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THIS APPENDIX compiles further details about the equilibrium conditions, our solution
method, and additional results not reported in the main text.

APPENDIX A: EQUILIBRIUM CONDITIONS

An equilibrium in this economy is composed of a set of prices {wt� rct� rt� r
k
t }t≥0, quanti-

ties {Kt�Nt�Bt� Ĉt� cit}t≥0, and a density {git (·)}t≥0 for i ∈{1�2} such that:
1. Given wt , rt , and gt , the solution of household m’s problem (10) is cmt = ci(at�Gt�

Nt).
2. Given rkt � rt , and Nt , the solution of the expert’s problem (6) is Ĉt , Kt , and Bt .
3. Given Kt , the firm maximizes its profits and input prices are given by wt and rct and

the rate of return on capital by rkt .
4. Given wt , rt , and cit , git is the solution of the KF equation (15).
5. Given rt , git , and Bt , the debt market (11) clears and Nt =Kt −Bt .
We stack all the equilibrium conditions of the model (except the optimality condition

for households) in two blocks. The first block includes all the variables that depend di-
rectly on Nt , Bt , and dZt :

wt = (1 − α)Kα
t � (28)

rct = αKα−1
t � (29)

rt = αKα−1
t − δ− σ2 Kt

Nt

� (30)

drkt = (rct − δ) dt + σ dZt� (31)

dNt =
(
αKα−1

t − δ− ρ̂− σ2

(
1 − Kt

Nt

)
Kt

Nt

)
Nt dt + σKt dZt� (32)
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The second block includes the equations determining the aggregate consumption of the
households, dBt , dKt , and ∂git

∂t
:

Ct =
2∑

i=1

∫
ci(a�Gt�Nt) dGt(a� i)� (33)

dBt =
(

(1 − α)Kα
t +

(
αKα−1

t − δ− σ2 Kt

Nt

)
Bt −Ct

)
dt� (34)

dKt = dNt + dBt� (35)

∂git (a)
∂t

= − ∂

∂a

(
si(a�Gt�Nt)git (a)

) − λigit (a) + λjgjt (a)� i �= j = 1�2� (36)

The second block shows (i) how the density {git (·)}t≥0 for i ∈ {1�2} matters to determine
Ct , (ii) that Ct pins down dBt , and (iii) that once we have dBt , we can calculate dKt .
Hence, computing the equilibrium of this economy is equivalent to finding Ct . Once Ct is
known, all other aggregate variables follow directly.

APPENDIX B: NUMERICAL ALGORITHM

We describe the numerical algorithm used to solve for the equilibrium value function,
vi(a�B�N), the density gi(a�B�N), and the aggregate debt B and equity N . The algo-
rithm proceeds in three steps. We describe each step in turn.

Step 1: Solution to the Hamilton–Jacobi–Bellman Equation

The HJB equation is solved using an upwind finite difference scheme. It approxi-
mates the value function vi(a�B�N), i = 1�2 on a finite grid with steps 
a, 
B, 
N :
a ∈{a1� � � � � aJ}�B ∈{B1� � � � �BL}, N ∈{N1� � � � �NM}, where:

aj = aj−1 +
a= a1 + (j − 1)
a� 2 ≤ j ≤ J�

Bl = Bl−1 +
B = B1 + (l − 1)
L� 2 ≤ l ≤L�

Nm =Nm−1 +
N =N1 + (m− 1)
N� 2 ≤m ≤M�

The lower bound in the wealth space is a1 = 0, such that 
a= aJ/(J − 1). We use the no-
tation vi�j�l�m ≡ vi(aj�Bl�Nm), and similarly for the policy function ci�j�l�m. The derivatives
are evaluated according to

∂vi(aj�Bl�Nm)
∂a

≈ ∂fvi�j�l�m ≡ vi�j+1�l�m − vi�j�l�m


a
�

∂vi(aj�Bl�Nm)
∂a

≈ ∂bvi�j�l�m ≡ vi�j�l�m − vi�j−1�l�m


a
�

∂vi(aj�Bl�Nm)
∂B

≈ ∂Bvi�j�l�m ≡ vi�j�l+1�m − vi�j�l�m


B
�

∂vi(aj�Bl�Nm)
∂Z

≈ ∂Nvi�j�l�m ≡ vi�j�l�m+1 − vi�j�l�m


N
�
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∂2vi(aj�Bl�Nm)
∂N2 ≈ ∂2

NNvi�j�l�m ≡ vi�j�l�m+1 + vi�j�l�m−1 − 2vi�j�l�m
(
N)2 �

At each point of the grid, the first derivative with respect to a can be approximated
with a forward (f ) or a backward (b) approximation. In an upwind scheme, the choice
of forward or backward derivative depends on the sign of the drift function for the state
variable, given by

si�j�l�m ≡ wl�mzi + rl�maj − ci�j�l�m� (37)

where

ci�j�l�m =
[
∂vi�j�l�m

∂a

]−1/γ

� (38)

wl�m = (1 − α)Z(Bl +Nm)α� (39)

rl�m = αZ(Bl +Nm)α−1 − δ− σ2 (Bl +Nm)
Nm

� (40)

Let superscript n denote the iteration counter. The HJB equation is approximated by

vn+1
i�j�l�m − vni�j�l�m



+ ρvn+1

i�j�l�m

=
(
cni�j�l�m

)1−γ − 1

1 − γ
+ ∂fv

n+1
i�j�l�ms

n
i�j�l�m�f1sn

i�j�n�m�f
>0

+ ∂Bv
n+1
i�j�l�ms

n
i�j�l�m�b1sn

i�j�l�m�b
<0

+ λi

(
vn+1

−i�j�l�m − vn+1
i�j�l�m

) + hl�m∂Bvi�j�l�m +μN
l�m∂Nvi�j�l�m

+
[
σN

l�m

]2

2
∂2
NNvi�j�l�m

for i = 1�2, j = 1� � � � � J, l = 1� � � � �L, m = 1� � � � �M , where 1(·) is the indicator function
and

hl�m ≡ h(Bl�Nm)�

μN
l�m ≡ μN (Bl�Nm) = αZ(Bl +Nm)α − δ(Bl +Nm) − rl�mBl − ρ̂Nm�

σN
l�m ≡ σN (Bl�Nm) = σ (Bl +Nm)�

sni�j�l�m�f =wl�mzi + rl�maj −
[

1
∂n
f vi�j�l�m

]1/γ

�

sni�j�l�m�b =wl�mzi + rl�maj −
[

1
∂n
bvi�j�l�m

]1/γ

�

Thus, when the drift is positive (sni�j�l�m�f > 0), we employ a forward approximation of
the derivative, ∂n

f vi�j�l�m; when it is negative (sni�j�l�m�b < 0), we employ a backward approxi-

mation, ∂n
bvi�j�l�m. The term

vn+1
i�j�l�m

−vn
i�j�l�m



→ 0 as vn+1

i�j�l�m → vni�j�l�m.
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Moving all terms involving vn+1 to the left-hand side and the rest to the right-hand side,
we obtain

vn+1
i�j�l�m − vni�j�l�m



+ ρvn+1

i�j�l�m

=
(
cni�j�n�m

)1−γ − 1

1 − γ
+ vn+1

i�j−1�l�mα
n
i�j�l�m + vn+1

i�j�l�mβ
n
i�j�l�m + vn+1

i�j+1�l�mξ
n
i�j�l�m

+ λiv
n+1
−i�j�l�m + vn+1

i�j�l+1�m

hl�m


B
+ vn+1

i�j�l�m+1κl�m + vn+1
i�j�l�m−1�l�m� (41)

where

αn
i�j ≡ −

sni�j�B1sni�j�B<0


a
�

βn
i�j�l�m ≡ −

sni�j�l�m�f1sni�j�n�mF>0


a
+

sni�j�l�m�b1sn
i�j�l�m�b

<0


a
− λi − hl�m


B
− μN

l�m


N
−

(
σN

l�m

)2

(
N)2 �

ξn
i�j ≡

sni�j�F1sni�j�F>0


a
�

κl�m ≡ μN
l�m


N
+

(
σN

l�m

)2

2(
N)2

=
[
αZ(Bl +Nm)α − δ(Bl +Nm) − rl�mBl − ρ̂Nm

]

N

+ σ2(Bl +Nm)2

2(
N)2 �

�l�m ≡
(
σN

l�m

)2

2(
N)2 = σ2(Bl +Nm)2

2(
N)2 �

for i = 1�2, j = 1� � � � � J, l = 1� � � � �L, m = 1� � � � �M . We consider boundary state con-
straints in a (sni�1�B = sni�J�F = 0). The boundary conditions in B and N are reflections.

In equation (41), the optimal consumption is set to

cni�j�n�m = (
∂vni�j�l�m

)−1/γ
� (42)

where ∂vni�j�l�m = ∂fv
n
i�j�l�m1sni�j�n�mF>0 + ∂bv

n
i�j�l�m1sn

i�j�l�m�b
<0 + ∂v̄ni�j�l�m1sni�j�n�mF≤01sn

i�j�l�m�b
≥0.

In the above expression, ∂v̄ni�j�l�m = (c̄ni�j�n�m)−γ , where c̄ni�j�n�m is the consumption level such
that the drift is zero: c̄ni�j = wl�mzi + rl�maj .
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We define

An
l�m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βn
1�1�l�m ξn

1�1�l�m 0 0 · · · 0 λ1 0 · · · 0

αn
1�2�l�m βn

1�2�l�m ξn
1�2�l�m 0 · · · 0 0 λ1

� � � 0

0 αn
1�3�l�m βn

1�3�l�m ξn
1�3�l�m · · · 0 0 0

� � �
���

���
� � �

� � �
� � �

� � �
� � �

� � �
� � �

� � �
���

0 0 · · · αn
1�J−1�l�m βn

1�J−1�l�m ξn
1�J−1�l�m 0 · · · λ1 0

0 0 · · · 0 αn
1�J�l�m βn

1�J�l�m 0 0 · · · λ1

λ2 0 · · · 0 0 0 βn
2�1�l�m ξn

2�1�l�m · · · 0
���

� � �
� � �

� � �
� � �

� � �
���

� � �
� � �

���
0 0 · · · 0 0 λ2 0 · · · αn

2�J�l�m βn
2�J�l�m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

vn+1
l�m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vn+1
1�1�l�m

vn+1
1�2�l�m
���

vn+1
1�J�l�m

vn+1
2�1�l�m
���

vn+1
2�J�l�m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

and

An
m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

An
1�m

h1�m


B
I2J 02J · · · 02J 02J

02J An
2�m

h2�m


B
I2J · · · 02J 02J

02J 02J An
3�m · · · 02J 02J

���
� � �

� � �
� � �

� � �
���

02J An
L−1�m

hL−1�m


B
I2J

02J 02J · · · 02J 02J

(
An

L�m + hL�m


B
I2J

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� vn+1

m =

⎡
⎢⎢⎢⎣

vn+1
1�m

vn+1
2�m
���

vn+1
L�m

⎤
⎥⎥⎥⎦ �

where In and 0n are the identity matrix and the zero matrix of dimension n × n, respec-
tively. We can also define

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
An

1 + P1

)
X1 02J×L · · · 02J×L 02J×L

P2 An
2 X2 · · · 02J×L 02J×L

02J×L P3 An
3 · · · 02J×L 02J×L

���
� � �

� � �
� � �

� � �
���

PM−1 An
M−1 XM−1

02J×L 02J×L · · · 02J×L PM

(
An

M + XM

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�

vn+1 =

⎡
⎢⎢⎢⎣

vn+1
1

vn+1
2
���

vn+1
M

⎤
⎥⎥⎥⎦ �
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Xm =

⎡
⎢⎢⎢⎢⎣
κ1�mI2J 02J · · · 02J 02J

02J κ2�mI2J · · · 02J 02J
���

� � �
� � �

� � �
���

02J κL−1�mI2J 02J

02J 02J 02J 02J κL�mI2J

⎤
⎥⎥⎥⎥⎦ �

Pm =

⎡
⎢⎢⎢⎢⎣
�1�mI2J 02J · · · 02J 02J

02J �2�mI2J · · · 02J 02J
���

� � �
� � �

� � �
���

02J �L−1�mI2J 02J

02J 02J 02J 02J �L�mI2J

⎤
⎥⎥⎥⎥⎦ �

un =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
cn1�1�1�1

)1−γ − 1
1 − γ(

cn1�2�1�1
)1−γ − 1

1 − γ
���
���(

cn2�J�L�M
)1−γ − 1

1 − γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Then, equation (41) is a system of 2 × J ×L×M linear equations that can be written in
matrix notation as

1



(
vn+1 − vn

) + ρvn+1 = un + Anvn+1�

The system in turn can be written as

Bnvn+1 = dn� (43)

where Bn = ( 1



+ ρ)I − An and dn = un + 1



vn.
The algorithm to solve the HJB equation begins with an initial guess v0

i�j�l�m. Set n = 0.
Then:

1. Compute cni�j�l�m, i = 1�2 using (42).
2. Find vn+1

i�j�l�m solving the linear system of equations (43).
3. If vn+1

i�j�l�m is close enough to vni�j�l�m, stop. If not, set n := n+ 1 and proceed to step 1.
Most programming languages, such as Julia or Matlab, include efficient routines to

handle sparse matrices such as An.

Step 2: Solution to the KF Equation

The income-wealth distribution conditional on the current realization of aggregate debt
B = Bl and equity N =Nm can be characterized by the KF equation:

∂g

∂t
= − ∂

∂a

[
si(a�B�N)gi�t(a)

] − λigi�t (a) + λ−ig−i�t(a)� i = 1�2� (44)
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1 =
2∑

i=1

∫
git (a) da� (45)

If we define a time step 
t, we also solve this equation using a finite difference scheme.
We use the notation gi�j ≡ gi(aj). The system can now be expressed as

gi�j�t+1 − gi�j


t
= −gi�j�tsi�j�l�m�b1si�j�l�m�b>0 − gi�j−1�tsi�j−1�l�m�f1si�j−1�l�m�f >0


a

− gi�j+1�tsi�j+1�l�m�b1si�j+1�l�m�b<0 − gi�j�tsi�j�l�m�b1si�j�l�m�b<0


a
− λigi�j�t + λ−ig−i�j�t �

In this case, let us define gt = [g1�1�t� g1�2�t � � � g1�J�t� g2�1�t � � � g2�J�t]′ as the density conditional
on the current state of Bl and Nm. We assume that g0 is the density in the DSS, and the
update in the next time period is given by the KF equation:

gt+1 = (
I −
tAT

l�m

)−1
gt �

where AT
l�m is the transpose matrix of Al�m = limn→∞ An

l�m, defined above.

Step 3: Update of the PLM Using a Neural Network

The vector θ is recursively updated according to θm+1 = θm − εm∇E (θ;xj� ĥj), where

∇E (θ;xj� ĥj) ≡
[
∂E (θ;xj� ĥj)

∂θ2
0

�
∂E (θ;xj� ĥj)

∂θ2
1

� � � � �
∂E (θ;xj� ĥj)

∂θ1
2�Q

]�

is the gradient of the error function with respect to θ evaluated at (xj� ĥj).
The step size εm > 0 is selected in each iteration by line-search to minimize the error

function in the direction of the gradient. The algorithm is run until ‖θm+1 − θm‖ < ε, for
a small ε > 0. The error gradient can be efficiently evaluated using backpropagation.

We fine-tune the training scheme of our neural network as follows. First, we employ
a line-search algorithm because the training scheme needs to yield a consistently good
approximation: a “not-good-enough” approximation in any of the dozens of iterations
of the algorithm can make it break. Line-search is slower than a constant or adaptive
learning rate, but it prevents bad steps in the minimization.

Second, the training scheme should not introduce big amounts of noise in each itera-
tion. Otherwise, the noise can mask or prevent convergence (strict convergence criteria
can only be met by chance, if at all). This is why we use a batch gradient descent (i.e., all
training points are used in every gradient calculation and line-search step) instead of the
more popular stochastic or minibatch gradient descents. The random choice of training
points in each step, while common in much of the machine learning literature, introduces
too much noise in our case.

Reducing stochastic elements in the solution method is also why we train the model
with a grid approximation that clears out noise. We define a 101 × 101 grid over the
(B�N) support, and assign each simulated point to one of the knots in that grid. Then,
we run a linear regression, and use it to estimate the height of the PLM at that knot. This
grid could later be used to solve the model using interpolation (e.g., with splines, or with
natural neighbor interpolation) and linear extrapolation (and we do that as a robustness
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check, finding similar results to those of the solution with the neural network). However,
on a 2D surface. such extrapolation tends to generate ridges (because of the amplification
of sample noise in far-away extrapolations), which could prevent convergence at the HJB
step. Instead, we use those knots to train the neural network, which provides a good-
enough fit in the visited area and a much smoother extrapolation to the nonvisited area
of the (B�N) support.

In the first iteration of the algorithm, we do ten random initializations of the param-
eters of the neural network and ten subsequent training sessions. Later, we choose the
best-performing trained network across those ten training sessions. From the second it-
eration onward, the neural network is initialized using weights that were found to be
optimal in the previous iteration, and a single training session is carried out. This avoids
re-introducing a stochastic element at each step, thus reducing unnecessary noise and sav-
ing running time. Using a small relaxation parameter in the PLM update step (it starts at
0.30 and exponentially decays toward 0.05, reaching 0.20 after five iterations and 0.10 after
16) makes the convergence of the full algorithm slower but smoother, with slow updates
to the optimal neural network that help this nonrandom initialization work well.

Finally, in order to avoid scale problems, we normalize all the inputs of the neural
network so that the range is determined to be [−1�1]. To this end, we find the maximum
and minimum values of the training sample and compute the mid-point between them.
Then, we subtract the mid-point from every individual sample and divide the result by
half of the max-min interval.

Complete Algorithm

We can now summarize the complete algorithm. We begin with a guess of the PLM
h0(B�N). Set n := 0:

Step 1: Household problem. Given hn(B�N), solve the HJB equation to obtain an estimate
of the value function v and of the matrix A.

Step 2: Distribution. Given A� simulate T periods of the economy using the KF equation
and obtain the aggregate debt {Bt+1 = ∑2

i=1

∑J

j=1
gijt+1(Bt �Nt )


t

a}Tt=0 and equity {Nt}Tt=0.

Given εt

iid∼N (0�1), the law of motion of equity is

Nt =Nt−1 + [
αZ(Bt +Nt)α − δ(Bt +Nt) − rtBt − ρ̂Nt

]

t + σ (Bt +Nt)

√

tεt�

Step 3: PLM. Update the PLM using a neural network: hn+1. If ‖hn+1 − hn‖ < ε, where ε
is a small positive constant, then stop. If not, return to step 1.

The code is currently optimized for computation on four cores using Matlab. Solv-
ing the nonlinear version of the model takes approximately 5 hours on a 2021 high-end
workstation (which also allows for multiple instances of the code to run at the same time,
which accelerates the more time-consuming sensitivity analysis computation).

The breakdown of time is 15% for solving the HJB; 63% for the simulation in the KFE;
19% for training the neural network that approximates the PLM; and 3% for other tasks
(mostly plotting and convergence diagnostics).

APPENDIX C: A GENERAL ALGORITHM FOR SOLVING HETEROGENEOUS AGENT
MODELS

The algorithm discussed in the previous section is an instance of a much more general
strategy for solving a large class of heterogeneous agent models, in both discrete and
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continuous time. For example, Fernández-Villaverde, Marbet, Nuño, and Rachedi (2022)
used the method in this paper to compute a discrete-time, heterogeneous agent New
Keynesian (HANK) model with aggregate shocks and the zero lower bound (ZLB) on
the nominal interest rate.1

In general, to solve these models, we need to deal with the distribution of agents Gt

and the operator H(·) that characterizes how Gt evolves:

Gt+1 = H(Gt�St)

in discrete time, or

∂Gt

∂t
=H(Gt�St)

in continuous time, given the other aggregate states of the economy St .
The challenge, thus, is to track Gt and compute H(Gt�St). Building on the ideas of

Krusell and Smith (1998), we propose the following algorithm:
1. Summarizing the distribution: If we deal with N discrete types of agents, we keep track

of the N − 1 weights of each type of agent but one (as the weights need to sum up to 1). If
we deal with continuous types, we extract a finite number of features from Gt . These can
be moments, Q-quantiles, weights in a mixture of normals, or many other options.

2. Substituting the operator H(·) by a parameterized PLM h(·): We stack either the
weights or features of the distribution in a vector μt and assume that μt follows a PLM:

μt+1 = h(μt�St)

in discrete time, or

∂μt

∂t
= h(μt�St)

in continuous time, instead of H(Gt�St).
3. Parameterizing the PLM: We parameterize h(μt�St) as h(μt�St;θ) using a neural net-

work, where θ is the vector of network weights. The details of the architecture (i.e., hyper-
parameters such as number of hidden layers, activation function, number of nodes,. . . )
will depend on the details of the model. These hyperparameters can be determined by
standard techniques (e.g., cross-validation, drop-out).

4. Training the neural network: We determine the unknown weights θ to ensure that an
economy where μt follows h(μt�St;θ) replicates as well as possible the behavior of an
economy where Gt follows H(·). To do so:

1. We guess an initial value θ0 of the neural network weights. We set n := 0.
2. We construct a time series of μt simulating from the PLM and the relevant equilib-

rium conditions of the model.
3. We train the neural network weights on the simulated data and obtain θn+1 by min-

imizing a quadratic error function between μt+1 and μt (in discrete time) or μt+1−μt


t

and μt (in continuous time). Other suitable loss functions, for example, adding reg-
ularization terms, are possible.

1The computation in Fernández-Villaverde et al. (2022) also demonstrates that the details of the PLM in
our model (e.g., continuous time, number of aggregate state variables, etc.) are not an essential part of the
algorithm.
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4. We iterate on steps 2–3 until ‖θn+1 − θn‖ < ε given a norm ‖ · ‖ and tolerance level
ε > 0.

An example: Consider the basic Krusell–Smith model in discrete time, where we have
two aggregate variables: an aggregate productivity shock Zt and household distribution
Gt (a�z) on individual assets, a, and individual labor productivity, z, where∫

Gt (a�z) da= Kt�

We summarize Gt (a� ·) with the log of its mean: μt = logKt . Then, we parameterize a
PLM h(μt�Zt;θ) using a neural network and train it as described above.

In fact, the original proposal of Krusell and Smith (1998) to find

logKt+1︸ ︷︷ ︸
μt+1

= θ0(Zt) + θ1(Zt) logKt︸ ︷︷ ︸
h(μt �st ;θ)

�

where one determines {θ0(Zt)� θ1(Zt)} by running an OLS on repeated simulations un-
til convergence, is a particular case of this approach. Linear regression is nothing but a
sparse neural network with a (state-dependent) linear activation function. The OLS pro-
cedure quickly minimizes the quadratic error function for convenient functional forms
such as log-linear.

Similarities and differences with Krusell and Smith (1998): The previous paragraphs show
how close we are to the spirit of Krusell and Smith (1998): (i) we summarize the salient
features (from an economic perspective) of the agents’ distribution; (ii) we parameter-
ize the evolution of these features; and (iii) we determine these parameters by repeated
simulations. We simply argue that neural networks provide a constructive procedure to
accomplish these tasks:

1. Where Krusell and Smith (1998) proposed using moments of Gt , we propose either
sticking with moments or using other features of Gt as required.

2. Where Krusell and Smith (1998) proposed using a (state-dependent) log-linear func-
tion for the PLM, we propose using a more general neural network.

3. Where Krusell and Smith (1998) proposed using OLS, we propose using standard
algorithms like stochastic gradient descent.

The third item is a small difference: it is just for numerical convenience; and since we
use the first moment of the distribution, the first item above is moot in our paper. The key
to our idea is, thus, the second item: using neural networks to approximate any PLM.

Further comments on neural networks: Krusell and Smith (1998) did not offer much
guidance regarding feature and parameterization selection in general models. While in
their model keeping track of the log of the mean with a (state-dependent) log-linear
PLM works very well, how do we proceed when solving an arbitrary heterogeneous agent
model?

The main text outlined several reasons why neural networks were an attractive possi-
bility to approximate a PLM. Here, we repeat once again that neural networks can also
tackle the “curse of dimensionality” when either μt or St is highly dimensional. Thus,
neural networks can keep track of many features from Gt , such as many Q-quantiles.
While this result is not relevant to our model, it has been put to good use by Ebrahimi
Kahou, Fernández-Villaverde, Perla, and Sood (2021) by solving economic models with
hundreds of state variables that would saturate alternatives, such as Chebyshev polyno-
mials. Ebrahimi Kahou et al. (2021) also showed that a neural network would find a log-
linear PLM if this is, indeed, the best approximation, even if we do not supply the neural
network with this information ex ante.
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Recall, nonetheless, that our general algorithm also shares some of the drawbacks of
Krusell and Smith (1998). For example, we approximate a self-justified equilibrium given
by the PLM, which can be far from the rational expectations equilibrium. While the flexi-
bility of our richly parameterized PLM might help minimize this risk, we should keep this
point in mind.

APPENDIX D: BUILDING THE LIKELIHOOD FUNCTION

Let us assume that the econometrician has access to D + 1 observations of output,
YD

0 ={Y0�Y
�Y2
� � � � �YD} at fixed time intervals [0�
�2
� � � � �D
]. The derivations be-
low would be similar for observables other than output. Since we have one aggregate
shock in the model (to capital), we can only use one observable in our likelihood. Other-
wise, we would suffer from stochastic singularity. If we wanted to have more observables,
we would need to either enrich the model with more shocks or introduce measurement
shocks in the observables. In those situations, we might need to resort to a sequential
Monte Carlo approximation to the filtering problem described by the associated Kushner–
Stratonovich equation of our dynamic system (see, in discrete time, Fernández-Villaverde
and Rubio-Ramírez (2007)).

The likelihood function LD(YD
0 |�) for our observations of output and given some pa-

rameter values � ={α�δ�σ� ρ̂�ρ�γ� z1� z2�λ1�λ2} has the form

LD

(
YD

0 |�
) =

D∏
d=1

pY (Yd
|Y(d−1)
;�)�

where pY (Yd
|Y(d−1)
;�) = ∫
fd
(Yd
�B) dB is the conditional density function of Yd


given Y(d−1)
, and the density function for output and debt, fd
(Yd
�B), implied by the
solution of the model. Our task is, then, to compute the sequences of conditional densities
pY (Yd
|Y(d−1)
;�) at the fixed time intervals [0�
�2
� � � � �D
� ].

To do so, we obtain the diffusion of Yt = (Bt +Nt)α. Applying Itô’s lemma, we get

dYt = ∂(B +N)α

∂B
dBt + ∂(B +N)α

∂N
dNt + 1

2
∂2(B +N)α

∂N2 σ2(B +N)2 dt

= μY (Bt�Yt) dt + σY
t (Yt) dZt� (46)

where

μY (Bt�Yt) = αY
α−1
α

t

{
h
(
Bt�Y

1
α
t −Bt

) + αYt +
[

(α− 1)σ2

2
− δ

]
Y

1
α
t

−
(
αY

α−1
α

t − δ− σ2 Y
1
α
t

Y
1
α
t −Bt

)
Bt − ρ̂

(
Y

1
α
t −Bt

)}
�

and σY (Yt) = ασYt .
With equation (46), the density f d

t (Y�B) follows the KF equation in the interval [(d −
1)
�d
]:

∂ft

∂t
= − ∂

∂Y

[
μY (Y�B)ft (Y�B)

] − ∂

∂B

[
h
(
B�Y

1
α −B

)
f d
t (Y�B)

]
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+ 1
2

∂2

∂Y 2

[(
σY (Y )

)2
ft (Y�B)

]
� (47)

At the beginning of the interval, we have f(d−1)
(Y�B) = δ(Y −Y(d−1)
)f(d−2)
(B|Y(d−1)
),
where f(d−1)
(B|Y(d−1)
) is the probability of B conditional on Y = Y(d−1)
:

f(d−2)
(B|Y(d−1)
) = f(d−2)
(Y(d−1)
�B)
f(d−2)
(Y(d−1)
)

= f(d−2)
(Y(d−1)
�B)∫
f(d−2)
(Y(d−1)
�B) dB

�

if d ≥ 2, f−1(B) = f (B) is the ergodic distribution of B, and δ(·) is the Dirac delta func-
tion. Since the operator in the KF equation (47) is the adjoint of the infinitesimal gener-
ator employed in the HJB, we only need to transpose and invert a sparse matrix that has
already been computed when we solved the HJB.

Lo (1988) provided technical assumptions that must be satisfied for this estimation to
work. In our model, these conditions are met provided that h(B�N) is twice continu-
ously differentiable in B and N and three times continuously differentiable in �, which is
guaranteed if (i) h(B�N) is approximated using a neural network with our softplus acti-
vation function and (ii) � lies in the interior of a finite-dimensional closed and compact
parameter space.2

APPENDIX E: BUILDING THE LIKELIHOOD FUNCTION WITH MICRO DATA

A promising avenue to improve the estimation in the main text is to add micro ob-
servations, which bring much additional information and help in integrating different
levels of aggregation to assess the empirical validity of the model. More concretely, let
Xt ≡ [gt (a�z);Nt]′ be a vector of observations on the asset holdings of agents in this econ-
omy (households, gt (a�z), and the expert, Nt). Imagine, as before, that we have D+1 ob-
servations of Xt at fixed time intervals [0�
�2
� � � � �D
� ] :XD

0 ={X0�X
�X2
� � � � �XD}.
At this moment, we need to assume—as is typically done in models with heterogeneous

agents and aggregate shocks—that the conditional no aggregate uncertainty (CNAU) con-
dition holds. This condition implies that if households are distributed on the interval I =
[0�1] according to the Lebesgue measure �, then Gt (A×Z) = �(i ∈ I : (ai

t� z
i
t) ∈ A×Z),

for any subsets A ⊂ [0�∞), Z ⊂{z1� z2}. That is, the probability under the conditional dis-
tribution is the same as the probability according to the Lebesgue measure across I.

The likelihood that an individual agent i ∈ I at time t = d
 is at state (ai
d
� z

i
d
�Bd
�

Nd
) is f d
d
(ai

d
� z
i
d
�Bd
�Nd
). The log-likelihood is then log[f d

d
(ai
d
� z

i
d
�Bd
�Nd
)]. No-

tice that this log-likelihood is a function of i.
The conditional aggregate log-likelihood across all agents is

logpX (Xd
|X(d−1)
;�) =
∫

log
[
f d
d


(
ai
d
� z

i
d
�Bd
�Nd


)]
�(di)�

and, taking into account the CNAU condition, we get∫
log

[
f d
d


(
ai
d
� z

i
d
�Bd
�Nd


)]
�(di) =

∫
log

[
f d
d
(a�z�Bd
�Nd
)

]
Gd
(da�dz)

2In our model, output is a flow variable, whereas, in the data, it is the cumulative production over a quarter.
Thus, a precise definition of the observable would be Y

agg
d
 = ∫ d


(d−1)
 Ys ds. In our paper, this expression can be
approximated with a high degree of accuracy by Y

agg
d
 ≈ Yd

.
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=
2∑

i=1

∫ ∞

0
log

[
f d
d
(a�zi�Bd
�Nd
)

]
gd
(a�z) da�

where, in the second line, we have applied the definition of the Radon–Nikodym deriva-
tive to get the differential in a.

The density f d
t (a�z�B�N) follows the KF equation:

∂f d
t

∂t
= − ∂

∂a

(
si(at�Bt�Nt)f d

t (a�zi�B�N)
) − λif

d
t (a�zi�B�N) + λjf

d
t (a�zj�B�N)

− ∂

∂B

[
h(B�N)f d

t (a�zi�B�N))
] − ∂

∂N

[
μN

t (B�N)f d
t (a�zi�B�N)

]
+ 1

2
∂2

∂N2

[(
σN

t (B�N)
)2
f d
t (B�N)

]
� (i �= j = 1�2)� (48)

where f d
(d−1)
 = g(d−1)
(a�z)δ(B−B(d−1)
)δ(N −N(d−1)
), an easy-to-evaluate expression.

More concretely, we use the notation f d
i�j�l�m ≡ f d

i (aj�Bl�Nm) and define a time step

t = 


S
, where 1 � S ∈ N is a constant. If we solve the KF equation (48) using a finite

difference scheme, we have, for t = (d − 1)
 and s = 1,. . . , S − 1,

fdt+s
t =
(
I −
tAT

)−1
fdt+(s−1)
t�

fdt = gtδN(d−1)
δB(d−1)
�

where δ is the Kronecker delta and fdt = [f1�1�1�t� f1�1�1�2�t� � � � � f2�J�L�M�t]′.
We approximate pX (Xd
|X(d−1)
;γ) = ∑2

i=1

∑J

j=1

∑L

l=1 f
d
i�j�ld�m

gd
i�j
a
B, where f d

i�j�ld�m
is

the density evaluated at the observed equity point Nd
, f d
i (aj�Bl�N = Nd
) and gd

i�j are
the elements of the observed distribution gd
.

APPENDIX F: MAXIMIZING THE LIKELIHOOD FUNCTION

We maximize the likelihood function by searching on a grid between 0.013 and 0.015
with a step 0.0002 (we played extensively with σ values to determine the region of high
likelihood before starting the grid search).

We plot the resulting log-likelihood in Figure S1. The point estimate, 0.0142, is drawn
as a vertical discontinuous red line, with a standard error of 0.00011342, computed by
the local derivative of the function. The smoothness of the plot confirms that our algo-
rithm has successfully converged, since changes in one parameter value do not lead us to
different numerical solutions.

APPENDIX G: ALTERNATIVE SOLUTION METHODS

Figure S2 plots the PLM phase diagram corresponding to the solution of our model
using the Krusell–Smith algorithm. This figure is equivalent to Figure 5 in the main text
(where we use neural networks). It is easy to see that the multiplicity of SSS(s) disappears
if we do not consider nonlinearities. Thus, agents in the model expect a unimodal ergodic
distribution.

Next, we show that the approximation to the PLM computed with Chebyshev polynomi-
als is not satisfactory. In Figure S3, we plot the PLM obtained with an algorithm similar to
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FIGURE S1.—Log-likelihood for different values of σ and point estimate.

ours, but where we substitute a linear combination of Chebyshev polynomials for the neu-
ral network and we select the coefficients of that linear combination to fit the simulated
data as well as possible.

While, at first inspection, the PLM in panel (a) seems sensible, a closer examination
of the scale of the y-axis reveals implausible movements in h(B�N). These variations
are seen better in panel (b), where we zoom in on h(B�N) with a smaller range of debt
and equity. The PLM is well approximated in the ergodic distribution (shaded area in
the center) but, as soon as we move slightly outside that area, the oscillating features of
polynomial approximations reassert themselves. Using this PLM begets unstable simula-
tions and unreliable results. Similar problems appear in solutions construed with splines
or similar series approximations: extrapolation requires a well-behaved basis and neural
networks do an excellent job at such a task.

APPENDIX H: CONVERGENCE TO THE SSS(S)

How do we know that the two SSS(s) described above are stable? The state space
(g(·)�N) is infinite-dimensional and, hence, we cannot check convergence numerically
for all possible initial states. Instead, we analyze convergence for points visited in the
ergodic distribution.

Figure S4 considers an array of different initial income-wealth densities and equity lev-
els (g0(·)�N0), selected from the simulations used to compute the aggregate ergodic dis-
tribution and analyze the transitional dynamics when no aggregate shocks arrive (agents
continue forming their expectations assuming σ > 0). We plot, in red, the paths converg-
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FIGURE S2.—Phase diagram, DSS, and SSS(s), linear PLM.

ing toward the LL-SSS and, in green, the paths converging toward the HL-SSS. In all
cases, the economy converges to the SSS(s)—denoted by small circles—on the basin of
attraction of the initial condition. However, the convergence path is plodding and it may
take centuries.

Notwithstanding, we cannot rule out that, for other initial conditions, the model would
not converge to an SSS. This limitation is related to the self-justified nature of the solu-
tion. The PLM is computed based on the income-wealth distributions visited along the
ergodic distribution. One could potentially find a distribution that would lead to alterna-
tive dynamics.3

Interestingly, equity and debt often overshoot their SSS values. For example, when the
economy starts with low levels of equity and high debt, the expert issues even more debt
for a while. Only as the expert accumulates wealth through excess returns undisturbed by
shocks (we are in the deterministic convergence path) does equity grow and debt fall.

3Similarly, one could also find other equilibria beyond the one we compute (although, despite our efforts,
we failed to do so). Recall that the multiplicity of SSS(s) is different from a possible multiplicity of equilibria:
in our model, we are in one basin of attraction or another depending on the sequence of shocks the economy
has experienced, but the equilibrium we compute is unique given the initial condition and sequence of shocks.
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FIGURE S3.—PLM with Chebyshev polynomials.

FIGURE S4.—Convergence paths.
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FIGURE S5.—Phase diagram as a function of σ .

APPENDIX I: COMPARATIVE STATICS

This appendix explores how the values of the SSS(s) change as we move some param-
eter values of the model (while keeping all the other parameter values constant). The
exercises clarify the supply and demand of debt by the expert and households.

Figure S5 explores the role of σ . Each panel plots, for a different value of σ , the phase
diagram of the economy following the same convention as in Figure 5. For low values
of σ , the precautionary motive of households is mild and, thus, we can sustain the LL-
SSS (in addition to the HL-SSS). As we increase σ , the precautionary motive becomes
stronger and h(B�N) = 0 bends more, until the LL-SSS disappears. Even with high risk-
free rates, households demand few bonds. Similarly, the HL-SSS moves to the left (i.e.,
less debt and more equity) as the expert is exposed to additional capital risk. This effect
becomes sufficiently strong that the HL-SSS, instead of being to the right of the DSS (i.e.,
more debt and more equity than the DSS because of the higher excess return induced by
precautionary savings), crosses to the left of the DSS. In our economy, the leverage in the
HL-SSS is a negative function of σ , a roughly constant function in the unstable SSS, and
an increasing function in the LL-SSS (until the additional SSS(s) disappear).

Figure S6 plots the phase diagram of the model for nine different values of z1 (still
keeping the ergodic mean of z equal to 1) from 0.67 to 0.92. Each panel follows the same
convention as in Figure 5 and we only plot the segments of h(B�N) and μN (B�N) visited
in the ergodic distribution.
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FIGURE S6.—Phase diagram as a function of z1.

For low levels of z1, the only SSS is the HL-SSS (see the left and center panels at the
top row). Idiosyncratic risk is so high that households demand enough debt to sustain only
one SSS, which, besides, has more debt than the DSS. As z1 increases, we cross a threshold
around 0.69 and we find three SSS(s), with the same interpretation as in Figure S6. As z1

rises, the HL-SSS moves to the left of the DSS since households demand less debt to self-
insure against idiosyncratic risk. By the time z1 reaches 0.9, the precautionary demand for
debt by households is now so weak that only the LL-SSS survives.

We can combine both previous exercises in Figure S7, where we plot the values of the
SSS(s) as we simultaneously move aggregate and idiosyncratic risk. This figure comple-
ments Figure 11 in the main text.

Figure S8 shows the value of the SSS(s) as we vary ρ̂, the discount factor of the expert.
As the expert becomes more impatient, the level of leverage in the HL-SSS and LL-SSS
increases slightly, while the level of leverage at the DSS rises much more strongly. The
reason is that as ρ̂ grows, households are relatively more patient and, therefore, more
willing to accumulate bonds and increase leverage.

Finally, Figure S9 draws the ergodic distributions of equity and debt as z1 varies. For
low levels of z1, most of the ergodic mass accumulates in the region of high debt and
low equity. As z1 increases, the ergodic mass spreads toward the upper left corner, first
slowly, but gathering steam by the time we reach z1 = 0�85. At this level, there is a bifur-
cation and the region around the LL-SSS becomes predominant and the higher leverage
region eventually disappears. This change in the ergodic distribution is crucial for aggre-
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FIGURE S7.—SSS(s) as a function of σ and z1.

gate fluctuations since, as we saw in Figure 6, the responses of the economy to a capital
shock heavily depend on leverage.

APPENDIX J: VALUE FUNCTIONS

The second row of Figure S10 plots the value functions of the households as a function
of assets for low- and high-labor productivity at the HL-SSS and the LL-SSS. For easy
reference, in the first row of Figure S10, we reproduce the distributions of households.

The comparison of value functions shows that, for all levels of assets, households prefer
to be at the LL-SSS than at the HL-SSS. This fact is not a surprise since, at the LL-SSS,
the economy is less volatile and households have concave preferences only over consump-
tion (not allowing, therefore, substitution with leisure when productivity is low). However,
precautionary behavior also means that, at the HL-SSS, we will have more rich house-
holds.

The bottom row of Figure S10 shows how the value function changes after a two-
standard-deviations negative capital shock: poorer households are worse off (they have
lower wages), but wealthier households are better off, as their bonds pay a higher interest
rate. The effect is more acute at the HL-SSS, as the persistence of wages and the risk-free
interest rate are higher.
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FIGURE S8.—SSS(s) as a function of ρ̂.

FIGURE S9.—f (B�N) as a function of z1. Lighter colors indicate higher probability.
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FIGURE S10.—Wealth distribution and value functions in the DSS and SSS.

APPENDIX K: GIRFS: HIGH VERSUS LOW HOUSEHOLD HETEROGENEITY

Figure S11 reports the GIRFs of the baseline, high household heterogeneity version
of the model (continuous green line) to a two-standard-deviations negative capital shock
when the economy is at the HL-SSS. These GIRFs are, by construction, identical to the
GIRFs (also in continuous green lines) in Figure 6. Figure S11 also plots the GIRFs (in
discontinuous blue line) at the unique SSS existing when z1 = 0�97, the value in the top
row in Figure 11.

Both sets of GIRFs vary considerably. The fall in output (panel a) is more persistent
when we have more heterogeneity. We will show below how this is related to the dynamics
of consumption and savings by wealthy households. The reduction in households’ total
consumption (panel b) is lower at impact when heterogeneity is high. In comparison, the
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FIGURE S11.—GIRFs, different levels of heterogeneity.

consumption of the expert drops much more (panel c). This is because the expert starts
with higher leverage; thus, his equity drops more (panel f) and he does not issue much
additional debt for a long time (panel e).

Figure S11 also clarifies the connection between changes in microeconomic conditions
with aggregate outcomes. Imagine an economy that, due to technological change or struc-
tural transformation, starts having a more turbulent labor market, with households rotat-
ing in and out of unemployment more often (or suffering, in an alternative interpretation
of z, more changes to their wages while employed). The increased precautionary saving
lowers the risk-free interest rate and increases, on average, leverage. Thus, the economy
becomes more volatile even when the volatility of the aggregate shocks remains constant.

APPENDIX L: CONSUMPTION DECISIONS

Figure S12 documents the heterogeneity of consumption effects. The figure plots the
consumption decision rules for high-productivity households (z = z2) along the asset axis
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FIGURE S12.—Difference in consumption decision rules at different points in time after the shock.

(results for z = z1 are qualitatively similar) when a two-standard-deviations negative cap-
ital shock hits the economy at the HL-SSS (continuous green line). To facilitate interpre-
tation, we plot the difference in the consumption decision rules with respect to the case
without the shock at different points in time: at impact (panel a); after 5 years (panel
b); after 10 years (panel c); and after 20 years (panel d). At impact, all households reduce
their consumption, but poorer households do so by a larger amount, reflecting their lower
income. For instance, richer households (level of assets of 4) reduce their consumption
by around one-third less than poor households (level of assets of 0). The difference in
consumption reduction survives over time. The asymmetry in the consumption response
is much smaller when we have a two-standard-deviations negative capital shock at the
LL-SSS. Since the risk-free interest rate is less persistent in this case, the intertemporal
substitution mechanism is weaker.

The asymmetric consumption responses have a direct impact on how the wealth distri-
bution evolves. To illustrate this point, Figure S13 draws what we call the distributional
impulse response functions, or DIRFs. A DIRF is the natural analog of a GIRF except
that, instead of plotting the evolution of an aggregate variable such as output or wages,
we plot the evolution of the wealth density gt (·). More concretely, Figure S13 plots the
difference between the density before and after the shock, gt (·) − g0(·). Time, in years, is
plotted on the y-axis, assets on the x-axis, and the DIRFs on the z-axis. A positive value of
the DIRF at a given asset level and point in time should be read as the density is higher
at that asset level and point in time than it would have been in the absence of a shock.
A negative value has the opposite interpretation. In the left panel of Figure S13, we plot
the DIRF to a two-standard-deviations negative capital shock when the economy is at
the HL-SSS. In the right panel, we plot the DIRF to a two-standard-deviations negative
capital shock when the economy is at the LL-SSS.
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FIGURE S13.—DIRFs at the HL-SSS and LL-SSS.

In panel (a), we see how households with low assets must draw from their wealth to
smooth consumption (even if consumption still drops) to compensate for lower income.
This mechanism makes the DIRF negative in that region. In comparison, households with
higher assets reduce their consumption to respond to a temporarily higher risk-free rate
and accumulate wealth. Thus, the DIRF is positive in the region of high assets. These
effects are more pronounced in panel (b). In the LL-SSS, poor households have too little
debt to smooth consumption, and wealthy households accumulate much additional debt
as the risk-free interest rate changes.
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