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This appendix contains details on estimation and computation in Section S1, an ex-
ercise on data simulated from a theoretical sorting model in Section S2, and various
extensions in Section S3. Tables and figures may be found at the end of the document.

S1. ESTIMATION AND COMPUTATION

IN THIS SECTION, we provide details on our computation procedure, and on the estimation
of persistence parameters in the dynamic model.

S1.1. Exploration of the Likelihood Function

Given the presence of local optima in our finite mixture model, the choice of initial
conditions and exploration strategy is important. Here, we describe how we explore the
likelihood function to obtain our baseline estimates of log-earnings in the static model,
based on job movers. Our estimates—and estimates within the bootstrap—are based on
50 starting values.

To obtain a starting value, we first draw L wages from a Gaussian distribution with
mean equal the mean of log-earnings in period 1 and standard deviation equal twice the
standard deviation of log-earnings in the same period. Using the EM algorithm, holding
mean log-earnings fixed across firms, we then compute estimates of proportions of worker
types and type and class-specific log-earnings variances. We use these estimates as start-
ing values for another preliminary estimation where mean log-earnings are held constant
across firms, and estimated jointly with log-earnings variances and type proportions. We
then use the estimates obtained with this second estimation as initial conditions for our
estimation based on job movers. The resulting parameter estimates are then used in the
final estimation step based on job stayers.

Graph Connectedness

Our identification results emphasize the importance of connectedness, through the
presence of connecting cycles for each worker type. The mobility patterns of workers
define a graph across firm classes. A measure of connectedness of a graph is the small-
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FIGURE S1.—Likelihood and connectedness of local optima. Notes: The dots show the likelihood values
(x-axis) and connectedness measures (y-axis) corresponding to all local optima of the part of the likelihood
function corresponding to job movers, obtained when starting the algorithm at each of the 50 starting values.
The triangles show the ten best likelihood values. The stars show our selected values.

est nonzero eigenvalue of its normalized Laplacian, as recently studied in Jochmans and
Weidner (2017).1 We observed that the local optima of the likelihood function tended to
vary substantially in terms of their connectedness, some of the solutions having types with
very low connectedness. To discriminate between estimates that have similar likelihood
values, we favor estimates with higher connectedness. Our main estimates are based on
the best connected solution out of the ones yielding the 10 highest likelihood values. This
strategy mainly improves stability across bootstrap repetitions and has little impact on the
main estimates.

In the left panel of Figure S1, we plot the likelihood value against the connectedness
measure for the static model. In this case, the solutions yielding the highest likelihood
values (depicted as triangles in the figure) coincide with the one showing highest con-
nectedness (the star). In the right panel, we show the same relationship for the dynamic
model. In this case, there is more uncertainty about the exact location of the highest like-
lihood value. We see that our solution (the star) not only has high likelihood but also high
connectedness. In both cases, the solutions using the maximum likelihood estimates are
very similar to the ones we report.

S1.2. Estimation of ρ4|3 and ρ1|2 in the Dynamic Model

Consider the dynamic model under the specification described in Section 4.2. Note that
the unconditional means of log-earnings of job stayers of type α in class k are: μ1kα +
ρ1|2μs2kα, μs2kα, μs3kα, and μ4kα + ρ4|3μs3kα, respectively. We make the following assumption,
for all worker types α, α′ and all firm classes k:

μs2kα′ −μs2kα = μ1kα′ + ρ1|2μs2kα′ − (
μ1kα + ρ1|2μs2kα

)
= μs3kα′ −μs3kα
= μ4kα′ + ρ4|3μs3kα′ − (

μ4kα + ρ4|3μs3kα
)
� (S1)

1Empirically, we measure connectedness as the minimum, across all worker types, of the smallest nonzero
eigenvalues of the normalized Laplacians of the type-specific graphs (weighted by number of movers), where
the graphs are at the firm-class level.
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While (S1) imposes that the effect of worker heterogeneity on mean log-earnings is con-
stant over time within firm, it allows for unrestricted interactions between firm classes and
time.

When (S1) holds, the persistence parameters ρ4|3 and ρ1|2 can be estimated using simple
covariance restrictions, as we now explain. The four periods’ log-earnings of a job stayer
of type α in class k can be written as

Yi1 = c1k + (1 − ρ1|2)μs2kα + ρ1|2Yi2 + νi1�
Yi2 = c2k +μs2kα + νi2�
Yi3 = c3k +μs2kα + νi3�
Yi4 = c4k + (1 − ρ4|3)μs2kα + ρ4|3Yi3 + νi4�

where νi1 is independent of (νi2� νi3� νi4), νi4 is independent of (νi3� νi2� νi1), and (taking as
reference type α′ = 1): c1k = μ1k1 + ρ1|2μs2k1 − μs2k1, c2k = 0, c3k = μs3k1 − μs2k1, and c4k =
μ4k1 + ρ4|3μs3k1 −μs2k1.

The within-firm covariances between Yi1 and Yi2 − Yi3 and between Yi4 and Yi3 − Yi2
then deliver consistent estimators under standard rank conditions. As an example, the
model implies the panel-IV restriction Cov(Yi4�Yi3 − Yi2|k) = ρ4|3 Cov(Yi3�Yi3 − Yi2|k).
Notice that here μs2kα plays the role of a “fixed effect” within firm class k. In practice, we
combine those restrictions with all other covariance restrictions, hence also estimating the
within-firm variances of the ν’s and covariances of (νi2� νi3) (in particular, the parameter
ρs3|2). We estimate the parameters by minimum-distance with equal weights within firm
classes, weighting each firm class according to the number of firms in the class.

S1.3. Model Simulation

The simulation for the parametric bootstrap is conditional on firm classes and the mo-
bility links between firms and workers, including the size of firms. We describe the simu-
lation algorithm for the static model.

1. (Job stayers) For each firm in a class, we draw independently the latent types of job
stayers in the firm according to the distribution of types in the class. Log-earnings are then
independently drawn across workers from the corresponding conditional distribution.

2. (Job movers) For each pair of firms in periods 1 and 2 in given classes, we draw
the latent types of job movers between those firms according to their distribution in the
pair of classes. We draw log-earnings in periods 1 and 2 according to their conditional
distribution. In the static model, we draw log-earnings independently across periods.

S2. ESTIMATION USING DATA FROM A THEORETICAL MODEL

In this section, we consider a variation of the model of Shimer and Smith (2000) with
on-the-job search. Relative to the main text, we modify some of the notation.

S2.1. Model

Environment

The economy is composed of a uniform measure of workers indexed by x with unit mass
and a uniform measure of jobs indexed by y with mass V̄ . A match (x� y) produces output
f (x� y) and separates exogenously at rate δ. Workers are employed or unemployed. We
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denote u(x) the measure of unemployed, h(x� y) the measure of matches, and v(y) the
measure of vacancies. We let U = ∫

u(x)dx the mass of unemployed, and V = ∫
v(y)dy

the mass of vacancies. Unemployed workers meet vacancies at rate λ0, and employed
workers meet vacancies at rate λ1. Vacancies meet unemployed workers at rate μ0, and
employed workers at rate μ1. A firm cannot advertise for a job that is currently filled.
Unemployed workers collect benefits b(x), and vacancies have to pay a flow cost c(y).

Timing

Each period is divided into four stages. In stage one, active matches collect output
and pay wages. In stage two, active matches exogenously separate with probability δ. In
stage three, vacant jobs can advertise and all workers can search. In stage four, workers
and vacant jobs meet randomly and, upon meeting, the worker and the firm must decide
whether or not to match based on expected surplus generated by the match. The wage is
set by Nash bargaining, where α is the bargaining power of the worker. We assume that
wages are continuously renegotiated with the value of unemployment; see Shimer (2006)
for a discussion. Since workers and firms can search in the same period as job losses occur,
it is convenient to introduce within-period distributions:

v1/2(y) := δ+ (1 − δ)v(y)
δ+ (1 − δ)V � u1/2(x) := δ+ (1 − δ)u(x)

δ+ (1 − δ)U � h1/2(x� y) := h(x� y)

1 −U �

where each distribution integrates to 1 by construction.

Value Functions

We then write down the value functions for this model. Let S(x� y) be the surplus of
the match, W0(x) the value of unemployment, and Π0(y) the value of a vacancy. We have

rW0(x)= (1 + r)b(x)+ λ0

∫
M(x�y)αS(x� y)v1/2(y)dy� (BE-W0)

and

rΠ0(y)= μ0

∫
M(x�y)(1 − α)S(x� y)u1/2(x)dx

+μ1

∫∫
P

(
x� y ′� y

)
(1 − α)S(x� y)h1/2

(
x� y ′)dy ′ dx� (BE-P0)

where M(x�y) := 1{S(x� y) ≥ 0} is the matching decision, and P(x� y ′� y) is 1 when
S(x� y) > S(x� y ′) (i.e., when y is preferred to y ′ by x), zero when S(x� y) < S(x� y ′), and
1/2 when S(x� y)= S(x� y ′).

We write the Bellman equation for a job y that currently employs a worker x at wage w:

(r + δ)Π1(x� y�w)= (1 + r)[f (x� y)−w+ δ(Π0(y)+ c(y))]
− (1 − δ)λ1q(x� y)(1 − α)S(x� y)�

where q(x� y)= ∫
P(x� y� y ′)v1/2(y

′)dy ′ represents the total proportion of firms y ′ that can
poach a worker x from firm y . We then turn to the Bellman equation for the employed
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worker:

(r + δ)W1(x� y�w)

= (1 + r)[w+ δ(W0(x)− b(x))]
+ (1 − δ)λ1

∫
P

(
x� y� y ′)(αS(x� y ′) − αS(x� y))v1/2

(
y ′)dy ′� (BE-W1)

Finally, we derive the value of the surplus associated with the match (x� y), defined by
S :=W1 +Π1 −W0 −Π0:

(r + δ)S(x� y)= (1 + r)[f (x� y)− δ(b(x)− c(y))] − r(1 − δ)(Π0(y)+W0(x)
)

+ (1 − δ)λ1

∫
P

(
x� y� y ′)(αS(x� y ′) − S(x� y))v1/2

(
y ′)dy ′� (BE-S)

Flow Equations

Last, we write the flow equation for the joint distribution of matches at the beginning
of the period:

(
δ+ (1 − δ)λ1q(x� y)

)
h(x� y)

= λ0

(
δ+ (1 − δ)U)

u1/2(x)v1/2(y)M(x� y)

+ λ1(1 − δ)(1 −U)
∫
P

(
x� y ′� y

)
h1/2

(
x� y ′)dy ′v1/2(y)� (EQ-H)

where

μ0

(
δ+ (1 − δ)V ) = λ0

(
δ+ (1 − δ)U)

� and

μ1

(
δ+ (1 − δ)V ) = λ1(1 − δ)(1 −U)

(MC-S)

are the total number of matches coming out of unemployment and coming from on-the-
job transitions, respectively. The market clearing conditions on the labor market are given
by ∫

h(x� y)dx+ v(y)= V̄ and
∫
h(x� y)dy + u(x)= 1� (MC-L)

Equilibrium

For a set of primitives δ�λ0�λ1� f (x� y), b(x), c(y), α, the stationary equilibrium is char-
acterized by the values S(x� y), W0(x), Π0(y) and the measure of matches h(x� y) such
that: (i) Bellman equations (BE-W0), (BE-P0), and (BE-S) are satisfied, (ii) h satisfies
the flow equation (EQ-H), and (iii) the constraints (MC-S) and (MC-L) hold.
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Wages

We then derive the wage function using equation (BE-W1), and using that Nash bar-
gaining gives W1(x� y�w(x� y))= αS(x� y)+W0(x):

(1 + r)w(x� y)
= (r + δ)αS(x� y)+ (1 − δ)rW0(x)

− (1 − δ)λ1

∫
P

(
x� y� y ′)(αS(x� y ′) − αS(x� y))v1/2

(
y ′)dy ′�

Mapping to Our Framework

From there, we can recover our static model’s cross-sectional worker type proportions
conditional on firm heterogeneity (qk(α) in the body of the paper):

qy(x)= h(x� y)

1 − v(y)�

and the type proportions for job movers (pk′k(α) in the main text), which are given by

pyy′(x)=
(
δλ0 + (1 − δ)λ11

{
S
(
x� y ′)> S(x� y)})h(x� y)M(

x� y ′)∫ (
δλ0 + (1 − δ)λ11

{
S
(
x̃� y ′)> S(x̃� y)})h(x̃� y)M(

x̃� y ′)dx̃
�

Last, we assume that the wage is measured with a multiplicative independent measure-
ment error:

w̃=w(x� y)exp(ε)�

from which we can derive the log-wage distributions (Fkα in the main text).

Without On-the-Job Search (λ1 = μ1 = 0)

Let us first consider the case without on-the-job search. Equation (EQ-H) gives

δh(x� y)= λ0

(
δ+ (1 − δ)U)

u1/2(x)v1/2(y)M(x� y)�

Hence

pyy′(x)= M(x�y)M
(
x� y ′)u1/2(x)∫

M(x̃� y)M
(
x̃� y ′)u1/2(x̃)dx̃

� (PX-YY′)

These probabilities are symmetric in (y� y ′). In the context of Theorem 1, this means
that Assumption 3(i) is not satisfied, as a(α) = 1 for all α. This is the setup considered
in Shimer and Smith (2000). Symmetry occurs because, in that case, all job changes are
associated with an intermediate unemployment spell, where all information about the
previous firm disappears. Empirically, the majority of job changes occur via job-to-job
transitions. Moreover, in Figure S6, we find evidence against the particular symmetry of
equation (PX-YY′).

In the left graph of Figure S2, we show the wage functions under a particular param-
eterization of the model of Shimer and Smith (2000), without on-the-job search. We use
the parameterization under positive assortative matching that we describe below, with
the only difference that we shut down the on-the-job search channel. In the right graph,
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FIGURE S2.—Event study graph in the Shimer–Smith model in the presence of complementarities. Notes:
The sample is generated according to the model of Shimer and Smith (2000), without on-the-job search. The
parameter values imply positive assortative matching. In the left graph, we show log-wage functions for each
worker type (y-axis), by firm class (x-axis). In the right graph, we show mean log-wages of workers moving
between firms within classes 4 and 10 (solid), and moving between firms between classes 4 and 10 (dashed),
between periods 2 and 3.

we show the mean log-wages of workers moving between firms within classes 4 and 10
(solid), and moving between firms between classes 4 and 10 (dashed). We see that, on the
event-study graph, the wage changes are exactly symmetric around the move, yet wages
are clearly non-additive in worker types and firm classes.

S2.2. Simulation, Estimation, and Results

We pick two parameterizations of the model associated with positive assortative match-
ing (PAM) and negative assortative matching (NAM) in equilibrium. We set b(x)= b=
0�3, c(y) = c = 0, and V̄ = 2. We solve the model at a yearly frequency, and we set
δ = 0�02, λ0 = 0�4, and λ1 = 0�1. The production function is CES: f (x� y) = a+ (νxρ +
(1 − ν)yρ)1/ρ, where we set ν = 0�5 and a = 0�7. The relative variance of measurement
error is set to 10%. Finally, we set either ρ= −3 (PAM) or ρ= 3 (NAM).

We simulate a sample of 500,000 individuals working in 5000 firms, in an economy with
K = 10 firm classes and L= 6 worker types. In the left graph of Figure S3, we show means
and quantiles of log-wages in the simulated samples. We see that, while mean log-wages
are monotonic in firm productivity under PAM, they are non-monotonic under NAM.
However, as we will see, there is sufficient variation in wage distributions to separate firm
classes. In the middle graph of Figure S3, we report the wage functions for the different
worker types. We see clear differences between PAM and NAM. Last, in the right graph,
we show the wage functions as estimated by our static model. In estimation, we use the
same procedure as on the Swedish data, withK = 10 and L= 6. In particular, we estimate
firm classes using k-means clustering on empirical cdfs of log-wages evaluated at 20 grid
points. The estimates seem to capture nonlinearities in log-wages remarkably well. Note
that the ordering of firm classes on the x-axis is arbitrary, since the ranking of firms in
terms of productivity (i.e., y) is not identified using wage information only. However, the
variance decompositions and reallocation results we report below are not affected by this
labeling indeterminacy.

In the first four rows of Table SI, we next report the results of variance decompositions
using the samples generated according to the theoretical model, and based on estimates
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FIGURE S3.—True and estimated wage functions, and quantiles of log-wages, in a sample simulated accord-
ing to the model of Shimer and Smith (2000) with on-the-job search. Notes: In the left graphs, we show deciles
of log-wages (with measurement error) by firm class. The thick lines correspond to mean log-wages. In the
middle graphs, we show log-wages (without measurement error), by worker type and firm class. In the right
graphs, we show estimates from our static model. In the top panel, parameter values imply positive assortative
matching, while in the bottom panel, parameter values imply negative assortative matching.

TABLE SI

VARIANCE DECOMPOSITION AND REALLOCATION EXERCISE ON A SAMPLE SIMULATED ACCORDING TO THE
MODEL OF SHIMER AND SMITH (2000) WITH ON-THE-JOB SEARCHa

Variance Decomposition (×100)

Var(α)
Var(y)

Var(ψ)
Var(y)

2 Cov(α�ψ)
Var(y)

Var(ε)
Var(y) Corr(α�ψ)

PAM
True 64�5 4�5 12�8 18�1 37�5
Estimated 64�9 4�2 12�7 18�3 38�4

NAM
True 90�3 10�4 −16�8 16�1 −27�4
Estimated 89�5 9�2 −14�5 15�8 −25�3

Reallocation Exercise (×100)

Mean Median 10%-Quantile 90%-Quantile Variance

PAM
True −1�1 −0�7 −1�5 −1�2 −0�1
Estimated −1�2 −0�8 −1�6 −2�1 −0�1

NAM
True −0�5 −0�5 −0�3 −0�7 0�0
Estimated −0�4 −0�7 0�3 −0�8 0�0

aNotes: Variance decomposition and reallocation effects based on data generated from the theoretical sorting model of Shimer
and Smith (2000) with on-the-job search. Parameter values imply either positive (in the PAM case) or negative (in the NAM case)
assortative matching. See the notes to Table II.
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from our static model. We see that the decomposition is very well reproduced under both
PAM and NAM. In the last four rows, we report the results of an exercise where we
randomly reallocate workers to firms. The results are again well reproduced by our static
model. Overall, this set of results shows that our method is able to accurately recover the
link between wages and worker-firm heterogeneity in simulated economies that feature
positive or negative assortative matching.

S3. EXTENSIONS

In this section, we describe several extensions of our approach.

S3.1. Model-Based Reclassification of Firms

Here, we describe the model-based reclassification that we use as a robustness check.
We describe the method for the static model, the strategy being very similar in the dynamic
case.

Consider the log-likelihood functions in equations (13) and (14). Starting from an initial
firm classification k̂, we first estimate θ̂p, θ̂f , and θ̂fm by maximizing (13), where the k̂’s
correspond to an initial classification of firms. We then estimate θ̂q by maximizing (14).
With those estimates at hand, we next reclassify firm j, for all j = 1� � � � � J, as follows:

k̃(j)= argmax
k=1�����K

N∑
i=1

1{ji1 = j} ln

(
L∑
α=1

qk(α; θ̂q)fkα(Yi1; θ̂f )
)

+
Nm∑
i=1

1{ji1 = j}
K∑
k′=1

1
{
k̂i2 = k′} ln

(
L∑
α=1

pkk′(α; θ̂p)fkα(Yi1; θ̂f )fmk′α(Yi2; θ̂fm)
)

+
Nm∑
i=1

1{ji2 = j}
K∑
k′=1

1
{
k̂i1 = k′} ln

(
L∑
α=1

pk′k(α; θ̂p)fk′α(Yi1; θ̂f )fmkα(Yi2; θ̂fm)
)
�

To iterate this approach further, we re-estimate the θ parameters given the new k̃ clas-
sification, reclassify firms into classes based on the above formula (modified in order to
account for the new parameter values), and so on.

S3.2. A Two-Sided Random-Effects Approach

Here, we describe a model with two-sided heterogeneity that we estimate using a
random-effects strategy. This exercise, which is close in spirit to Beffy, Kamionka, Kra-
marz, and Robert (2003) and Abowd, McKinney, and Schmutte (2018), requires us to
specify a probabilistic structure for the mobility patterns of workers between firms. In
contrast, the two-step approach we develop in the paper is conditional on the network of
worker and firm links, so a mobility model is not needed.

The model is as follows.
• Worker types αi and firm classes kj are drawn independently from multinomial dis-

tributions. We denote the probabilities as pwα and pfk.



10 S. BONHOMME, T. LAMADON, AND E. MANRESA

• The initial class of the firm where i works is drawn from a multinomial model:

Pr(ki1 = k|αi = α�k1� � � � �kJ)= exp(qαk)
K∑
k′=1

exp(qαk′)

� (S2)

• The firm identifier in period 1 is drawn from a multinomial model:

Pr(ji1 = j|αi = α�ki1 = k�k1� � � � �kJ)= 1{kj = k} exp(sj)∑
j′∈Jk

exp(sj′)
� (S3)

where sj denotes the logarithm of the size of firm j in period 1, and Jk denotes the set of
firms of class k.

• The wages Yi1 in period 1 are drawn conditional on αi and ki1, exactly as in our
baseline static model.

• The probability that i changes firm is specified as

Pr(mi1 = 1|ji1 = j�αi = α�k1� � � � �kJ)= rαkj �
• After a job move, the firm class of i in period 2 is drawn from a discrete distribution

with probabilities

Pr
(
ki2 = k′|ji1 = j�mi1 = 1�αi = α�k1� � � � �kJ

) = exp(pαkjk′)

K∑
k′′=1

exp(pαkjk′′)

�

• The firm identifier in period 2 is then drawn according to

Pr
(
ji2 = j′|ji1 = j�ki2 = k′�mi1 = 1�αi = α�k1� � � � �kJ

)
= 1

{
j′ �= j}1

{
kj′ = k′} exp(sj′)∑

j′′∈Jk′ \j
exp(sj′′)

�

where Jk \ j denotes the set of firms of class k, without firm j.
• The wages Yi2 in period 2 are then drawn conditional on αi and ki2, exactly as in our

baseline model.
This model contains a large number of parameters. Moreover, due to the fact that

workers and firms interact in a network, the likelihood function does not factor in a sim-
ple way. Specifically, as is often the case in network models, the likelihood involves an
intractable sum over k1� � � � �kJ . To see this, let Zi = (ji1�Yi1� ji2�Yi2) be the observed data
for individual i (abstracting from firm size for simplicity). Let f be a generic notation for
a density or probability function. The likelihood function takes the following form:∑

k1�����kJ

∑
α1�����αN

f (k1� � � � �kJ�α1� � � � �αN�Z1� � � � �ZN)

=
∑

k1�����kJ

(
J∏
j=1

p
f
kj

)
N∏
i=1

L∑
αi=1

f (αi�Zi|k1� � � � �kJ)�
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where (recall that mi1 = 1{ji2 �= ji1})
f (αi� ji1�Yi1� ji2�Yi2|k1� � � � �kJ)

= pwαi
exp(qαikji1 )
K∑
k′=1

exp(qαik′)

exp(sji1)∑
j′∈Jkji1

exp(sj′)
f (Yi1|αi�kji1)[1 − rαikji1 ]1−mi1

×
[
rαikji1

exp(pαikji1kji2 )∑
k′

exp(pαikji1k′)

exp(sji2)∑
j′′∈Jkji2 \ji1

exp(sj′′)
f (Yi2|αi�kji2)

]mi1
�

Full-information maximum likelihood (FIML) is conceptually attractive, since it treats
both worker and firm heterogeneity as stochastic, and it is expected to be consistent under
correct specification, irrespective of the size of the firms. However, due to the complex-
ity of the likelihood function, FIML estimation is computationally challenging. The key
difficulty is to sample the firm classes, since firms are not independent of each other.

To understand the link between this two-sided random-effects approach and our base-
line two-step approach, it is useful to note that the conditional likelihood function,
given the firm classes k1� � � � �kJ and the firm identifiers j11� j12,. . . ,jN1� jN2, is, denoting
Yi = (Yi1�Yi2), ∑

α1�����αN

f (α1� � � � �αN�Y1� � � � �YN |k1� � � � �kJ� j11� � � � � jN2)

=
N∏
i=1

L∑
αi=1

f (αi�Yi|k1� � � � �kJ� j11� � � � � jN2)�

which takes the standard, separable form of a likelihood function with random effects in
single-agent panel data models. Hence, conditioning on the estimated firm classes, and
the whole set of firm identifiers, results in a drastic simplification of the problem. This
highlights a substantial computational advantage of our two-step approach, relative to
the two-sided random-effects approach that we study in this subsection.

Estimation

The key step in the algorithm is to draw firm classes kj . For this, we use information
from both job stayers and job movers. The posterior probability of class kj , given all other
classes k−j = {k1� � � � �kj−1�kj+1� � � � �kJ} and the data, is

Pr(kj = k|Z1� � � � �ZN�k−j)

= pfk ×
∏
i∈Ij

L∑
α=1

pwα
exp(qαk)∑
k′

exp(qαk′)
· exp(sj)

exp(sj)+
∑
j′∈Jk\j

exp(sj′)
f (Yi1|α�k)[1 − rαk]1−mi1

×
[
rαk

exp(pαkkji2 )∑
k′

exp(pαkk′)
· exp(sji2)∑
j′∈Jkji2 \j

exp(sj′)
f (Yi2|α�kji2)

]mi1
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×
∏
j′\j

∏
i∈Ij′

L∑
α=1

f (α)
exp(qαkj′ )∑
k′

exp(qαk′)

× exp(sj′)

1{kj′ = k}exp(sj)+
∑

j′′∈Jkj′ \j
exp(sj′′)

f (Yi1|α�kj′)[1 − rαkj′ ]1−mi1

×
[
rαkji1

exp(pαkji1k)∑
k′

exp(pαkji1k′)
· exp(sj)

exp(sj)+
∑

j′′∈Jk\{j�j′}
exp(sj′′)

f (Yi2|α�k)
]mi1·1[ji2=j]

×
[
rαkji1

exp(pαkji1kji2 )∑
k′

exp(pαkji1k′)

× exp(sji2)

1{kji2 = k}exp(sj)+
∑

j′′∈Jkji2 \{j�j′}
exp(sj′′)

f (Yi2|α�kji2)
]mi1·(1−1{ji2=j})

�

where Ij denotes the set of workers in firm j in the first period.
Given the expression of the posterior probabilities for the class of a firm given the

classes of all other firms, we use a stochastic EM algorithm to estimate the parameters of
the model. The update of the model’s parameters conditional on the firm classes is almost
identical to the likelihood estimation step of our baseline two-step estimation. Here, how-
ever, we need to recover the latent firm classes k1� � � � �kJ in each of the E-steps. Using
Gibbs sampling, we draw the kj ’s one at a time, updating 200 firms at random in every
E-step. We then update the other parameters of the model in a standard M-step, where
we compute the posterior probabilities of worker types. Unlike the posterior distribution
of firm classes, this sub-problem separates across individuals since it is conditional on
the classification of firms. This inner EM algorithm is almost identical to the update rule
in our baseline two-step method. The main difference is for the parameters qαk and pfk,
which we update using empirical frequencies of the firm classes based on the simulated
draws.

Results

We fix K = 10 and L= 6, and report results based on two sets of initial parameter val-
ues: parameters obtained from a classification based on deciles of the AKM fixed effects,
and parameter values based on the estimates of our static model. Since the AKM starting
values are computed on connected components of a graph, we focus on the largest con-
nected set, and for comparability we focus on the same sample for both sets of starting
values. The largest connected component contains 389,451 job stayers, 17,205 job movers,
and 8794 unique firms. In Figure S4, we report the main results from this exercise. Ev-
ery step in the estimation algorithm is costly, since a very large number of firm classes
needs to be updated every time. Producing each curve on those graphs required 10 days
of computing time on a desktop computer using 15 cores. In addition, there is evidence in
the figure that the Markov chains have not yet converged, particularly for the correlation
between worker and firm effects.
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FIGURE S4.—Variance decomposition estimates based on two-sided random-effects estimation. Notes:
Static model with two-sided heterogeneity, estimated using a two-sided random-effects estimator. The figure
shows the different components of the variance decomposition (on the y-axis) as a function of the iterations of
the stochastic EM algorithm (on the x-axis). In solid line, we report estimates using an AKM-based classifica-
tion to produce starting parameter values. In dotted line, we show estimates using our k-means classification
as a starting value.

Nevertheless, the results in Figure S4 are informative. We see evidence of convergence
between the two sets of starting values. For example, the correlations between worker
and firm effects, and the variances of firm effects, get closer to each other as the number
of iterations increases. While the correlation coefficient is actually negative when starting
from the AKM-based classification, it increases steadily over the course of the estimation.
In the last iteration, both estimates indicate similar values for the variance components
of log-earnings, particularly a small percentage explained by firms net of worker com-
position, around 3%, and a large correlation between worker and firm effects, between
30% and 40%. These magnitudes agree quite well with the baseline two-step estimates
reported in the paper. Hence, though based on a different estimation approach, this ex-
ercise confirms the empirical results we obtained based on our two-step method. In addi-
tion, it illustrates that our one-sided random-effects approach with an initial classification
of firms has computational advantages relative to a full random-effects approach, in a
network context where firms and workers are linked to each other in complex ways.

S3.3. Combining Our Approach With AKM

Our approach is based on discretizing firm heterogeneity. This might result in a loss
of information, since firms might be heterogeneous within classes. At the same time, the
discrete classification might alleviate the incidental parameter biases due to the fact that



14 S. BONHOMME, T. LAMADON, AND E. MANRESA

some firms have very few job movers in the sample. In this subsection and the next, we
study these issues in two ways. We start by giving firms that have many job movers their
own firm classes, and by only applying the k-means classification to the firms that have
few job movers. We use K = 10 groups in the classification, and focus on the variance of
the firm component in an additive specification of the static model.

In Table SII, we show, in columns, estimation results based on different thresholds for
the minimum number of job movers needed in order to give a firm its own class. For
example, in the first column, we show results where firms with at least one mover are given
their own class; hence, the corresponding estimator is the AKM fixed-effects estimator.
In the last column we show the estimator where no firm is assigned its own class, and our
two-step classification method is applied to all firms; hence, this last column is identical
to our baseline two-step estimator with 10 classes on this sample (under additivity). The
results show a high sensitivity to the number of job movers per firm. For example, we see
a large jump in the variance of the firm effect when focusing on firms with at least two
job movers instead of only one job mover: the variance drops from 32% to 14%. This
instability suggests the presence of large incidental parameter biases in this sample.

In order to better understand the bias of the AKM fixed-effects estimator, we report
the results of two existing bias-correction methods: the trace correction of Andrews, Gill,
Schank, and Upward (2008), with a degree-of-freedom correction to estimate the vari-
ance of idiosyncratic shocks, and the recently proposed “leave-out” estimator of Kline,
Saggio, and Sølvsten (2018), which is motivated by the fact that the correction of An-
drews et al. (2008) does not allow for heteroscedasticity. This estimator is computed on a
smaller sample, the “leave-out connected set.” Both corrections tend to reduce the vari-
ance of firm effects significantly, supporting the conjecture that the AKM estimator is
substantially biased in this sample. Moreover, compared to the AKM variance estimate
of 32%, the estimates from the two corrections on the Swedish sample including all firms
in the first column give 11% (Andrews et al. (2008), reported on the top panel) and 4.6%
(Kline, Saggio, and Sølvsten (2018), reported on the bottom panel), respectively. This last
number is larger than, but quantitatively close to, our baseline estimate.

S3.4. Accounting for Within-Class Firm Heterogeneity

Here, we extend our two-step approach to allow for within-class firm heterogeneity, in
a static additive model of log-earnings. Consider the following model in first differences:

Y =Aψ+ε�
where Y = Y2 − Y1, ε= ε2 − ε1, and we have abstracted from i indices for simplicity.
ψ is the vector of firm effects, and A=A2 −A1 is the difference of design matrices that
map firms to workers; that is, [At]ij = 1{jit = j} for t = 1�2.

We assume that firm heterogeneity ψ is drawn conditional on A, according to a distri-
bution with mean and variance matrix:

E(ψ|A)= μ� Var(ψ|A)=Dω�

where Dω is diagonal with [Dω]jj = [σω]k̂(j), and μ is constant with firm classes. Here,
the firm classes k̂(j) are the ones estimated using the k-means approach. In turn, ε has
variance matrix A1DεA

′
1 +A2DεA

′
2, where Dε is diagonal with elements [Dε]jj = [σε]k̂(j).

If Dω was equal to zero, the model would be identical to a simple additive version of our
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static model with class-specific heterogeneity. Permitting Dω �= 0 allows for within-class
firm heterogeneity.

We are interested in estimating theK×1 parameter vectors σω and σε. Let us denote as
C the firm-class selection matrix with elements Cjk = 1{k̂(j)= k}. We have that μ= Cμ̃,
for aK×1 vector μ̃. The vector μ̃ is identified from mean restrictions. Moreover, variance
restrictions imply

E
[
YY ′] −ACμ̃μ̃′C ′A′ =ADωA

′ +A1DεA
′
1 +A2DεA

′
2�

Hence, using standard matrix notation, we obtain that

vec
(
E
[
YY ′] −ACμ̃μ̃′C ′A′) = (A⊗A) vec(Dω)+ (A1 ⊗A1 +A2 ⊗A2) vec(Dε)�

which is a linear system of equations with 2K parameters. For a suitable selection ma-
trix P , we thus have

vec
(
E
[
YY ′] −ACμ̃μ̃′C ′A′) = (A⊗A)Pσω + (A1 ⊗A1 +A2 ⊗A2)Pσε�

We estimate σω and σε from empirical counterparts of these restrictions. The matrix
E[YY ′]−ACμ̃μ̃′C ′A′ is constructed using all pairs of products of workers. Many such
cross-products are in fact irrelevant. Indeed, if workers i and i′ are such that ji1 �= ji′1,
ji2 �= ji′2, ji2 �= ji′1, and ji1 �= ji′2, then the corresponding elements will be zero. To simplify
computation we directly focus on relevant pairs, and in particular on pairs such that ji1 =
ji′1 and ji2 �= ji′2, and pairs such that ji1 �= ji′1 and ji2 = ji′2.

Results

In Figure S5, we report the estimates of the between-and-within-class variances of firm
effects, estimated according to the model with within-class firm heterogeneity (solid line).
In the same graph, we also plot the between-class firm variance (dotted line). We see

FIGURE S5.—Share of log-earnings variance explained by firm effects, static additive model. Notes: Es-
timates of a static additive model, on 2002–2004. The figure shows the share of total log-earnings variance
explained by between-class variance (in dotted), the share explained by between-and-within-class firm vari-
ance (in solid), and the share explained by firms according to the AKM fixed-effects estimates (in dashed).
We report the number of classes K on the x-axis. We describe our method that allows for within-class firm
heterogeneity in Section S3.
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FIGURE S6.—Earnings of job movers. Notes: The figure shows average log-earnings in 2002 and 2004 of
workers who moved from firm class k to firm class k′ (on the x-axis), and of workers who moved from firm
class k′ to firm class k (on the y-axis), where k < k′. The size of the dots is proportional to the number of job
movers in the cells.

that allowing for within-class dispersion increases the contribution of firm effects to the
overall log-earnings variance by another 2%, for a total firm component of approximately
4%. As a comparison, we plot in dashed line the share of variance explained by the AKM
fixed effects, which amounts to 32%. While suggesting that within-class dispersion—which
we abstract from in our approach—may contribute additional firm heterogeneity, these
results confirm the overall evidence of a small contribution of firm effects to log-earnings
dispersion in our data.

FIGURE S7.—Parameter estimates of the dynamic model. Notes: Estimates of the dynamic model, on
2001–2005. See the notes to Figure 2.
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FIGURE S8.—Mobility across firm classes, dynamic model. Notes: Estimates of the dynamic model, on
2001–2005. Estimated joint probability of firm classes in 2002 (on the x-axis) and 2004 (on the y-axis) for
job movers. The size of the dots is proportional to the number of job movers in the cells.

TABLE SIV

NUMBER OF JOB MOVERS BETWEEN FIRM CLASSESa

Firm Class in Period 2

1 2 3 4 5 6 7 8 9 10

Firm Class in Period 1
1 76 120 95 87 94 50 63 42 29 10
2 129 348 352 237 241 164 147 76 62 18
3 128 292 417 349 399 203 217 146 126 49
4 59 318 304 356 249 303 210 102 68 24
5 60 190 502 294 424 235 271 198 139 64
6 39 115 154 267 172 230 275 128 79 32
7 48 158 204 253 355 355 363 331 457 100
8 14 315 145 110 243 157 348 461 609 258
9 11 77 114 187 217 195 323 384 368 402
10 12 21 83 39 114 27 161 229 313 369

aNotes: The table corresponds to males fully employed in the same firm in 2002 and 2004, for firms that are continuously present
in the sample. We report the number of job movers from firm class k in 2002 (on the vertical axis) to firm class k′ in 2004 (on the
horizontal axis).
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TABLE SV

VARIANCE DECOMPOSITION AND REALLOCATION EXERCISE, STATIC MODEL, MONTE CARLO EXERCISEa

Variance Decomposition (×100)
Var(α)
Var(y)

Var(ψ)
Var(y)

2 Cov(α�ψ)
Var(y)

Var(ε)
Var(y) Corr(α�ψ)

True value 60�03 2�56 12�17 25�24 49�13

Monte Carlo mean 61�2 2�1 11�7 25�1 52�2
Monte Carlo 2.5%-quantile 59�6 1�7 10�8 23�9 50�4
Monte Carlo 97.5%-quantile 62�6 2�3 12�4 26�2 53�8

AKM mean 120�9 37�6 −62�6 4�1 −46�3

Reallocation Exercise (×100)

Mean Median 10%-Quantile 90%-Quantile Variance

True value 0�50 0�58 2�60 −1�24 −1�12

Monte Carlo mean 0�63 0�60 2�77 −0�92 −1�07
Monte Carlo 2.5%-quantile 0�43 0�36 2�42 −1�44 −1�26
Monte Carlo 97.5%-quantile 0�81 0�83 3�23 −0�27 −0�84

aNotes: See the notes to Table II. We use the parameter estimates of the static model on 2002–2004 as true parameter values and
simulate samples based on them. We show mean and percentiles of the Monte Carlo distribution, computed using 200 replications. In
the fifth row of the table, we also show the Monte Carlo means of AKM estimates.

TABLE SVI

VARIANCE DECOMPOSITION AND REALLOCATION EXERCISE, DYNAMIC MODEL, MONTE CARLO EXERCISEa

Variance Decomposition (×100)
Var(α)
Var(y)

Var(ψ)
Var(y)

2 Cov(α�ψ)
Var(y)

Var(ε)
Var(y) Corr(α�ψ)

True value 60�27 4�24 13�40 22�09 41�90

Monte Carlo mean 60�3 4�1 13�9 21�7 44�3
Monte Carlo 2.5%-quantile 56�1 3�6 13�1 20�9 36�6
Monte Carlo 97.5%-quantile 61�7 6�3 14�5 23�8 46�6

Reallocation Exercise (×100)

Mean Median 10%-Quantile 90%-Quantile Variance

True value 0�26 0�80 2�57 −3�24 −1�05

Monte Carlo mean 0�20 0�78 2�46 −3�05 −0�70
Monte Carlo 2.5%-quantile −0�18 0�43 0�56 −3�84 −1�57
Monte Carlo 97.5%-quantile 0�41 1�15 3�00 −1�84 2�43

aNotes: See the notes to Table II. We use the parameter estimates of the dynamic model on 2001–2005 as true parameter values
and simulate samples based on them. We show mean and percentiles of the Monte Carlo distribution, computed using 200 replications.
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TABLE SVII

VARIANCE DECOMPOSITION (×100), STATIC MODEL, RECLASSIFYING FIRMSa

Var(α)
Var(y)

Var(ψ)
Var(y)

2 Cov(α�ψ)
Var(y)

Var(ε)
Var(y) Corr(α�ψ)

A. Starting Using AKM Deciles
Initial Value 84.53 12�28 −16�67 19�86 −25�87
1 Iteration 67.94 7�50 2�57 21�98 5�72
10 Iterations 63.01 2�80 8�03 26�17 30�26

B. Starting Using Value Added Deciles
Initial Value 70.18 0�49 3�11 26�22 26�38
1 Iteration 62.71 2�98 10�15 24�16 37�11
10 Iterations 57.54 4�49 10�98 27�00 34�14

C. Starting Using Poaching Rank Deciles
Initial Value 74.11 0�16 0�89 24�85 13�05
1 Iteration 61.51 2�09 9�65 26�76 42�60
10 Iterations 61.22 3�01 8�64 27�14 31�82

D. Starting Using Share of Movers Deciles
Initial Value 71.92 0�06 0�17 27�84 4�13
1 Iteration 65.90 2�20 7�91 23�98 32�80
10 Iterations 61.07 4�56 11�33 23�04 33�95

aNotes: Estimates of the static model, on 2002–2004. On each panel we show the results of the model-based reclassification de-
scribed in Section S3, starting from a different classification of firms: deciles of the firm effects estimates of Abowd, Kramarz, and
Margolis (1999), deciles of log value added per worker, deciles of the poaching rank measure of Bagger and Lentz (2014), and deciles
of the firm-specific shares of job movers.
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