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APPENDIX B

B.1. Omitted Lemmas and Examples

LEMMA 1: FOR EVERY a ∈ A and ε > 0, Θ̂(a) defined in equation (1), Θ̂a(a), Θ̂ε(a)

defined in equation (2), and �(Θ̂(a)) are compact.

PROOF: Compactness of Θ̂(a) follows from Assumption 1 and Theorem 2.43 of
Aliprantis and Border (2013). Since the projection map is continuous, and Θ̂a(a) is the
projection of Θ̂(a), Θ̂a(a) is compact as well. Since Θ̂a(a) is closed, it immediately fol-
lows that Θ̂ε(a) is closed as well, henceforth compact. Given the compactness and sep-
arability of Θ̂(a), �(Θ̂(a)) is compact by, for example, Theorem 6.4 in Parthasarathy
(2005). Q.E.D.

LEMMA 7: Fix q ∈ �(Y) with suppq ⊆ suppp∗
a and a compact set C ⊆ �(Y) such that

all the elements of C are absolutely continuous with respect to p∗
a. Then there exists a K > 0

such that for every f ′ ∈ Uε(q�p
∗
a�η) with supp f ⊆ suppp∗

a∣∣∣min
q′∈C

H
(
(1 −η)p∗

a +ηq�q′)−H
(
(1 −η)p∗

a +ηq�q
)− min

q′∈C
H
(
f�q′)+H(f�q)

∣∣∣≤Kε�

PROOF: First, notice that by the Maximum Theorem,

Ĉ(η�ε) :=
⋃

f∈Uε(q�p
∗
a�η):suppf⊆suppp∗

a

argmin
q′∈C

H
(
f�q′)

is a compact-valued and upper-hemicontinuous correspondence. So, if we let

Ĉ :=
⋃

ε∈[0�1]

⋃
η∈[0�1]

Ĉ(η�ε)�

there is a K1 > 0 such that maxy∈suppp∗
a

maxq′∈Ĉ | logq′(y)|<K1.
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Then we have that for every η ∈ [0�1], ε > 0, and f ∈Uε(q�p
∗
a�η) : supp f ⊆ suppp∗

a∣∣∣min
q′∈C

H
(
(1 −η)p∗

a +ηq�q′)−H
(
(1 −η)p∗

a +ηq�q
)− min

q′∈C
H
(
f�q′)+H(f�q)

∣∣∣
≤
∣∣∣min
q′∈C

H
(
(1 −η)p∗

a +ηq�q′)− min
q′∈C

H
(
f�q′)∣∣∣+ 2ε max

y∈suppp∗
a

∣∣logq(y)
∣∣

≤ |2K1ε| + 2ε max
y∈suppp∗

a

∣∣logq(y)
∣∣�

where the inequalities follows from ‖f − (1 − η)p∗
a + ηq‖ ≤ ε, and the definition of K1.

Thus K : = 2(K1 +maxy∈suppp∗
a
| logq(y)|) > 0 satisfies the statement of the lemma. Q.E.D.

Computations for Example 1

The monopolist’s payoff function when valuation are uniformly distributed on [0�8] is
E[u(a� y)] = 8−a

8 a, so the unique optimal price from the set {3�4�5�6�7} equals a = 4. If
valuations are uniformly distributed on [2�10], the payoff function is 10−a

8 a, so the unique
optimal price is a= 5.

Let pL = ( 8−a
8 )a∈{3�4�5�6�7} be the vector of conditional probabilities when the demand is

low and pH = ( 10−a
8 )a∈{3�4�5�6�7} be the vector of conditional probabilities when the demand

is high. It is easy to check that the KL minimizers are given by

Θ̂(3)= {pH
}; Θ̂(4)= {pH

}; Θ̂(5)= {pL�pH
};

Θ̂(6)= {pL
}; Θ̂(7)= {pL

}
�

Thus a = 5 is the only pure BN-E. Note that a = 5 is not a uniform BN-E, because at the
low belief the myopically optimal action is 4.

EXAMPLE 6: This example shows that Theorem 1 does not hold without Assump-
tion 1(ii). Let the action space be {a�b}, the outcome space be {0�1}, and suppose the
agent correctly believes that the action has no impact on the outcome distribution, so that
each action dependent outcome distribution is indexed by a number in (0�1) correspond-
ing to the probability of outcome 1. Finally, let p∗ = 1

2 .
Assume that the agent assigns positive probabilities to the following countable set:

{
3
4

}
∪
{

1
4

− 1
n2 : n≥ 3

}
�

where distributions are indexed by the probability that they assign to outcome 1. Note
that 1

4 is in Θ even though it doesn’t exactly correspond to any of the agent’s conceivable
outcome distributions. Let p(n)= 1

4 − 1
n2 .

Finally, suppose that the agent’s utility function is given by u(a�0) = 0 = u(b�1),
u(a�1)= 1, u(b�0)= 4/5. Then b is not preferred to a for any beliefs with ν({3/4}) > 1/2
and it is strictly preferred to a if ν({3/4}) < 1/3. Then a is a BN-E but not a uniform
BN-E, yet play can converge to it with positive probability from a prior μ0 we specify
below.
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In the claim below we show that for every n ∈N there exists a ln > 0 such that

1 ≤ p∗(1)

( 3
4

p(n)(1)

)ln

+p∗(0)

( 1
4

p(n)(0)

)ln

�

Then by Dubins’ upcrossing inequality,30 for all K1, and K2 there exists Cn ≤
1
n2

2
∑∞

n=3
1
n2

such that if μ0(p(n)) ≤ Cn and μ0(
3
4) >

1
2 , the probability that lim supt

μt (p(n))

μt (
3
4 )

> 1
n2 K1 is

smaller then 1
n2 K2. Let μ0(p(n)) = Cn and μ0(

3
4) = 1 −∑∞

n=3 Cn >
1
2 , K2 <

1∑∞
n=3

1
n2

and

K1 <
1

2
∑∞

n=3
1
n2

. By the union bound with probability

1 −K2

∞∑
n=3

1
n2 > 0

we have that

lim sup
t

∞∑
n=3

μt

(
p(n)

)

μt

(
3
4

) ≤
∞∑
n=3

lim sup
t

μt

(
p(n)

)
μt

(
3
4

) ≤ K1

∞∑
n=3

1
n2 <

1
2
�

CLAIM 3: Notice that the outcome distribution most favorable to action b and least favor-
able to action a is p(3)= 1/4 − 1/9 = 5/36. Therefore, if νt({3/4}) > 1/2,

∫
�(Y)

Ep

[
u(a� y)

]
dν(p) ≥

∞∑
n=3

p(n)u(a�1)ν
({
p(n)

})+ 3
4
u(a�1)ν

({3/4})

≥ 5
36

u(a�1)
(
1 − ν

({3/4}))+ 3
4
u(a�1)ν

({3/4})> 4/9

and ∫
�(Y)

Ep

[
u(b� y)

]
dν(p) ≤

∞∑
n=3

(
1 −p(n)

)
u(b�0)ν

({
p(n)

})+ 1
4
u(b�0)ν

({3/4})

≤ 31
36

u(b�0)
(
1 − ν

({3/4}))+ 1
4
u(b�0)ν

({3/4})< 4/9�

If νt({3/4}) < 1/3,

∫
�(Y)

Ep

[
u(a� y)

]
dν(p) ≤

∞∑
n=3

p(n)u(a�1)ν
({
p(n)

})+ 3
4
u(a�1)ν

({3/4})

≤ 1
4
u(a�1)

(
1 − ν

({3/4}))+ 3
4
u(a�1)ν

({3/4})< 5
12

30See, for example, page 27 of Neveu (1975).
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and ∫
�(Y)

Ep

[
u(b� y)

]
dν(p) ≥

∞∑
n=3

(
1 −p(n)

)
u(b�0)ν

({
p(n)

})+ 1
4
u(b�0)ν

({3/4})

≥ 3
4
u(b�0)

(
1 − ν

({3/4}))+ 1
4
u(b�0)ν

({3/4})= 7
15

�

Finally, notice that

1 ≤ p∗(1)

( 3
4

p(n)(1)

)ln

+p∗(0)

( 1
4

p(n)(0)

)ln

= 1
2

⎛
⎜⎜⎝

3
4

1
4

− 1
n2

⎞
⎟⎟⎠

ln

+ 1
2

⎛
⎜⎜⎝

1
4

3
4

+ 1
n2

⎞
⎟⎟⎠

ln

�

where

ln =

log

(
1 − 1

4
n2 + 3

)

log

(
1

1 − 4
n2

)
+ log 3

> 0�

B.2. The Role of Assumption 1(i)

All results in the paper except the nonmyopic part of Theorem 1 continue to hold under
a weaker version of Assumption 1(i):

Assumption 1(i′) For all p ∈ Θ and ε > 0, there exists p′ ∈Θ with ‖p′ −p‖ < ε such that
for all a ∈ A, if p∗

a(y) > 0 then p′
a(y) > 0.

Assumption 1(i′) implies that the support of the belief does not change after a finite num-
ber of observations. This is the only consequence of Assumption 1(i) that is used in any
of the proofs, except for establishing Claim 1 in the proof of Theorem 1 when the agent
is not myopic.31

The next example shows that without Assumption 1(i′), limit points need not be BN-E.

EXAMPLE 7—Role of Assumption 1(i′): Suppose there are two actions a and b, and two
outcomes Y = {0�1}, and let u(a�0)= u(b�1)= 1−u(a�1)= 1−u(b�0)= 1. Identify the
elements of �(Y) with the probability they assign to outcome 1, and let p∗

a = 2
3 and p∗

b = 1.
Suppose that the agent believes that the outcome distribution does not depend on the
action, and that Θ = { 1

3 �1}. Here b is the unique BN-E, and it is uniformly strict. However,
if the prior assigns sufficiently high probability to 1/3, the agent will start playing a, and

31When the agent is myopic Claim 1 continues to hold under Assumption 1(i′).
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with positive probability they will observe outcome 0 in the first period. But after this
observation, the posterior assigns probability 1 to p= 1/3 and the action converges to a.

When we weaken Assumption 1(i) to (i′) and allow the supports the various outcome
distributions to differ, we need to generalize the definition of observational equivalence
as follows:

DEFINITION 14: Two outcome distributions p and p′ are observationally equivalent un-
der action a if pa(y)= p′

a(y) for all y ∈ suppp∗
a.

Thus we now say that two beliefs are observationally equivalent under a if they assign
the same probability to each outcome that realizes with positive probability. This defini-
tion is equivalent to the one in the main text under Assumption 1(i).

The reason Theorem 1 only holds for myopic agents when we weaken (i) to (i′) is that
Claim 1 can fail. The intuition is that even if the agent plays a many times, they may still
think that playing a again will give them a nontrivial amount of information, as in the next
example.

EXAMPLE 8: Let A = {a�b� c}, Y = {0� ȳ� y ′}, and Θ = {p̄�p′}. Suppose that p̄c(ȳ) =
1 − p̄c(0) = 0�9 = 1 − p′

c(0) = p′
c(y

′) and that u(c� y) = −0�1 for all y ∈ Y . Thus, the
agent thinks that by playing c they pay a small cost, and with a very high probability they
discover the correct action contingent outcome distribution, and otherwise receive an
uninformative signal.

For action b suppose that p̄b(0) = 1 = p′
b(0) and u(b� y) = 0 for all y ∈ Y . That is, the

agent thinks that action b is uninformative but safe.
Finally the agent thinks that action a produces the same information of action c but

its payoffs are riskier: p̄a(ȳ) = 1 − p̄a(0) = 0�9 = 1 − p′
a(0) = p′

a(y
′) u(a� ȳ) = −100 and

u(a� y ′)= 1.
Here, c is not a BN-E, because it is weakly dominated by action b, and it is never a

myopic best reply. However, suppose that p∗
c(0) = 1, that the agent starts with a uniform

prior over Θ, and the discount factor β= 1
2 . Then every optimal policy prescribes starting

with action c to get information, and then switching to a forever after observing y ′, to b
forever after observing ȳ and trying c again after observing 0. Since p∗

c(0) = 1, the agent
will continue to use c forever, because the believe that with high probability the true
outcome distribution will be revealed next period.

Assumption 1(i) guarantees that when beliefs concentrate around a set of of outcome
distributions that are observationally equivalent under a, that is, ν ∈ �(E(a)(p)) for some
p ∈ Θ, the experimentation value of a is weakly lower than that of some other action.
This fact is used in Claim 1 to show that G(ν) > 0 for every ν ∈ �(E(a)(p)). Claim 1
holds under Assumption 1(i′) for myopic agents because for these agents all actions have
0 experimentation value.

Assumption 1(i′) is still sufficient for all the problems considered in Section 4.2. More
generally, (i′) is sufficient when paired with with this additional assumption:

ASSUMPTION 2: p�p′ ∈ E(a)(p) ⇒ pa(y)= p′
a(y) for all y ∈ Y .

This assumption is trivially satisfied if all beliefs in the support of the agent’s subjec-
tive prior assign positive probability only to signals which objectively occur with positive
probability, that is, pa(y) > 0 ⇒ p∗

a(y) > 0 for all p ∈ Θ, a ∈ A.
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B.3. Extensions to Signals

Here we expand the probability space of our basic model in the obvious way: The sam-
ple space Ω = S∞ × (Y∞)A consists of infinite sequences of signal and action dependent
outcome realizations (sk�xa�s′�k)k∈N�a∈A�s′∈S and xa�s′�k determines the outcome when the
agent takes the action a for the k-th time after s. Formally, we consider the probability
space (Ω�F�P), where F is the discrete sigma algebra and the probability measure P

is the product measure induced by independent draws (across signal, actions, and time)
according to p∗.

We denote the outcome observed by the agent in period t after action at by yt = xat�st �k,
where k is the number of times the agent has taken action at after signal st up and includ-
ing period t. A (pure) policy π :⋃∞

t=0 S
t+1 × At × Y t → A specifies an action for every

history (s1� a1� y1� s2� a2� y2� � � � � st� at� yt� st+1), and an initial action a1. Throughout, we de-
note by at+1 = π(st+1� at� yt) the action taken in period t where (st+1� at� yt) is a sequence
of realized signals, actions, and outcomes. For every p�p′ ∈Θ∪{p∗}, denote the supnorm
distance between p and p′:∥∥p−p′∥∥= max

s∈S�a∈A�y∈Y

∣∣pa�s(y)−p′
a�s(y)

∣∣�
Given our finite dimensionality assumption, the maximand depends on s only through the
finite partition Ξ, so the supremum is attained. In this setting, a policy π converges to a
strategy σ if there exists a T such that for all t ≥ T , ξ ∈ Ξ, p ∈ Θ∪ {p∗} and y ∈ Y∑

a∈A
ζ
({
s ∈ ξ : π(aT � yT � s

)= a
})
pa�s(y)=

∑
a∈A

ζ
({
s ∈ ξ : σ(s)= a

})
pa�s(y)

that is, there is finite time convergence over the behavior in the finite dimensional parti-
tion of signals considered by the agent. This restriction is without loss of generality if S is
finite.

LEMMA 10: For every σ ∈ AS and ε > 0, Θ̂(σ) and Θ̂ε(σ) are compact.

PROOF OF LEMMA 10: Compactness of Θ̂(σ) follows from Assumption 1 and Theo-
rem 2.43 of Aliprantis and Border (2013). Since the projection map is continuous it fol-
lows that Θ̂ε(σ) is closed, so it is compact. Given the compactness and separability of
Θ̂(σ), �(Θ̂(σ)) is compact by, for example, Theorem 6.4 in Parthasarathy (2005). Q.E.D.

Now we extend Lemma 2 to the case where the agent observes signals and has finite-
dimensional beliefs. Since we restricted the policy function of the agent to be measurable
in their beliefs, the set of policy functions is

Π = (AS
)⋃∞

t=0(A
t×Yt×Ξt)

�

We endow the set AS of measurable maps from S to A with the metric

dζ

(
σ�σ ′)= ζ

({
s ∈ S : σ(s) 
= σ ′(s)

})
�

Then Π is the (countable) product space of measurable maps with index set
⋃∞

t=0(A
t ×

Y t ×Ξt).
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LEMMA 11: Π is compact in the product topology, and for every ν ∈ �(Θ), V (·� ν) is
continuous with respect to the product topology.

PROOF: By Tychonoff’s theorem AS is compact in the product topology. Suppose that
(σn)n∈N converges pointwise to σ , and let Cn = {s ∈ S : ∀m ≥ n�σm(s) = σ(s)}. We have
that Cn ↑ S,

dζ(σn�σ)= ζ
({
s ∈ S : σn(s) 
= σ(s)

})≤ 1 − ζ(Cn)

and so dζ(σn�σ)→ 0. Thus the product topology is finer than the topology induced by dζ ,
and so AS is also compact in (AS�dζ). Applying Tychonoff’s theorem again, Π is compact
in the product topology. Continuity follows from the fact that for every period t ∈ N the
set (At ×Y t ×Ξt) is finite, and discounting. Q.E.D.

We next generalize a couple of definitions given in the text to allow for signals. For
every strategy σ and action contingent outcome distribution p, we let

pσ =
∫
S

pσ(s)�s(·)dζ(s)

denote the distribution over outcomes induced by the use of strategy σ . Let Θ̂ε(σ) denote
the conceivable outcome distributions that are ε close to one of the elements of Θ(a):

Θ̂ε(σ)= {p ∈ Θ : ∃p′ ∈ Θ̂(σ)�
∥∥p′

σ −pσ

∥∥≤ ε
}
�

Similarly, we denote the set of beliefs over conceivable distributions that assign at least
probability 1 − ε to Θ̂ε(σ) by

Mε�σ = {ν ∈ �(Θ) : ν(Θ̂ε(σ)
)≥ 1 − ε

}
�

Next we extend Lemma 3 to this setting.

LEMMA 12: If σ is a uniformly strict BN-E, then for every optimal policy π and every
λ ∈ R++ there exists an ε̂ > 0 such that for all ε < ε̂

ν ∈ Mε�σ =⇒ ∣∣ζ({s ∈ S : π(ν� s) = a
})− ζ

({
s ∈ S : σ(s)= a

})∣∣< λ� (5)

PROOF: Fix a belief ν ∈ Mε�σ . Let πσ denote the policy that always plays σ , and let Πλ

denote the set of policy functions π̃ such that:∣∣ζ({s ∈ S : π̃(ν� s) = a
})− ζ

({
s ∈ S : σ(s)= a

})∣∣≥ λ�

Define G(ε) as the gain from playing σ forever instead of using (one of) the best poli-
cies π̃ ∈ Πλ

G(ε)= min
π̃∈Πλ

min
ν∈Mε�a

(
V
(
πa� ν

)−V (π̃� ν)
)
�

Notice that by Lemma 11 the space of the policy functions endowed with the product
topology is compact. Since the subset of policy functions that satisfy (5) is closed, this sub-
set is compact as well. Moreover, given that β ∈ (0�1), the value function is continuous at
infinity, and therefore V (πa� ν)−V (·� ν) is a continuous function of the policy. Notice also
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that since Ep�π[∑∞
t=1[βt−1u(at� yt)]] is continuous in p, V (πa� ·)−V (π̃� ·) is continuous in

ν, so since ε → Mε�σ is an upper hemicontinuous and compact valued correspondence,
from the Maximum Theorem G is continuous in ε. Since σ is a uniformly strict BN-E,
G(0) > 0, and there is an ε̂ such that if ε ≤ ε̂, G(ε) > 0. This implies that any optimal
policy π satisfies equation (5), which proves the lemma. Q.E.D.

LEMMA 13: Fix a strategy σ and ε > 0. There exists an l > 0 such that for every l ≤ l, every
KL minimizer q ∈ Θ̂(σ), every p′ /∈ Θ̂ε(σ), and every σ ′ ∈ Bl(σ) we have

fl
(
σ ′� q�p′) :=∑

y∈Y
pσ ′(y)

(
qσ ′(y)

p′
σ ′(y)

)l

> 1�

PROOF: As noted by FII in their Lemma 3, for each KL minimizer q ∈ Θ̂(σ) and every
outcome distribution p′ /∈ Θ̂(σ) there exists an l(σ�q�p′) such that fl(σ ′� q�p′) > 1 for
all l ≤ l(σ�q�p′) and σ ′ ∈ Bl(σ). They also pointed out that for all q�q′ ∈ Θ, and σ ′ ∈ AS ,
if l̂ > l and fl(σ

′� q�q′) ≤ 1, then fl̂(σ
′� q�q′) ≤ 1. We will now prove that there exists a

uniform l that works for every q ∈ Θ̂(σ) and p′ ∈ Θ̂ε(σ), and every strategy σ ′ sufficiently
close to σ .

Suppose by way of contradiction that there was no l > 0 such that for all l ≤ l,
fl(σ

′� q�p′) > 1 for all q ∈ Θ̂(σ) and p′ /∈ Θ̂ε(σ), σ ′ ∈ Bl(σ). Then we can define a
sequence (σn�qn�p

′
n) such that f 1

n
(σn�qn�p

′
n) ≤ 1, and σn ∈ B1/n(σ). The sequential

compactness of AS × Θ̂(σ) × cl{p ∈ �(Θ) : pa /∈ Θ̂ε(σ)} derived in Lemma 10 guaran-
tees that this sequence has an accumulation point (σ�q�p′). However, for n > 1

l(σ�p̄�p′) ,
f 1

n
(σn�qn�p

′
n) ≤ 1 implies fl(σ�q�p′)(σn�qn�p

′
n)≤ 1, and the lower semicontinuity of fl(σ�q�p′)

at (σ�q�p′) leads to a contradiction with fl(σ�q�p′)(σ�q�p
′) > 1. Q.E.D.

LEMMA 14: Let p�p′�p∗ ∈ �(Y), and l ∈ (0�1) be such that

∑
y∈Y

p∗(y)
(
p(y)

p′(y)

)l

< 1� (6)

Then there is ε′ > 0 such that for all ν ∈ �(�(Y)), if we let

ν(C | y)=

∫
q∈C

q(y)dν(q)∫
q∈�(Y)

q(y)dν(q)

�

then ∑
y∈Y

r(y)

[(
ν
(
Bε′(p) | y)

ν
(
Bε′
(
p′) | y)

)l]
≤
(
ν
(
Bε′(p)

)
ν
(
Bε′
(
p′))
)l

for all r ∈ Bε′(p∗).

PROOF: The lemma is trivially true if ν(Bε(p
′))= 0 for some ε. Therefore, without loss

of generality, we can assume that ν(Bε(p
′)) > 0 for all ε. Let Cε = Bε(p

∗)× �(Bε(p))×
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�(Bε(p
′)) and define G :R+ → R by

G(ε)= min
(r�ν̄�ν′)∈Cε

∑
y∈Y

r(y)

⎛
⎜⎜⎝
∫
Bε(p)

q̄(y)dν̄(q̄)∫
Bε(p′)

q(y)dν′(q)

⎞
⎟⎟⎠

l

�

By the Maximum Theorem, the compactness of �(Bε(p
′)) and �(Bε(p)) (see, e.g, Theo-

rem 6.4 in Parthasarathy (2005)) and the fact that G(0) < 1 by equation (6), there is ε′ > 0
such that for all r� ν′� ν̄ ∈ Cε′

∑
y∈Y

r(y)

⎛
⎜⎜⎝
∫
Bε′ (p)

q̄(y)dν̄(q̄)∫
Bε′ (p′)

q(y)dν′(q)

⎞
⎟⎟⎠

l

≤ 1� (7)

Then,

∑
y∈Y

r(y)

(
ν
(
Bε′(p) | y)

ν
(
Bε′
(
p′) | y)

)l

=
∑
y∈Y

r(y)

⎛
⎜⎜⎜⎝
∫
Bε′ (p)

ν
(
Bε′(p)

)
q̄(y)d

ν(q̄)

ν
(
Bε′(p)

)
∫
Bε′ (p′)

ν
(
Bε′
(
p′))q(y)d ν(q)

ν
(
Bε′
(
p′))

⎞
⎟⎟⎟⎠

l

=
∑
y∈Y

r(y)

⎛
⎜⎜⎜⎝
∫
Bε′ (p)

q̄(y)d
ν(q̄)

ν
(
Bε′(p)

)
∫
Bε′ (p′)

q(y)d
ν(q)

ν
(
Bε′
(
p′))

⎞
⎟⎟⎟⎠

l(
ν
(
Bε′(p)

)
ν
(
Bε′
(
p′))
)l

≤
(
ν
(
Bε′(p)

)
ν
(
Bε′
(
p′))
)l

�

where the inequality follows from equation (7). Q.E.D.

THEOREM 1′: Suppose the agent’s beliefs are finite dimensional. If σ is a limit strategy,
then σ is a uniform BN-E.

PROOF: If σ is not a uniform BN-E, there is p̄ ∈ Θ̂(σ) such that if suppν ⊆ Eσ(p̄), then
σ is not a myopic best reply to ν. We fix such a p̄ throughout this proof.

CLAIM 4: There exists ε > 0 such that if

ν
({
p ∈ Θ : ∀s ∈ S�∀y ∈ suppp∗

σ(s)�s�
∣∣pσ(s)�s(y)− p̄σ(s)�s(y)

∣∣< ε
})

1 − ν
({
p ∈ Θ : ∀s ∈ S�∀y ∈ suppp∗

σ(s)�s�
∣∣pσ(s)�s(y)− p̄σ(s)�s(y)

∣∣< ε
}) > 1 − ε

ε
�

then σ is not a myopic best reply to ν.
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PROOF: Define

G(ν)= max
π

V (π�ν)− max
π̃:π̃(ν)=σ(·)

V (π̃� ν)�

From the definition of p̄, if

suppν ⊆ {p ∈ Θ : ∀s ∈ S�∀y ∈ suppp∗
σ(s)�s�pσ(s)�s(y)= p̄σ(s)�s(y)

}
�

then G(ν) > 0. By Lemma 11 the space of policy functions is compact and the value
function is continuous in the policy, so V (·� ν)−V (·� ν) is a continuous function of the
policy, and since Ep�π[∑∞

t=1[βt−1u(at� yt)]] is continuous in p, V (π� ·) is continuous in ν.
Therefore, we can conclude by the Maximum Theorem that G is continuous.

Now suppose that in contradiction to the claim, for every n there exists a νn such
that

νn
({
p ∈ Θ : ∀s ∈ S�∀y ∈ suppp∗

σ(s)�s�
∣∣pσ(s)�s(y)− p̄σ(s)�s(y)

∣∣< 1/n
})

1 − νn
({
p ∈ Θ : ∀s ∈ S�∀y ∈ suppp∗

σ(s)�s�
∣∣pσ(s)�s(y)− p̄σ(s)�s(y)

∣∣< 1/n
}) ≥ 1 − 1/n

1/n

and σ ∈ π(νn). Because �(Θ) is sequentially compact, (νn)n∈N has a converging subse-
quence (νni)i∈N → ν∗. Thus, ν∗({p ∈ Θ : ∀s ∈ S�∀y ∈ suppp∗

σ(s)�s�pσ(s)�s(y) = p̄σ(s)�s(y)}) =
1 and G(ν∗)= 0, which would imply that σ ∈ π(ν∗), a contradiction. Q.E.D.

Now fix such an ε. Because the agent’s beliefs are finite dimensional, the agent believes
that the outcome distribution depends on the signals only via the partition Ξ. We now
define a finer partition of signals Ξσ such that for every two signals in the same cell i) the
agent thinks they induce the same outcome distribution, that is, they belong to the same
cell of Ξ, and ii) σ prescribes the same action. Formally, Ξσ is the collection of subsets
of signals of the form

{
s ∈ ξi ∩ σ−1(a) for some ξi ∈Ξ and a ∈ A

}
�

With a small abuse of notation, for every ξ ∈Ξσ let σ(ξ) denote the action that strategy σ
prescribes after every signal in ξ, and let pa�ξ be the probability distribution over outcomes
induced under p after action a and any signal in ξ. Set W =Ξσ ×Y , and for each p ∈Θ,
let pσ be the unique probability measure over W that satisfies

pσ(ξ� y) = ζ(ξ)p(σ(ξ)�ξ)(y) ∀ξ ∈ Ξσ�y ∈ Y�

For every η ∈ (0�1), let

fη = (1 −η)p∗σ +ηp̄σ�

Linearity of H in its first argument implies that for every η ∈ (0�1),

p ∈ argmin
p∈Θ

H
(
fη�p

σ
) =⇒ pσ = p̄σ �
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Let g be defined as in the main text with W replacing Y . By the same argument, we still
have

2g
(
(1 −η)p∗σ +ηp̄σ�ε

)≥ 2η(ε)2�

For every t ∈ N, let ηt = 2t−
1
2 . If the empirical frequency is fηt after t periods, and only

strategy σ has been used, then from Lemma 8 and part (ii) of Assumption 1′, there exists
ḡ > 0

μt

({
p ∈ Θ : ∀s ∈ S�∀y ∈ suppp∗

σ(s)�s�
∣∣pσ(s)�s(y)− p̄σ(s)�s(y)

∣∣< ε
})

1 −μt

({
p ∈ Θ : ∀s ∈ S�∀y ∈ suppp∗

σ(s)�s�
∣∣pσ(s)�s(y)− p̄σ(s)�s(y)

∣∣< ε
})

≥ μ0

({
p ∈Θ : ∀w ∈ suppp∗σ�

∣∣p∗σ(w)− p̄σ(w)
∣∣< ε2 2

ḡt
1
2

})
exp
(
tηtε

2
)

≥�

(
ε2 2

ḡt
1
2

)
exp
(
t

1
2 ε2
)
�

By Lemma 7 there exists a K̂�K′ > 0 such that if the empirical frequency is ft after t

periods and ‖fηt − ft‖< ‖p̄σ −p∗σ‖t− 1
2 /K′ then

μt

({
p ∈ Θ : ∀s ∈ S�∀y ∈ suppp∗

σ(s)�s�
∣∣pσ(s)�s(y)− p̄σ(s)�s(y)

∣∣< ε
})

1 −μt

({
p ∈ Θ : ∀s ∈ S�∀y ∈ suppp∗

σ(s)�s�
∣∣pσ(s)�s(y)− p̄σ(s)�s(y)

∣∣< ε
})

≥ Ψ

(
K̂ε2 2

ḡt
1
2

)
exp
(
K̂t

1
2 ε2
)
�

Fix an outcome w0 ∈ suppp∗σ , and let ft be the empirical frequency of the other
| suppp∗σ | − 1 outcomes in the support of p∗σ .

An argument that mimics the proof of Claim 2 shows that ft · t−p∗σt is a | suppp∗σ |−1
dimensional random walk with nonsingular covariance matrix Σw�w′ for the increments.

By the Central Limit Theorem (ft − p∗σ)
√
t converges to a Normal random variable

with mean 0 and covariance matrix Σw�w′ . Let Ft = B ‖p̄σ−p∗σ ‖/K′√
t

(p∗σ + 1√
t
(p̄σ − p∗σ)). We

have that

P[ft ∈ Ft] = P
[√

t
(
ft − p̄∗) ∈ B‖p̄σ−p∗σ ‖/K′

(
p̄σ −p∗σ)]�

Taking the limit t → ∞ yields that

lim
t→∞

P[ft ∈ Ft] = P
[
Z̃ ∈ B‖p̄σ−p∗σ‖/K′

(
p̄σ −p∗σ)]�

where Z̃ is a random variable that is Normally distributed with mean �0 and covariance
matrix Σw�w′ . Consequently, if we denote as Et the event that ft ∈ Ft , it follows that
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∑∞
t=1 P[Et] = ∞. Moreover,

lim inf
t→∞

t∑
s=1

t∑
r=1

P[Es and Et]
(

t∑
s=1

P[Es]
)2 = lim inf

t→∞

1
t2

t∑
s=1

t∑
r=1

P[Es and Er]
(

1
t

∞∑
t=1

P[Et]
)2 ≤ lim inf

t→∞

1
t2

t∑
s=1

t∑
r=1

P[Er]
(

1
t

t∑
s=1

P[Es]
)2

= lim inf
t→∞

1
t

t∑
r=1

P[Er]
(

1
t

t∑
s=1

P[Es]
)2 = 1

lim
t→∞

P[Et]

= 1

P
[
Z̃ ∈ B‖p̄σ−p∗σ ‖/K′

(
p̄σ −p∗σ)] �

It thus follows from the Kochen–Stone lemma (see Kochen and Stone (1964) or Exer-
cise 2.3.20 in Durrett (2008)) that

P

[ ∞⋂
t=1

∞⋃
s=t

Es

]
≥ P
[
Z̃ ∈ B‖p̄σ−p∗σ ‖/K′

(
p̄σ −p∗σ)]> 0�

The event
⋂∞

t=1

⋃∞
s=t Es is invariant under finite permutations of the increments (1wt=w1�

� � � �1wt=w| suppp∗σ |−1 − p∗σ) with different time indices, so the Hewitt–Savage zero-one law
(see, e.g., Theorem 8.4.6 in Dudley (2018)) implies that the probability of the event⋂∞

t=1

⋃∞
s=t Es must equal zero or one. As the probability is strictly positive it must equal

one.
This implies that ft ∈ Ft infinitely often with probability 1. It follows that the agent will

eventually want to take an action different from σ :

P
[
at 
= σ(st) for some t

]= 1�

Thus the strategy can not converge to σ with positive probability. Q.E.D.

THEOREM 2′: Suppose σ is a uniformly strict BN-E. Then there is a belief ν ∈ �(Θ) such
that for every κ ∈ (0�1) there exists an ε′ > 0 such that starting from any prior belief in Bε′(ν):

Pπ

[
lim
t→∞

1
t + 1

t∑
r=0

1π(ar �yr �sr+1)=σ(sr+1)
≥ 1 − κ

]
> 1 − κ�

PROOF: Consider a uniformly strict BN-E σ , an optimal policy π and κ ∈ (0�1). By
Lemma 12, for every λ ∈ (0�1) there exists an ε such that if ν(Θ̂ε(σ))≥ 1 − ε, then∣∣ζ({s ∈ S : π(ν� s)= a

})− ζ
({
s ∈ S : σ(s)= a

})∣∣< λ�
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For every l ∈ (0�1), define the function fl�σ : P × P → R̄ is defined by

fl�σ
(
p̄�p′)=∑

y∈Y
p∗

σ(y)

(
p̄σ(y)

p′
σ(y)

)l

�

By Lemma 13, since Θ̂ε(σ) is compact by Lemma 10, and since fl is lower semicontin-
uous, there exists ε′ ∈ (0� ε) such that p̄ ∈ Θ̂ε′

(σ) implies that fl(σ� p̄�p′) > 1 for all p′

with p′ /∈ Θ̂ε(σ). Let K = ( ε
1−ε

)l. Then

(
1 − ν

(
Θ̂ε(σ)

)
ν
(
Θ̂ε′

(a)
)
)l

< K =⇒ 1 − ν
(
Θ̂ε(σ)

)
ν
(
Θ̂ε(σ)

) <
ε

1 − ε

=⇒ ν
(
Θ̂ε(σ)

)
> 1 − ε =⇒ π(ν) = a�

By Lemma 10, Θ̂ε(σ) is compact, so it has a finite cover {p ∈Θ : ‖qi
a −pa‖ ≤ ε}ni=1, where

qi ∈ Θ̂ε(σ).
Let ε̄ be such that ν(Θ̂ε̄(σ)) > 1 − ε̄ implies that

(
1 − ν

(
Θ̂ε(σ)

)
ν
(
Θ̂ε(σ)

)
)l

<
K(1 − κ)

n
�

Then if the agent starts with a belief ν′
0 with ν′

0(Θ̂(σ)) > ε̄, σ is the unique best reply ν′
0.

Moreover, by Lemma 14, Dubins’ upcrossing inequality, and the union bound, there is a
probability (1 − κ) that the positive supermartingale

(
1 − ν′

t

(
Θ̂ε(σ)

)
ν′
t

(
Θ̂ε(σ)

)
)l

never rises above K, and with probabilty (1 − κ)∣∣ζ({s ∈ S : π(μ′
t � s
)= a

})− ζ
({
s ∈ S : σ(s)= a

})∣∣≤ λ�

for all t ∈ N. Then the statement follows from the Hewitt–Savage 0 − 1 Law (see, e.g.,
Theorem 8.4.6 in Dudley (2018)). Q.E.D.

THEOREM 4′: If signals are finite and subjectively uninformative and outcomes are subjec-
tively exogenous then any uniformly strict BN-E σ is positively attractive.

PROOF: Under the assumptions of the theorem, Θ ⊆ �(�(Y)). Consider a uniformly
strict BN-E σ . By Lemma 10, �(Θ̂(σ)) is compact. Similarly, since S is compact and
σ is the unique optimal best reply strategy at the beliefs in �(Θ̂(σ)), Lemma 3 can be
extended to guarantee that there exists ε̂ ≥ 0 such that if

ν
(
Mε̂

(
p∗

σ

))≥ (1 − ε̂)

then the myopic best reply to ν is σ . By the same argument of the proof of Theorem 2,
there exist an l ∈ (0�1) and ε′ ∈ (0� ε̂), such that if p ∈ Mε′(p∗

σ) and p′ /∈ Mε̂(p
∗
σ) then

fl(p�p
′)≥ 1.
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Using the Maximum Theorem again we can find a sequence of outcome realizations yt

such that if p̂t is the corresponding empirical frequency, it is sufficiently close to p∗
σ to

have

Mε̂/2(p̂t)⊆Mε̂

(
p∗

σ

)
�

Therefore by Lemma 8, there exists a time period T such that for all t ′ > T , if the
empirical frequency p̂t′ = p̂t , ν(Mε̂(p

∗
σ)) ≥ (1 − ε̂). Notice that replicating the outcome

realizations yt sufficiently many time yields a sequence yt′ such that the empirical fre-
quency p̂t′ = p̂t and t ′ > T . Since suppp∗

a�s = Y for all (a� s) ∈ A × S, this sequence of
outcomes has positive probability, and after it occurs the agent plays always σ with posi-
tive probability. Q.E.D.

COROLLARY 4: Let α be a strongly uniform mixed BN-E in a problem (A�Y�p∗�u�Θ).
There is a sequence of strategies (σn)n∈N such that each σn is a uniformly stable BN-E of a
(1/n) perturbation of (A�Y�p∗�u�Θ) and

lim
n→∞

ζ
({
s : σn(s)= a

})= α(a) ∀a ∈ A�

If (A�Y�p∗�u�Θ) is subjectively exogenous and p∗ has full support, the σn can be chosen to
be also positively attractive.

PROOF: Let α be a mixed BN-E in a problem (A�Y�p∗�u�Θ). For every n ∈ N, let
S = suppα, ζ(a)= α(a), and ũ(a� y� s)= u(a� y)+ 1

n
1a=s, and let p̃∗, Θ̃ be as given in part

(ii) and (iii) of the definition of a perturbed environment. Also denote as � the maps that
associates each element of Θ̃ with the element of Θ it replicates.

Consider the strategy σ(a)= a. We have that for every p ∈Θ∑
s∈S

ζ(s)H
(
p̂∗

σ(s)�s��(p)σ(s)�s
)=∑

a∈A
α(a)p∗

a(y) logpa(y)

by (ii) and (iii) of the definition of a perturbed problem. Therefore, Θ̂(σ)=�(Θ̂(α)). Fix
a signal s ∈ S, and consider any action a′ 
= σ(s). Since α is a strongly uniform BN-E

Epσ(s)

[
u
(
σ(s)� y

)]≥ Epa′
[
u
(
a′� y
)] ∀p ∈ Θ(α)

and by definition of ũ

Epσ(s)

[
ũ
(
σ(s)� y� s

)]≥ Epa′
[
ũ
(
a′� y� s

)]+ 1/n ∀p ∈ Θ(α)

proving that σ is a strictly uniform BN-E. By construction

ζ
({
s : σn(s)= a

})= α(a) ∀a ∈A�

Then the result follows by Theorems 2′ and 4′. Q.E.D.

B.4. Additional Examples

EXAMPLE 9—A Uniformly Strict BN-E That Isn’t Positively Attractive: In this example
the prior has support {p1�p2�p3}. Here a = 3 is the only BN-E and is uniformly strict.
However, if the agent takes an action a ∈ {1�2} then the subjective likelihood assigned to
p3 goes down and thus play never converges to a = 3 if the prior assigns sufficiently low
probability to p3. The details are in the following table:
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a a= 1 a= 2 a= 3

y 1 2 3 1 2 3 1 2 3 H(p∗
a� ·)

u 1 0 0 0 1 0 0 0 1 a= 1 a = 2 a= 3 Am(δ(·))

p∗ 0.1 0.9 0 0.9 0.1 0 0.1 0.1 0.8
p1 0.5 0.3 0.2 0.5 0.3 0.2 0.5 0.3 0.2 1.15 0.74 2.03 a= 1
p2 0.3 0.5 0.2 0.3 0.5 0.2 0.3 0.5 0.2 0.74 1.15 2.03 a= 2
p3 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.8 2.3 2.3 0.64 a= 3

EXAMPLE 10—Signal Neglect: A seller in a physical marketplace can hire one shop as-
sistant to work for the day aH or not hire anyone aN . The outcome y ∈ Y is the percentage
of consumers in the marketplace that buy the good, with two possibilities, yh > yl.

Before choosing whether to hire, the agent observes the number of people at the mar-
ket that day s ∈ {sH� sL}, with sH > sL, ζ(sL) = 9/10. The payoff function is u(a� y� s) =
sy − 1a=aH . The seller realizes that the signal is payoff relevant, but falsely believes that it
does not provide any information about the outcome. The agent is uncertain about how
useful it is to hire a shop assistant, and in particular they do not know whether hiring is
ineffective, that is, for all a ∈ A, y ∈ Y , pa(y) = 1/2, or if it is not, that is, p′

aH
(yH) = 3/4

and p′
aN
(yH)= 1/4.

The fraction of consumers who buy varies with the signal: On days with fewer con-
sumers, the ones that actually come to the market are more likely to purchase the good.
Formally:

p∗
sH�aH

(yH)= 1/2� p∗
sH�aN

(yH)= 1/4� p∗
sL�aH

(yH)= 3/4� p∗
sL�aN

(yH)= 1/2�

Let sL(yh−yl)

4 < 1 < sH(yh−yl)

4 , so that it is not objectively optimal to hire a shop assistant
after sL, and it is objectively optimal to hire an assistant after sH . The following argument
shows that the only BN-E is that the shop assistant is never hired: If the agent followed
the objectively optimal strategy, they would observe the same frequency of sales in days
with s = sH and with the shop assistant hired as in days with s = sL and without the shop
assistant: p∗

sH�aH
(yH)= 1/2 = p∗

sL�aN
(yH). This holds because the shop assistant offsets the

lower per-customer demand on days with high attendance. However, this observation
supports the belief that the shop assistant is useless. Since the myopic best reply to δp is
to never hire the shop assistant, by Theorem 1′ this suboptimal action is the only possible
limit action.

EXAMPLE 11—A Uniform BN-E That Is Not Stable: There are two actions, a and b,
two outcomes, 0 and 1, and two action-dependent outcome distributions, Θ = {p�p′}.
The utility of the agent is equal to the outcome, that is, u(a� y) = y , and pa(1) = p′

a(1) =
p∗

a(1)= 1
2 , pb(1)= 1

2 <p′
b(1)= p∗

b(1)= 3
4 . Here, a is a myopic best reply to the belief δp,

so it is a BN-E. Moreover, there is a unique class of observationally equivalent outcome
distributions under a: Ea(p) = Θ, so a is a uniform BN-E. However, it is not stable: un-
der every optimal policy of the agent and starting from every belief that assigns positive
probability to p′, the agent will play action b forever with probability 1.
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