
Econometrica Supplementary Material

SUPPLEMENT TO “PREPARING FOR THE WORST BUT HOPING FOR THE
BEST: ROBUST (BAYESIAN) PERSUASION”

(Econometrica, Vol. 90, No. 5, September 2022, 2017–2051)

PIOTR DWORCZAK
Department of Economics, Northwestern University

ALESSANDRO PAVAN
Department of Economics, Northwestern University

OA.1. PROOFS FOR SECTION 5

OA.1.1. Proof of Lemma 2

PICK ANY TWO STATES ω and ω′ such that ω > ω′ + D and let B = {ω′�ω}. To simplify
the notation, for any λ ∈ [0�1], let v(λ) := V (λδω + (1 − λ)δω′). It is enough to prove
that v′(0) < v(1) − v(0) as this implies that v(λ) is strictly below the payoff from full
disclosure λv(1) + (1 − λ)v(0) for small enough λ > 0. Indeed, this means that V|�B(μ)
is below the full-disclosure payoff V full|�B(μ) for posterior beliefs μ supported on B that
put sufficiently small mass on ω; the conclusion then follows from Corollary 2. For low
enough λ, using the fact that ω > ω′ + D, we have v(λ) = (1 − λ)(

∫ ω′+D

ω′ (p − ω′) dp).
That is, only the low type ω′ trades if the buyer believes the seller’s type to be ω′ with
high probability. We thus have v′(0) = − ∫ ω′+D

ω′ (p − ω′) dp, so that v′(0) − v(1) + v(0) =
− ∫ min{ω+D�1}

ω
(p−ω) dp< 0 by the assumption that max�< 1.

OA.1.2. Proof of Lemma 3

Clearly, 1{Eμ[ω̃|ω̃≤p]+D>p} ≤ 1{Eμ[ω̃]+D>p}. Suppose that the inequality is strict for some p ≥
ωμ: Eμ[ω̃] +D>p but Eμ[ω̃|ω̃ ≤ p] +D ≤ p. This is only possible when p<ωμ, where
ωμ is the maximum of supp(μ). But then

p ≥ Eμ[ω̃|ω̃ ≤ p] +D ≥ωμ +D≥ (ωμ −D) +D =ωμ > p�

a contradiction.

OA.1.3. Proof of Lemma 4

By Lemma 3, we can write

V (μ) =
∑

ω∈supp(μ)

(∫
Eμ[ω̃]+D

ω

(p−ω) dp
)
μ(ω) = 1

2

∑
ω∈supp(μ)

(
Eμ[ω̃] +D−ω

)2
μ(ω)�
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Let B ={ω1� � � � �ωn} with ω1 <ω2 < · · ·<ωn, and let μi = μ(ωi). Then V can be treated
as a function defined on a unit simplex in R

n:

V (μ) = 1
2

n∑
i=1

μi

(
n∑

j=1

μjωj +D−ωi

)2

�

To prove the lemma, it is enough to prove that the function Ṽ defined by Ṽ (μ2� � � � �μn) =
V (1 − μ2 − · · · − μn�μ2� � � � �μn) has a negative semidefinite Hessian. By a direct calcu-
lation, denoting ω−1 = [ω2� � � � �ωn], we obtain that Hessian(Ṽ ) = −(ω−1 −ω1)T · (ω−1 −
ω1), which is a negative semidefinite matrix (of rank 1).

OA.1.4. Proof of Proposition 4

Given any μ ∈ ��, let μ+ := μ(ω> 0) denote the probability that μ assigns to the event
that ω> 0. In this application, the Sender’s conjecture is that the Receivers do not have
any exogenous information other than the one contained in the prior μ0. Furthermore, for
any common posterior μ, all agents attack if μ+ <α, and refrain from attacking if μ+ ≥ α,
where α := g/(g +|b|), implying that V̂ (μ) = 0 if μ+ <α and V̂ (μ) = 1 if μ+ ≥ α.

Let μ+
0 < α, as assumed in the main text. The following policy is then a Bayesian solu-

tion. The Sender randomizes over two announcements, s = 0 and s = 1. She announces
s = 0 with certainty when ω > 0, and with probability (1 − φBP) ∈ (0�1) when ω ≤ 0,
with φBP satisfying P(ω > 0|s = 0) = μ+

0 /[μ+
0 + (1 − μ+

0 )(1 − φBP)] = α. To see that this
is a Bayesian solution, first note that, without loss of optimality, the Sender can confine
attention to policies with two signal realizations, s = 0 and s = 1, such that, when s = 0
is announced, P(ω > 0|s = 0) ≥ α and all agents refrain from attacking, whereas when
s = 1 is announced, P(ω > 0|s = 1) < α and all agents attack.1 Next, note that, starting
from any binary policy announcing s = 1 with positive probability over a positive mea-
sure subset of R+, one can construct another binary policy that announces s = 0 (thus
inducing all agents to refrain from attacking) with a higher ex ante probability, contra-
dicting the optimality of the original policy. Hence, any binary Bayesian solution must
announce s = 0 with certainty for all ω > 0. Furthermore, under any Bayesian solution,
the ex ante probability

∑
ω∈�:ω<0 π(0|ω)μ0(ω) is uniquely pinned down by the condition

P(ω > 0|s = 0) = μ+
0 /[μ+

0 + ∑
ω∈�:ω<0 π(0|ω)μ0(ω)] = α. Because the Sender’s prefer-

ences depend only on 1 − A, the specific way the policy announces s = 0 when ω < 0
is irrelevant, thus implying that the binary policy described above is indeed a Bayesian
solution. By the same token, the above binary policy is payoff-equivalent to one that an-
nounces s = 0 with certainty when ω > 0, whereas when ω < 0, it fully reveals the state
with probability φBP, and announces s = 0 with the complementary probability. The signal
realization s = 0 can then be interpreted as the decision not to disclose any information
(equivalently, as the “null signal”s = ∅), as claimed in the proposition.

To see that the above Bayesian policy is not robust, let μ(0�1] := μ(ω ∈ (0�1]) denote
the probability that μ assigns to the interval (0�1]. Recall that, given any posterior μ, if
μ+ := μ(ω > 0) < α, the unique rationalizable action is to attack. If μ+ ∈ [α�α + μ(0�1]],

1The arguments for this result are the usual ones. Starting from any policy with more than two signal real-
izations, one can pool into s = 0 all signal realizations leading to a posterior assigning probability at least α to
the event that ω> 0 and into s = 1 all signal realizations leading to a posterior assigning probability less than
α to ω> 0. The binary policy so constructed is payoff-equivalent to the original one.
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both attacking and not attacking are rationalizable. Finally, if μ+ > α+μ(0�1], the unique
rationalizable action is to refrain from attacking. Hence, under the most adversarial se-
lection, V (μ) = 0 if μ+ ≤ α + μ(0�1], and V (μ) = 1 if μ+ > α + μ(0�1]. Next, observe that
worst-case optimality requires that all states ω > 1 be separated from all states ω ≤ 1.
Indeed, V full(μ) = μ(ω> 1) = μ+ −μ(0�1] and, given any common posterior μ induced by
the Sender, Nature always minimizes the Sender’s payoff by using a signal that discloses
the same information to all agents. Arguments similar to those in the judge’s example in
Section 3 imply that any worst-case optimal distribution (and hence any robust solution)
must separate states ω> 1 from states ω ≤ 1.

Because the above restriction is the only one imposed by worst-case optimality, on the
restricted domain �̄ :={ω ∈� : ω ≤ 1}, any robust solution must coincide with a Bayesian
solution. Let φRS ∈ (0�1) be implicitly defined by μ

(0�1]
0 /[μ(0�1]

0 + (1 − μ+
0 )(1 − φRS)] = α.

Arguments similar to the ones above then imply that the following policy is a Bayesian
solution on the restricted domain. When ω ∈ (0�1], the Sender announces s = 0 with
certainty. When, instead, ω ≤ 0, with probability φRS >φBP, the Sender fully reveals the
state, and with the complementary probability 1 − φRS, announces s = 0. Lastly, observe
that, given any posterior μ with supp(μ) ⊂ (1�∞), the unique rationalizable profile fea-
tures all agents refraining from attacking. This means that, once the Sender fully separates
the states ω ≤ 1 from the states ω> 1, she may as well fully reveal the state when the latter
is strictly above 1.

Combining all the arguments above together, we then have that the following policy is
a robust solution. When ω ≤ 0, with probability φRS ∈ (0�1), the Sender fully reveals the
state, whereas, with the complementary probability 1 −φRS, she announces s = ∅. When
ω ∈ (0�1], the Sender announces s = ∅ with certainty. Finally, when ω > 1, the Sender
fully reveals the state, as claimed in the proposition.

OA.2. AUXILIARY RESULTS FOR SECTION 6

OA.2.1. Relaxing the Regularity Assumption in Theorem 2

In this Appendix, we examine the consequences of relaxing the regularity condition in
Theorem 2. One direction of Theorem 2 continues to hold in a slightly weaker form.

THEOREM OA.1: If λn ↗ 1, and ρn ∈ S(λn) converges to ρ in the weak∗ topology as n →
∞, then ρ is a robust solution.

PROOF: Take ρn as in the statement of the theorem. By optimality of ρn, the value of the
Sender’s objective (with weight λn) cannot be increased strictly by switching to a robust
solution. That is,∫

��

[
(1 − λn)V̂ (μ) + λn V̂ (μ)

]
dρn(μ) ≥ (1 − λn) co(V̂F)(μ0) + λnV full(μ0)�

Lemma 6 and the above inequality jointly imply that there exists δ > 0 such that∫
��

V̂ (μ) dρn(μ) − co(V̂F)(μ0) ≥ λn

1 − λn

· δ ·
∫
�c
F�

d(μ��F�) dρn(μ)� (OA.1)



4 P. DWORCZAK AND A. PAVAN

Because the left-hand side of the above inequality is bounded, and λn/(1 − λn) diverges
to infinity, we must have that ∫

�c
F�

d(μ��F�) dρn(μ) → 0�

The function d(μ��F�) is continuous and bounded. By definition of convergence in the
weak∗ topology, we have ∫

�c
F�

d(μ��F�) dρ(μ) = 0�

Because the integrand is strictly positive, we must have that supp(ρ) ⊆ �F�, and thus ρ
is worst-case optimal.

Since the right-hand side of inequality (OA.1) is nonnegative, we have that

co(V̂F)(μ0) ≤ lim sup
n

∫
��

V̂ (μ) dρn(μ) ≤
∫
��

V̂ (μ) dρ(μ) ≤ co(V̂F)(μ0)�

where the second inequality comes from upper semicontinuity of V̂ , and the last in-
equality follows from the fact that ρ is worst-case optimal, together with the fact that
co(V̂F)(μ0) is the upper bound on the conjectured payoff that a worst-case optimal distri-
bution can yield. This, however, means that

∫
��

V̂ (μ) dρ(μ) = co(V̂F)(μ0), and thus ρ is
a robust solution, by Corollary 7. Q.E.D.

Next, we show that, without the regularity condition (Definition 4), there exist robust
solutions that cannot be approximated by λ-solutions.

EXAMPLE OA.1: Let � ={1�2�3}, and μ0 = (1/3�1/3�1/3). Let V be equal to 0 every-
where except at μ= μ0 where V (μ0) = −1. Let V̂ be such that

V̂ (1�0�0) = V̂ (0�1�0) = V̂ (0�0�1) = V̂ (1/2�1/2�0) = V̂ (1/2�0�1/2) = 0�

and

V̂ (1 − 2x�x�x) = √
x� ∀x ≤ 1/3�

and V̂ (μ) = −1 anywhere else. Notice that V̂ violates regularity because along the line
segment (1 − 2x�x�x), as x → 0, V̂ decreases at an infinite rate to 0, while V̂ (μ) ≤ 0 for
all μ that do not have full support.

By definition of V , and Proposition 1, any worst-case optimal solution puts no mass on
beliefs with full-support. Thus, a robust solution is any Bayes-plausible convex combina-
tion of beliefs μ at which V̂ (μ) = 0. However, we will show that in the limit as λ ↗ 1, all
λ-solutions must put positive (bounded away from zero) mass on the belief μ = (1�0�0).
Therefore, the distribution ρRS that puts mass 1/3 on μ = (1/2�1/2�0), mass 1/3 on
μ = (1/2�0�1/2), mass 1/6 on μ = (0�1�0), and mass 1/6 on μ = (0�0�1) is a robust
solution but is not a limit of λ-solutions.

Note first that V̂ (μ) := lco(V )(μ) = −3 minω μ(ω). Consider a distribution ρ that at-
taches weight m (potentially m = 0) to beliefs of the form (1 − 2x�x�x) for x ∈ (0�1/3].
Because the objective function V̂λ(μ) := λ V̂ (μ) + (1 − λ)V̂ (μ) is strictly concave on that
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line segment, a λ-solution attaches the entire weight m to a single x. For a fixed λ, the
optimal choice of x is

x =
(

1 − λ

6λ

)2

�

The remaining mass 1−m must be distributed over the beliefs (1�0�0), (0�1�0), (0�0�1),
(1/2�1/2�0), and (1/2�0�1/2), with weights satisfying the Bayes-plausibility constraint.
Because the Sender’s payoff is equal to 0 on any such belief, a λ-solution is characterized
by the level of m that maximizes

(1 −m)[0] +m
[−3λx + (1 − λ)

√
x

] = m
(1 − λ)2

12λ

subject to the Bayes-plausbility constraint. Because the above function is increasing in m,
any λ-solution, for λ < 1, attaches probability m to the belief (1 − 2x�x�x), where
m ≥ 1/3 is the largest value of m consistent with Bayes plausibility. Next observe that
(1 − 2x�x�x) converges to (1�0�0) as λ ↗ 1. Hence, all limits of λ-solutions put at
least 1/3 mass on (1�0�0), which is what we wanted to prove.

OA.2.2. Example Showing That Bayesian Solutions Can Be Dominated

In this subsection, we construct an example showing that a Bayesian solution can be
dominated even under the assumption made in case (b) of Theorem 3.

Consider the following conjecture V̂ (equal to V ) defined over the set [0�1] of posteri-
ors over a binary state, with prior μ0 = 1/2: V̂ (μ) = (|μ− 1

2|− 1
4 )2. That is, V̂ (μ) ≤ 1/16

and V̂ (μ) = 1/16 exactly at μ ∈ {0�1/2�1}. Then let V = co(V̂ ), and V̂ = lco(V̂ ) in Defi-
nition 5 of dominance.

No disclosure is a Bayesian solution, yielding a payoff of 1/16. However, no disclosure is
dominated by full disclosure: Full disclosure yields 1/16 always, that is, regardless of what
Nature does. On the other hand, there are signals for Nature (corresponding to some
selection of the function V ) under which no disclosure by the Sender generates strictly
less than 1/16; for example, Nature can induce the beliefs 1/4 and 3/4 with probability
1/2 each, yielding a zero payoff for the Sender.

It is instructive to see which step of the proof of Theorem 3(b) fails for Bayesian solu-
tions: In case (a) of that proof, we relied on Lemma 1 to argue that for a robust solution
ρ,

∫
V̂ (μ) dρ(μ) = V full(μ0), which is a property equivalent to worst-case optimality. This

is not true for no disclosure in the above example, because no disclosure is a Bayesian
solution that is not worst-case optimal.

OA.3. SIMULTANEOUS-MOVE-ROBUST SOLUTIONS

In our baseline model, we did not impose any restrictions on the signal chosen by Na-
ture. In particular, Nature’s choice of the signal could depend on the Sender’s signal
realization. In this Appendix, we study a solution concept under which Nature chooses
a signal simultaneously with the Sender. The assumption might be appropriate for set-
tings in which Nature’s move reflects the Sender’s ambiguity over the information the
Receivers possess prior to receiving the Sender’s information, and acquiring additional
information after receiving the Sender’s information is too costly or otherwise infeasible
for the Receivers.
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To simplify exposition, we work with the baseline model of Section 2, except that we
allow for general conjectures. Unless specified otherwise, we maintain all the assumptions
imposed in the main text.

The Sender continues to choose an information structure q : � → �S� which maps
states ω into probability distributions of signal realizations s ∈ S , but we do not assume
that S is finite (this would be with loss of generality). We also modify Nature’s strategy
space: Nature selects a signal π : � → �R that is independent of the Sender’s signal
conditional on the state, with a signal space R that is potentially infinite. Let �CI be the
set of signals available to Nature, where “CI” stands for “conditionally independent.”2

The base-case payoff v̂(q) obtained when the Sender selects a signal q is computed
under the conjecture that Nature selects some fixed (conditionally independent) signal
π0 :� → �R:

v̂(q) :=
∑
ω∈�

∫
S

∫
R

(∫
A

v(a�ω) dξ0

(
a|μs�r

0

))
dπ0(r|ω) dq(s|ω)μ0(ω)�

where ξ0 is the conjectured tie-breaking rule, with ξ0(A(μ)|μ) = 1 for all μ.3 We can
similarly define V̂ as in formula (4.1) in Section 4, except that the conjecture about Nature
is that it uses a signal π0 ∈ �CI (π0 is not a function of the posterior belief generated by
the Sender). Throughout, we assume that V̂ is upper semicontinuous.

Let

v(q�π) :=
∑
ω∈�

∫
S

∫
R
V

(
μs�r

0

)
dπ(r|ω) dq(s|ω)μ0(ω)�

denote the Sender’s payoff from choosing q when Nature chooses π, under the adversar-
ial selection V (defined as in the main text). We define two notions of worst-case optimal-
ity, corresponding to cases 2 and 3 introduced in Section 6.3.

DEFINITION OA.1: A signal q ∈ Q is CI-worst-case optimal if it maximizes the worst-
case payoff:

q ∈ argmax
q′∈Q

{
inf

π∈�CI
v
(
q′�π

)}
�

DEFINITION OA.2: A signal q ∈ Q is SM-worst-case optimal if it is part of a Bayes-Nash
equilibrium of a simultaneous-move game against Nature: There exists π ∈ �CI such that

q ∈ argmax
q′∈Q

v
(
q′�π

)
�

π ∈ argmin
π′∈�CI

v
(
q�π ′)�

CI-worst-case optimality captures the idea that Nature can best respond to the Sender’s
choice of a signal but cannot condition on the Sender’s signal realization. SM-worst-case
optimality corresponds to a simultaneous-move game, in which Nature does not observe
the Sender’s choice of a signal. As foreshadowed in Section 6.3, we can prove that these
two definitions are equivalent in our problem.

2We assume that R and S are subsets of some sufficiently rich but fixed space.
3We continue to denote by A(μ) := argmaxa∈A

∑
� u(a�ω)μ(ω) the set of actions that maximize the Re-

ceiver’s expected payoff when her posterior belief is μ.
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LEMMA OA.1: The following statements are equivalent:
1. q is CI-worst-case optimal;
2. q is SM-worst-case optimal;
3. q generates the full-disclosure payoff in the worst-case scenario:

inf
π∈�CI

v(q�π) = V full(μ0)�

PROOF: (1) =⇒ (2). Suppose that q ∈ argmaxq′∈Q{infπ∈�CI v(q′�π)}. We argue that
(q�πfull) is a Bayes–Nash equilibrium of the simultaneous-move game between Nature
and the Sender, where πfull is the full-disclosure signal. Optimality of q for the Sender is
trivial since any policy q′ leads to the full-disclosure payoff V full(μ0) against πfull. Opti-
mality of πfull for Nature follows from the fact that q maximizes infπ∈�CI v(q′�π) over all
q′ ∈Q, which implies that, given q, Nature cannot bring the Sender’s payoff below V full.

4

(2) =⇒ (3). Suppose that (q�π) is a Bayes–Nash equilibrium of the simultaneous-
move game between Nature and the Sender. Since the Sender can always fully disclose the
state, we have that v(q�π) ≥ V full(μ0); but since Nature can also choose to fully disclose
the state, we have that v(q�π) ≤ V full(μ0). It follows that minπ∈�CI v(q�π) = V full(μ0),
which gives us (3).

(3) =⇒ (1). Because infπ∈�CI v(q′�π) ≤ V full(μ0) for all q′ ∈ Q, (3) implies that q max-
imizes infπ∈�CI v(q′�π), and hence q is CI-worst-case optimal. Q.E.D.

Lemma OA.1 has the flavor of the minimax theorem, with the full-disclosure payoff
playing the role of the value of the zero-sum game between the Sender and Nature.
Our minimax theorem does not require any continuity assumptions because full disclo-
sure can always be obtained by either player, regardless of the sequence of moves. Given
Lemma OA.1, we can use any of the three equivalent definitions of worst-case optimality.
The lemma reveals that the key difference to the baseline case is that Nature must select
a signal that is conditionally independent of the Sender’s signal; the sequence of moves is
not important.

We let WSM denote the set of SM-worst-case optimal signals. Then we define a SM-
robust solution analogously to Definition 2: A signal q is a SM-robust solution if it maxi-
mizes v̂(q) over WSM.

OA.3.1. Summary of Results

We start by summarizing the relationship between robust and SM-robust solutions. The
summary serves as a road map for the next subsections where the results foreshadowed
here are formally developed.

Characterizing SM-robust solutions turns out to be significantly more complicated than
characterizing robust solutions. In particular, the restrictions imposed by SM-worst-case
optimality do not take the tractable form described in Theorem 1. Therefore, the results
that we obtain for this case are more limited in scope:

• Corollary 1 fails for SM-robust solutions, that is, a SM-robust solution may fail to
exist. We show in Section OA.3.3 (Theorem OA.2) that a SM-robust solution exists
under a stronger assumption of continuity of V . Moreover, we introduce a notion of
weak SM-robust solutions (that relaxes the condition of SM-worst-case optimality),
and show that a weak SM-robust solution exists under no further assumptions on V .

4Else, the Sender could improve upon q by fully disclosing the state, making Nature’s move irrelevant, which
contradicts the assumption that q ∈ argmaxq′∈Q{infπ∈�CI v(q′�π)}.
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• In Section OA.3.5, we provide a sufficient condition (Theorem OA.3) for state sep-
aration under a SM-robust solution. This condition is weaker than the one in Corol-
lary 2; that is, whenever two states must be separated under a SM-robust solution,
they also must be separated under a robust solution.

• Corollary 4 does not extend to SM-robust solutions because we do not have a char-
acterization similar to the one in Theorem 1. In Section OA.3.2 and Section OA.3.5,
we obtain various (weaker) sufficient conditions for either full-disclosure to be the
unique SM-robust solution, or for all distributions to be SM-worst-case optimal.

• In Section OA.3.4, we analyze the binary-state case. Unlike robust solutions, as de-
scribed by Corollary 3, SM-robust solutions for binary-state problems may coincide
with neither Bayesian solutions nor full disclosure. However, we give sufficient condi-
tions for Bayesian solutions and full disclosure, respectively, to constitute SM-robust
solutions.

• In Section OA.3.6, we show that Corollary 5 and Corollary 6 fail for SM-robust solu-
tions. That is, it is possible that a Bayesian solution is strictly more informative than
all SM-robust solutions.

• Corollaries 7 and 8 also fail: In fact, a SM-robust solution may require infinitely many
signal realizations even when the state space is finite.

OA.3.2. Preliminary Observations

We first make a couple of observations to simplify the problem of finding a SM-robust
solution.

LEMMA OA.2: The set of SM-robust solutions when the signal space used by Nature is
equal to � is the same as when it is equal to R, for any R⊃�.

PROOF: Observe that, for any π :� → �R,

v(q�π) =
∑
ω∈�

∫
R

∫
S
V

(
μs�r

0

)
dπ(r|ω) dq(s|ω)μ0(ω)

=
∫
R

(∑
ω∈�

[∫
S
V

(
μs�r

0

)
dq(s|ω)

]
μr

0(ω)
)

︸ ︷︷ ︸
V q (μr

0)

(∑
ω∈�

dπ(r|ω)μ0(ω)
)
�

where

V q(μ) :=
∑
ω∈�

[∫
S
V

(
μs

)
dq(s|ω)

]
μ(ω)�

Therefore,

v(q�π) =
∫
R
V q

(
μr

0

)
d�μ0�π(r)�

where �μ0�π ∈ �R denotes the unconditional distribution over R induced by μ0 and π.
From this observation, it is easy to see that, without loss of generality, we can assume
that Nature chooses a distribution ν ∈ ��� over posterior beliefs over �, subject to
Bayes plausibility. In particular, to minimize the Sender’s payoff, Nature solves the follow-
ing problem: infν∈���

∫
V q(μ) dν(μ) subject to Bayes-plausibility

∫
μdν(μ) = μ0. When
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V (μ) is lower semicontinuous, so is V q(μ), for any q. Formally, for any sequence {μn} of
posterior beliefs over � converging to μ ∈ ��, we have that

lim inf
n

V q(μn) = lim inf
n

∑
�

[∫
S
V

(
μs

n

)
dq(s|ω)

]
μn(ω)

= lim inf
n

{∑
�

[∫
S
V

(
μs

n

)
dq(s|ω)

]
μ(ω)

+
∑
�

[∫
S
V

(
μs

n

)
dq(s|ω)

][
μn(ω) −μ(ω)

]}

≥
∑
�

[∫
S

lim inf
n

V
(
μs

n

)
dq(s|ω)

]
μ(ω)

+ lim inf
n

∑
�

[∫
S
V

(
μs

n

)
dq(s|ω)

][
μn(ω) −μ(ω)

]
≥

∑
�

[∫
S
V

(
μs

)
dq(s|ω)

]
μ(ω) − ‖V ‖∞ · lim inf

n

∑
�

∣∣μn(ω) −μ(ω)
∣∣

=
∑
�

[∫
S
V

(
μs

)
dq(s|ω)

]
μ(ω) = V q(μ)�

where the first inequality follows from Fatou’s lemma, whereas the second inequality fol-
lows from the fact that V is bounded, along with the continuity of posterior beliefs in the
prior.

Therefore, Nature’s problem has a solution. Furthermore, minimizing the Sender’s pay-
off requires at most |�| signals (by the same argument as in Kamenica and Gentzkow
(2011)). Thus, it is without loss of generality to set R = � to characterize SM-worst-case
optimal signals. Q.E.D.

From now on, we assume that R = � (unless stated otherwise) and abuse notation
slightly by letting π(r|ω) denote the probability Nature sends signal r in state ω (using
the fact that the signal space is finite).

We apply a similar transformation to the Sender’s problem next. By the law of total
probability, ∑

ω�r∈�

∫
S
V

(
μs�r

0

)
π(r|ω) dq(s|ω)μ0(ω)

=
∫
S

( ∑
ω�r∈�

V
(
μs�r

0

)
π(r|ω)μs

0(ω)
)

︸ ︷︷ ︸
V π (μs

0)

(∑
ω∈�

dq(s|ω)μ0(ω)
)
�

where

V π (μ) :=
∑
ω�r∈�

V
(
μr

)
π(r|ω)μ(ω)�
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and hence ∑
ω�r∈�

∫
S
V

(
μs�r

0

)
π(r|ω) dq(s|ω)μ0(ω) =

∫
S
V π

(
μs

)
dQμ0�q(s)�

where Qμ0�q ∈ �S is the unconditional distribution over S induced by μ0 and q. Therefore,
the problem of finding a SM-robust solution is equivalent to the problem of finding a
Bayes-plausible ρ ∈ ��� that maximizes

∫
V̂ (μ) dρ(μ) among all SM-worst-case optimal

distributions. By an argument analogous to the one used to prove Lemma 1, SM-worst-
case optimality is equivalent to

inf
π:�→�R

∫
V π (μ) dρ(μ) = V full(μ0)� (SM-WC)

As before, we will abuse terminology slightly by calling ρ a SM-robust solution. We also
introduce the set WSM of worst-case optimal distributions of posterior beliefs (induced by
the set WSM of worst-case optimal signals).

Condition (SM-WC), contrasted with condition (WC) from Lemma 1, highlights the
difference between worst-case optimality and SM-worst-case optimality. In Lemma 1,
the infimum operator (embedded in the definition of V̂ ) is inside the integral, that is,
the infimum over Nature’s signals is computed posterior by posterior. For SM-worst-case
optimality, instead, the infimum operator is outside the integral because Nature cannot
respond differently to each realized posterior induced by the Sender’s signal.

OA.3.3. Existence

Unlike in the baseline model, without additional restrictions on V , existence of a SM-
robust solution cannot be guaranteed. Example OA.2 illustrates the difficulty.

EXAMPLE OA.2—Nonexistence of SM-robust solutions: Suppose the state ω is binary,
� = {0�1}, �� = [0�1], μ ∈ [0�1] is the probability that ω = 1, and μ0 = 1/2. Define the
correspondence

V (μ) :=

⎧⎪⎨⎪⎩
{2μ} μ< 1/2�
[−1�1] μ = 1/2�
{2 − 2μ} μ> 1/2�

and let V̂ and V be, respectively, the pointwise highest and lowest selection from the cor-
respondence V . Then V̂ is continuous, whereas V has a discontinuity at μ = 1/2. A dis-
tribution ρ is SM-worst-case optimal if and only if it guarantees the Sender a payoff of
0 (this is the payoff from full disclosure of the binary state). Any Bayes-plausible con-
tinuous distribution of posterior beliefs (e.g., ρ ∈ ��� that is uniform on [0�1]) yields a
payoff guarantee of 0 because Nature cannot induce a posterior belief of 1/2 with posi-
tive probability. This conclusion relies crucially on the assumption that Nature’s signal is
conditionally independent of the Sender’s signal.

To see why a SM-robust solution does not exist, note that the set WSM is not closed. For
example, consider any sequence of Bayes-plausible distributions of posterior beliefs such
that (i) each distribution in the sequence is atomless, and (ii) the sequence converges (in
the weak topology) to a Dirac delta at 1/2 (induced by the uninformative signal). Then
each distribution in the sequence belongs to WSM but the limit does not. Moreover, the
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sequence yields expected base-case payoffs that converge to the upper bound of 1. The
supremum of 1 cannot be achieved by any SM-worst-case optimal distribution because
the only candidate—a Dirac delta at 1/2—is not SM-worst-case optimal.

Note that a Dirac delta at 1/2 (which corresponds to no disclosure) can be approxi-
mated by a sequence of distributions that are SM-worst-case optimal.

The observations in the example above motivate a weaker definition of robustness for
which existence is guaranteed.

DEFINITION OA.3: A Bayes-plausible distribution of posterior beliefs ρ ∈ ��� is a
weak SM-robust solution if it maximizes

∫
V̂ (μ) dρ(μ) over cl(WSM), where cl(WSM) de-

notes the closure (in the weak∗ topology) of the set of SM-worst-case optimal distributions
of posterior beliefs.

A weak solution thus relaxes the requirement that the distribution ρ is SM-worst-case
optimal. Instead, it requires that it can be approximated by distributions that are SM-
worst-case optimal. We establish the following existence result.

THEOREM OA.2: A weak SM-robust solution exists. If V is continuous, then a SM-robust
solution also exists.

PROOF: Define

v(ρ) := inf
π:�→�R

∫
V π(μ) dρ(μ)

as the SM-worst-case value for the Sender when she chooses the distribution ρ. We will
prove that this function is continuous in ρ when V is continuous. Throughout, we use the
weak toplogy on the space of distributions.

First, by a result in Kamenica and Gentzkow (2011), for any Bayes-plausible distribu-
tion of posterior beliefs ρ ∈ ��� there exists a signal qρ :� → �S that induces this distri-
bution (the subsequent results do not depend on which particular qρ we select). From the
proof of Lemma OA.2, we then have that v(ρ) is equal to the value of the following min-
imization problem by Nature: infν∈���

∫
V qρ

(μ) dν(μ) subject to
∫
μdν(μ) = μ0, where,

for any signal q, V q is defined as in the proof of Lemma OA.2.
Second, note that, under the assumption that V is continuous,

∫
V qρ

(μ) dν(μ) is con-
tinuous in (ν�ρ) (this amounts to saying that, under a continuous objective function, the
payoff from any pair of signals is continuous in their distribution).

Third, because the set of distributions ν ∈ ��� satisfying the Bayes plausibility con-
straint

∫
μdν(μ) = μ0 is compact, and because the objective function V is continuous, it

follows from Berge’s theorem of maximum that the value function v(ρ) is continuous in
ρ. Hence, the problem of finding a distribution ρ ∈ ��� that maximizes v(ρ) over the set
of Bayes-plausible distributions has a solution, and the set of solutions, WSM, is nonempty
and compact.

When, instead, V is not continuous, what remains true is that the set cl(WSM) is
nonempty (because full disclosure belongs to it, by Lemma OA.1) and compact because
it is a closed subset of a compact space (the space of all Bayes-plausible distributions).

We can now complete the proof of both parts of Theorem OA.2 with a single argument
by observing that in the case when V is continuous, we have WSM = cl(WSM). Thus, the
problem of finding a (weak) SM-robust solution is equivalent to the problem of finding a
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distribution ρ ∈ ��� that maximizes
∫
V̂ (μ) dρ(μ) over cl(WSM). Because the objective

function is upper semicontinuous in ρ (this follows from the fact that, by assumption, V̂
is upper semicontinuous), and the domain cl(WSM) is compact, a solution to the above
problem exists, thus establishing existence of (weak) SM-robust solutions. Q.E.D.

When Nature can send arbitrary signals, including signals that are correlated with the
Sender’s signal, existence of robust solutions does not require the additional assumption
that V is continuous (see Corollary 1 in the main text). This is because, in that case,
given any induced posterior μ, adversarial Nature always brings the conditional expected
payoff of the Sender down to lco(V )(μ)—the lower convex closure of V evaluated at μ.
The lower convex closure is a convex function, and convex functions are continuous on the
interior of the domain. This guarantees that the set W of worst-case optimal distributions
is closed, while, in general, the set of SM-worst-case optimal distributions WSM need not
be closed.

OA.3.4. SM-Robustness for the Binary State

In this subsection, we consider the case of a binary �. Unlike in the baseline model,
considering this case first is useful because our general characterization of state separa-
tion in the next subsection relies on the analysis of the binary case. Let � = {0�1}, and,
with a slight abuse of notation, let V (μ) denote the payoff to the Sender when the poste-
rior belief μ puts probability μ on state 1. Let s := V (1) − V (0) denote the slope of the
(affine) function describing the full-disclosure payoff.

PROPOSITION OA.1: If either (i) V is right-differentiable at 0 and V ′(0) < s, or (ii) V is
left-differentiable at 1 and V ′(1) > s, then full disclosure is the unique SM-robust solution.

PROOF: We only prove the result for case (i)—the proof for case (ii) is analogous. We
do so by showing that full disclosure is the unique signal that is SM-worst-case optimal.
Without loss of generality, normalize V (0) = 0 so that s = V (1). Full disclosure yields
the payoff of μ0V (1) regardless of what Nature does. We will prove that the only way
to guarantee a payoff of μ0V (1) is to disclose all information. To show this, it suffices to
show that for all Bayes-plausible ρ ∈ ��� with support other than {0�1} (where μ = 0
and μ = 1 are the two Dirac distributions assigning measure one to ω = 0 and ω = 1,
resp.), there exists a (binary) signal π for Nature such that the Sender’s payoff given ρ
and π is strictly below μ0V (1).

Let π be the binary signal given by π(1|1) = π̄, π(0|1) = 1 − π̄, and π(0|0) = 1, where
π̄ ∈ [0�1]. Under this signal, given any posterior belief μ induced by the Sender, Nature
splits μ into p= 1 with probability μπ̄, and p = (1−π̄)μ

1−μπ̄
with probability 1−μπ̄. Let Uρ(π̄)

denote the conditional expected payoff to the Sender when the latter chooses the distri-
bution ρ ∈ ��� and Nature chooses the signal π with parameter π̄:

Uρ(π̄) =
∫ 1

0

[
μπ̄V (1) + (1 −μπ̄)V

(
(1 − π̄)μ
1 −μπ̄

)]
dρ(μ)

= μ0π̄V (1) +
∫ 1

0
(1 −μπ̄)V

(
(1 − π̄)μ
1 −μπ̄

)
dρ(μ)�

In particular, we have that Uρ(1) = μ0V (1) because π̄ = 1 corresponds to a signal by
Nature that fully discloses the state. Let U ′

ρ(1) denote the left derivative of Uρ(π̄) with
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respect to π̄, evaluated at π̄ = 1. Absuing notation slightly, let ρ(1) denote the probability
mass that ρ puts on the belief μ = 1. We then have that

U ′
ρ(1) = lim

ε→0

Uρ(1) −Uρ(1 − ε)
ε

= μ0V (1) − lim
ε→0

∫ 1

0

(
1 −μ(1 − ε)

)
V

(
εμ

1 −μ(1 − ε)

)
dρ(μ)

ε

(1)= μ0V (1) −
∫

[0�1)

(
lim
ε→0

V

(
εμ

1 −μ(1 − ε)

)
εμ

1 −μ(1 − ε)

μ−μ2 +μ2ε

1 −μ+με

)
dρ(μ) − V (1)ρ(1)

= μ0V (1) − V ′(0)
[
μ0 − ρ(1)

] − V (1)ρ(1)

= [
μ0 − ρ(1)

][
s − V ′(0)

]
> 0� (OA.2)

as long as μ0 > ρ(1)—which is true except when ρ is full disclosure. In step (1) above,
we have used the Lebesgue dominated convergence theorem (using the fact that V is
bounded, and has a right derivative at μ = 0). The reason why we separated the integral
over [0�1] into an integral over [0�1) and its value at 1 is that, for all μ< 1, we have that
limε→0

εμ

1−μ(1−ε) = 0, but for μ = 1, εμ

1−μ(1−ε) = 1.
Summarizing, unless ρ = ρfull, where ρfull denotes the distribution induced by full dis-

closure, we have U ′
ρ(1) > 0, and hence μ0V (1) = Uρ(1) >Uρ(1 − ε) for small enough ε.

This means that, when ρ �= ρfull, Nature can bring the Sender’s payoff strictly below the
full-disclosure payoff V full(μ0) by selecting a binary signal π that is almost fully revealing.
Therefore, full disclosure is the unique SM-worst-case optimal distribution, and hence
the unique SM-robust solution. Q.E.D.

The judge example of Kamenica and Gentzkow (2011) satisfies assumption (i) of
Proposition OA.1 because the derivative of V at 0 is 0, while the slope s = V (1) − V (0) is
strictly positive. Therefore, the unique SM-robust solution is full disclosure of the state.

The proof of Proposition OA.1 shows that, through an appropriate binary signal, Na-
ture can decompose any nondegenerate posterior belief μ induced by the Sender into a
Dirac delta at ω = 1 and a posterior arbitrarily close to a Dirac at ω = 0. The condition
s > V ′(0) implies that any posterior belief close to (but different from) a Dirac at ω = 0
gives the Sender a payoff strictly less that a Dirac at ω = 0. In turn, this implies that,
unless the Sender fully reveals the state herself, Nature can bring the Sender’s expected
payoff strictly below the full-disclosure payoff. In such cases, full disclosure is the unique
SM-robust solution.

Loosely speaking, the Sender fully reveals the state not because she is worried that,
else, Nature will do it, but because she is worried that Nature will almost fully reveal the
state. Under the conditions in Proposition OA.1, almost full revelation is strictly worse
than full revelation.

The above intuition can also be used to compare SM-worst-case optimality to worst-
case optimality (and hence SM-robustness to robustness). As explained in the main text,
a sufficient condition for full disclosure to be the unique robust solution is that the payoff
V (μ) lies below the full-disclosure payoff (1 − μ)V (0) + μV (1) at some interior μ̂. A
sufficient condition for full disclosure to be the unique SM-robust solution is that V (μ)
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is below the full-disclosure payoff (1 −μ)V (0) +μV (1) for μ sufficiently close to one of
the two bounds, μ = 0 or μ = 1. When Nature can condition her disclosure on the real-
ization of the Sender’s signal (equivalently, on the posterior μ induced by the Sender),
for any interior μ, Nature can induce the “final” posterior belief μ̂ with positive proba-
bility, without restricting its own ability to influence the Receivers’ beliefs conditional on
other realizations of the Sender’s signal. In contrast, when Nature’s signal is conditionally
independent, and Nature chooses to induce the posterior belief μ̂ with positive proba-
bility conditional on the Sender inducing μ, it can no longer independently choose what
posterior beliefs the Receivers will have conditional on other realizations of the Sender’s
signal. In particular, even if Nature’s signal realization shifts μ to a μ̂ that yields a low
payoff to the Sender, the same signal realization could shift some other η induced by the
Sender to a η̂ that has a high payoff to the Sender. In short, Nature cannot target the
same posterior belief μ̂ regardless of the realization of the Sender’s signal.

There is an important exception though: By “almost” fully disclosing the state, Nature
can ensure that, no matter the posterior belief induced by the Sender, the final posterior is
in an arbitrary small neighborhood of a Dirac belief δω, with a probability arbitrarily close
to 1 conditional on ω (effectively, in this case, although Nature cannot perfectly target a
particular μ̂, it can target an arbitrarily small set of beliefs around μ̂). If the Sender’s
payoff V (μ) is below the full-disclosure payoff for μ in a neighborhood of δω, Nature
can exploit any discretion left by the Sender to push the Sender’s payoff strictly below
V full. This is what makes the neighborhoods of Dirac measures special in the analysis of
SM-worst-case optimality.

As a partial converse to Proposition OA.1, we have the following result.

PROPOSITION OA.2: If V (μ) ≥ V full(μ) for all μ, then all Bayes-plausible distributions
ρ ∈ ��� are SM-worst-case optimal. In this case, a distribution ρ ∈ ��� is a SM-robust
solution if and only if it is a Bayesian solution.

PROOF: By Proposition 1 in the main text, all Bayes-plausible distributions are worst-
case optimal under the assumptions of Proposition OA.2; hence they are also SM-worst-
case optimal. For ρ ∈ ��� to be a SM-robust solution, ρ must maximize V̂ over the entire
set of Bayes-plausible distributions, which means that ρ must be a Bayesian solution.
Likewise, if ρ is a Bayesian solution, it maximizes V̂ over the entire set of SM-worst-case
optimal solutions, and hence it is SM-robust. Q.E.D.

We can summarize the results for the binary-state case as follows. If V (μ) ≥ V full(μ)
for all μ, then neither worst-case nor SM-worst-case optimality have any bite. In this case,
the set of SM-robust solutions coincides with the set of robust solutions, which coincides
with the set of Bayesian solutions. If, instead, V (μ) < V full(μ) for some μ, then full dis-
closure is the unique robust solution but not necessarily the unique SM-robust solution.
However, full disclosure is the unique SM-robust solution if V (μ) < V full(μ) for μ in
some neighborhood of either 0 or 1. When V (μ) < V full(μ) for some interior μ but not
in any neighborhood of either 0 or 1, the set of SM-robust solutions may be difficult to
characterize.

OA.3.5. State Separation Under SM-Robustness

In this subsection, we characterize properties of SM-robust solutions for the general
case with an arbitrary number of states. The analysis parallels the one leading to Theo-
rem 1 in the main text, but the results are not as sharp as in the case of robust solutions.
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Given a function V : �� → R, let dV (μ;μ′) denote the Gateaux derivative of V at μ
in the direction of μ′. The latter is defined by

dV
(
μ;μ′) := lim

ε→0

V
(
(1 − ε)μ+ εμ′) − V (μ)

ε
�

whenever the limit exists. Recall that V full(μ) = ∑
� V (δω)μ(ω) is the expected payoff

from full disclosure. We then have that, starting from the Dirac measure μ = δω, the
Gateaux derivative of V full(μ) in the direction of the Dirac measure δω′ is equal to

dV full(δω;δω′) = lim
ε→0

V full

(
(1 − ε)δω + εδω′

) − V full(δω)
ε

= V (δω′) − V (δω)�

THEOREM OA.3: Suppose that for some ω�ω′ ∈ �, dV (δω;δω′) < V (δω′)−V (δω). Then
any SM-worst-case optimal distribution ρ must separate states ω and ω′ with probability one.

PROOF: The proof relies on insights developed for the binary-state case (see Proposi-
tion OA.1). Nature can always fully reveal the states � \ {ω�ω′}, so that, conditional on
the state belonging to {ω�ω′}, the results for the binary-state case apply.

Suppose that some SM-worst-case optimal distribution ρ does not separate ω and ω′.
That is, there exists a nonzero-measure set of μ ∈ supp(ρ) such that μ(ω)μ(ω′) > 0. Con-
sider a signal π by Nature that reveals all states other than ω and ω′ perfectly, and, condi-
tional on the state belonging to {ω�ω′}, sends signals as in the proof of Proposition OA.1.
The condition dV (δω;δω′) < V (δω′) − V (δω) implies that the assumptions of Proposi-
tion OA.1 hold. Given π, the Sender’s expected payoff is strictly below her full-disclosure
payoff, and hence ρ is not a SM-worst-case optimal distribution. Q.E.D.

We can also identify a simple sufficient condition under which no states need to be
separated, and hence SM-robust solutions coincide with Bayesian solutions.

COROLLARY OA.1: If V ≥ V full, then all Bayes-plausible distributions are SM-worst-case
optimal.

This is the same condition as the one identified by Corollary 4 in the main text. More-
over, Corollary 4 actually implies Corollary OA.1 because if a distribution is worst-case
optimal when Nature can choose any signal, then it is also worst-case optimal when Na-
ture is restricted to choosing conditionally independent signals.

Theorem OA.3 takes a more tractable form in the case when � ⊂ R, and the Sender’s
payoff depends only on the expected state.

COROLLARY OA.2: Suppose that V (μ) = u(Eμ[ω]) for some differentiable function u.
If u′(ω) < u(ω′)−u(ω)

ω′−ω
, then any SM-worst-case optimal distribution must separate the states ω

and ω′ with probability one.

OA.3.6. A Bayesian Solution Can Blackwell Dominate a SM-Robust Solution

Corollary 6 in the main text states that, for any Bayesian solution ρBP, one can find a
robust solution ρRS that is either incomparable to, or more informative than, ρBP in the
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Blackwell sense. In this subsection, we show that this conclusion does not extend to SM-
robust solutions. We do this by means of a counterexample. Our counterexample is rather
contrived and has no immediate economic interpretation.

The example exploits the fact that Corollary 5 in the main text does not extend to SM-
robust solutions: A mean-preserving spread of a SM-worst-case optimal distribution need
not be SM-worst-case optimal. For intuition, think of a mean-preserving spread as an ad-
ditional signal, on top of the original signal selected by the Sender. When Nature can
condition her signal on the realization of the Sender’s signal, she can entertain mean-
preserving spreads that provide additional information to the Receivers for some real-
izations of the Sender’s signals but not for others. This means that any mean-preserving
spread engineered by the Sender can also be engineered by Nature. The result that mean-
preserving spreads of worst-case optimal policies are worst-case optimal then follows from
the fact that Nature can always engineer such spreads herself starting from the original
distribution selected by the Sender. Hence, for the original distribution to be worst-case
optimal, it must be that any mean-preserving spread of such distribution is also worst-case
optimal.

This conclusion does not extend to the case of conditionally independent signals. The
reason is that, when Nature is not allowed to condition her signal on the realization of
the Sender’s signal, any mean-preserving spread of the Sender’s signal that Nature can
choose provides more information to the Receivers than the original signal for all non-
degenerate μ in the support of the Sender’s original distribution. This means that cer-
tain mean-preserving spreads by the Sender cannot be replicated by Nature. As a result,
there is no guarantee that a mean-preserving spread designed by the Sender preserves
SM-worst-case optimality. In turn, this implies that the Sender can strictly benefit from
withholding information.

Counterexample

The state is binary, � ={0�1}, and the prior is uniform. Letting μ denote the probability
assigned to the state ω = 1, the Sender’s base-case payoff is given by V̂ (μ) = 2 if μ /∈ G
and V̂ (μ) = 3 if μ ∈G, where G :={1/3�7/12�2/3�3/4}. Clearly, given V̂ , there are many
Bayesian solutions—any Bayes-plausible distribution of posteriors with support in G is
optimal. Consider the solution ρBP that puts mass 1/2 on 1/3, mass 1/4 on 7/12, and mass
1/4 on 3/4. This solution is Blackwell more informative than the Bayesian solution ρR that
puts mass 1/2 on 1/3, and mass 1/2 on 2/3. Indeed, the distribution ρBP can be obtained
from the distribution ρR by sending an additional signal whenever the posterior induced
by ρR is 2/3 (the additional signal then decomposes 2/3 into the posteriors 7/12 and 3/4).
Figure OA.1 illustrates the base-case payoff function V̂ (the black solid line) and the fact
that ρBP is a mean-preserving spread of ρR (this fact is indicated by the red solid arrows).

We complete the construction of the counterexample by selecting the Sender’s payoff
under the adversarial tie-breaking V so that ρR is the unique SM-robust solution. We
first give an intuitive description of how we derive V from the properties required for the
counterexample to work, and then provide a formal definition of V and prove the result.

The idea is to construct a function V under which the Sender gets a low payoff from
beliefs 7/12 and 3/4, so that ρBP is not SM-worst-case optimal. Suppose that V (μ) = 0
except over a finite set of points, and that V (7/12) = V (3/4) = −1. Then, ρBP is clearly
not SM-worst-case optimal, because by not disclosing any information, Nature guarantees
that the Sender’s expected payoff under ρBP is strictly below her full-disclosure payoff,
which is equal to zero. Note, however, that this is not enough, because under such V , ρR

is also not SM-worst-case optimal. Indeed, starting from any interior posterior belief, by
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FIGURE OA.1.—The functions V and V̂ .

choosing π appropriately, Nature can induce the posterior μ= 7/12 and/or the posterior
μ= 3/4 with positive probability, thus bringing the Sender’s payoff strictly below the full-
disclosure payoff. Therefore, we construct V so that, whenever Nature’s response results
in a low payoff for the Sender conditional on one of her posterior beliefs under ρR, it
must result in a sufficiently high payoff for the Sender conditional on the other posterior
belief. For example, Nature can split 2/3 into 7/12 and 3/4; however, the unique signal
that achieves this split—precisely because the signal must be conditionally independent—
must also split the other posterior 1/3 into 7/27 and 3/7 (as illustrated by the green dotted
arrows in Figure OA.1). Thus, we choose the values of V to be sufficiently high at 7/27
and 3/7.

Figure OA.1 depicts one more possible response by Nature—indicated by the orange
dashed arrows—that constrains the values of V . To take into account all the relevant
responses by Nature, we can use Lemma OA.2 which says that, to minimize the Sender’s
expected payoff, Nature can restrict attention to binary signals. If V (7/12) = V (3/4) =
−1, and V (μ) ≥ 0 for all μ /∈ {7/12�3/4}, it suffices to consider binary signals that, given
ρR, induce a final posterior of either 7/12 or 3/4 with strictly positive probability. We also
know from the proof of Lemma OA.2 that Nature’s problem can be thought of as choosing
a distribution over [0�1] that minimizes the expectation of V q(μ) over all Bayes-plausible
distributions, where q is any Sender’s signal that induces the distribution ρR. One such
signal is given by S = {l�h}, q(l|0) = 2/3, and q(l|1) = 1/3. Given this q, the Sender’s
expected payoff when Nature induces the posterior μ is equal to

V q(μ) =
∑
ω∈�

[∫
S
V

(
μs

)
dq(s|ω)

]
μ(ω)

=
(

2
3

− 1
3
μ

)
V

(
μ

2 −μ

)
+

(
1
3

+ 1
3
μ

)
V

(
2μ

1 +μ

)
�
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To guarantee that ρR is a SM-worst-case optimal distribution, it then suffices to choose a
V that (i) takes value 0 almost everywhere (including at μ = 0 and at μ = 1), (ii) is such
that V (μ) < 0 only for μ ∈ {7/12�3/4}, at which it takes value V (7/12) = V (3/4) = −1,
and (iii) induces V q(μ) ≥ 0 for all μ. There are only four values of μ at which V q(μ) could
be potentially negative: μ ∈{7/17�3/5�14/19�6/7}. Indeed, only for these four posteriors,
given the Sender’s signal q, the final posterior takes a value equal to either 7/12 or 3/4.
These four posteriors are given by the solutions to μ/(2 − μ) = 7/12, μ/(2 − μ) = 3/4,
(2μ)/(1 +μ) = 7/12, and (2μ)/(1 +μ) = 3/4. At each such μ, we want V q(μ) = 0. This
gives us four equations in four unknowns—the values of V at the posterior beliefs 2μ/(1+
μ) and μ/(2 −μ) when the latter beliefs, computed for μ ∈{7/17�3/5�14/19�6/7}, differ
from either 7/12 or 3/4. Solving this system, we obtain that

V

(
7
27

)
= 8

9
� V

(
3
7

)
= 8

7
� V

(
28
33

)
= 8

11
� V

(
12
23

)
= 8

13
� (OA.3)

as illustrated in Figure OA.1. This completes the construction of the function V . The
following claim is then true.5

CLAIM OA.1: Let � = {0�1}, the prior be uniform, V (μ) = 0 except that V (7/12) =
V (3/4) = −1 and (OA.3) holds, and V̂ (μ) = 2 except that V̂ (1/3) = V̂ (7/12) = V̂ (2/3) =
V̂ (3/4) = 3. Then there exists a Bayesian solution ρBP that strictly Blackwell dominates the
unique SM-robust solution ρR.

By the construction of V , ρR is SM-worst-case optimal, and because it yields the max-
imal payoff of 3 under V̂ , it is a SM-robust solution. It only remains to show that ρR is
the unique SM-robust solution. To see this, note that any other distribution ρ′ that yields
a payoff of 3 under V̂ must assign strictly positive probability to either 7/12 or 3/4 and
no mass outside of {1/3�7/12�2/3�3/4} (since this is the only way to guarantee an ex-
pected payoff of 3 which is required for being a SM-robust solution). Furthermore, for ρ′

to be SM-worst-case optimal, it must yield a non-negative expected payoff under V when
Nature discloses no information, which is impossible if ρ′ assigns positive probability to
{7/12�3/4}.

Summarizing, we have constructed an example of a Bayesian solution ρBP that strictly
dominates the unique SM-robust solution ρR in the Blackwell order.
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5Note that, contrary to what we assumed throughout the analysis, the function V considered in this example
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