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THROUGHOUT, GIVEN A RANDOM variable (or vector) x defined on a probability space
(F�F�Q), the image measure induced by x is denoted by Q ◦x. Furthermore, ⇒ denotes
weak convergence.

APPENDIX A: ADDITIONAL MATERIAL FOR SECTION 1.1

The following lemma shows that the test φn considered in Section 1.1 is consistent
against θn if and only if d(n)−1/2n‖θn‖2

2 → ∞. The result is probably well known, but
difficult to pinpoint in the literature in this form; therefore, we provide a direct argument
for completeness and for the convenience of the reader.

LEMMA A.1: Let α ∈ (0�1), let d(n) diverge to ∞, and let X1� � � � �Xn be i.i.d. Nd(n)(θ�
Id(n)). Then the test φn, which rejects the null hypothesis H0 : θ= 0 if the squared ‖ · ‖2 norm
of Zn = n−1/2

∑n

i=1Xi exceeds the 1 − α quantile of a χ2 distribution with d(n) degrees of
freedom, has (i) size α for every n ∈ N and (ii) is consistent against a sequence θn, where
θn ∈ Rd(n) for every n, if and only if

ρn := d(n)−1/2n‖θn‖2
2 → ∞� (A.1)
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PROOF: Part (i) is trivial, because under the null ‖Zn‖2
2 is χ2 distributed with d(n) de-

grees of freedom.
Consider now part (ii). Denote the 1−α quantile of a χ2 distribution with d(n) degrees

of freedom by κn. Observe that φn rejects if and only if
(‖Zn‖2

2 − d(n))/√2d(n) >
(
κn − d(n))/√2d(n)� (A.2)

It follows immediately from the central limit theorem that under the null, (‖Zn‖2
2 −

d(n))/
√

2d(n)⇒N(0�1). Consequently, we obtain from part (i) that (κn−d(n))/
√

2d(n)
must converge to the 1 − α quantile η, say, of a standard normal distribution. Let
θn �= 0 be a sequence of alternatives. Writing ‖Zn‖2

2 = ‖Gn‖2
2 + √

n2G′
nθn + n‖θn‖2

2 with
Gn :=Zn − n1/2θn ∼Nd(n)(0� Id(n)), we have

(‖Zn‖2
2 − d(n))/√2d(n)= (‖Gn‖2

2 − d(n))/√2d(n)

+ (√
n2G′

nθn + n‖θn‖2
2

)
/
√

2d(n)� (A.3)

The distribution of the first summand to the right in the previous display does not depend
on θn and converges weakly to N(0�1); the second summand to the right is N(μn�σ2

n)
distributed with

μn := 2−1/2ρn and σ2
n := 2

d1/2(n)
ρn�

To prove sufficiency, suppose that θn satisfies (A.1). Obviously, φn rejects if and only if

ρ−1
n

(‖Zn‖2
2 − d(n))/√2d(n) > ρ−1

n

(
κn − d(n))/√2d(n)� (A.4)

Since ρn → ∞ and because the sequence (κn−d(n))/
√

2d(n)→ η, as pointed out above,
the right hand side converges to 0. From (A.3) and the observations succeeding it, we con-
clude that the sequence of random variables to the left in (A.4) converges in probability
to 2−1/2. This, together with the Portmanteau theorem, implies that the test under consid-
eration is consistent against θn. Next, we establish necessity. Suppose ρn converges to ρ,
say, along a subsequence n′. Then N(μn�σ2

n)⇒ δ2−1/2ρ along n′, and by Slutzky’s lemma
and (A.3), the sequence of random variables to the left in (A.2) converges weakly to
N(2−1/2ρ�1) along n′. From (κn − d(n))/

√
2d(n)→ η and the Portmanteau theorem it

then immediately follows that the sequence of tests under consideration is not consistent
against such a sequence of alternatives θn. Q.E.D.

APPENDIX B: PROOF OF THEOREM 4.1

The statement trivially holds for α = 1. Let α ∈ (0�1). Suppose we could construct
a sequence of tests ϕ∗

n : Ωn�d → [0�1] with the property that for some ε > 0 such that
B(ε)= {z ∈Rd : ‖z‖2 < ε}�Θd (recall that Θd is assumed throughout to contain an open
neighborhood of the origin), En�d�0(ϕ∗

n)→ α holds, and for any sequence θn ∈ B(ε) such
that n1/2‖θn‖2 → ∞, it holds that En�d�θn(ϕ∗

n)→ 1. Given such a sequence of tests, we could
define tests ϕn = min(ϕ∗

n + ψn�d(ε)�1) (cf. Assumption 1), and note that ϕn has asymp-
totic size α, and has the property that En�d�θn(ϕn) → 1 for any sequence θn ∈ Θd such
that n1/2‖θn‖2 → ∞. But tests with the latter property are certainly not asymptotically en-
hanceable, because tests νn : Ωn�d → [0�1] can satisfy En�d�0(νn)→ 0 and En�d�θn(νn)→ 1
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only if θn ∈Θd satisfies n1/2‖θn‖2 → ∞. To see this, use Remark 3.1 and recall that con-
vergence of n1/2‖θn‖2 along a subsequence n′ together with the maintained i.i.d. and L2-
differentiability assumption implies contiguity of Pn′�d�θn′ w.r.t. Pn′�d�0 (this can be verified
easily using, for example, results in Section 1.5 of Liese and Miescke (2008) and Theorem
6.26 in the same reference). It hence remains to construct such a sequence ϕ∗

n. To this
end, denote by L : Ω→ Rd (measurable) an L2-derivative of {Pd�θ : θ ∈ Θd} at 0. In the
following argument, we denote expectation w.r.t. Pd�θ by Ed�θ. By assumption, the informa-
tion matrix Ed�0(LL′)= Id is positive definite. Let C > 0 and define LC = L1{‖L‖2 ≤ C}.
Since Ed�0(LCL′) and M(C) = Ed�0((LC − Ed�0(LC))(LC − Ed�0(LC))′) converge to Id as
C → ∞ (by the dominated convergence theorem and Ed�0(L) = 0; for the latter, see
Proposition 1.110 in Liese and Miescke (2008)), there exists a C∗ such that Ed�0(LC∗L′)
and M :=M(C∗) are nonsingular. Now, by the L2-differentiability assumption (again us-
ing Proposition 1.110 in Liese and Miescke (2008)), there exists an ε > 0 and a c > 0 such
that B(ε)�Θd and such that

∥∥Ed�θ(LC∗)−Ed�0(LC∗)
∥∥

2
≥ c‖θ‖2 holds for every θ ∈ B(ε)� (B.1)

Define on
Śn

i=1Ω the functions Zn(θ) := n−1/2
∑n

i=1(LC∗(ωi�n) − Ed�θ(LC∗)) for θ ∈ Θd ,
where ωi�n denotes the ith coordinate projection on

Śn

i=1Ω, and set Zn(0)=Zn. It is easy
to verify that Pn�d�θn ◦Zn(θn) is tight for any sequence θn ∈Θd and that, by the central limit
theorem, Pn�d�0 ◦ Zn ⇒Nd(0�M). Finally, let ϕ∗

n :Ωn�d → [0�1] be the indicator function
of the set {‖Zn‖2 ≥Qα}, whereQα denotes the 1−α quantile of the distribution of the Eu-
clidean norm of an Nd(0�M) distributed random vector. By construction, En�d�0(ϕ∗

n)→ α.
It remains to verify En�d�θn(ϕ

∗
n)→ 1 for any sequence θn ∈ B(ε) such that n1/2‖θn‖2 → ∞.

Let θn be such a sequence. By the triangle inequality,

‖Zn‖2 ≥ n1/2
∥∥Ed�θn(LC∗)−Ed�0(LC∗)

∥∥
2
− ∥∥Zn(θn)∥∥2

�

Hence, 1 − En�d�θn(ϕ
∗
n) is not greater (cf. (B.1)) than Pn�d�θn(cn

1/2‖θn‖2 − Qα ≤
‖Zn(θn)‖2) → 0, the convergence following from Pn�d�θn ◦ Zn(θn) being tight, and
cn1/2‖θn‖2 → ∞. Q.E.D.

APPENDIX C: THEOREM C.1

In this section we present our second result concerning asymptotic enhanceability in
the fixed-dimensional case, which was already referred to in Section 4.

THEOREM C.1: Let d(n)≡ d for some d ∈ N and let ‖ · ‖ be a norm on Rd . Assume that
a sequence of estimators θ̂n :Ωn�d →Θd (measurable) satisfies the following conditions:

(i) Uniform consistency: For every ε > 0, supθ∈Θd Pn�d�θ(‖θ̂n − θ‖> ε)→ 0.
(ii) Contiguity rate: There exists a nondecreasing sequence sn > 0 diverging to ∞ such that

for every sequence θn ∈ Θd such that sn‖θn‖ is bounded, the sequence Pn�d�θn is contiguous
w.r.t. Pn�d�0.

(iii) Local uniform tightness: There exists a δ > 0 such that for every sequence θn in Θd

satisfying ‖θn‖ ≤ δ, the sequence of (image) measures Pn�d�θn ◦ [sn(θ̂n − θn)] is tight.
Then, for every α ∈ (0�1], there exists a C = C(α) ≥ 0 such that the sequence of tests ϕn =
1{sn‖θ̂‖ ≥ C} is not asymptotically enhanceable and has asymptotic size not greater than α.
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PROOF: If α = 1, set C = 0 and note that ϕn := 1{sn‖θ̂n‖ ≥ 0} ≡ 1, which is obvi-
ously not asymptotically enhanceable and has size 1. Next, consider the case where
α ∈ (0�1). The existence of a C ensuring the size requirement follows immediately from
the local tightness assumption applied to the sequence θn = 0. It remains to show that
ϕn := 1{sn‖θ̂n‖ ≥ C} is not asymptotically enhanceable. We claim that it suffices to verify
that if sn‖θn‖ diverges to ∞ for θn ∈ Θd , then En�d�θn(ϕn)→ 1. This claim easily follows
from the contiguity rate assumption, together with Remark 3.1. Now let sn‖θn‖ diverge
to ∞. To show that En�d�θn(ϕn) → 1, it suffices to verify that for every subsequence n′

of n there exists a subsequence n′′ of n′ along which En�d�θn(ϕn) → 1. Let n′ be a sub-
sequence of n. Then (i) there exists a subsequence n′′ of n′ such that ‖θn′′ ‖ < δ holds
for every n′′ or (ii) there exists a subsequence n′′ of n′ such that ‖θn′′ ‖ ≥ δ holds for ev-
ery n′′. Consider first case (i). By the local uniform tightness assumption, the sequence
of image measures Pn′′�d�θn′′ ◦ [sn′′(θ̂n′′ − θn′′)] is then tight. Let ε ∈ (0�1) and choose
K > 0 such that Pn′′�d�θn′′ ◦ [sn′′(θ̂n′′ − θn′′)](B̄‖�‖(K)) ≥ 1 − ε holds for every n′′, where
B̄‖�‖(K) := {z ∈ Rd : ‖z‖ ≤K}. We write

En′′�d�θn′′ (ϕn′′)= Pn′′�d�θn′′ ◦ [
sn′′(θ̂n′′ − θn′′)

]({
z ∈Rd : ‖z+ sn′′θn′′ ‖ ≥ C})

and note that {z ∈ Rd : ‖z+ sn′′θn′′ ‖ ≥ C} contains B̄‖�‖(K) for all n′′ large enough, recalling
that sn‖θn‖ → ∞. Hence, the expectation in the previous display is not smaller than 1 − ε
for n′′ large enough. Since ε was arbitrary, it follows that En�d�θn(ϕn)→ 1 along n′′. Next
we consider the case (ii). In this case, we write

En′′�d�θn′′ (ϕn′′)= Pn′′�d�θn′′
(‖θ̂n′′ ‖ ≥ s−1

n′′ C
) ≥ Pn′′�d�θn′′

(‖θ̂n′′ ‖ ≥ s−1
n′′ C�‖θ̂n′′ − θn′′ ‖< δ/2)

�

For n′′ large (since sn increases to ∞ and ‖θn′′ ‖ ≥ δ for every n′′), the right hand side equals
Pn′′�d�θn′′ (‖θ̂n′′ − θn′′ ‖< δ/2), which converges to 1 by the uniform consistency assumption.

Q.E.D.

The contiguity rate in Theorem C.1 is often given by sn = √
n. For an extensive dis-

cussion of primitive conditions sufficient for the consistency and tightness assumptions
imposed in the previous result, we refer the reader to Sections 4 and 5 in Chapter 1
in Ibragimov and Has’minskii (1981), respectively; cf. also pp. 144–146 in van der Vaart
(2000) and Section 5.4 in Pfanzagl (2017). We also emphasize that in the i.i.d. case, the lo-
cal tightness assumption required in Theorem C.1 is satisfied by the maximum likelihood
estimator (MLE) under standard regularity conditions including smoothness and integra-
bility properties of the log-likelihood function over a neighborhood of 0; cf., for example,
the discussion at the end of Section 7 in Chapter 1 in Ibragimov and Has’minskii (1981)
or the results in Section 7.5 in Pfanzagl (1994) (these regularity conditions, however, are
stronger than the L2-differentiability condition at the point 0 required by Theorem 4.1;
thus Theorem C.1 is not more general than Theorem 4.1 in this respect). In the context
of our running example, sn = √

n and the ordinary least squares (OLS) estimator satisfies
conditions (i) and (iii) in Theorem C.1 under standard assumptions on the distribution F
of the errors and on the regressors.

APPENDIX D: PROOF OF PROPOSITION 5.1

The proof is divided into three steps. First we construct a sequence p(n). Then we
verify that the first and second parts of Proposition 5.1 are satisfied for this sequence.
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D.1. Step 1: Construction of the Sequence p(n)

Assumption 2 asserts (cf. Definition 6.63 of Liese and Miescke (2008)) that for ev-
ery fixed d ∈ N, there exists a sequence of measurable functions (a “central sequence”)
Zn�d :Ωn�d → Rd and a (positive definite and symmetric) information matrix Id , such that
Pn�d�0 ◦ Zn ⇒ Nd(0� Id) (as n→ ∞) and such that for every h ∈ Rd , the (eventually well
defined) log-likelihood ratio of Pn�d�s−1

n h w.r.t. Pn�d�0 equals h′Zn�d − h′Idh/2 + rn�d(h) for
a measurable sequence rn�d(h) : Ωn�d → R̄ that converges to 0 in Pn�d�0 probability (as
n→ ∞). By Theorem 6.76 in Liese and Miescke (2008), the following statement holds for
every fixed d ∈ N: there exists a sequence c(n�d) > 0 satisfying c(n�d)→ ∞ as n→ ∞,
such that the family of probability measures {Qn�d�h : h ∈Hn�d} on (Ωn�d�An�d) defined via

dQn�d�h

dPn�d�0
= exp

(
h′Z∗

n�d −Kn�d(h)
)
� (D.1)

where Kn�d(h) = log(
∫
Ωn�d

exp(h′Z∗
n�d)dPn�d�0) and Z∗

n�d = Zn�d1{‖Zn�d‖2 ≤ c(n�d)}, satis-
fies

lim
n→∞

∣∣Kn�d(h)− 0�5h′Idh
∣∣ = 0 for every h ∈ Rd (D.2)

and

lim
n→∞

d1(Pn�d�s−1
n h�Qn�d�h)= 0 for every h ∈ Rd� (D.3)

Here d1 denotes the total variation distance; cf. Definition 2.1 of Strasser (1985). Further-
more (see, e.g., Theorem 6.72 in Liese and Miescke (2008)), for every fixed d ∈ N and as
n→ ∞,

Pn�d�s−1
n h ◦Zn�d ⇒Nd(Idh� Id) for every h ∈Rd� (D.4)

Next define the sequence

ai = max
([

0�5 log(i)
]1/2
�1

)
for i ∈ N�

which (i) is positive, (ii) diverges to ∞, and satisfies (iii) i−1 exp(a2
i )→ 0. Now let H̃d =

{0� adv1�d� � � � � advd�d} andHd = a−2
d H̃d \ {0}. ByHn�d ↑Rd (as n→ ∞) and by (D.2), (D.3),

and (D.4) (and the continuous mapping theorem together with e′Ide = a−2
d for every e ∈

Hd), for every d ∈ N, there exists an N(d) ∈N such that n≥N(d) implies (first)

H̃d + H̃d ⊆Hn�d�

where, for A⊆ Rd , the set A+A denotes {a+ b : a ∈A�b ∈A}, and (second)

max
h∈(H̃d+H̃d)

∣∣Kn�d(h)− 0�5h′Idh
∣∣ + max

h∈H̃d
d1(Pn�d�s−1

n h�Qn�d�h)

+ max
(h�e)∈H̃d×Hd

dw
(
Pn�d�s−1

n h ◦ (
e′Zn�d

)
�N1

(
e′Idh�a−2

d

)) ≤ d−1�

Here dw(·� ·) denotes a metric on the set of probability measures on the Borel sets of R
that generates the topology of weak convergence; cf. Dudley (2002, p. 393) for specific
examples. Note also that we can (and do) choose N(1) < N(2) < · · · . Obviously, there
exists a nondecreasing unbounded sequence p(n) in N that satisfies N(p(n)) ≤ n for
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every n ≥ N(1) =:M . Hence, the two previous displays still hold for n ≥M when d is
replaced by p(n). Moreover, the two previous displays also hold for n ≥ M when d is
replaced by any sequence of nondecreasing natural numbers d(n) ≤ p(n). This implies
that for any such sequence d(n) that is also unbounded, we have

H̃d(n) + H̃d(n) ⊆Hn�d(n) for n≥M (D.5)

and that (as n→ ∞)

max
h∈(H̃d(n)+H̃d(n))

∣∣Kn�d(n)(h)− 0�5h′Id(n)h
∣∣ → 0� (D.6)

max
h∈H̃d(n)

d1(Pn�d(n)�s−1
n h�Qn�d(n)�h)→ 0� (D.7)

and

max
(h�e)∈H̃d(n)×Hd(n)

dw
(
Pn�d(n)�s−1

n h ◦ (
e′Zn�d(n)

)
�N1

(
e′Id(n)h�a−2

d(n)

)) → 0� (D.8)

We shall now verify that the sequence p(n) and the natural number M defined above
have the required properties. Let d(n)≤ p(n) be an unbounded nondecreasing sequence
of natural numbers.

D.2. Step 2: Verification of Part (i)

The statement in the first display in Proposition 5.1 follows from (D.5), which im-
plies H̃d(n) ⊆ Hn�d(n) for n ≥ M (cf. also Assumption 2). Now let ϕn : Ωn�d(n) → [0�1]
be a sequence of tests. For h ∈ Hn�d(n), abbreviate Pn�d(n)�s−1

n h = Pn�h and Qn�d(n)�h = Qn�h,
and denote expectation w.r.t. Pn�h and Qn�h by EPn�h and EQn�h, respectively. Furthermore,
for n ≥M , define the probability measures Pn = 1

d(n)

∑
h∈H̃d(n)\{0} Pn�h and, similarly, Qn =

1
d(n)

∑
h∈H̃d(n)\{0} Qn�h. Since for n≥M ,

∣∣∣∣En�d(n)�0(ϕn)− d(n)−1
∑

h∈H̃n\{0}
EPn�h(ϕn)

∣∣∣∣ ≤ d1(Pn�0�Pn)

(cf. Strasser (1985, Lemma 2.3)), it suffices to verify that d1(Pn�0�Pn)→ 0. From (D.7),
we see that it suffices to show that d1(Qn�0�Qn) → 0. Since Qn � Qn�0 = Pn�0 by (D.1),
d2

1(Qn�0�Qn) equals (e.g., Strasser (1985, Lemma 2.4))

(
1
2
EQn�0

∣∣∣∣ dQn

dQn�0
− 1

∣∣∣∣
)2

≤ EQn�0

(
dQn

dQn�0
− 1

)2

= EPn�0

(
dQn

dPn�0

)2

− 1�

the first inequality following from Jensen’s inequality.
It remains to verify that lim supn→∞ EPn�0(

dQn
dPn�0

)2 ≤ 1. Let ad(n) = a(n), kn�i =
Kn�d(n)(a(n)vi�d(n)), kn�i�j = Kn�d(n)(a(n)vi�d(n) + a(n)vj�d(n)), and z∗

n�i = v′
i�d(n)Z

∗
n�d(n). Let

n≥M . From (D.1), we see that

dQn

dPn�0
= d(n)−1

d(n)∑
i=1

exp
(
a(n)z∗

n�i − kn�i
)
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and

EPn�0
(
exp

(
a(n)z∗

n�i − kn�i
)

exp
(
a(n)z∗

n�j − kn�j
)) = exp(kn�i�j − kn�i − kn�j)�

Thus, EPn�0(
dQn
dPn�0

)2 is not greater than the sum of

d(n)−1 exp
(
a2(n)

)
max

1≤i≤d(n)
exp

(
kn�i�i − 2kn�i − a2(n)

)
and

max
1≤i<j≤d(n)

exp(kn�i�j − kn�i − kn�j)�

But the first sequence converges to 0 and the second converges to 1. This follows from
i−1 exp(a2

i )→ 0, and since the sequences max1≤i≤d(n) |kn�i − 0�5a2(n)|, max1≤i≤d(n) |kn�i�i −
2a2(n)|, and max1≤i<j≤d(n) |kn�i�j − a2(n)| all converge to 0 by (D.6).

D.3. Step 3: Verification of Part (ii)

Given a sequence 1 ≤ i(n) ≤ d(n), define tn = a(n)−1v′
i(n)�d(n)Zn�d(n) and let νn = 1{tn ≥

1/2}. By definition (using the same notation as in Step 2),

EPn�0(νn)= Pn�0 ◦ tn
([0�5�∞)

)
� (D.9)

Since 0 ∈ H̃d(n) and a(n)−1vi(n)�d(n) ∈Hd(n), it follows from (D.8) that

dw
(
Pn�0 ◦ tn�N1

(
0� a(n)−2

)) → 0�

But a(n) → ∞ thus implies (via the triangle inequality, together with dw continuity
of (μ�σ2) �→ N1(μ�σ

2) on R × [0�∞), N1(μ�0) being interpreted as δμ, i.e., point
mass at μ) that Pn�0 ◦ tn ⇒ δ0. From the Portmanteau theorem it hence follows that
the sequence in (D.9) converges to δ0([0�5�∞)) = 0. Concerning asymptotic power,
let vn = a(n)vi(n)�d(n). Note that vn ∈ H̃d(n), a(n)−1vi(n)�d(n) ∈ Hd(n), and (D.8) implies
dw(Pn�vn ◦ tn�N1(1� a(n)−2))→ 0; hence, Pn�vn ◦ tn ⇒ δ1 and, thus, EPn�vn(νn)= Pn�vn ◦ tn([0�5�∞))→ 1. Q.E.D.

APPENDIX E: PROOF OF THEOREM 5.2

To prove Theorem 5.2, choose for each d ∈N an arbitrary orthogonal basis as in Propo-
sition 5.1 to obtain a corresponding sequence p(n), and let d(n)≤ p(n) be nondecreasing
and unbounded. Let the sequence of tests ϕn :Ωn�d(n) → [0�1] be of asymptotic size α< 1,
that is, lim supn→∞ En�d(n)�0(ϕn) = α < 1. According to Definition 3.1, we need to show
that lim infn→∞ En�d(n)�θn(ϕn) < 1 for a sequence θn ∈ Θd(n) for which a sequence of tests
νn :Ωn�d(n) → [0�1] exists such that

lim
n→∞

En�d(n)�0(νn)= 0 and lim
n→∞

En�d(n)�θn(νn)= 1� (E.1)

But part (i) of Proposition 5.1 implies the existence of a sequence 1 ≤ i(n) ≤ d(n) such
that

lim sup
n→∞

En�d(n)�θi(n)�n(ϕn)≤ α< 1�

and part (ii) of Proposition 5.1 verifies the existence of a sequence of tests νn as in (E.1)
for θn = θi(n)�n. Q.E.D.
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Note that the above proof actually exploits a power enhancement component for a
sequence θn against which ϕn has asymptotic power not only smaller than 1, but in fact at
most α.

APPENDIX F: VERIFICATION OF ASSUMPTION 3 FOR THE RANDOM COVARIATES CASE
IN OUR RUNNING EXAMPLE

We show that Assumption 3 is satisfied for F(θ)= (θ′�0)′ ∈ Rd2 . For convenience, de-
note a generic element of Ωn�d = Śn

i=1(R × Rd) by zd = (y�x(1)� � � � � x(d)) for y�x(1)� � � � �
x(d) ∈ Rn. Let d1 < d2 and n be natural numbers. Consider the experiment(

Ωn�d2�An�d2� {Pn�d2�F(θ) : θ ∈Θd1}
)
� (F.1)

define the map T : Ωn�d2 → Ωn�d1 as T(zd2) = zd1 , and note that T is sufficient for (F.1)
(e.g., Theorem 20.9 in Strasser (1985)). Note further that Pn�d2�F(θ) ◦ T = Pn�d1�θ holds for
every θ ∈ Θd1 under our additional assumption that Kd1 = Kd1�d2 . That Assumption 3 is
satisfied now follows from Corollaries 22.4 and 22.6 in Strasser (1985).

APPENDIX G: PROOF OF THEOREM 5.4

G.1. A Weaker Version of Assumption 3

Note that Assumption 3 imposes restrictions that hold for every n ∈ N. Since asymp-
totic enhanceability concerns large-sample properties of tests, it is not surprising that a
(weaker) asymptotic version of Assumption 3 suffices for establishing the same conclusion
as in Theorem 5.4. The asymptotic (and weaker) version of Assumption 3 we subsequently
work with is as follows.

ASSUMPTION G.1: For all pairs of natural numbers d1 < d2, there exists a function
F = Fd1�d2 from Θd1 to Θd2 satisfying F(0) = 0, and such that for any two nondecreasing
unbounded sequences r(n) and d(n) in N such that r(n) < d(n), the following statements
hold, abbreviating Fr(n)�d(n) by Fn:

(i) For every sequence of tests ϕn : Ωn�d(n) → [0�1], there exists a sequence of tests ϕ′
n :

Ωn�r(n) → [0�1] such that

sup
θ∈Θr(n)

∣∣En�d(n)�Fn(θ)(ϕn)−En�r(n)�θ
(
ϕ′
n

)∣∣ → 0 as n→ ∞� (G.1)

(ii) For every sequence of tests ϕ′
n : Ωn�r(n) → [0�1], there exists a sequence of tests ϕn :

Ωn�d(n) → [0�1] such that

sup
θ∈Θr(n)

∣∣En�r(n)�θ(ϕ′
n

) −En�d(n)�Fn(θ)(ϕn)
∣∣ → 0 as n→ ∞�

G.2. Proof of Theorem 5.4

We shall now prove the conclusion of Theorem 5.4 under slightly weaker conditions by
replacing Assumption 3 by Assumption G.1. Theorem 5.4 then follows immediately as a
corollary.

THEOREM G.1: Suppose the double array of experiments (2.1) satisfies Assumptions 2 and
G.1. Then, for every nondecreasing and unbounded sequence d(n) in N, every sequence of
tests with asymptotic size smaller than 1 is asymptotically enhanceable.
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PROOF: Let d(n) be a nondecreasing and unbounded sequence in N, and let ϕn :
Ωn�d(n) → [0�1] be of asymptotic size α < 1. We apply Theorem 5.2 to obtain a sequence
p(n) as in that theorem. Let r(n)≡ min(p(n)�d(n)− 1), a nondecreasing unbounded se-
quence that eventually satisfies r(n) ∈ N and r(n) < d(n). By part (i) of Assumption G.1,
there exists a sequence of tests ϕ′

n : Ωn�r(n) → [0�1] such that (G.1) holds. In particular,
ϕ′
n also has asymptotic size α, recalling that Fn(0)= 0 holds by assumption. Therefore, by

Theorem 5.2 (applied with d(n)≡ r(n)), ϕ′
n is asymptotically enhanceable, that is, there

exist tests ν′
n :Ωn�r(n) → [0�1] and a sequence θn ∈Θr(n) such that En�r(n)�0(ν′

n)→ 0 and

1 = lim
n→∞

En�r(n)�θn
(
ν′
n

)
> lim inf

n→∞
En�r(n)�θn

(
ϕ′
n

) = lim inf
n→∞

En�d(n)�Fn(θn)(ϕn)�

the second equality following from (G.1). By part (ii) of Assumption G.1, and again using
Fn(0)= 0, tests νn :Ωn�d(n) → [0�1] exist such that En�d(n)�0(νn)→ 0 and En�d(n)�Fn(θn)(νn)→
1. Hence, ϕn is asymptotically enhanceable. Q.E.D.
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