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DYNAMIC INFORMATION PROVISION: REWARDING THE PAST AND
GUIDING THE FUTURE

IAN BALL
Department of Economics, MIT

I study the optimal provision of information in a long-term relationship between a
sender and a receiver. The sender observes a persistent, evolving state and commits
to send signals over time to the receiver, who sequentially chooses public actions that
affect the welfare of both players. I solve for the sender’s optimal policy in closed form:
the sender reports the value of the state with a delay that shrinks over time and even-
tually vanishes. Even when the receiver knows the current state, the sender retains
leverage by threatening to conceal the future evolution of the state.
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1. INTRODUCTION

HOW CAN INFORMATION be used in place of money as a reward to motivate behavior? In
many relationships, controlling information provides powerful leverage. A leaker sharing
protected information with a media outlet can use the promise of additional leaks to de-
mand slanted coverage. Within organizations, from large firms to the military, turf wars
impede efficient information exchange (Herrera, Reuben, and Ting (2017)). In such or-
ganizations, where preferences are misaligned and transfers are often infeasible, refusing
to share information can be an important bargaining chip.

In these relationships, between individuals or organizational units, one party controls
information that is necessary to guide efficient decisions. When preferences are mis-
aligned, this information can be withheld as a punishment for past behavior. In this paper,
I illustrate how the dual role of information shapes the dynamics of optimal information
provision within a long-term relationship.

I consider a stylized model in continuous time with a sender (she) and a receiver (he).
There is a payoff-relevant state, which follows a diffusion process. The sender observes
the evolution of this state, and she sends signals over time to the receiver, who sequentially
chooses public actions that affect the welfare of both players. The sender and receiver
have partially aligned quadratic preferences. The receiver wants to match his action with
the state, but the sender wants the receiver to shift his action above the state by a fixed
bias.

The only instrument available to the sender is the control of information. The sender
commits to a dynamic information policy, which assigns a signal distribution to each pri-
vate history of past states, signals, and actions. Over time, as the sender observes the
evolving state and the receiver’s actions, she sends the signals prescribed by the informa-
tion policy. The receiver observes the sender’s signals and chooses actions sequentially.
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Since the receiver is forward-looking, he considers the effect of his actions both on his
flow payoff and on the informativeness of future signals. The sender, anticipating the
receiver’s best response, chooses an information policy to maximize her expected utility.

The fundamental tradeoff for the sender is between precision and bias. Providing the
receiver with information about the current state has two effects. On the one hand, the
receiver can more precisely tailor his current action to the state, making both players bet-
ter off. On the other hand, since the state process is persistent, the receiver’s uncertainty
about future states is reduced, making future information less valuable to him. Hence,
the receiver is less willing to bias his actions.

The sender faces a complex, nested optimization problem. I reduce the sender’s prob-
lem in two steps.

First, I change the domain of optimization from information policies to decision rules,
that is, state-dependent distributions of actions over time. A decision rule is a best re-
sponse to some information policy if and only if it is a best response to a canonical
information policy—the associated direct, grim-trigger policy that makes direct action
recommendations and cuts off all future information if any recommendation is violated.
Decision rules that can be induced in this way are called obedient.

Second, I observe that the players’ payoffs and the obedience constraint can be ex-
pressed in terms of two statistics of a decision rule—the bias and variance. At a given time,
the bias1 is the difference between the action recommended to the receiver and the re-
ceiver’s bliss point (his expectation of the state). The variance is the posterior variance of
the current state, given the history of action recommendations. The bias and variance are
stochastic processes, but I show that deterministic bias and variance processes—termed
paths—trace out the Pareto frontier.

Bayesian updating restricts which variance paths are feasible. For a variance path to be
induced by some information policy, a necessary condition called Bayes plausibility is that
the variance never increases by more than it would in the absence of new information.
I show that this condition is also sufficient. Theorem 1 says that every Bayes-plausible
posterior variance path can be induced by delayed reporting. At each time t, the sender’s
action recommendation reveals the state realization at some earlier time ϕ(t).

The sender’s problem is therefore reduced to optimizing over obedient, Bayes-plausible
bias-variance paths. I use Lagrangian relaxation and dynamic programming to find the
solution in closed form. The optimal bias and variance functions are stated in Theorem 2.
There are two cases.

If the sender’s bias is sufficiently small relative to the volatility of the state process,
then the sender can induce her first-best decision rule. She keeps the receiver perfectly
informed of the state but threatens to cut off all future information if the receiver ever
deviates from the sender’s optimal action.

If the sender’s bias is sufficiently large relative to the volatility of the state process, then
the sender cannot induce her first-best decision rule. Hence, the bias-precision tradeoff is
in force. The optimal policy has two phases. First, in the transition phase, the sender grad-
ually reduces the receiver’s uncertainty about the current state while gradually narrowing
the gap between the recommended action and the receiver’s bliss point. At some finite
time, the current state is fully revealed, and the stationary phase begins. Thereafter, the
sender keeps the receiver perfectly informed of the current state. The sender demands

1This (action) bias is a statistic computed from a decision rule. The (preference) bias is a parameter of the
sender’s utility function.



DYNAMIC INFORMATION PROVISION 1365

that the receiver maintain a fixed bias between his action and the state. If the receiver
deviates at any time, the sender cuts off all future information.

The rest of the paper is organized as follows. Section 1.1 reviews related literature.
Section 2 presents the model. Section 3 solves a two-period example. The main anal-
ysis begins in Section 4, where I introduce delayed reporting and simplify the sender’s
problem. Section 5 describes the optimal information policy and analyzes comparative
statics. Section 6 solves for the optimal policy with multidimensional states and actions.
The components of the state are revealed sequentially, in order of increasing persistence.
Section 7 is the conclusion. Measure-theoretic definitions are in Appendix A. Proofs are
in Appendix B.

1.1. Related Literature

My paper joins a growing literature on dynamic information design. The first papers
(Renault, Solan, and Vieille (2017), Ely (2017)) study the optimal provision of informa-
tion (about an evolving state) to a myopic receiver who acts repeatedly.2 Since the receiver
is myopic, his action choices depend only on his beliefs about the current state, not the
promise of future information.

The closest dynamic information design papers (Smolin (2021), Ely and Szydlowski
(2020), Orlov, Skrzypacz, and Zryumov (2020)) study the optimal provision of informa-
tion over time to a forward-looking receiver who chooses when to stop.3 To stop optimally,
the receiver considers his current belief about the state and also the future information he
will receive if he waits. The sender can delay information transmission in order to entice
the receiver to wait longer. In my paper, by contrast, the receiver chooses a rich action
at each time. Therefore, the sender has a countervailing motive to reveal information so
that the receiver can adjust his action to the current state.4 This precision motive drives
gradual information revelation.5

The dynamics in my model are broadly similar to the backloading of rewards in dy-
namic principal-agent models with cash constraints (Lazear (1981), Harris and Holm-
strom (1982), Thomas and Worrall (1994)).6 Withholding information, unlike money, di-
rectly entails inefficiency. My paper is closest to the apprenticeship model in the indepen-
dent work of Fudenberg and Rayo (2019, hereafter FR), which builds upon the framework
of Garicano and Rayo (2017). In FR, the principal is endowed with a perfectly divisible
unit of knowledge that can be costlessly transmitted to the agent, who is cash-constrained.
The principal selects a contract specifying paths of knowledge, effort, and wages for the
agent. At any time, the agent can walk away with his current knowledge stock. While

2The working paper version Ely (2015) finds that the solution is unchanged if the receiver is forward-looking.
This is a special feature of the binary-action setting.

3Other dynamic information design papers explore different issues: costly communication (Honryo (2018));
private information held by the receiver (Au (2015)); and the effect of a decision deadline (Bizotto, Rüdiger,
and Vigier (2021)).

4In subsequent work by Kaya (2022), the receiver chooses effort each period. But there is no precision
motive because the sender prefers more effort, no matter the state.

5Orlov, Skrzypacz, and Zryumov (2020) find an equilibrium with gradual information revelation in a model
in which the sender has only within-period commitment. If the sender’s bias against stopping is sufficiently
strong, then promising delayed information is not credible. In my model, gradualism arises with or without
intertemporal commitment; see the discussion of commitment in Section 2.2.

6In a quite general (complete information) principal-agent setting, Ray (2002) shows that in all efficient
“self-enforcing agreements,” the continuation value of the agent is backloaded.
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immediate knowledge transmission is efficient, the principal’s optimal contract transmits
knowledge gradually in order to suppress the value of the agent’s outside option.

In my model, the receiver’s posterior variance and action bias, respectively, play similar
roles to the principal’s stock of untransmitted knowledge and the agent’s excess effort
in FR. But there are important differences. First, in my model the information provided
by the sender grows stale over time (because the state evolves). So even if the receiver
knows the current state, it is still feasible for the sender to demand bias from the receiver.
Second, the players’ payoffs in my model are not transferable. The curvature in the Pareto
frontier makes it optimal for the sender to demand bias after fully revealing the state. The
stationary phase, featuring perfect information transmission and biased actions, is new to
my model.

2. MODEL

Time is continuous and the horizon is infinite. There are two players: a sender (she)
and a receiver (he). At each time t ∈ [0�∞), the state θt ∈ R is realized and the receiver
chooses an action at ∈ R. Flow utilities for the sender and receiver are given by

uS(at� θt) = −(at − θt −β)2� uR(at� θt) = −(at − θt)2�

The receiver wants to match his action with the state, but the sender wants the receiver
to shift his action above the state by a bias β. Without loss, assume β > 0. Both players
discount future flow utilities at exponential rate r.

The initial state θ0 is normally distributed with mean μ0 and variance σ2
0 . The state then

follows the stochastic differential equation

dθt = κθt dt + σ dZt� (1)

where {Zt}t≥0 is a standard Brownian motion, independent of the initial state θ0.7 The
volatility parameter σ is strictly positive. Assume 2κ < r. Hence, a constant action yields
finite expected utility for both players. The process can be explosive (κ > 0), mean-
reverting (κ< 0), or a Brownian motion (κ= 0).

The state distribution is common knowledge, but the state realizations are observed
only by the sender. The sender also observes the receiver’s actions. Initially, the sender
commits to a dynamic information policy S, which consists of a signal realization space
S together with a signal distribution for each history of past states, signals, and actions.
Given this policy, the receiver faces a dynamic decision problem. At each time t, having
observed the signals sent up to time t, the receiver chooses an action.8 The receiver learns
about the state only from the sender’s signals. In particular, the receiver does not observe
past flow payoffs.

2.1. Sender’s Problem

The sender’s information policy and the receiver’s action strategy jointly determine a
stochastic process A ={At}t≥0, which I called a decision rule as in Bergemann and Morris

7The process is normalized to have zero drift if θt = 0. The results do not change if (1) is replaced with
dθt = (μt + κθt) dt + σ dZt , for any deterministic time-dependent drift μt .

8Restricting to pure strategies is without loss. Any randomization by the receiver can be incorporated into
the sender’s signal.
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(2016). A decision rule A yields utilities

ui(A) = E
[∫ ∞

0
re−rtui(At�θt) dt

]
� i = S�R�

A decision rule A is compatible with an information policy S if at each time t, the sender’s
signals up to time t (which depend on the receiver’s previous actions As for s < t) provide
sufficient information for the receiver to select action At .9 A decision rule A is a best
response to an information policy S if A maximizes the receiver’s utility over all decision
rules compatible with S. The sender maximizes her utility uS(A) over all pairs (S�A) with
the property that A is a best response to S.

2.2. Discussion of Assumptions

Monitoring. The sender perfectly observes the receiver’s actions. Therefore, the
sender can condition future information on past actions. Without monitoring, the re-
ceiver would act myopically, always matching his action with his expectation of the state.
The sender, in turn, would perfectly reveal the state at all times.

Commitment. The sender is assumed to have full dynamic commitment power. That is,
the sender can commit to action-contingent signals within each “period” and across “pe-
riods.”10 One-period commitment is crucial, as in static Bayesian persuasion (Kamenica
and Gentzkow (2011)). Multiperiod commitment is not necessary in the main case of in-
terest.11 Under the optimal full-commitment policy, the receiver is never promised more
than his reservation utility. Therefore, the sender can achieve the same decision rule with
an alternative policy that uses only one-period punishments. If the receiver deviates, the
sender provides no information next period. Thereafter, the sender reverts to the pol-
icy that is optimal given the receiver’s current beliefs. This reversion does not increase
the receiver’s continuation payoff, so the receiver’s maximal payoff from deviating is un-
changed.

Unobserved Payoffs. The receiver does not observe his own flow payoffs. With
quadratic utility, flow payoffs perfectly reveal the trajectory of the state, so this assump-
tion is necessary to preserve the receiver’s uncertainty. In the motivating applications, it
seems reasonable that the receiver could experience the cost of his own state uncertainty
without learning the state realization. In any case, the forces in the model should apply as
long as the sender retains some informational advantage over the receiver.

3. TWO-PERIOD EXAMPLE

This section illustrates the sender’s bias-precision tradeoff in an example with two pe-
riods, t = 1�2. Flow payoffs are as in the main model. Each player i maximizes the dis-
counted sum of flow payoffs ui�1 + δui�2, where δ is some discount factor in (0�1]. The

9This circularity makes the formal definition delicate; see Appendix A.
10This distinction can be formalized in a discrete-time approximation of the continuous-time model.
11That is, if β ≥ σ/

√
r − 2κ. In the special case with β < σ/

√
r − 2κ, the optimal full-commitment policy

promises the receiver more than his reservation utility, so one-period punishments would be strictly weaker
than multiperiod punishments. Therefore, multiperiod commitment is needed.
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state process is given by

θ1 ∼N
(
0�σ2

1

)
� θ2 = ρθ1 + ε� ε ∼N

(
0�σ2

)
�

where ε is independent of θ1.
This example can be analyzed backwards. In the second period, the receiver acts my-

opically since this is the last period of the game. Therefore, full disclosure maximizes flow
payoffs for both players. It is optimal for the sender to fully disclose the state on path,
that is, if the receiver obeys the sender’s first-period recommendation. If the receiver dis-
obeys the first-period recommendation, it is optimal to impose the maximal punishment
by providing no information.

Now consider the first period. If the sender’s signal induces posterior variance v1, the
sender can demand that the receiver bias his action away from his posterior mean by b1,
provided that

b2
1 ≤ δ

(
ρ2v1 + σ2

)
� (2)

This inequality captures the bias-precision tradeoff. The right side—the discounted resid-
ual variance of θ2 without additional information—is the receiver’s discounted loss from
not learning the state in the second period. When this constraint binds, the sender must
pay a price of 1/(δρ2) in higher variance per unit of squared bias.

The sender chooses b1 and v1 to maximize her total (on-path) discounted payoff −(b1 −
β)2 − v1 − δβ2, subject to (2). There are three cases:

(i) β≤ √
δσ . Here, (2) is not binding, so the optimum is b̂1 = β and v̂1 = 0.

(ii) ρ = 0. Here, v1 does not appear in (2). Revealing θ1 does not affect the receiver’s
uncertainty about θ2, so there is no tradeoff between bias and precision. The opti-
mum is b̂1 = min{β�

√
δσ} and v̂1 = 0.

(iii) β >
√
δσ and ρ �= 0. This is the main case of interest. Here, (2) must hold with

equality; otherwise, the sender would strictly prefer to reduce v1 by revealing more
in the first period. The first-order condition for the optimal bias equates the direct
marginal benefit 2(β− b1) of increasing b1 with the marginal cost 2b1/(δρ2) from
the required increase in the variance v1.12

I now describe in detail the comparative statics for the optimal bias b̂1 and vari-
ance v̂1 since the same results hold for the continuous-time solution during the
transition phase. As the preference bias β increases, the sender withholds more
information (higher v̂1) in order to induce greater action bias (higher b̂1). As the
volatility σ increases, the bias b̂1 is unchanged (since σ does not enter the bias
first-order condition), but the variance v̂1 decreases since less variance is needed
to induce the same level of bias. As δ and ρ2 increase, the receiver’s loss from
not learning θ2 is more sensitive to the first-period variance v1. That is, the price
1/(δρ2) of bias (in units of variance) decreases. Hence, b̂1 increases. The effect on
total “spending” v̂1 is ambiguous.

12The solution is given by

b̂1 =β
δρ2

1 + δρ2 � v̂1 = β2 δρ2(
1 + δρ2)2 − σ2

ρ2 �

As a function of v1, the sender’s payoff is concave, so it is optimal to induce a constant variance. Here, I assume
that σ2

1 ≥ v̂1, so there exists a signal structure inducing this variance v̂1.
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4. REDUCING THE DIMENSION OF THE PROBLEM

In this section, I change the domain of the sender’s optimization problem from the
space of all information policies to the simpler space of obedient decision rules with de-
terministic bias and variance.

4.1. Obedient Decision Rules

For a given information policy, the sender’s utility depends only on the decision rule
induced by the receiver’s best response. Therefore, it suffices to optimize over every de-
cision rule that can be induced as a best response to some information policy. I now
characterize such decision rules.

Given a decision rule A, let FA
t denote the σ-algebra generated by As for all s ≤ t.

This σ-algebra represents the minimal information that the receiver must have by time
t in order to follow A. The receiver gets exactly this minimal information if the sender
makes direct action recommendations.

Decision rule A is obedient if for each t ≥ 0,13

−E
[∫ ∞

t

re−r(s−t) (As − θs)2 ds
∣∣∣∣FA

t

]
≥ −σ2 + r var

(
θt|FA

t

)
r − 2κ

� (3)

Inequality (3) is the time-t obedience constraint. Conditional on the history of actions up
to time t, the receiver’s expected continuation value from following the decision rule is
at least as large as his reservation utility—his expected continuation value from deviating
at time t, forfeiting all future information, and choosing As = E[θs|FA

t ] = eκ(s−t) E[θt|FA
t ]

for s ≥ t.

PROPOSITION 1—Obedience: Decision rule A is a best response to some information
policy if and only if A is obedient.

The necessity of obedience is clear. If obedience is violated, then at some time t the
receiver can profit by deviating to myopic play on a nontrivial subset of action histories.
For sufficiency, I show that any obedient decision rule A is a best response to an associ-
ated canonical information policy—the direct, grim-trigger information policy that sends
signals St = At , provided that the receiver has followed all past recommendations. If the
receiver ever deviates, this policy sends uninformative signals forever after. The time-t
obedience constraint ensures that it is not profitable for the receiver to start deviating at
time t.

The sender’s problem is now reduced to maximizing over all obedient decision rules. I
next show that it suffices to maximize over simpler summary statistics of these decisions
rules.

4.2. Bias and Variance

For any decision rule A, define the induced bias and variance processes by

Bt = At − E
[
θt|FA

t

]
and Vt = var

(
θt|FA

t

)
�

13All inequalities involving conditional expectations are interpreted almost surely.
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The bias Bt is the gap at time t between the action and the receiver’s expectation of the
state, given the action recommendations up until time t. The variance Vt is the posterior
variance of the state θt , given the action recommendations up until time t. The players’
payoffs and the obedience condition (3) can be expressed in terms of the bias and variance
processes only.14 In general, Bt and Vt are random, but I show that the Pareto frontier is
traced out by decision rules with deterministic bias and variance.

PROPOSITION 2—Deterministic bias and variance: For each obedient decision rule A,
there exists an obedient decision rule A′ with deterministic bias and variance such that both
players weakly prefer A′ to A.

Here is a sketch of the proof. Consider an obedient decision rule A with bias and vari-
ance processes {Bt}t≥0 and {Vt}t≥0. Let b(t) = E[Bt] and v(t) = E[Vt] for each t. I will
construct a new decision rule A′ with deterministic bias b and deterministic variance v.
Both players weakly prefer A′ to A because their flow payoffs are linear in variance and
strictly concave in bias. The receiver’s reservation utility is linear in variance, so A′ is obe-
dient. To complete the proof of Proposition 2, I need to construct a signal structure that
induces the desired variance function v. The next section introduces a convenient general
construction called delayed reporting.

4.3. Bayes Plausibility and Delayed Reporting

First, I introduce a necessary condition for a variance process to be consistent with
Bayesian updating. Suppose that at time t, the posterior variance of θt is Vt . If no addi-
tional information is provided, then at time t+h the posterior variance of θt+h is η(Vt�h),
where the function η is defined by

η(v�h) =
⎧⎨
⎩e2κhv + (

e2κh − 1
)σ2

2κ
if κ �= 0�

v+ σ2h if κ= 0�
(4)

A function v : [0�∞) → [0�∞) is Bayes-plausible if:
(i) v(0) ≤ σ2

0 ;
(ii) v(s) ≤ η(v(t)� s − t) for all s > t ≥ 0.

By the law of total variance, a necessary condition for a variance process {Vt}t≥0 to be
induced by some decision rule is that the function v defined by v(t) = EVt is Bayes-
plausible. Part i is the initial variance constraint: the sender’s initial disclosure cannot
increase the expected variance. Part (ii) is the no-disclosure upper bound: the receiver’s
expected variance never drifts over an interval to become higher than it would if the
sender provided no information. For deterministic variance processes, which I call paths,
Bayes plausibility is also a sufficient condition, as I now show.

To prove sufficiency, I introduce delayed reporting. At each time t, the sender reports
the exact realization of the state at a previous time. Initially, there is no previous state to
report, so I define a fictitious history before time 0 to be used as a randomization device.
Let Y ={Yt}t≥0 be an independent standard Brownian motion. For t < 0, let θt = θ0 +Y−t .

Delayed reporting is parameterized by a reporting function, defined to be a weakly in-
creasing function ϕ : [0�∞) → [−∞�∞) satisfying ϕ(t) ≤ t for each t. At each time t,

14In particular, the expected state E[θt|FA
t ] does not appear by itself because the sender’s bias β is state-

independent.
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FIGURE 1.—Delayed report at time t0, and the receiver’s updated expectations.

the sender reports θϕ(t) . Let ϕ(t) = −∞ if the sender has provided no information by
time t. Figure 1 shows a snapshot of the receiver’s information under delayed reporting.
At time t0, the receiver’s beliefs about θt for t ≥ ϕ(t0) depend only on the value of θϕ(t0) .
The dashed curve shows the conditional expectation function E[θt|θϕ(t0)] = eκ(t−t0)θϕ(t0) . In
this example, κ < 0.

A reporting function ϕ induces a variance path v if, for all t ≥ 0,

var(θt|θϕ(t)) = v(t)�

with the convention that var(θt|θ−∞) = var(θt).

THEOREM 1—Delayed reporting: Each Bayes-plausible variance path is induced by
some reporting function.

If a variance path v is induced by a reporting function ϕ, then for any bias path b, the
following decision rule has deterministic bias b and variance v:

At = E[θt|θϕ(t)] + b(t)� (5)

Here, At is random because the conditional expectation is random.
Delayed reporting simplifies the receiver’s belief-updating process. Instead of aggre-

gating the state information contained in the entire signal history, the receiver forms his
belief at each time t from the time-t signal realization alone. Moreover, once ϕ crosses
0, the sender’s signal is a deterministic function of the state history—the sender does not
need to commit to randomization. One example of delayed reporting, with a different
state process, is the optimal email notification policy in Ely (2017).15

5. OPTIMAL INFORMATION POLICY

I now solve for the sender’s optimal bias and variance functions. The associated decision
rule with delayed reporting, given in (5), is a best response to the associated direct, grim-
trigger information policy.

15In Ely (2017), the state is binary, indicating whether an unread email is waiting. The optimal policy “beeps”
after an email arrives, but with a delay of length . Thus, the reporting function is ϕ(t) = max{t −�0}. In this
setting, the initial state is known (no emails are waiting), so revealing θ0 provides no information. Thus, there
is no need for a fictitious history.
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The sender’s problem is to choose bias and variance functions b and v to solve

maximize −
∫ ∞

0
re−rt

[(
b(t) −β

)2 + v(t)
]

dt

subject to −
∫ ∞

t

re−r(s−t)
[
b2(s) + v(s)

]
ds ≥ −σ2 + rv(t)

r − 2κ
� t ≥ 0

0 ≤ v(s) ≤ η
(
v(t)� s − t

)
� s > t ≥ 0

0 ≤ v(0) ≤ σ2
0 �

The first constraint is obedience. The last two constraints impose Bayes plausibility.

REMARK—Pareto frontier: Solving the sender’s problem for arbitrary bias β imme-
diately yields the entire Pareto frontier. Fix π in [0�1). Maximizing the social welfare
function πuS + (1−π)uR is equivalent to maximizing the utility of a different sender with
bias πβ. This follows from the decomposition

π
[
(b−β)2 + v

] + (1 −π)
[
b2 + v

] = (b−πβ)2 + v+π(1 −π)β2�

5.1. Obedience Is Binding

Under the optimal policy, the obedience constraint must be active whenever the vari-
ance is strictly positive. Otherwise, the sender could strictly improve her payoff by reduc-
ing the variance v over a small time interval where the constraint is slack. This perturba-
tion relaxes the earlier obedience constraints and leaves the later obedience constraints
unchanged.16

The variance function, when positive (and differentiable), satisfies the differential
equation

(r − 2κ)b2(t) = 2κv(t) + σ2 − v′(t)� (6)

This is the continuous-time analogue of the binding obedience constraint (2) in the two-
period example. On the right side, the first two terms capture the evolution of the re-
ceiver’s posterior variance if he receives no additional information. The receiver is willing
to bias his action by b(t) only if the sender provides information that reduces his posterior
variance (relative to its exogenous evolution) at rate (r − 2κ)b2(t). Hence, r − 2κ is the
price (in terms of variance) of inducing squared bias. This is the differential analogue of
the price δ−1ρ−2 in the two-period example, with δ= e−r and ρ= eκ. The higher the price,
the more information the sender must initially withhold to induce a desired bias path. If
the receiver is more impatient (higher r) or the process is less persistent (lower κ), the
receiver demands a greater reduction in variance to select a given level of bias.

If the variance first hits zero at some time t, then by continuity, the time-t obedience
constraint must be active. Starting at time t, the relaxed continuation problem, with sub-
sequent obedience constraints dropped, is to choose b(s) and v(s) for s > t to maximize
the sender’s continuation payoff subject to

−
∫ ∞

t

re−r(s−t)
[
b2(s) + v(s)

]
ds = − σ2

r − 2κ
� (7)

16In the formal proof, the optimal policy is derived directly, without first showing that obedience is active.
The informal arguments in this section are intended to build intuition.
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The sender’s flow payoff is decreasing in v and concave in b, so her continuation payoff is
maximized by the stationary policy with v(s) = 0 and b(s) = min{β�σ/

√
r − 2κ}, for s > t.

This policy satisfies the obedience constraint at time t and also at all subsequent times.
Therefore, this policy is optimal in the original problem. It will form the stationary phase
of the solution.

5.2. Optimal Policy

The main result characterizes the optimal bias and variance paths.

THEOREM 2—Optimal bias and variance: The optimal bias b̂ and variance v̂ are unique
and given as follows:17

I. If β≤ σ/
√
r − 2κ, then b̂(t) = β and v̂(t) = 0.

II. If β> σ/
√
r − 2κ, then

b̂(t) = σ√
r − 2κ

e(r−2κ)(T−t)+�

v̂(t) = −σ2

2κ
+ σ2(r − 2κ)

2(r − κ)
(
κ−1e−2κ(T−t)+ + (r − 2κ)−1e2(r−2κ)(T−t)+)

�

where the full-disclosure time T takes the unique value for which the inequalities b̂(0) ≤
β and v̂(0) ≤ σ2

0 both hold, at least one with equality.

There are two cases. If β ≤ σ/
√
r − 2κ, then the sender can induce her first-best deci-

sion rule At = θt +β. At each time, the receiver’s continuation value −β2 from this rule
is weakly greater than his reservation utility −σ2/(r − 2κ) from forfeiting all information
and acting myopically.

Hereafter, I focus on the interesting case in which β > σ/
√
r − 2κ. The sender’s first-

best decision rule is not obedient, so the bias-precision tradeoff is in force. Figure 2 plots

FIGURE 2.—Optimal bias and variance functions.

17Here, x+ denotes the positive part max{x�0} of a real number x. In some expressions, the persistence
parameter κ appears in the denominator. The results still hold for κ = 0 if each expression is replaced with its
limit as κ tends to 0.
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FIGURE 3.—Optimal reporting function.

the optimal policy for a fixed set of parameters.18 The optimal policy has two phases—
a transition phase until the full-disclosure time T , and a stationary phase after time T .
Figure 3 plots the reporting function that implements this optimal policy. As time t ap-
proaches T , the delay t − ϕ(t) tends to 0. Then ϕ(t) = t for t ≥ T . There is a kink when
ϕ crosses 0 because the fictitious history has a different distribution than the true state
process.

To derive the optimal policy, I first drop the initial variance constraint. I solve this re-
laxed problem by attaching a suitable multiplier to each time-t obedience constraint. Then
I integrate over these constraints to form the Lagrangian. In the solution of the relaxed
problem, the optimal bias takes the form

max
{
βe−(r−2κ)t �

σ√
r − 2κ

}
� (8)

In (8), the bias equals β at time 0. At each time t during the transition phase, the flow
benefit of increasing the bias equals the shadow cost of reducing the variance. This shadow
cost is initially zero. Over time, as the variance decreases, this shadow cost increases, and
the bias moves away from β. The stationary phase begins at time T when the variance hits
zero and the bias hits σ/

√
r − 2κ.

If σ2
0 is larger than the initial variance in the relaxed solution, then the relaxed solution

solves the original problem. In this case, the sender makes an initial disclosure to reduce
the receiver’s variance below σ2

0 . Conversely, if σ2
0 is smaller than the initial variance in

the relaxed solution, then the relaxed solution is not feasible. Under the relaxed solution,
the variance drifts downward and hits σ2

0 at some time t0. The solution of the original
problem is the continuation policy from time t0 onwards. In this case, there is no initial
disclosure of information, and the sender never induces her preferred action bias β. In
Figure 2, the time t0 is indicated for initial variance σ2

0 = 2.

COROLLARY 1—Optimum with deterministic state: If σ = 0, the optimal bias b̂ and
variance v̂ are unique and given by

b̂(t) = b0e
−(r−2κ)t � v̂(t) = r − 2κ

2(r − κ)
b2

0e
−2(r−2κ)t �

where b0 is the minimum of β and
√

2σ2
0 (r − κ)/(r − 2κ).

18Here, β = 3, r = 3, κ = −0�5, and σ = 2. The initial variance σ2
0 is large enough that the initial variance

constraint does not bind.
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This solution is the limit of the main solution as σ tends to 0. With σ = 0, the state
evolves deterministically. If the receiver learns the current state, he can perfectly predict
its future trajectory, so he will take his first-best actions forever after. When the action bias
is zero, the receiver’s marginal loss from increasing the action bias vanishes. Therefore,
it is optimal for the sender to always sacrifice some precision in order to induce positive
bias.19

5.3. Comparative Statics

Say that a function increases in response to a parameter change if it strictly increases at
some point and does not decrease at any point.

PROPOSITION 3—Comparative statics: Suppose that β> σ/
√
r − 2κ and the initial vari-

ance constraint is not active.
1. The optimal bias function b̂ is increasing in β and σ and decreasing in r − 2κ.
2. The optimal variance function v̂ is increasing in β and decreasing in σ .

In the stationary phase, b̂(t) = σ/
√
r − 2κ and v̂(t) = 0, so the bias is increasing in σ

and decreasing in r − 2κ. In the transition phase, the comparative statics for the bias and
variance paths are the same as for the first-period bias and variance in the two-period
example (with discount factor δ = e−r and discrete-time persistence ρ = eκ). As the pref-
erence bias β increases, the sender withholds more information to induce greater action
bias. As the volatility σ increases, the sensitivity of the receiver’s reservation utility to the
variance does not change, but the level of the receiver’s reservation utility decreases, re-
laxing the obedience constraint. Thus, the optimal bias b̂ over the transition phase does
not change, but the variance v̂ decreases.20 Recall from (6) that r − 2κ is the price (in
variance) of inducing bias. As this price increases, the bias decreases. The effect of r and
κ on the variance, however, is ambiguous. As r increases and κ decreases, more variance
is required to induce a given level of bias, but the optimal bias path is lower. Which effect
dominates depends on other parameter values and can change over time.

6. MULTIDIMENSIONAL STATES AND ACTIONS

The main model studies how much information the sender provides over time. I now
consider an extension in which the state is multidimensional. I study which information
the sender provides at each time. Returning to one of the motivating examples, suppose
that the main unit in an organization has private information about two evolving situations
that are relevant to another unit. If the main unit wants to extract concessions from the
other unit, the solution below suggests that it is optimal to withhold information about the
less mean-reverting situation for longer, revealing it only after fully disclosing the more
mean-reverting situation.

19This contrasts with Fudenberg and Rayo’s (2019) transferable utility model. With σ = 0 and κ = 0, a vari-
ance path is Bayes-plausible if and only if it is weakly decreasing. This is identical to Fudenberg and Rayo’s
(2019) constraint on the path of untransmitted knowledge. Under their optimal policy, however, this untrans-
mitted knowledge hits zero in finite time. Thereafter, the agent keeps the whole surplus and chooses effort
efficiently.

20The shadow cost of reducing variance remains the same because of the linearity assumptions: payoffs
are linear in the variance, and the state follows a linear stochastic differential equation. If the initial variance
constraint binds, then over the transition phase b̂ is increasing in σ .
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Suppose that the state is n-dimensional, denoted θt = (θt�1� � � � � θt�n) ∈ Rn. Each initial
component θ0�i is normally distributed with mean μi and variance σ2

0�i. Each component
θt�i follows the stochastic differential equation

dθt�i = κiθt�i dt + σi dZt�i�

where Zi ={Zt�i}t≥0 is a standard Brownian motion, and θ0�1� � � � � θ0�n�Z1� � � � �Zn are mu-
tually independent. For each i, assume σi > 0 and 2κi < r. Order the components by
increasing persistence, so κ1 ≤ · · · ≤ κn.

At each time t, the receiver chooses an action at = (at�1� � � � � at�n) ∈ Rn. The flow utilities
for the sender and receiver are given by

uS(at� θt) = −
n∑

i=1

(at�i − θt�i −βi)2� uR(at� θt) = −
n∑

i=1

(at�i − θt�i)2�

The sender’s preference bias is a vector β= (β1� � � � �βn) ∈ Rn.
A decision rule A is now vector-valued. Define the bias and variance processes as be-

fore.21 These processes now take values in Rn. With minor modifications to the argument
in the main model, it can be shown that deterministic (vector-valued) bias and variance
processes trace out the Pareto frontier. Define a separate variance-updating function ηi

as in (4) for each component i.
The sender chooses bias and variance functions b= (b1� � � � � bn) and v = (v1� � � � � vn) to

solve

maximize −
∫ ∞

0
re−rt

n∑
i=1

[(
bi(t) −βi

)2 + vi(t)
]

dt

subject to −
∫ ∞

t

re−r(s−t)
n∑

i=1

[
b2
i (s) + vi(s)

]
ds ≥ −

n∑
i=1

σ2
i + rvi(t)
r − 2κi

� t ≥ 0

0 ≤ vi(s) ≤ ηi

(
vi(t)� s − t

)
� s > t ≥ 0� i = 1� � � � � n

0 ≤ vi(0) ≤ σ2
0�i� i = 1� � � � � n�

The time-t obedience constraint is the sum of the single-dimensional time-t obedi-
ence constraints over the n components. It is feasible to separately choose the single-
dimensional optimal policy for each component, but this is generally suboptimal.

As in the main model, the obedience constraint must be active at each time t. The
variance vector (when differentiable) satisfies the differential equation

∥∥b(t)
∥∥2 =

n∑
i=1

2κivi(t) + σ2
i − v′

i(t)
r − 2κi

� (9)

This is the multidimensional analogue of (6). Only the magnitude of the bias vector ap-
pears in the obedience constraint, so it is optimal to always choose b(t) parallel to β. With
a single-dimensional state, bias has price r − 2κ in units of variance, which is the only cur-
rency. With n state components, there are n currencies. The price of bias is r − 2κi in

21That is, Bt = At − E[θt|FA
t ] and Vt = var(θt|FA

t ), where FA
t denotes the σ-algebra generated by As for

all s ≤ t.
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units of vi. The volatility parameters do not enter the price because they do not affect the
sensitivity of the reservation utility to the current variances. Since the variances v1� � � � � vn
have the same effect on the sender’s flow payoff, the sender prefers to pay in the currency
with the lowest price, that is, the highest κi. If the initial variance σ2

0�n is sufficiently large,
the sender compensates the agent with information about only the most persistent com-
ponent n. All other components are revealed immediately. If σ2

0�n is too small, then the
sender must withhold information about other components as well. The components are
revealed sequentially, in order of increasing persistence, so that the largest bill is paid at
the lowest price.

To state the theorem, let σ̂2
j = ∑j

i=1 σ
2
i /(r − 2κi) for j = 1� � � � � n. Set σ̂ = σ̂n. Observe

from (9) that σ̂ is the magnitude of bias that the sender can induce while keeping the
receiver perfectly informed.

THEOREM 3—Optimum with multidimensional state: If the state is n-dimensional, then
the following vector-valued bias and variance paths, b̂ and v̂, are optimal. The optimum is
unique if κ1 < · · ·< κn.22

I. If ‖β‖ ≤ σ̂ , then b̂(t) = β and v̂(t) = 0.
II. If ‖β‖ > σ̂ , then for some uniquely determined critical component i0 and full-disclosure

times 0 = t1 = · · · = ti0−1 < ti0 · · ·< tn,23

b̂(t) = σ̂ exp

(
n∑

i=i0

(r − 2κi)(ti − t ∨ ti−1)+

)
β

‖β‖ �

For i < i0, we have v̂i(t) = 0. For i ≥ i0, the variance v̂i is defined piecewise. For t ≥ ti−1,

v̂i(t) = σ̂2
i (r − 2κi)

2κi

(
e−2κi(ti−t)+ − 1

)

+ σ̂2(r − 2κi)e2τi+1

2(r − κi)
(
e2(r−2κi)(ti−t)+ − e−2κi (ti−t)+)

� (10)

where τj = ∑n

i=j(r − 2κi)(ti − ti−1) for j = 1 � � � � n. For t < ti−1,

v̂i(t) = − σ2
i

2κi

+
(
v̂i(ti−1) + σ2

i

2κi

)
e2κi (t−ti−1)�

I focus on the interesting case in which ‖β‖ > σ̂ . Figure 4 plots the optimal policy in an
example with three components.24 (The variance v1(t) is always zero, so it is not plotted.)
The critical component is i0 = 2. At time t1 = 0, the sender fully discloses component 1

22Here a∨ b denotes the maximum of numbers a and b. To simplify notation, let t0 = 0.
23If σ2

0�i = 0 for all i, then (t1� � � � � tn) = 0, so technically i0 = n+ 1. Outside of this edge case, we have i0 ≤ n
and the full-disclosure times are pinned down by the following conditions:

(i) ‖b̂(0)‖ ≤ ‖β‖ and v̂i0 (0) ≤ σ2
0�i0

, with v̂i(0) = σ2
0�i for i > i0;

(ii) ‖b̂(0)‖ = ‖β‖ or v̂i(0) = σ2
0�i for i = 1� � � � � i0.

24Here, ‖β‖ = 5, r = 3, (κ1�κ2�κ3) = (−0�75�−0�25�0�25), and σ1 = σ2 = σ3 = 2. Moreover, σ2
0�3 = 4, and

the initial variance σ2
0�2 is large enough that the initial variance constraint for state 2 does not bind. The value

of σ2
0�1 does not affect the solution.
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FIGURE 4.—Optimal bias and variance functions with a three-dimensional state.

and makes a partial disclosure about component 2. Then the sender gradually provides
information about component 2, while keeping the receiver fully informed of component
1 and providing no information about component 3. At time t2, component 2 is fully
revealed. Then the sender gradually reveals component 3, while keeping the receiver fully
informed of components 1 and 2. At time t3, the entire state is fully revealed, and the
stationary phase begins: ‖b̂(t)‖ = σ̂ and v̂(t) = 0 for t ≥ t3. Between the threshold times
ti−1 and ti, the bias magnitude decays exponentially at rate r − 2κi, the optimal rate of
decay in the single-dimensional model with component i as the state.

7. CONCLUSION

This paper studies the optimal provision of information in a long-term relationship. The
sender cannot induce actions that are biased in her own favor and also precisely tailored to
the state. She resolves this tradeoff with a non-stationary policy that reveals information
gradually over time. Initially, actions are biased but imprecise. Over a transition phase,
actions become more precise but less biased, eventually reaching a stationary phase of
perfect precision and constant bias. Throughout the relationship, the receiver chooses
these biased actions in order to continue receiving information from the sender. The
dynamics of this informational relationship arise endogenously, not because the sender
comes to “trust” the receiver, but as the solution to a dynamic incentive problem.

APPENDIX A: FORMAL DEFINITION OF STRATEGIES

Fix a probability space (��F�P) that is sufficiently rich to carry all the random objects
introduced below. The driving process Z = {Zt}t≥0 is a standard Brownian motion. The
initial state θ0 is normally distributed with mean μ0 and variance σ2

0 . The initial state θ0 is
independent of Z. Let

θt = θ0e
κt + σ

∫ t

0
eκ(t−s) dZs� (11)

where the integral is an Itô integral. This process satisfies the stochastic differential equa-
tion in (1). Let {F θ

t } denote the filtration generated by {θt},25 and set F θ
∞ = σ (

⋃
t≥0 F θ

t ).

25That is, Fθ
t = σ (θs : s ≤ t) for each t.
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As a randomization device, the sender is endowed with a standard Brownian motion
Y = {Yt}t≥0 that is independent of F θ

∞. Let F̃ θ
t = σ (σ (Y ) ∪F θ

t ). The filtration {F̃ θ
t } rep-

resents the exogenous information available to the sender.
To define the receiver’s action paths, let RC [0�∞) denote the space of all right-

continuous functions from [0�∞) to R. Equip RC [0�∞) with the cylindrical filtration
{Ct−}, where Ct− denotes the σ-algebra generated by the projection maps for times strictly
before t.

An information policy consists of a measurable space (S�S) and a map

S : [0�∞) ×�× RC [0�∞) → S

that is adapted to the filtration {F̃ θ
t ⊗Ct−} on �×RC [0�∞). The interpretation is that the

sender’s signal at time t can depend on (i) the sender’s exogenous information, through
F̃ θ

t , and (ii) actions taken by the receiver strictly before time t, through Ct−. Denote the
entire information policy by S.

A decision rule is a real-valued {F̃ θ
t }-adapted stochastic process on (��F) with right-

continuous sample paths. By Karatzas and Shreve (1998, Proposition 1.13, p. 5), a decision
rule is progressively measurable with respect to {F̃ θ

t }.
Next, I define the compatibility of a decision rule with an information policy. Once

this definition is in place, say that a decision rule A is a best response to an information
policy S if (i) A is compatible with S, and (ii) uR(A) ≥ uR(A′) for all decision rules A′

compatible with S. Unfortunately, perfect monitoring in continuous time poses technical
challenges (Simon and Stinchcombe (1989), Bergin and MacLeod (1993)). In settings with
continuous actions, I am not aware of a satisfactory restriction on strategies that avoids all
of these technical problems.26 Fortunately, the obedience characterization (Proposition 1)
is robust to the exact definition of strategies. To demonstrate this, I take the following
axiomatic approach.

The sender is restricted to some subcollection of admissible information policies. Each
admissible information policy is associated with a collection of decision rules that are com-
patible with that policy. I will impose certain conditions on these notions of admissibility
and compatibility. To state these conditions, I introduce a few definitions.

Fix a decision rule A, a time t0, and a set G in FA
t0

. A decision rule A′ is a (t0�G)-
modification of A if (i) A′

t(ω) = At (ω) whenever t < t0 or ω /∈ G, and (ii) IGA
′
t is FA

t0
-

measurable for all t ≥ t0.27 A function T : RC [0�∞)×RC [0�∞) → R is called {Ct− ⊗Ct−}-
optional if for each time t, the event [T < t] is in Ct− ⊗ Ct−. Given a decision rule X
and a {Ct− ⊗ Ct−}-optional function T : RC [0�∞) × RC [0�∞) → R, the (X�T )-trigger

26The challenge is that the sender chooses how her signals depend on the receiver’s actions in the arbitrarily
recent past. If the dependence of signals on actions is exogenous and noisy (as in Sannikov (2008), for example,
where actions control the drift of a Brownian motion), then decision rules can be defined with respect to an
exogenous filtration. Without this exogenous structure, the measurability conditions become self-referential.
Without further restrictions, these measurability conditions do not exclude pathological decision rules in which
the receiver uses the sender’s feedback rule to instantaneously transmit to himself exogenous information that
he never receives directly.

Existing methods cover only settings in which the players choose when to switch between discrete actions.
The grid method of Simon and Stinchcombe (1989) and the inertia strategies of Bergin and MacLeod (1993)
are defined in deterministic environments. Kamada and Rao (2021) introduce a new approach for stochastic
settings.

27Here, IG denotes the indicator function for the set G.
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information policy S is defined by

S(t�ω�a) = Xt∧T (X(ω)�a)(ω)�

Since X is {F̃ θ
t }-progressively measurable, S is {F̃ θ

t ⊗ Ct−}-adapted.
I assume that the notions of admissibility and compatibility satisfy the following condi-

tions:
C1. If a decision rule A is compatible with an admissible information policy S, then so

is every (t0�G)-modification of A for each time t0 and each set G in FA
t0

.
C2. For each decision rule X and each {Ct− ⊗ Ct−}-optional function T : RC [0�∞) ×

RC [0�∞) → R, the (X�T )-trigger information policy is admissible. Moreover, a
decision rule A is compatible with the (X�T )-trigger information policy if and only
if

[At ∈ B] ∩ [
T (X�A) ∧ t < s

] ∈FX
s �

for every Borel set B and all times s and t.
Condition C1 says that if the receiver can follow the decision rule A under informa-

tion policy S, then starting at time t0, conditional on the event G, the receiver can select
different actions, using information that was available at time t0. Condition C2 defines
the set of decision rules that are compatible with a trigger information policy. The re-
ceiver’s decision cannot depend on the realizations of the process X after it is stopped
by the sender. From the definition in C2, it can be checked that C1 holds for all trigger
information policies S.

Therefore, it is consistent with the axioms to restrict the sender to trigger information
policies and to define compatibility by C2. Of course, there are many other classes of
reasonable information policies. If we include additional policies in the admissible set,
then the obedience characterization (Proposition 1) still holds, as long as compatibility
with these new information policies is defined in a way that is consistent with C1.

APPENDIX B: PROOFS

B.1. Preliminaries

In the proofs below, I use the following form of the law of total variance. For any square-
integrable random variable X and any sub-σ-algebras G and H satisfying G ⊃H,

var(X|H) = E
[
var(X|G)|H

] + var
(
E[X|G]|H

) ≥ E
[
var(X|G)|H

]
� (12)

Taking H to be the trivial σ-algebra gives the usual law of total variance.
If X and Y are square integrable, and X is measurable with respect to G, then

E(X −Y )2 ≥ var(X −Y ) ≥ E
[
var(X −Y|G)

] = E
[
var(Y|G)

]
� (13)

where the middle inequality uses the usual law of total variance and the last inequality
uses the G-measurabilty of X .

B.2. Proof of Proposition 1

First, I prove that obedience is necessary. I prove the contrapositive. Let A be a decision
rule that is not obedient. That is, there exists some time t and some positive-measure set
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G in FA
t such that

−E
[
IG

∫ ∞

t

re−r(s−t) (As − θs)2 ds
]
<−E

[
IG

σ2 + r
(
E
[
θt|FA

t

] − θt

)2

r − 2κ

]
� (14)

Define a new decision rule A′ by setting A′
s = eκ(s−t) E[θt|FA

t ] for s ≥ t on G, and setting
A′ equal to A otherwise. By (14), it follows that uR(A) < uR(A′). Whenever A is com-
patible with an information policy, then so is A′ (by C1), so A cannot be a best response
to any policy.

In order to prove that obedience is sufficient, I first define the direct, grim-trigger infor-
mation policy S associated to a fixed decision rule A to be the trigger information policy
(see Appendix A) with X =A and

T
(
a�a′) = inf

{
t ≥ 0 :

∫ t

0

(
as − a′

s

)2
ds > 0

}
�

where the infimum of the empty set equals ∞. Using Fubini’s theorem, it can be shown
that T is {Ct− ⊗ Ct−}-optional, as required.

Now I prove that obedience is sufficient. Let A be an obedient decision rule. Let S be
the associated direct, grim-trigger information policy. I claim that A is a best response to
S. Clearly, A is compatible with S, since T (A(ω)�A(ω)) = ∞ for all ω. Let A′ = {A′

t}
be an arbitrary decision rule that is compatible with S. I claim that uR(A) ≥ uR(A′). This
inequality holds trivially if uR(A′) = −∞, so assume that uR(A′) is finite.

Define the random time T ′ by T ′(ω) = T (A(ω)�A′(ω)). I approximate T ′ from above
by simple functions. For each n, define the simple random time Tn by

Tn =
{
j/2n if (j − 1)/2n ≤ T ′ < j/2n for some j ∈{1� � � � � n2n}�
∞ if T ′ ≥ n�

By construction, Tn > T ′ for each n, and Tn ↓ T ′. Let An be the decision rule that agrees
with A if t < Tn and agrees with A′ if t ≥ Tn. Since uR(A) and uR(A′) are both finite,
Lebesgue’s dominated convergence theorem implies that uR(An) → uR(A′). Therefore,
it suffices to check that uR(A) ≥ uR(An) for each n.

Fix n and let t1� � � � � tK denote the finite values that Tn takes with positive probability.
For each k, let Ik be the indicator for the event that Tn = tk. By construction, Ik is FA

tk
-

measurable. We have

uR(A) − uR

(
An

) =
K∑

k=1

E
[
Ik

∫ ∞

tk

re−rt
((
A′

t − θt

)2 − (At − θt)2
)

dt
]
� (15)

For t ≥ tk, the random variable IkA
′
t is FA

tk
-measurable by C2, so (13) gives

E
[
Ik

(
A′

t − θt

)2] ≥ E
[
Ik var(θt|FA

tk
)
] = E

[
Ikη

(
var(θtk|FA

tk
)� t − tk

)]
� (16)

where η is the function defined in (4) and the equality holds because A is {F̃ θ
t }-adapted.

To see that each expectation in (15) is nonnegative, interchange the expectation and the
integral, substitute in (16), interchange the expectation and the integral again, and then
use the time-tk obedience constraint for A. We conclude that uR(A) ≥ uR(An).
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B.3. Proof of Proposition 2

Let A be an obedient decision rule. Define the bias and variance functions b and v by

b(t) = E[At − θt] and v(t) = E
[
var

(
θt|FA

t

)]
�

First, I check that v is Bayes-plausible. By the law of total variance,

v(0) = E
[
var

(
θ0|FA

0

)] ≤ var(θ0) = σ2
0 �

For s > t, the stronger law of total variance in (12) gives

E
[
var

(
θs|FA

s

)
|FA

t

] ≤ var
(
θs|FA

t

) = η
(
var

(
θt|FA

t

)
� s − t

)
� (17)

where the equality holds becuase A is {F̃ θ
t }-adapted. Since η is linear in its first argument,

taking expectations in (17) gives v(s) ≤ η(v(t)� s − t).
Since v is Bayes-plausible, it follows from Theorem 1 (proven below, without appeal-

ing to Proposition 2) that there exists a reporting function ϕ that induces v. Define the
decision rule A′ by

A′
t = E[θt|θϕ(t)] + b(t)�

First, I check that both players weakly prefer A′ to A. This holds because

E(At − θt)2 = E
[
B2

t

] + E[Vt] ≥ (EBt)2 + E[Vt] = E
(
A′

t − θt

)2
� (18)

and similarly, E(At − θt −β)2 ≥ E(A′
t − θt −β)2.

To see that A′ is obedient, take expectations in the time-t obedience constraint for A
to get

−σ2 + rv(t)
r − 2κ

≤ −E
[∫ ∞

t

re−r(s−t)
(
As − θs

)2
ds

]
≤ −E

[∫ ∞

t

re−r(s−t)
(
A′

s − θs

)2
ds

]
�

where the second inequality follows from (18) and Fubini’s theorem. Therefore, the time-
t obedience constraint for A′ is satisfied.

B.4. Proof of Theorem 1

Let v : [0�∞) → [0�∞) be Bayes-plausible. The following monotonicity property holds.
If v(t) ≤ η(w� t) for some fixed w and t, then for s > t we have

v(s) ≤ η
(
v(t)� s − t

) ≤ η
(
η(w� t)� s − t

) = η(w�s)�

where the second inequality holds because η is strictly increasing in its first argument.
Moreover, the second inequality holds strictly if v(t) <η(w� t).

Define the reporting function ϕ implicitly by the following piecewise system (which
separates into cases according to the sign of ϕ(t)):⎧⎪⎨

⎪⎩
ϕ(t) = −∞ if v(t) = η

(
σ2

0 � t
)
�

v(t) = η
((

1/σ2
0 − 1/ϕ(t)

)−1
� t

)
if η(0� t) < v(t) <η

(
σ2

0 � t
)
�

v(t) = η
(
0� t −ϕ(t)

)
if 0 ≤ v(t) ≤ η(0� t)�
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This construction ensures that ϕ induces v, provided that ϕ is a well-defined reporting
function.

First, I check that ϕ is well-defined. By the initial variance constraint and the mono-
tonicity property, we have v(t) ≤ η(σ2

0 � t) for all t ≥ 0. Thus, the three cases are exhaus-
tive. In the second case, there is a unique solution ϕ(t) because η is strictly increasing
in its first argument. In this case, ϕ(t) is in (−∞�0). In the third case, there is a unique
solution ϕ(t) because η(0� ·) is strictly increasing and η(0�0) = 0. In this case, ϕ(t) is in
[0� t].

Now I check that ϕ is a reporting function. The monotonicity property ensures that as
time passes, it is only possible to move from an earlier case to a later case (and not the
reverse). Within each case, the monotonicity property ensures that v is weakly increasing
in time (since η is strictly increasing in its first argument and the function η(0� ·) is strictly
increasing).

B.5. Proof of Theorem 2

Assume β > σ/
√
r − 2κ, for otherwise the result is clear. Assume also that σ2

0 > 0, for
otherwise the result follows from the argument in the main text following (7). The full-
disclosure time T in the theorem statement is well-defined because the expressions for
v̂(0) and b̂(0), as functions of T , are strictly increasing.

Drop the no-disclosure bounds on the variance to obtain the relaxed problem28

minimize
∫ ∞

0
re−rt

[(
b(t) −β

)2 + v(t)
]

dt

subject to
∫ ∞

t

re−r(s−t)
[
b(s)2 + v(s)

]
ds ≤ σ2 + rv(t)

r − 2κ
� t ≥ 0

v(t) ≥ 0� t ≥ 0

v(0) ≤ σ2
0 �

(19)

It is straightforward to check that v̂ satisfies the no-disclosure bounds. I will prove that
(b̂� v̂) is the unique solution of (19). The proof is separated into two parts. The first part
proves optimality. In the second part, the claimed uniqueness is stated precisely and then
proved.

Optimality. First, drop the initial variance constraint to get the problem

minimize
∫ ∞

0
re−rt

[(
b(t) −β

)2 + v(t)
]

dt

subject to
∫ ∞

t

re−r(s−t)
[
b2(s) + v(s)

]
ds ≤ σ2 + rv(t)

r − 2κ
� t ≥ 0

v(t) ≥ 0� t ≥ 0�

(20)

28To simplify notation, I express the optimization problems in terms of losses rather than utilities throughout
the Appendix.



1384 IAN BALL

Define auxiliary functions b̃ and ṽ by the corresponding expressions for b̂ and v̂ in the
theorem statement, but with T defined by

βe−(r−2κ)T = σ√
r − 2κ

� (21)

Below, I will show that (b̃� ṽ) solves (20). I claim that this implies that (b̂� v̂) solves (19).
If σ2

0 ≥ ṽ(0), then (b̃� ṽ) solves (19), and (b̃� ṽ) = (b̂� v̂). If σ2
0 < ṽ(0), then there is a

unique time t0 such that ṽ(t0) = σ2
0 . Since the time-t0 obedience constraint is active, it

follows from Bellman’s principle of optimality that the map t �→ (b̃(t0 + t)� ṽ(t0 + t)),
which equals (b̂� v̂), solves (19). Otherwise, replacing the time-t0 continuation policy in
(b̃� ṽ) with a solution of (19) would strictly decrease the sender’s loss, while preserving all
obedience constraints in (20).

To prove that (b̃� ṽ) solves (20), attach nonnegative Lagrange multipliers e−rtλ(t) to
each time-t obedience constraint and re−rtμ(t) to each time-t nonnegativity constraint.
Integrate over these constraints to form the Lagrangian

L(b�v;λ�μ) =
∫ ∞

0
re−rt

[(
b(t) −β

)2 + v(t)
]

dt

+
∫ ∞

0
e−rtλ(t)

{∫ ∞

t

re−r(s−t)
[
b2(s) + v(s)

]
ds − σ2 + rv(t)

r − 2κ

}
dt

−
∫ ∞

0
re−rtμ(t)v(t) dt�

After splitting the term in braces,29 the double integral in the obedience constraint can be
rearranged as∫ ∞

0

∫ ∞

t

re−rsλ(t)
[
b2(s) + v(s)

]
ds dt =

∫ ∞

0
re−rs

(∫ s

0
λ(t) dt

)[
b2(s) + v(s)

]
ds�

where I have switched the order of integration by Tonelli’s theorem. Next, swap the
dummy variable names s and t in this integral, and define the accumulated multiplier

�(t) =
∫ t

0
λ(s) ds�

After these simplifications, we have

L(b�v;λ�μ) =
∫ ∞

0
re−rt�

(
b(t)� v(t);λ(t)�μ(t)

)
dt − σ2

r − 2κ

∫ ∞

0
e−rtλ(t) dt�

where �(b(t)� v(t);λ(t)�μ(t)) equals

(
b(t) −β

)2 +�(t)b2(t) + (
1 +�(t) − λ(t)/(r − 2κ) −μ(t)

)
v(t)� (22)

29It suffices to define the Lagrangian for functions (b�v) that yield a finite loss for the sender. For such
functions, both integrals are finite as long as λ and μ are bounded, as they will be below.
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Define the multiplier functions λ̂ and μ̂ by

(
λ̂(t)� μ̂(t)

) =
{(

(r − 2κ)e(r−2κ)t �0
)

if t < T�(
0� e(r−2κ)T

)
if t ≥ T�

With these multipliers, the coefficient on v(t) vanishes, and (22) reduces to

(
b(t) −β

)2 + (
e(r−2κ)(t∧T ) − 1

)
b2(t)�

This expression is convex in b(t) and the first-order condition gives

b(t) = βe−(r−2κ)(t∧T ) = σ√
r − 2κ

e(r−2κ)(T−t)+ = b̃(t)�

where the middle equality uses the identity t ∧ T = T − (T − t)+ and the definition of T
in (21).

It follows that (b̃(t)� ṽ(t)) minimizes �(·� ·; λ̂(t)� μ̂(t)) for each time t, hence (b̃� ṽ) min-
imizes L(·� ·; λ̂� μ̂). It can be checked that (b̃� ṽ) satisfies feasibility and complementary
slackness. Therefore, all the Kuhn–Tucker conditions are satisfied.

Uniqueness. I claim that if a function (b�v) solves (19), then (b(t)� v(t)) = (b̂(t)� v̂(t))
for almost every time t. To see this, let (b�v) be a function that solves (19). We must have
b(t) = b̂(t) for almost every t; otherwise, (b/2 + b̂/2� v/2 + v̂/2) is a feasible strict im-
provement. Furthermore, v(t) = v̂(t) for almost every t; otherwise, (b�v∧ v̂) is a feasible
strict improvement, where v∧ v̂ denotes the pointwise minimum of v and v̂.30

B.6. Proof of Corollary 1

For uniqueness, follow the argument from the proof of Theorem 2 in Appendix B.5.
For optimality, observe that the sender’s expected utility from a bias-variance function
pair (b�v), denoted uS(b�v), is independent of the volatility parameter σ . In the relaxed
problem (without the initial variance constraint) from (20), the feasible set is increasing
(with respect to set inclusion) in σ . For each σ > 0, let (b̃σ� ṽσ) denote the solution of
(20) when the volatility equals σ . Define (b̃0� ṽ0) by taking b0 = β in the expressions from
the statement of Corollary 1. We prove that (b̃0� ṽ0) solves (20); then Bellman’s principle
of optimality completes the proof. Fix a positive sequence {σn} satisfying σn ↓ 0. Since the
feasible set is increasing in σ , it suffices to check that uS(b̃σn� ṽσn) → uS(b̃0� ṽ0). Observe
that (b̃σn� ṽσn) converges pointwise to (b̃0� ṽ0). By Proposition 3, (b̃σn (t) − β)2 + ṽσn (t) is
monotonically increasing in n for each t, so by Lebesgue’s monotone convergence theo-
rem, uS(b̃σn� ṽσn) → uS(b̃0� ṽ0).

30In fact, a slightly stronger result holds. Since (b̂� v̂) satisfies the obedience constraint with equality for
every time t, it follows that v(t) ≥ v̂(t) for every time t. If v also satisfies the no-disclosure upper bounds, then
v must be lower semicontinuous, and hence v(t) = v̂(t) for every time t.
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B.7. Proof of Proposition 3

Assume that β> σ/
√
r − 2κ and the initial variance constraint is not active. We have

b̂(t) = max
{
βe−(r−2κ)t �

σ√
r − 2κ

}
�

so the comparative statics for b̂ are clear. For the variance, observe that the function v̂
is increasing in T and is otherwise independent of β. Since the full-disclosure time T is
strictly increasing in β, it follows that the function v̂ is increasing in β.

Finally, I check that v̂ is decreasing in σ . Fix σ1 and σ2 with 0 < σ1 < σ2. For each
volatility parameter σi, denote the associated optimal bias-variance pair by (b̂i� v̂i) and the
associated full-disclosure time by Ti. Hence, T1 > T2. For t ≥ T1, we have v̂1(t) = v̂2(t) = 0.
For T2 ≤ t < T1, we have v̂1(t) > 0 = v̂2(t). Finally, for t < T2, observe that b̂1(t) = b̂2(t)
and for each i,

(r − 2κ)b̂2
i (t) = 2κv̂i(t) + σ2

i − v̂′
i(t)�

Therefore,

v̂′
1(t) − v̂′

2(t) = 2κ
(
v̂1(t) − v̂2(t)

) + σ2
1 − σ2

2 < 2κ
(
v̂1(t) − v̂2(t)

)
�

Over the interval (0�T2), the function f (s) = v̂2(T2 − s) − v̂1(T2 − s) satisfies f ′(s) ≤
−2κf (s). By Grönwall’s inequality, f (s) ≤ e−2κsf (0) for all s in [0�T2], hence

v̂1(t) − v̂2(t) ≥ e−2κ(T2−t)
(
v̂1(T2) − v̂2(T2)

)
> 0�

for all t in [0�T2].

B.8. Proof of Theorem 3

Assume ‖β‖ > σ̂ , for otherwise the result is clear. Assume also that σ2
0�i > 0 for some i.

Otherwise, the result follows from a slight modification of the argument in the main text
following (7). It can be shown that the full-disclosure times are well-defined; for details,
see the last part of the proof. Taking as given that these times are well-defined, I prove
the result.

Drop the no-disclosure bounds except those starting at time 0 to obtain the relaxed
problem

minimize
∫ ∞

0
re−rt

[∥∥b(t) −β
∥∥2 +

n∑
i=1

vi(t)

]
dt

subject to
∫ ∞

t

re−r(s−t)

[∥∥b(s)
∥∥2 +

n∑
i=1

vi(s)

]
ds ≤

n∑
i=1

σ2
i + rvi(t)
r − 2κi

� t ≥ 0

0 ≤ vi(t) ≤ ηi

(
σ2

0�i� t
)
� t ≥ 0� i = 1� � � � � n�

(23)

It is straightforward to check that v̂ satisfies the dropped no-disclosure bounds. I prove
that (b̂� v̂) solves (23). Then I prove (almost everywhere) uniqueness.
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Optimality. To handle the initial variance constraint, consider an auxiliary problem.
If ‖b̂(0)‖ < ‖β‖, redefine ti0−1 so that b̂(ti0−1) = β (where we define b̂ and v̂ on all of
R by the expressions in the theorem statement). Let t0� � � � � ti0−2 all equal ti0−1 as well.
If ‖b̂(0)‖ = ‖β‖, keep t0� � � � � ti0−1 defined as before. In particular, t0 = 0. The auxiliary
problem is to choose functions b and v on [t0�∞) to solve

minimize
∫ ∞

t0

re−rt

[∥∥b(t) − b
∥∥2 +

n∑
i=1

vi(t)

]
dt

subject to
∫ ∞

t

re−r(s−t)

[∥∥b(s)
∥∥2 +

n∑
i=1

vi(s)

]
ds ≤

n∑
i=1

σ2
i + rvi(t)
r − 2κi

� t ≥ t0

vi(t) ≥ 0� t ≥ ti� i = 1� � � � � n

vi(t) ≤ ηi

(
v̂i(t0)� t − t0

)
� t ≥ t0� i = i0 + 1� � � � � n�

(24)

Define auxiliary functions b̃ and ṽ on [t0�∞) by the expressions for b̂ and v̂, with the
new definitions of t0� � � � � ti0−1. Below, I will show that (b̃� ṽ) solves (24). I claim that this
implies that (b̂� v̂) solves (23). If ‖b̂(0)‖ = ‖β‖, then t0 = 0 and hence v̂i(t0) = σ2

0�i for
all i = i0 + 1� � � � � n. Therefore, (b̃� ṽ) solves (23), and (b̃� ṽ) equals (b̂� v̂). If ‖b̂(0)‖ <
‖β‖, then ṽi(0) = σ2

0�i for all i = 1� � � � � n. Since the time-0 obedience constraint is active,
it follows from Bellman’s principal of optimality that the restriction of (b̃� ṽ) to [0�∞),
which equals (b̂� v̂), solves (23). Otherwise, replacing the time-0 continuation policy in
(b̃� ṽ) with a solution of (23) would strictly decrease the sender’s loss, while preserving all
constraints in (24).

To prove that (b̃� ṽ) solves (24), attach nonnegative Lagrange multipliers e−rtλ(t) to
each time-t obedience constraint, re−rtμi(t) to the nonnegativity constraint on vi(t), and
re−rtγi(t) to the no-disclosure bound on vi(t). Integrate over these constraints to form the
Lagrangian L(b�v;λ�μ�γ). For cleaner notation, I include multipliers μi(t) and γi(t)
for all i and t, with the understanding that the multipliers will always be chosen to sat-
isfy μi(t) = 0 for t < ti and γi(t) = 0 for i ≤ i0 and all t. Simplifying as in the single-
dimensional case, we have

L(b�v;λ�μ�γ) =
∫ ∞

t0

re−rt�
(
b(t)� v(t);λ(t)�μ(t)�γ(t)

)
dt

−
n∑

i=1

σ2
i

r − 2κi

∫ ∞

t0

e−rtλ(t) dt

−
n∑

i=i0+1

∫ ∞

t0

re−rtγi(t)ηi

(
v̂i(t0)� t − t0

)
dt�

where the integrand �(b(t)� v(t);λ(t)�μ(t)�γ(t)) equals

∥∥b(t) −β
∥∥2 +�(t)

∥∥b(t)
∥∥2 +

n∑
i=1

(
1 +�(t) − λ(t)

r − 2κi

−μi(t) + γi(t)
)
vi(t)� (25)
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where �(t) = ∫ t

t0
λ(s) ds.

Now define the multipliers. First, define j : [ti0−1� tn) → {i0� � � � � n} by setting j(t) = i if
t is in [ti−1� ti). Let

S(t) =
∫ t

t0

(r − 2κj(s)) ds =
n∑

i=i0

(r − 2κi)(t ∧ ti − ti−1)+�

Let

λ̂(t) =
{

(r − 2κj(t))eS(t) if t < tn
0 if t ≥ tn�

It can be shown that that
∫ t

t0
λ̂(s) ds = eS(t) − 1. Next, for i = 1� � � � � n, let

(
μ̂i(t)� γ̂i(t)

) =

⎧⎪⎨
⎪⎩

(
0�2(κi − κj(t))(r − 2κi)−1eS(t)

)
if t0 ≤ t < ti−1�

(0�0) if ti−1 ≤ t < ti�(
2(κj(t) − κi)(r − 2κi)−1eS(t)�0

)
if ti ≤ t�

Note that μ̂i(t) = 0 for t < ti and γ̂i(t) = 0 for i ≤ i0 and all t.
With these multipliers, the coefficient on each vi(t) in (25) vanishes, leaving

∥∥b(t) −β
∥∥2 + (

eS(t) − 1
)∥∥b(t)

∥∥2
�

This expression is convex in b(t) and the first-order condition gives b(t) = βexp(−S(t)).
From the definition of t0, we have

β= b̂(t0) = σ̂ exp
(
S(tn)

) β

‖β‖ �

Combining these identities gives

b(t) = σ̂ exp
(
S(tn) − S(t)

) β

‖β‖ = b̃(t)�

It follows that (b̃(t)� ṽ(t)) minimizes �(·� ·; λ̂(t)� μ̂(t)� γ̂(t)) for each time t, hence (b̃� ṽ)
minimizes L(·� ·; λ̂� μ̂� γ̂). It can be checked that (b̃� ṽ) satisfies feasibility and comple-
mentary slackness. Therefore, all the Kuhn–Tucker conditions are satisfied.

Uniqueness. Here, the argument is different from the single-dimensional case. By
Bellman’s principle of optimality, it suffices to show that (b̃� ṽ) is the (almost everywhere)
unique solution of (24). Let (b�v) be a function that solves (24). Then L(b�v; λ̂� μ̂� γ̂) =
L(b̃� ṽ; λ̂� μ̂� γ̂) and (b�v) satisfies complementary slackness with the multipliers (λ̂� μ̂�
γ̂). For each t ≥ t0,

argmax
(x�y)∈R×R

�
(
x� y; λ̂(t)� μ̂(t)� γ̂(t)

) = {
b̂(t)

} × R�
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Therefore, b(t) = b̂(t) for almost all t. For t < tn, we have λ̂(t) > 0. If κ1 < · · · < κn,
then for each i, we have γ̂i(t) > 0 for t < ti−1 and we have μ̂i(t) > 0 for t ≥ ti. Therefore,
complementary slackness implies that v(t) = v̂(t) for almost all t.31

Definition of Full-Disclosure Times. Suppose that σ2
0�i > 0 for some i, for otherwise the

full-disclosure times are all 0.
In the theorem statement, the bias and variance functions are expressed in terms of

the subsequent full-disclosure times. To prove that these full-disclosure times are well-
defined, I express the bias and variance functions in terms of their values at time 0. The
formal procedure follows.

Let V be the set of all n-vectors of the form (0i0−1� νi0�σ
2
0�i0+1� � � � �σ

2
0�n), for some com-

ponent i0 in {1� � � � � n} and some νi0 in (0�σ2
0�i0

], where 0i0−1 denotes the zero vector with
i0 − 1 components. The set V is totally ordered by the usual componentwise order. Fix
α ∈ (σ̂�∞) and ν ∈ V . Let i0 be the index of the first nonzero component of ν. Recur-
sively define functions b and v and times t1� � � � � tn as follows. Set ti = 0 for i ≤ i0 − 1. Let
v(0) = ν and b(0) = αβ/‖β‖. For each i ≥ i0, given that b(t) and v(t) have been defined
for t in [0� ti−1], define the time ti and the values (b(t)� v(t)) for t in (ti−1� ti] as follows.
Let

b(t) = b(ti−1)e−(r−2κi)(t−ti−1)�

For j ≤ i − 1, let vj(t) = 0. For j ≥ i + 1, let vj(t) = ηj(vj(ti−1)� t − ti−1). Finally, let vi(t)
be the unique solution of the differential equation32

v′
i(t) = 2κivi(t) − (r − 2κi)

(∥∥b(t)
∥∥2 − σ̂2

i

)
�

with the given boundary value vi(ti−1). Let ti be the smallest time t such that either
vi(t) = 0 or ‖b(t)‖ = σ̂ . If ‖b(ti)‖ = σ̂ , set ti+1� � � � � tn�T all equal to ti and terminate
the procedure. If ‖b(ti)‖ > σ̂ , either proceed to the next step if i < n or else set T = tn if
i = n. This procedure determines a function f : (σ̂�∞) × V → R by setting

f (α�ν) = ∥∥b(T )
∥∥ − σ̂ − (

v1(T ) + · · · + vn(T )
)
�

This function f is continuous. I claim that f satisfies the following monotonicity prop-
erties:

(i) For each ν ∈ V , the function f (·� ν) is strictly single-crossing from below.
(ii) For each α ∈ (σ̂�∞), the function f (α� ·) is strictly single-crossing from above.

First, I complete the proof, taking these properties as given. Fix ν ∈ V . It can be shown
that f (α�ν) is negative for α sufficiently close to σ̂ and f (α�ν) is positive for α suffi-
ciently large. By continuity and (i), there is a unique value α∗(ν) ∈ (σ̂�∞) such that
f (α∗(ν)� ν) = 0. By (i) and (ii), the function α∗ : V → (σ̂�∞) is strictly increasing. Ob-
serve that α∗(ν) → σ̂ as ν → 0. Let α̂= α∗(σ2

0�1� � � � �σ
2
0�n). By continuity, the image α∗(V)

is the interval (σ̂� α̂], so α∗ has a right inverse (α∗)−1 : (σ̂� α̂] → V . Therefore, the full-
disclosure times are pinned down by applying the procedure above with the initial condi-
tions α= ‖β‖ ∧ α̂ and ν = (α∗)−1(‖β‖ ∧ α̂).

31In fact, this equality must hold for every t, by the same argument as in the single-dimensional case. If the
κi agree for i in some subinterval I of {1� � � � � n}, then μ̂i(t) = γ̂i(t) = 0 for all t in T = ∪i∈I [ti−1� ti). Only the
sum

∑
i∈I vi(t) is pinned down for t in T . Any Bayes-plausible choices of vi(t), for i in I and t in T , that induce

the correct sum are optimal.
32The function vi can be expressed explicitly, but working with the defining differential equation makes the

rest of the proof more transparent.
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To prove (i), fix ν ∈ V . Fix α� ᾱ > σ̂ with ᾱ > α. Apply the procedure above from the
initial conditions (α�ν) and (ᾱ� ν) to obtain (b�v�T ) and (b̄� v̄� T̄ ), respectively. Since
κ1 ≤ · · · ≤ κn, it can be shown by induction using Grönwall’s inequality that:

(a) ‖b̄(t)‖> ‖b(t)‖ for t ≤ T̄ ∧ T ;
(b) v̄i(t) ≤ vi(t) for each i and all t ≤ T̄ ∧ T .

Suppose f (α�ν) ≥ 0. Hence, v(T ) = 0. From (b), we must have T̄ ≤ T . Therefore, by (a),
we have ‖b̄(T̄ )‖ > ‖b(T̄ )‖ ≥ ‖b(T )‖ ≥ σ̂ , where the middle inequality holds because ‖b‖
is decreasing. Thus, f (ᾱ� ν) > 0.

To prove (ii), fix α > σ̂ . Fix ν� ν̄ ∈ V with ν̄ ≥ ν and ν̄ �= ν. Apply the procedure
above from the initial conditions (α�ν) and (α� ν̄) to obtain (b�v� t1� � � � � tn�T ) and
(b̄� v̄� t̄1� � � � � t̄n� T̄ ), respectively. Since κ1 ≤ · · · ≤ κn, it can be shown by induction using
Grönwall’s inequality that:

(a) ‖b̄(t)‖ ≤ ‖b(t)‖ for t ≤ T̄ ∧ T ;
(b) v̄i(t) > vi(t) for each i and all t in (ti−1� ti ∧ T̄ ].

Suppose f (α�ν) ≤ 0. Hence, ‖b(T )‖ = σ̂ . From (a), we must have T̄ ≤ T . Choose j so
that T̄ is in (tj−1� tj]. By (b) we have v̄j(T̄ ) > vj(T̄ ) ≥ 0. Thus, f (ᾱ� ν) < 0.
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