the B state to the G state is ϕB�t. Our baseline unobservable constant λ
model of Section 2 is a special case of this model with ϕG = ϕB = 0.

OA.1. Model

As in our baseline model, let πt denote the conditional probability that the economy is
in state B. The belief process {πt} evolves as

dπt = Et−[dπt] + σπ(πt−)(dJt − λt− dt)� (OA.1)

where σπ (π) is given by (8) and λt− = λBπt− +λG(1−πt−) is the expected disaster arrival
rate at t− given in (6). Note that the second term is a martingale by construction. Since
the economy follows a two-state Markov chain, the expected change of belief is given by

Et−[dπt] = (
ϕG − (ϕB +ϕG)πt−

)
dt�

We can thus rewrite (OA.1) as follows:

dπt =
(
ϕG − (ϕB +ϕG)πt−

)
dt + σπ(πt−)(dJt − λt− dt)� (OA.2)
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Equation (OA.2) implies that πt in our generalized model is no longer a martingale. This
is in sharp contrast with our baseline model (with constant arrival rate), where belief πt
given in (7) is a martingale. Rewriting the drift term in (OA.2), we see that the expected
change of belief πt in our generalized learning model is given by the difference between
ϕG(1 − πt−), which is the transition rate out of state G, ϕG, multiplied by 1 − πt−, the
conditional probability in state G, and ϕBπt , which is the transition rate out of state B,
ϕB, multiplied by πt−, the conditional probability in state B.2

We note that the jump martingale term (the second term in (OA.2)) in our generalized
model is the same as in the belief updating process (7) for our baseline model. As a result,
when a disaster strikes at t, the belief immediately increases from the pre-jump level πt−
to πt = πJ by σπ(πt−), where πJ is given by (9), the same as in our baseline model with
unobservable constant arrival rate λ.

Taking these results together, absent jump arrivals (i.e., dJt = 0), we obtain the follow-
ing expression for the rate at which belief changes, μ̂π(πt−) = dπt/dt:

μ̂π(π) = (
ϕG − (ϕB +ϕG)π

) −π(1 −π)(λB − λG)� (OA.3)

Generalizing the unobservable λ from a constant to a stochastic process (two-state
Markov chain) does not change the belief updating upon the immediate arrival of a jump.
However, belief updating conditional on no-jump arrival is different from the baseline
case with unobservable constant arrival rate λ.

Next, we calculate the posterior belief πt at t conditional on no-jump arrival over the
time interval (s� t), that is, dJv = 0 for s < v ≤ t. Using (OA.2) and integrating {πv;v ∈
(s� t)} from s to t conditional on no jump over the interval (s� t), we obtain the following
function:

πt = πs −
2
(
δ0π

2
s + δ1πs + δ2

)(
e−

√
δ2

1−4δ0δ2(t−s) − 1
)

(√
δ2

1 − 4δ0δ2 + δ1 + 2δ0πs
)(
e−

√
δ2

1−4δ0δ2(t−s) − 1
) + 2

√
δ2

1 − 4δ0δ2

� (OA.4)

where δ0 = −(λG − λB), δ1 = λG − λB − (ϕG +ϕB), and δ2 = ϕG. For our baseline model
(ϕG = ϕB = 0), πt in (OA.4) can be simplified to (11).

In Figure O-1, we plot the belief process {πt : t ∈ (0�20)} conditional on no-jump ar-
rival, which means dJv = 0 where v ∈ (0� t) = (0�20), for three cases: (1) the stationary
case with ϕG = ϕB = 2% (the solid line); (2) the case with ϕG = 2% and ϕB = 0, where
the economy is eventually absorbed at the B state, (the dotted line); and (3) the baseline
constant λ case as ϕG = ϕB = 0 (the dashed line). The prior for the low value of λ is set
at π0 = 0�08 for all three cases.

First, for the two cases with stochastic λ, πt decreases with t even absent jump arrivals.
For example, the solid line (for the ϕG = ϕB = 2% case) shows that πt slowly decreases to
0.0277 in 20 years absent jump arrivals. For the other case where the B state is absorbing
(ϕB = 0), πt decreases to 0.0285 at t = 20 absent jumps (the dotted line.) The belief
dynamics for these two cases with stochastic λ are similar to the dynamic for our constant
unobservable λ model (the dashed line), which shows that πt decreases over time to zero
and the agent becomes more optimistic (the no news is good news result), and the only
difference is the long-run mean absent jump arrivals. So long as the transition rates ϕG
and ϕB are small (which is the practically relevant case), our baseline model (with constant

2As a result, when πt = 0 (in the G state for sure), the drift of belief πt is exactly ϕG, the arrival rate from
the G to the B state. Similarly, by symmetry, when πt = 1 (in the B state for sure), the drift is exactly −ϕB .
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FIGURE O-1.—This figure plots the time series of πt absent jumps in our generalized model, where the jump
arrival rate, λ, is unobservable and follows a two-state Markov chain taking on two possible values (λG = 0�1
and λB = 0�8) with a prior of π0 = 0�08 that the current value of λ is λB . Our baseline model with constant
unobservable λ corresponds to ϕG = ϕB = 0 (the dashed line).

unobservable λ) and the stochastic unobservable λ model generate similar quantitative
predictions. For parsimony, we use the constant λ model for our quantitative analysis in
the paper.

OA.2. Solution

Using the belief process {πt} given in (OA.2), we obtain the following HJB equation for
the planner’s allocation problem:

0 = max
C�I�xexd

f (C� V ) + (I − δKK)VK(K�π) + μ̂π(π)Vπ (K�π) + 1
2
σ2
KK2VKK(K�π)

+ λ(π)Exd
[
V

((
1 −N(

xe
)
(1 −Z)

)
K�πJ ) − V (K�π)

]
� (OA.5)

where μ̂π (π) is given in (OA.3). The FOCs for aggregate investment I, (scaled) aggre-
gate disaster distribution mitigation spending xd , and (scaled) aggregate disaster expo-
sure mitigation spending xe are the same as those for our baseline model (with constant
unobservable λ), which are given in (14), (15), and (16), respectively.

Substituting the value function V (K�π) given in (17) and its derivatives into the HJB
equation (OA.5), using the three FOCs ((14), (15), and (16)), and simplifying these equa-
tions, we obtain the four-equation ODE system for b(π), i(π), xd(π), and xe(π), given
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in

0 = ρ

1 −ψ−1

[[
b(π)

ρ
(
1 +φ′(i(π)

))]1−ψ
− 1

]
+ i(π) − δK − γσ2

K

2
+ μ̂π (π)

b′(π)
b(π)

+ λ(π)
1 − γ

[(
b
(
πJ )
b(π)

)1−γ
E

xd (π)
((

1 −N(
xe(π)

)
(1 −Z)

)1−γ) − 1
]

(OA.6)

and (19)–(21) for π ∈ (0�1). The key difference between (OA.6) and the ODE (18) for
b(π) in our baseline model (with constant but unobservable λ) is that the drift of π absent
jumps, μ̂π (π) given in (OA.3), appears in (OA.6) while μπ (π) given in (10) appears in
the ODE (18).3 The other three equations for i(π), xd(π) and xe(π) for our stochastic λ
model are (19), (20), and (21), the same as those for our baseline model of Section 3. The
boundary conditions at the π = 0 and π = 1 states are implied by the preceding equations.

Next, we summarize the solution for our generalized learning model.

PROPOSITION O-1: The first-best solution for our generalized learning model is given by
the value function (17) and the quartet policy rules, b(π), i(π), xd(π), and xe(π), where
0 ≤ π ≤ 1, via the four-equation ODE system ((OA.6), (19), (20), and (21)).

OA.3. Quantitative Analysis

Next, we analyze the solutions for our generalized model with stochastic unobserv-
able λ. For the stochastic λ model, we set both the transition rate from state G to B
(ϕG) and that from state B to G (ϕB) to 2%, that is, ϕG = ϕB = 1/50 = 2%, which imply
an average duration of 50 years for both G and B states. In the long run, the economy is
in either stateG or B with equal (50%) probability. To ease exposition and facilitate com-
parison with our baseline (constant unobservable λ) model, we keep all other parameter
values unchanged.

In Figure O-2, we plot (scaled) public mitigation xd(π) (panel A), (scaled) private miti-
gation xe(π) (panel B), investment-capital ratio i(π) (panel C), and consumption-capital
c(π) (panel D) as functions of belief π for the planner’s first-best solutions: the solid lines
are for the baseline constant λmodel and the dashed lines are for the stochastic λmodel.

Panels A and B show that for both public mitigation xd(π) and private exposure mitiga-
tion xe(π) are significantly lower for the stochastic λ model, and this is intuitive because
the agent is exposure to less uncertainty about the belief due the mean reversion of π
in the stochastic λ model, which induces less mitigation motivation. Quantitatively, the
differences for investment and consumption are of very small (second- and third-order
effects, as we can see from the scale for the vertical axes in panels C and D.) This is
because the transition of λ occurs once every 50 years on average.

Note that investment and consumption are even flatter (less responsive to changes of
belief) in the stochastic λ model than in the constant λ model. Figure O-3 corroborates
the belief mean reversion effect on welfare, growth, and valuation by showing that the
welfare measure, the WTP ζp(π) (panel A), the expected growth rate g(π) (panel C),
Tobin’s average q, and the risk-free rate r(π) are all smoother (flatter) as functions of π
in the stochastic λ model than in the constant λ model.

3The wedge μ̂π (π) − μπ (π) = (ϕG − (ϕB + ϕG)π) precisely captures the effect of stochastic transition
between the G and B states.
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FIGURE O-2.—This figure compares two learning models: the constant λ and the stochastic λ models.
The transition rates are ϕG = ϕB = 0�02 for the stochastic λ model (solid lines). The transition rates are
ϕG = ϕB = 0 for our baseline (constant λ) model (dashed lines).

The intuition is as follows. As belief mean reversion in the stochastic λ model, the
agent is less optimistic in the low-π state but also less pessimistic in the high-π state,
in the stochastic λ model, that is, compared with the constant λ model. As a result, the
planner reduces both consumption and investment in response to changes of belief (so
that the planner better smoothes investment/consumption across states and over time.)

In sum, our analysis shows that for plausible values of slow belief mean reversion, the
quantitative results of our learning model (with stochastic λ) are similar to those of our
learning model (with constant λ). And we confirm the intuition that belief mean reversion
reduces the impact of learning on welfare, valuation, and policy rules.

APPENDIX OB: EXTERNAL HABIT MODEL

In this Appendix, we solve the model with external habit (Campbell–Cochrane) prefer-
ences (Section 7.7) and provide a quantitative analysis.4

4An alternative to the external habit model analyzed in this section is to specify an internal habit formation
model as in Jermann (1998). Due to space constraints, we leave the internal habit formation model out.
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FIGURE O-3.—This figure compares two learning models: the constant λ and the stochastic λ models.
The transition rates are ϕG = ϕB = 0�02 for the stochastic λ model (solid lines). The transition rates are
ϕG = ϕB = 0 for our baseline (constant λ) model (dashed lines).

OB.1. Model

The representative agent has a nonexpected utility over consumption {Ct; t ≥ 0} relative
to a stochastic habit process {Ht; t ≥ 0} (Campbell and Cochrane (1999)) given by

E

(∫ ∞

0
ρe−ρtU (Ct�Ht) dt

)
�

where ρ > 0 is the time rate of preference, U (C�H) = (C−H)1−γ
1−γ , and γ > 0 is a curvature

parameter. It is convenient to work with St , the surplus consumption ratio at t defined as

St = Ct −Ht

Ct
�

Let st be its natural logarithm: st = ln(St). As in Campbell and Cochrane (1999) and this
literature, we assume that st follows a mean-reverting process with stochastic volatility:

dst = (1 − κs)(s− st) dt + δ(st)σK dWK
t � (OB.7)
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where s > 0 is the steady-state value of st and κs measures the degree of persistence.5
The function δ(st) in (OB.7) is the same sensitivity function as the one in Campbell and
Cochrane (1999). The production side of the economy and the learning model are the
same as in our baseline model of Section 2.

Planner’s Solution. The (log) surplus consumption ratio {st; t ≥ 0} acting as the exoge-
nous preferences shock is the new state variable. Let V (K�π� s) denote the household’s
value function. The following HJB equation characterizes the planner’s optimal resource
allocation:

ρV = max
C�I�xexd

ρ

(
Ces

)1−γ

1 − γ + (I − δKK)VK +μπ (π)Vπ + (1 − κs)(s− s)Vs

+ σ2
KK2VKK

2
+ 1

2
σ2
Kδ(s)2Vss + σ2

Kδ(s)KVKs

+ λ(π)Exd
[
V

((
1 −N(

xe
)
(1 −Z)

)
K�πJ � s

) − V (K�π� s)
]
� (OB.8)

Unlike in our baseline model with the Epstein–Zin utility, the agent now not only takes
into account the evolution of s (via the drift term involving Vs and the quadratic-variation
term involving Vss), but also has incentives to hedge against shocks to the surplus con-
sumption ratio (via the quadratic-covariation term involving VKs).

We show that the value function V (K�π� s) is homogeneous with degree (1 − γ) in K:

V (K�π� s) = 1
1 − γ

(
b(π� s)K

)1−γ
� (OB.9)

where b(π� s) is a measure of welfare proportional to the certainty equivalent wealth un-
der optimality. (To ease comparison, we still use b as the function for the welfare measure
here but with the understanding that the b function for the external habit model depends
on both π and s and differs from the b function for our baseline Epstein–Zin model.)

Importantly, unlike the welfare measure (b(π)) in our baseline model (Section 3),
b(π� s) in our external habit model depends on not only belief π but also the (log) surplus
consumption ratio s. Our external habit model is technically more challenging than our
baseline model with Epstein–Zin utility, as the external habit becomes an additional state
variable in addition to capital stock and belief.6

In (OB.7), δ(st) is the sensitivity function proportional to the conditional volatility of
dst in response to dWK

t , which we assume is given by the following square-root function:

δ(s) = 1

S

√
1 − 2(s− s) − 1� s ≤ smax

and δ(s) = 0 for s > smax, where smax = s+ 1−S2

2 and S = es.7

5We write 1 − κs as the rate of mean reversion as in Campbell and Cochrane (2015). The higher the value
of κs , the more persistent the st process. The κs = 1 special case corresponds to a unit-root process.

6Because of the homogeneity property of the Epstein–Zin utility, only capital stock and belief are state
variables after simplifying the model solution.

7Additionally, we set S = σK
√

γ
1−κs as in Campbell and Cochrane (1999).
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OB.2. Solution

Substituting the value function given in (OB.9) into the HJB equation (OB.8), we ob-
tain

0 = max
c�i�xexd

ρ

1 − γ
[(

c(π� s)es

b(π� s)

)1−γ
− 1

]
+ (

i(π� s) − δK
) +μπ (π)

bπ (π� s)
b(π� s)

+ (1 − κs)(s− s)bs(π� s)
b(π� s)

− γσ2
K

2
+ σ2

Kδ(s)2

2

(
bss(π� s)
b(π� s)

− γ
(
bs(π� s)

)2

b(π� s)2

)

+ (1 − γ)σ2
Kδ(s)

bs(π� s)
b(π� s)

+ λ(π)
1 − γ

[(
b
(
πJ � s

)
b(π� s)

)1−γ
E

xd
((

1 −N(
xe(π� s)

)
(1 −Z)

)1−γ) − 1
]
�

Using the resource constraint c =A− i −φ(i) − xd − xe to simplify the FOC for invest-
ment i, we obtain the ODE system in the region where π ∈ [0�1] and s ∈ (−∞� smax):

0 = ρ

1 − γ
[(

b(π� s)e−s

ρ
(
1 +φ′(i(π� s)

)))1−γ−1

− 1
]

+ (
i(π� s) − δK

) + (1 − κs)(s− s)bs(π� s)
b(π� s)

+μπ (π)
bπ (π� s)
b(π� s)

− γσ2
K

2
+ σ2

Kδ(s)2

2

(
bss(π� s)
b(π� s)

− γ
(
bs(π� s)

)2

b(π� s)2

)

+ (1 − γ)σ2
Kδ(s)

bs(π� s)
b(π� s)

+ λ(π)
1 − γ

[(
b
(
πJ � s

)
b(π� s)

)1−γ
E

xd (π�s)
((

1 −N(
xe(π� s)

)
(1 −Z)

)1−γ) − 1
]
� (OB.10)

and

b(π� s) = [
A− i(π� s) −φ(

i(π� s)
) − xd(π� s) − xe(π� s)

]γ/(γ−1)

× [
ρq(π� s)

]1/(1−γ)
es� (OB.11)

1
q(π� s)

= λ(π)
[
b
(
πJ � s

)
b(π� s)

]1−γ
N ′(xe(π� s)

)
E

xd (π�s)

× [
(Z − 1)

(
1 −N(

xe(π� s)
)
(1 −Z)

)−γ]
� (OB.12)

1
q(π� s)

= λ(π)
1 − γ

[
b
(
πJ � s

)
b(π� s)

]1−γ

×
∫ 1

0

[
∂ξ

(
Z;xd(π� s)

)
∂xd

(
1 −N(

xe(π� s)
)
(1 −Z)

)1−γ
]
dZ� (OB.13)

where Tobin’s q is given by the standard q-theoretic formula: q(π� s) = 1 +φ′(i(π� s))�
Using the resource constraint c =A− i −φ(i) − xd − xe to simplify the FOCs for mit-

igation spendings, xe and xd , we obtain the optimal exposure mitigation and distribution
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mitigation spending rules, (OB.12) and (OB.13) for xe and xd , respectively. The bound-
ary conditions at the absorbing states (π = 0 and π = 1) are implied by the preceding
equations.

At s = smax, we have the following boundary condition:

0 = ρ

1 − γ
[(

b(π� smax)e−smax

ρ
(
1 +φ′(i(π� smax)

)))1−γ−1

− 1
]

+ (
i(π� smax) − δK

)

+ (1 − κs)(s− smax)
bs(π� smax)
b(π� smax)

− γσ2
K

2
+μπ (π)

bπ (π� smax)
b(π� smax)

+ λ(π)
1 − γ

[(
b
(
πJ � smax

)
b(π� smax)

)1−γ

×E
xd (π�smax)

((
1 −N(

xe(π� smax)
)
(1 −Z)

)1−γ) − 1
]
� (OB.14)

Additionally, i(π� smax), xe(π� smax) and xd(π� smax), satisfy (OB.11)–(OB.13) at s = smax.8
We summarize our model’s solution in the following proposition.

PROPOSITION O-2: The first-best solution for our external habit model is given by the
value function (OB.9) and the quartet policy rules, b(π� s), i(π� s), xd(π� s), and xe(π� s),
where 0 ≤ π ≤ 1 and −∞< s ≤ smax, via the four-equation ODE system (OB.10), (OB.11),
(OB.12), and (OB.13), together with (OB.14) and (OB.11)–(OB.13) for s = smax.

Next, we use the planner’s solution to derive our model’s asset pricing implications.

OB.3. Asset Pricing Implications

Using the planner’s solution, we infer the SDF Mt process by applying Itô’s lemma to

Mt = e−ρt UC (Ct�Ht)
UC (C0�H0)

= e−ρt
(
CtSt

C0S0

)−γ
�

We then use the no-arbitrage restriction for the SDF to obtain the equilibrium risk-free
rate, the market price of risk, and the stock market risk premium.

Then using Itô’s lemma, we obtain

dMt

Mt

= −ρdt − γ
(

i(π� s) − δK − σ2
K

2

)
dt

+ (1 − κs)(s− st)
(

(1 − γ)
bs(π� s)
b(π� s)

− qs(π� s)
q(π� s)

− 1
)
dt

+μπ(π)
(

(1 − γ)
bπ (π� s)
b(π� s)

− qπ(π� s)
q(π� s)

)
dt

8Note that as s→ −∞ is not reachable in equilibrium, we can ignore the corresponding boundary conditions
for our numerical analysis.
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−
[

(1 − γ)
bs(π� s)2

b(π� s)2 − qs(π� s)2

q(π� s)2

](
σKδ(s)

)2

2
dt + σM(π� s)2

2
dt

+
[

(1 − γ)
bss(π� s)
b(π� s)

− qss(π� s)
q(π� s)

](
σKδ(s)

)2

2
dt − σM(π� s) dWK

t

+ [
η

(
π� s;Z�xe

) − 1
]
dJt � (OB.15)

where η(π� s;Z�xe) = q(π�s)
q(πJ �s) ( b(πJ �s)

b(π�s) )1−γ(1 −N(xe(π� s))(1 −Z))−γ and

σM(π� s) =
[(

1 + qs(π� s)
q(π� s)

− (1 − γ)
bs(π� s)
b(π� s)

)
δ(s) + γ

]
σK�

Using the equilibrium restriction that the drift of dMt

Mt
equals −rt− dt, we obtain

r(π� s) = ρ+ γ
(

i(π� s) − δK − σ2
K

2

)
− (1 − κs)(s− st)

(
(1 − γ)

bs(π� s)
b(π� s)

− qs(π� s)
q(π� s)

− 1
)

−μπ (π)
(

(1 − γ)
bπ(π� s)
b(π� s)

− qπ (π� s)
q(π� s)

)

+
[

(1 − γ)
bs(π� s)2

b(π� s)2 − qs(π� s)2

q(π� s)2

](
σKδ(s)

)2

2

−
[

(1 − γ)
bss(π� s)
b(π� s)

− qss(π� s)
q(π� s)

](
σKδ(s)

)2

2
− σM(π� s)2

2

− λ(π)
[
E

xd
(
η

(
π� s;Z�xe

)) − 1
]
�

Applying Itô’s lemma to firm valueQ(K�π� s) = q(π� s)K and using (OB.15), we obtain

r(π� s)q(π� s) = max
i�xe

A− i−φ(i) − xe + (
i− σM(π� s)σK

)
q(π� s) +μπ (π)qπ (π� s)

+ [
(1 − κs)(s− s) + δ(s)σ2

K − σM(π� s)δ(s)σK
]
qs(π� s)

+ σ2
Kδ(s)2

2
qss(π� s)

+ λ(π)Exd
[
η

(
π� s;Z�xe

)(
q
(
πJ � s

)(
1 −N(

xe
)
(1 −Z)

) − q(π� s)
)]
�

Finally, using the equilibrium conditions q(π� s) = q(π� s) and xe(π� s) = xe(π� s), we
write

dQt + Dt− dt
Qt−

=
[
μQ(πt−� st−) + λ(πt−)

(
QJ
t

Qt−
− 1

)]
dt

+
[

qs(πt−� st−)δ(st−)
q(πt−� st−)

+ 1
]
σK dWK

t

+
(

QJ
t

Qt−
− 1

)(
dJt − λ(πt−) dt

)
�
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where QJ
t

Qt− = (1−N(xet−)(1−Z))q(πJ
t �st−)

q(πt−�st−) , and

μQ(πt−� st−) = r(πt−� st−) + σM(πt−� st−)
(

1 + δ(st−)
qs(πt−� st−)
q(πt−� st−)

)
σK

+ λ(πt−)Exdt−
[
η

(
πt−� st−;Z�xet−

)(
1 − QJ

t

Qt−

)]
�

The market risk premium is

rp(πt−� st−) = σM(πt−� st−)
(

1 + δ(st−)
qs(πt−� st−)
q(πt−� st−)

)
σK

− λ(πt−)Exdt−
[(
η

(
πt−� st−;Z�xet−

) − 1
)( QJ

t

Qt−
− 1

)]
�

Next, we calibrate the model and provide a quantitative analysis.

OB.4. Quantitative Analysis

The key new parameter for the external habit model is the (log) surplus consumption
parameter κs. We set the persistence parameter for external habit at κs = 0�87 per annum
as in Campbell and Cochrane (1999). For other parameter values, we borrow from the
baseline model to ease exposition.

OB.5. Quantitative Results

In Figures O-4 and O-5, we compare the external habit model at the steady state where
S = S = 0�63 with the Epstein–Zin recursive utility model. Panel A of Figure O-4 shows
that the distribution mitigation xd(π) policies for the two utility models are close to each
other. However, panel B of Figure O-4 shows that the exposure mitigation xe(π) policies
for the two models can differ somewhat for intermediate values of π. Nonetheless, our
findings based on these two utility models suggest that our main results on how changes
of belief impact disaster distribution and exposure adaptation spendings are reasonably
robust.

Panel C of Figure O-4 shows that the investment-capital ratio is lower in our Epstein–
Zin model than in the external habit model at the steady state where S = S = 0�63. Panel
D of Figure O-4 shows that the consumption-capital ratio is higher in our Epstein–Zin
model than in the external habit model, which is expected as the sum of adaptation spend-
ing, investment, and consumption is the same and equals the productivity A in these two
models.

It is interesting to note that while i(π) decreases with π for the Epstein–Zin utility
model, i(π) increases with π in the external habit model. This difference is caused by the
long-run risk force in the Epstein–Zin utility specification, where the EIS ψ> 1. To gener-
ate the prediction that worsening belief (increasing π) lowers Tobin’s q and equivalently
investment (as investment increases with Tobin’s q), we require ψ> 1.

The external habit model differs from the baseline Epstein–Zin utility model in two
ways. First, risk aversion is significantly enhanced by and also varies with external habit.
Second, the EIS implied by our external habit model also generates a time-varying elas-
ticity of intertemporal substitution (EIS). As risk aversion increases with habit stock, the
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EIS decreases. This is why our model predicts investment (and hence Tobin’s q) increases
with belief. Figure O-5 reports the WTP, conditional damage �(π), the expected growth
rate g(π), Tobin’s average q(π), the risk-free rate r(π), and the market risk premium
rp(π). While there are some differences, we see that these two models generate similar
results when it comes to the importance of adaptations in reducing conditional damage
and ensuring growth.

In Figure O-6, we focus on the external habit utility model by comparing two formu-
lations: the planner’s first-best economy (solid lines) with the market economy solution
(dashed lines). We plot the two mitigation spending, investment, and consumption poli-
cies for varying levels of S, for a given belief π0 = 0�08.

Panel A of Figure O-6 shows that there is no public mitigation in a competitive market
economy for the same externality argument as in our baseline model with Epstein–Zin
utility. This panel also shows that xd increases as the surplus consumption ratio increases.
Similarly, both the exposure mitigation spending and investment increase with S (panels
B and C). The intuition for these results is as follows. As we increase S, the marginal
utility of consumption (and SDF Mt) decrease, which causes c to decrease with S (see
panel D). Additionally, the marginal value of investment and that of mitigation (for both
types) increase, which causes xd , xe, and i to increase with S as shown in panels A, B,
and C.

Finally, we note that the private mitigation spending xe is larger for the market economy
than for the planner’s economy. This is because the marginal benefit of private mitigation
is higher in the market economy as there is no public mitigation. In contrast, as the public

FIGURE O-4.—This figure compares the first-best solutions for the external habit model (solid lines) and
the baseline model with Epstein–Zin recursive utility (dashed lines). The parameter values for our baseline
(Epstein–Zin) model are summarized in Table 4.
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FIGURE O-5.—This figure compares the first-best solutions for the external habit model (solid lines) and
the baseline model with Epstein–Zin recursive utility (dashed lines). The parameter values for our baseline
(Epstein–Zin) model are summarized in Table 4.

mitigation spending xd is positive and significant under the planner’s economy, the addi-
tional value of private mitigation spending in the planner’s economy is smaller, and hence
xe is smaller under the planner’s economy than under the market economy (a substitution
effect).

In sum, we show that time-varying risk aversion induced by external habit influences
optimal mitigation policies, but the general results that we obtain from our baseline model
with Epstein–Zin utility remains valid in our external habit model.

APPENDIX OC: COMPARATIVE STATICS

OC.1. Elasticity of Intertemporal Substitution ψ

In Figure O-7, we plot the first-best solutions for three levels of the EIS ψ: γ =
0�125�1�1�5. Panels A and B show that the lower the EIS ψ, the higher both public mit-
igation xd and private mitigation xe spendings. Quantitatively, these differences are not
very large. Panel C shows that the lower the EIS ψ, the higher the investment-capital ra-
tio i(π). Panel D shows that the lower the EIS ψ, the lower the consumption-capital ratio
c(π), as c =A− (i + xd + xe). Panel E shows that the lower the EIS ψ, the higher Tobin’s
average q(π). This follows directly from the comparative static result of changing ψ on i
(panel C), as Tobin’s q is increasing with i: q(π) = 1 +φ′(i(π)). Panel F shows that the
lower the EIS ψ the higher the price-dividend ratio q(π)/c(π), which follows from the
comparative effects shown in panels D and E.
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FIGURE O-6.—This figure plots the optimal policies for the first-best economy (solid lines) and the mar-
ket economy (dashed lines) as functions of surplus consumption ratio S, for the external habit (Campbell—
Cochrane) model, where π0 = 0�08.

The intuition is as follows. The higher the EIS ψ, the less marginal propensity to con-
sume as in partial equilibrium model consistent with Ramsey/Friedman consumption rule.
As a result, the agent spends more on mitigation and also invests more for the future.

Additionally, we show that whether the price-dividend ratio q(π)/c(π) increases or
decreases when disaster arrives (which increases (worsens) belief π) crucially depends
on whether the EIS ψ is larger or smaller than one. In our baseline case where ψ =
1�5> 1, the equilibrium price-dividend ratio q(π)/c(π) decreases when a disaster arrives
(i.e., when π increases). This result is consistent with Bansal and Yaron (2004) and the
subsequent long-run risk literature, who show that the price-dividend ratio decreases in
response to a negative growth shock when the EIS parameter ψ is set to be larger than
one. Unlike Bansal and Yaron’s pure exchange economy, our model features production,
and hence we need to compute the endogenous dividend c together with value of capital,
Tobin’s q, in order to obtain the price-dividend ratio. However, we obtain the same results
for the effect of EIS on the price-dividend ratio.

For the unity EIS (ψ= 1) Epstein–Zin utility case, which is a generalized version of ex-
pected logarithmic utility (with a flexible choice of risk aversion parameter γ), the wealth
and the substitution effects exactly offset each other. As a result, the equilibrium price-
dividend ratio remains constant, that is, q(π)/c(π) = 1/ρ= 20 at all levels of π (see the
dotted line in panel F). Finally, with ψ = 1/γ = 0�125 < 1, the wealth effect is stronger
than the substitution effect. For this case, as belief worsens (increases), the price-dividend
ratio q(π)/c(π) increases, which is empirically counterfactual. This is one reason (among
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FIGURE O-7.—This figure plots the first-best solution for three values of the EIS ψ: 1/γ = 0�125�1�1�5 for
our baseline learning model (with Epstein–Zin utility). The other parameter values are given in Table 4.

others) why Epstein–Zin utility with an EIS larger than one (ψ> 1) is a more appealing
utility specification than commonly used expected utility for asset pricing.

In Figure O-8, we show that the the quantitative effects of EIS ψ on the WTP is large
(panel A). In panel B, the lower the EIS ψ, the lower the conditional damages �(π). This
is because the agent with a lower EIS mitigates less as we show in panels A and B of
Figure O-8. As a result, the lower EIS the lower the conditional damages �(π). Figure O-
9 of panel A shows that the lower the EIS ψ, the higher the expected growth rate g(π).
This result follows from (1) the lower the EIS, the higher investment result (as shown in
panel C in Figure O-7) and (2) the lower the EIS, the higher damage �(π) (as shown in
panel B of Figure O-8.)

Note that the effects of the EIS on the interest rate is ambiguous, which depends on
the agent’s belief (panel B). Panel C of Figure O-9 shows the higher the EIS, the lower
mitigation in equilibrium the higher risk premium.

OC.2. Disaster Arrival Rate λB in State B

In Figure O-10, we plot the first-best solutions for three levels of the disaster arrival
rate in state B: λB = 0�4�0�8�1. Panel A shows that the higher the disaster arrival rate λB
in state B, the higher the public mitigation spending xd . Moreover, the more pessimistic
the agent’s belief the stronger this effect. Note that the wedge between the lines for two
different levels of λ widens as π increases.
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FIGURE O-8.—This figure plots the planner’s first-best solution for three values of the EIS ψ:
1/γ = 0�125�1�1�5 for our baseline learning model (with Epstein–Zin utility). The other parameter values
are given in Table 4.

Panel B shows that increasing the arrival rate λB has a highly nonlinear effect on the
private mitigation spending xe. Increasing λB from 0.4 to 0.8 significantly increases the
mitigation spending (for sufficiently large values of π.) However, further increasing λB
from 0.8 to 1 has limited effects on the mitigation spending. Panel C shows that as λB
increases, investment falls. The higher the belief level π (the more pessimistic the agent),
the larger the impact of λB on i. Panel D shows that the impact of λB on consumption c is
ambiguous due to the general equilibrium effect.

In Figure O-11, we show that λB has a large effect on the WTP ζp (panel A). For
example, when the belief changes from π = 0 to π = 1, the WTP increases from about 0
to 13% when λB = 1. In contrast, when λB = 0�4, the WTP barely changes from 0 to 2%
in response to the same change of the belief. Panel B shows that the higher the arrival
rate λB the smaller the conditional damage �(π). This is intuitive as mitigation spending
is higher when λB is larger. However, as investment is lower when λB is larger, the impact
of λB on the growth rate g(π) is minimal as the two channels (investment and conditional
damage) offset each other (panel C). Panel D shows that the higher the arrival rate λB,
the lower Tobin’s q, tracking the impact of λB on i(π) as q(π) = 1 + θi(π). Panel E and

FIGURE O-9.—This figure plots the planner’s first-best solution for three values of the EIS ψ:
1/γ = 0�125�1�1�5 for our baseline learning model (with Epstein–Zin utility). The other parameter values
are given in Table 4.
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FIGURE O-10.—This figure plots the planner’s first-best solution for three values of the annual disaster
arrival rate λB : 0�4, 0�8, 1 for our baseline learning model (with Epstein–Zin utility). The other parameter
values are given in Table 4.

panel F show that the quantitative effects of λB on the risk-free rate r and the market risk
premium rp are moderate at best.

OC.3. Time Rate of Preference ρ

In our baseline calculation, we set the time rate of preference ρ at 5% per annum,
a commonly used value. Next, we compare our baseline model results with two other
economies with lower discount rates: ρ= 4�5% and ρ= 6%.

Panels A and B of Figure O-12 show that the higher the time rate of preference ρ, the
less the planner spends on both types of mitigation spendings, xd and xe. Similarly, panel
C of Figure O-12 shows that the higher the time rate of preference ρ, the less the planner
invests and panel D shows that the higher the time rate of preference ρ the more the agent
consumes. The quantitative effects on consumption are large. For example, increasing ρ
from 4.5% to 6% roughly increases consumption c from 12% to 15% per annum.

In Figure O-13, we show that the quantitative effects of the time rate of preference ρ on
the WTP is significant (panel A). For example, when we change from π = 0 to π = 1, the
WTP increases from about 0 to 6�7% when ρ = 6%, and increases from 0 to 10% when
ρ= 4�5%.

The higher the time rate of preference ρ, the higher the conditional damage �(π)
(panel B) and the lower the Tobin’s q (panel D) as the agent is less patient and puts a
smaller weight on the future. Since these two forces push toward the same direction, the
higher the discount rate ρ, the lower growth rate g (panel C).
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FIGURE O-11.—This figure plots the planner’s first-best solution for three values of the annual disaster
arrival rate λB: 0�4, 0�8, 1 for our baseline learning model (with Epstein–Zin utility). The other parameter
values are given in Table 4.

Finally, panel E shows that the quantitative effect of ρ on the risk-free rate r is moder-
ate at best and panel F shows that the effect of ρ on the market risk premium rp is very
small.

OC.4. Coefficient of Relative Risk Aversion γ

In our baseline calculation, we set the coefficient of relative risk aversion γ at 8, which
is within the range of widely used values (e.g., 2 to 10). Next, we compare our baseline
model results to two other economies with γ = 4 and γ = 10.

Panel A of Figure O-14 shows that the higher the coefficient of relative risk aversion γ,
the more the planner spends on distribution mitigation xd and the less the planner spends
on exposure mitigation xe. The higher the coefficient of relative risk aversion γ, the less
the planner invests (panel C), the more the agent consumes (panel D).

In Figure O-15, we show that the quantitative effects of increasing risk aversion from
γ = 4 to γ = 10 on the WTP is large (panel A). For example, as we increase γ from 4 to
10, the WTP ζp increases from 6.6% to 9.8% when the agent’s belief is π = 1.

The higher the coefficient of relative risk aversion γ, the lower the conditional damage
�(π) (panel B of Figure O-15) and the lower the growth rate g(π) (panel C of Figure O-
15). This is because a more risk-averse agent mitigates more but invests less. Quantita-
tively, the negative effect of increasing γ via investment on growth dominates the positive
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FIGURE O-12.—This figure plots the planner’s first-best solution for three values of the annual time rate of
preference ρ: 4�5%, 5%, 6% for our baseline learning model (with Epstein–Zin utility). The other parameter
values are given in Table 4.

effect of increasing γ via mitigation. As a result, the net effect of increasing γ on growth
is negative.

Finally, panels E and F of Figure O-15 show that the quantitative effects of γ on the
risk-free rate r and the market risk premium rp are very large, as we expect (in line with
standard asset pricing results).

In Figure O-16, we show the quantitative effects of changing the adjustment cost θ. In
panel A, we find that the amount that the planner spends on adaptation is not sensitive
to changes in this parameter. In panel B, we find that the amount that firms spend on
adaptation spending is also not sensitive to changes in this parameter. In panel C, we find
that the amount of investment is highly sensitive to adjustment cost. This is not surprising
since increases in adjustment cost of capital directly affects the net benefits of investment.
In panel D, we find that consumption is also highly sensitive to this parameter. The reason
is the resources constraint as all the adaptation spendings, investment and consumption
have to add up to output each period.

In Figure O-17, we find that WTP (panel A) is insensitve to changes in θ. This is re-
lated to the findings in panels A and B from Figure O-16. Since adaptation spending in
aggregate does not change much with θ, it follows that conditional damage (panel B) also
does not change much. Moreover, the risk premium (panel F) is insensitive to changes
in θ. This follows from the insensitivity of adaptation spending from panels A and B of
Figure O-16, which directly affect conditional damage from disasters and hence also the
risk premium.
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FIGURE O-13.—This figure plots the planner’s first-best solution for three values of the annual time rate of
preference ρ: 4�5%, 5%, 6% for our baseline learning model (with Epstein–Zin utility). The other parameter
values are given in Table 4.

However, the growth rate (panel C) is sensitive to changes in θ. Since investment is a
key driver of growth in the economy, this finding follows from the sensitivity of investment
to changes in adjustment cost demonstrated in Figure O-16. Higher adjustment costs nat-
urally also affect Tobin’s q (panel D). Thus we would expect that both of the quantitites
in panels C and D are sensitive to changes in θ. It turns out that the interest rate (panel
E) is also highly sensitive to changes in θ in general equilibrium.

Having done a thorough comparative statics analysis, we next turn to a decomposition
of social welfare.

OC.5. Welfare Decomposition

In Figure O-18, we plot the welfare percentage gain, where welfare is measured in terms
of willingness to pay (WTP), if we were to transition from our baseline first-best economy
with learning (analyzed in Section 3) to various newly constructed economies.

In panel A, the newly constructed economy features no disaster shocks at all, that is,
λG = λB = 0, the percentage gain for the consumer’s WTP (in units of certainty equivalent
wealth) increases from about 7% when π = 0 to about 30% when π = 1, if the economy
transitioned from our baseline economy to this economy with no disaster shocks at all.
In panel B, we shut down diffusion shocks in the newly constructed economy by setting
σK = 0. The percentage WTP gain decreases from about 43% when π = 0 to about 39%
when π = 1, if the economy transitioned from our baseline economy to this economy
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FIGURE O-14.—This figure plots the planner’s first-best solution for three values of coefficient of relative
risk aversion γ: 4, 8, 10 for our baseline learning model (with Epstein–Zin utility). The other parameter values
are given in Table 4.

with σK = 0. In panel C, the newly constructed economy features neither disaster (jump)
shocks nor diffusion shocks, that is, λG = λB = σK = 0. The percentage welfare gain for
the representative consumer’s WTP increases from about 47% when π = 0 to about 61%
when π = 1, as we transition from our baseline economy (in Section 2) to this newly
constructed economy with no risk at all.

Note that the WTP at π = 1 for this transition is 61%, lower than the sum of the WTP
gain in panel A (30%) and the WTP gain in panel B (39%) by 8%. This more than 10%
reduction of the WTP gain is due to the interaction between diffusive shocks and jump
shocks in our learning model. That is, the total impact on WTP of shutting down both
jump shocks (λG = λB = 0) and diffusion shocks (σK = 0) together is smaller than the
sum of (1) the effect on WTP by shutting down the jump shocks (λG = λB = 0 only and
(2) the effect on WTP by shutting down the diffusion shocks (σK = 0) only.

APPENDIX OD: A GENERALIZED MODEL WITH CARBON STOCK

In this Appendix, we solve our generalized model with carbon stock.

OD.1. The PDE System

Using the FOCs and substituting the value function V (K�S�π) given in (46) into the
HJB equation (43), and simplifying the expressions, we obtain the following five-equation
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FIGURE O-15.—This figure plots the planner’s first-best solution for three values of the coefficient of relative
risk aversion γ: 4, 8, 10 for our baseline learning model (with Epstein–Zin utility). The other parameter values
are given in Table 4.

PDE system for b(π� s), i(π� s), xd(π� s), xe(π� s), and h(π� s):

0 = ρ

1 −ψ−1

[[
b(π� s)−sbs(π� s)
ρ
(
1 +φ′(i(π� s)

))]1−ψ
− 1
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)b(π� s) − sbs(π� s)
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)
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b
(
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]
� (OD.16)
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FIGURE O-16.—This figure plots the planner’s first-best solution for three values of adjustment cost θ: 12,
17, 24 for our baseline learning model (with Epstein–Zin utility). The other parameter values are given in
Table 4.

b(π� s) = [
Ah(π� s)1−α − i(π� s) −φ(

i(π� s)
)

− xd(π� s) − xe(π� s) −pHh(π� s)
]1/(1−ψ)

×
[
ρ
(
1 +φ′(i(π� s)

)) b(π� s)
b(π� s) − sbs(π� s)
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� (OD.17)
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FIGURE O-17.—This figure plots the planner’s first-best solution for three values of adjustment cost θ: 12,
17, 24 for our baseline learning model (with Epstein–Zin utility). The other parameter values are given in
Table 4.

where sJ = s
1−N(xe(π�s))(1−Z) is the post-jump carbon-stock-to-productive-capital ratio s.9

FIGURE O-18.—Willingness-to-pay (WTP) calculations. Panel A plots the WTP percentage gain by chang-
ing λG = 0�1 and λB = 0�8 to λB = λG = 0. Panel B plots the WTP percentage gain by changing σK = 8% in
our baseline economy to σK = 0. Panel C plots the WTP percentage gain by changing λG = 0�1, λB = 0�8, and
σK = 8% to λB = λG = σK = 0.

9Recall that s is a mean-reverting process. Because π = 0 and π = 1 are absorbing states, we can obtain the
boundary conditions at π = 0 and π = 1 by substituting π = 0 and π = 1 into (OD.16)–(OD.20).
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OD.2. Competitive Market Equilibrium Solution

Firm’s Optimization Problem. Taking the equilibrium risk-free rate rt and the market
price of (diffusion and jump) risks, the firm maximizes its market value, Q(K�π� s) given
in (3), where {Yt} is the firm’s payout process given in (48).

Applying Ito’s lemma to firm value Q(K�π� s) = q(π� s)K, we obtain
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Note that xd = 0 as no firm spends on public mitigation. The FOCs for i and xe are
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We have a new FOC for the firm’s fossil fuel usage, h, which is

(1 − α)Ah(π� s)−α = pH�
In equilibrium, the aggregate scaled fossil fuel, h(π� s), is constant and given by

h(π� s) =
(

(1 − α)A
pH

) 1
α

�

Household’s Optimization Problem. The household maximizes the value function Jt .
We show that the value function is Jt = J(Wt�πt� st) is given by

J(W�π� s) = 1
1 − γ

(
u(π� s)W

)1−γ
�

where u(π� s) is a welfare measure to be determined. The HJB equation is given by
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r(π� s)W + (

μQ(π� s) − r(π� s)
)
�−C]

JW +μs(π� s)Js

+
(
σ2
S − 2ϑσSσK + σ2

K

)
s2Jss

2

+
(((

q(π� s) − sqs(π� s)
q(π� s)

σK

)2

+ 2ϑ
q(π� s) − sqs(π� s)

q(π� s)
sqs(π� s)
q(π� s)

σKσS
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+
(

sqs(π� s)
q(π� s)

σS

)2)
�2JWW

)/
2

+
(
sqs(π� s)
q(π� s)

(
σ2
S −ϑσKσS

) + q(π� s) − sqs(π� s)
q(π� s)

(
ϑσSσK − σ2

K

))
�sJW s� (OD.22)

Next, we show that by optimally choosing a tax on capital stock, a tax on fossil fuel
usage, and a tax on investment, the government can attain the first-best outcome.

OD.3. Optimal Taxation in Market Economy Restores First-Best

In this Appendix, we use the second formulation of optimal taxes in the main text,
where the planner taxes a firm’s fossil fuel usage and investment if they exceed the re-
spective first-best levels. Anticipating that all three taxes are Markovian in s and π, we
write these tax rates as τx(π� s), τh(π� s), and τi(π� s). Applying Itô’s lemma to firm value
Q(Kt�πt� st) = q(πt� st)Kt and using the SDF Mt given in (22), we obtain the following
HJB equation for q(πt� st):

r(π� s)q(π� s) = max
i�xe�xd�h

Ah1−α − τx(π� s) − τh(π� s)(h− h)

− τi(π� s)
[
i+φ(i) − (

i +φ(i)
)]

−pHh− i−φ(i) − xe − xd + (
i− δK −ηk

M
(π� s)σK

)
q(π� s)

+ [
μs(π� s) +ϑσSσK − σ2

K − (
ηs

M
(π� s)ϑσS −ηk

M
(π� s)σK

)]
sqs

+
(
σ2
S − 2ϑσSσK + σ2

K

)
s2

2
qss +μπ (π)qπ

+ λ(π)Exd
[
η

(
π� s;Z�xe

)(
q
(
πJ � sJ )(

1 −N(
xe

)
(1 −Z)

) − q(π� s)
)]
�

As in our baseline model, firms have no incentives to spend on disaster distribution adap-
tation: xd = 0. The FOC for xe is the same as (OD.21) for the market economy without
taxes (Section OD.2). The FOC for h is given by (1 − α)Ah(π� s)−α = pH + τh(π� s) and
the FOC i is given by q(π� s) = (1 +φ′(i(π� s)))(1 + τi(π� s)).

Next, we show that the household’s value in the market economy with taxes J(Wt�πt� st)
(Section 8.3) equals that in the first-best economy (Section 8.2). Using the equilibrium
result in the market economy: Wt = q(πt� st)Kt , we write J(Wt�πt� st) = J(q(πt� st)Kt �
πt� st).

Combining the investment FOC, q(π� s) = (1 + φ′(i(π� s))) b(π�s)
b(π�s)−sbs(π�s) , with the con-

sumption FOC, c(π� s) = ρψu(π� s)1−ψq(π� s) = (ρq(π� s))ψ[u(π� s)q(π� s)]1−ψ, we ob-
tain

c(π� s) =
[
ρ
(
1 +φ′(i(π� s)

)) b(π� s)
b(π� s) − sbs(π� s)

]ψ[
u(π� s)q(π� s)

]1−ψ
�

Using b(π� s) = u(π� s)q(π� s) and the resource additivity condition, we obtain

b(π� s) = [
Ah(π� s)1−α − τx(π� s) − τh(π� s)

(
h(π� s) − h(π� s)

)
− τi(π� s)

[
i(π� s) +φ(

i(π� s)
) − (

i(π� s) +φ(
i(π� s)

))]
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−pHh(π� s) − i(π� s) −φ(
i(π� s)

) − xe(π� s)
]1/(1−ψ)

×
[
ρ
(
1 +φ′(i(π� s)

)) b(π� s)
b(π� s) − sbs(π� s)

]−ψ/(1−ψ)

� (OD.23)

Under optimal taxes, (OD.23) is the same as the investment FOC, given in (OD.17), in
the first-best economy. This is because (OD.23) summarizes both the consumer’s and the
firm’s FOCs in the market economy with optimal taxes.

OD.4. Asset Prices in the Planner’s First-Best Economy

We derive asset-pricing implications in the first-best economy. Using Itô’s lemma, we
obtain

dst = d

(
St
Kt

)
= dSt
Kt−

− St− dKt

K2
t−

+ St− dK2
t

K3
t−

− 〈dSt � dKt〉
K2
t−

= μs(πt−� st−) dt + st−
[
σS dWS

t − σK dWK
t +Nt−(1 −Z) dJt

]
�

where μs(πt−� st−) = ht− − (it− − δK + δS − σ2
K +ϑσKσS)st−. Duffie and Epstein (1992)

show that the SDF {Mt : t ≥ 0} implied by the planner’s solution is given by

Mt = exp
[∫ t

0
fV (Cs� Vs)ds

]
fC(Ct � Vt)�

Using the FOC for investment, the value function, and the resource constraint, we obtain

fC(C� V ) = 1
1 +φ′(i(π� s)

) b(π� s) − sbs(π� s)
b(π� s)

b(π� s)1−γK−γ = 1
q(π� s)

b(π� s)1−γK−γ�

and

fV (C� V ) = ρ

1 −ψ−1

[
(1 −ω)C1−ψ−1(

(1 − γ)
)ω−1 V

−ω − (1 − γ)
]

= −ε(π� s)�

where ε(π� s) = − ρ(1−γ)
1−ψ−1 [( c(π�s)

b(π�s) )1−ψ−1 (ψ
−1−γ
1−γ ) − 1].

Using Itô’s lemma and the optimal allocation rules, we obtain

dMt

Mt−
= −ε(π� s) dt − γ[(

i(π� s) − δK
)
dt + σK dWK

t

]
+

[
(1 − γ)

bπ(π� s)
b(π� s)

− qπ(π� s)
q(π� s)

]
μπ (π) dt

+
[

(1 − γ)
bs(π� s)
b(π� s)

− qs(π� s)
q(π� s)

]

× [(
μs(π� s) + sγ

(
σ2
K −ϑσSσK

))
dt + σS dWS

t − σK dWK
t

]
+ γ(γ+ 1)

2
σ2
K dt
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+
(
σ2
S − 2ϑσSσK + σ2

K

)
s2

2

[
(1 − γ)

(
bss

b
− γb2

s

b2 − bs

b

qs

q

)
− qss

q
+ 2q2

s

q2

]
dt

+ [
η

(
π� s;Z�xe

) − 1
]
dJt �

where η(π� s;Z�xe) = q(π�s)
q(πJ �sJ ) ( b(πJ �sJ )

b(π�s) )1−γ(1 − N(xe(π� s))(1 − Z))−γ and sJ =
s

1−N(xe(π�s))(1−Z) is the post-jump ratio carbon-productive-capital ratio s.
As the expected percentage change of Mt equals −rt per unit of time (Duffie (2001)),

we obtain the following expression for the interest rate:

r(π� s) = ρ+ψ−1(i − δK) − γ
(
ψ−1 + 1

)
σ2
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2
−
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)bπ
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(
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�

Applying Itô’s lemma to Q(K�π� s) = q(π� s)K, we obtain the PDE for Tobin’s q,
q(π� s):

r(π� s)q(π� s) =Ah1−α −pHh − i−φ(i) − xe − xd

+ (
i− δK −ηk

M
(π� s)σK

)
q(π� s) +μπ (π)qπ
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Finally, using the equilibrium conditions q(π� s) = q(π� s) and xe(π� s) = xe(π� s), we
write

dQt + Dt− dt
Qt−

=
(
μQ(πt−� st−) + λ(πt−)

(
QJ
t

Qt−
− 1

))
dt + σK dWK

t
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)(
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)
�
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q(πt−�st−) and
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The market risk premium is given by

rp(πt−� st−) = ηk
M

(πt−� st−)σK + (
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