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Appendix A gives an identification result for the zero-index case, which was not dealt
with in the text. It also provides a characterization of Heckman and Pinto’s unordered
monotonicity property as a subcase of our more general framework. Appendix B col-
lects proofs of some of the results in the main text. Appendix C fills in the details of the
entry game introduced in Section 2, and Appendix D compares our results with those
of Heckman, Urzua, and Vytlacil (2008) in more detail. Finally, Appendix E discusses a
more general form of threshold conditions than the “rectangular” threshold conditions
in Assumption 2.1.

APPENDIX A: ADDITIONAL RESULTS

A.1. Identification With a Zero Index

THEOREM 3.1 REQUIRED THAT the index of treatment k be nonzero (Assumption 3.1). It
therefore does not apply to Example 3, for instance. Recall that in that example,

D0 =D0(S)= 1 − S1 − S2 − S3 + S1S2 + S1S3 + S2S3

and treatment 0 has degree m0 = 2 < J0 = 3.
Note, however, that steps 1 and 2 of the proof of Theorem 3.1 apply to zero-index

treatments as well; the relevant polynomial of Heaviside functions has leading term

H(q1 − v1)H(q2 − v2)+H(q1 − v1)H(q3 − v3)+H(q2 − v2)H(q3 − v3)�

and we can take the derivative in (q1� q2), for instance, to obtain an equation that replaces
(6.4):

∂2

∂q1∂q2
B0(q)=

∫
b0(q1� q2� v3)dv3�

Applying this to B0(q) = Pr[D = 0|Q(Z) = q] and b0(v) = fV (v), and then to B0(q) =
E[YD0|Q(Z)= q] and b0(v)=E[G(Y0)|V = v]fV (v), identifies∫

fV1�V2�V3(q1� q2� v3)dv3 = fV1�V2(v1� v2)
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and ∫
E

[
G(Y0)|V1 = q1� V2 = q2� V3 = v3

]
fV1�V2�V3(q1� q2� v3)dv3

=E
[
G(Y0)|V1 = q1� V2 = q2

]
fV1�V2(v1� v2)�

Dividing through identifies a local counterfactual outcome:

E
[
G(Y0)|V1 = q1� V2 = q2

]
�

Under Assumption 3.5, this also identifies EG(Y0). Moreover, we can apply the same
logic to the pairs (q1� q3) and (q2� q3) to get further information on the treatment effects.

This argument applies more generally. It allows us to state the following theorem:

THEOREM A.1—Identification With a Zero Index: Let Assumptions 2.1, 2.2, and 3.2
hold. Fix a value q in Q̃, so that Assumptions 3.3 and 3.4 also hold at q. Let m be the degree
of treatment k. Take l to be any subset of J that corresponds to a leading term in the expansion
of the indicator function of {D= k}. Denote T̃ the differential operator

T̃ = ∂m∏
i=1�����m

∂li

�

Then, for q= (ql�qJ−l),

fV l

(
ql

) = 1
ckl

T̃ Pr[D= k|Q(Z)= q]�

E
[
G(Yk)|V l = ql

] = T̃E
[
G(Y)Dk|Q(Z)= q

]
T̃ Pr

[
D= k|Q(Z)= q

] �

PROOF OF THEOREM A.1: The proof of Theorem A.1 is basically the same as that of
Theorem 3.1. Steps 1 and 2 of the proof of Theorem 3.1 do not rely on any assumption
about indices. They show that if we define

Wl(q)=
∫ ∏

j∈l
H(qj − vj)bk(v)dv�

where the set l ⊂ J , then its cross-derivative with respect to (ql) is∫
bk

(
ql�v−l

)
dv−l�

where v−l collects all components of v whose indices are not in l.
Now let m be the degree of treatment k. In the sum (6.3), take any term l such that

|l| = m. Recall that T̃ denotes the differential operator

T̃ = ∂m∏
i=1�����m

∂li

�
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By the formula above, applying T̃ to term l gives

cl

∫
bk

(
ql�v−l

)
dv−l�

Moreover, applying T̃ to any other term l′ obviously gives zero if term l′ has degree less
than m. Now take any other term l′ of degree m. As T̃ takes at least one derivative along
a direction that is not in l′, that term must also contribute zero.

This proves that

T̃Bk(q)= ckl

∫
bk

(
ql�v−l

)
dv−l;

note that it also implies that T̃Bk(q) only depends on ql.
Applying this first to bk(v) = fV (v) and Bk(q) = Pr(D = k|Q(Z) = q), then to bk(v) =

E[G(Yk)|V = v]fV (v) and Bk(q) = E[G(Y)Dk|Q(Z) = q] exactly as in the proof of The-
orem 3.1, we get ∫

fV
(
ql�v−l

)
dv−l = 1

ckl
T̃ Pr(D = k|Q(Z)= q)�

∫
E

[
G(Yk)|V = (

ql�v−l

)]
fV

(
ql�v−l

)
dv−l = 1

ckl
T̃E

(
G(Y)Dk|Q(Z)= q

)
�

Since the left-hand sides are simply fV l (vl) and E[G(Yk)|V l = ql]fV l (vl), the conclusion
of the theorem follows immediately. Q.E.D.

Theorem A.1 is a generalization of Theorem 3.1 (just take m = J). It calls for three
remarks. First, we could weaken its hypotheses somewhat. We could, for instance, replace
(0�1)J with (0�1)m in the statement of Assumption 3.5.

Second, when m< J, the treatment effects are over-identified. This is obvious from the
equalities in Theorem A.1, in which the right-hand side depends on q but the left-hand
side only depends on qI .

Finally, considering several treatment values can identify even more, since V is assumed
to be the same across k. Theorem 3.1 would then imply that if there is any treatment value
k with a nonzero index, then the joint density fV is identified from that treatment value.

A.2. Further Analysis of Unordered Monotonicity

Our formalism allows us to derive a new characterization of the unordered monotonic-
ity property defined by Heckman and Pinto (2018). Take any treatment value k. In our
model, a change in instruments Z acts on the treatment assigned to an observation with
unobserved characteristics V through the indicator functions Sj = 1(Vj < Qj(Z)), which
depend on the thresholds Q(Z).

Unordered monotonicity requires that there exist changes in thresholds �Q such that,
for Q′ =Q+�Q,

Pr
{
dk(V �Q)= 0 and dk

(
V �Q′) = 1

} × Pr
{
dk(V �Q)= 1 and dk

(
V �Q′) = 0

} = 0�

where the probabilities are computed over the joint distribution of V .
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In our framework, several thresholds are typically relevant for each treatment value.
This makes the analysis of unordered monotonicity complex in general. To understand
why, we start from the expression (2.2) of Dk as a polynomial of S = (S1� � � � � SJ) for
Sj(V �Q)= 1(Vj < Qj). For any change in thresholds �Q that induces changes in the indi-
cators �S, Taylor’s theorem yields

�Dk =
J∑

m=1

∑
α1+···+αJ=m

1
α1!α2! · · ·αJ !

∂mDk(S)

∂S
α1
1 ∂S

α2
2 · · ·∂SαJ

J

J∏
l=1

�S
αl
l � (A.1)

where αj is a nonnegative integer for j = 1� � � � � J. Note that this is an exact expansion
since Dk is a polynomial. Moreover, note that, given a change in one threshold �Qj , only
Sj changes and

�Sj = 1(0 < Vj −Qj < �Qj)− 1(�Qj < Vj −Qj < 0)� (A.2)

(We do not need to distinguish between the weak and strict inequalities since the distri-
bution of Vj is absolutely continuous with respect to the Lebesgue measure.)

The changes �Sj can only take the values 0 or ±1. In general, higher order terms in
expansion (A.1) may be nonzero. However, if the changes in thresholds �Q are small,
then we can neglect the higher order terms since the values of V for which several �Sj are
nonzero occur with very small probability. To make this more precise, we use the following
definition:

DEFINITION A.1—Two-Way Flows: A change in thresholds �Q generates two-way
flows for treatment value k if and only if

lim
ε→0

(
Pr

(
Dk(0)= 0 and Dk(ε)= 1

)
ε

× Pr
(
Dk(0)= 1 and Dk(ε)= 0

)
ε

)
> 0

for Dk(ε)≡ dk(V �Q+ ε�Q).

We now provide new characterizations of unordered monotonicity.

THEOREM A.2—Characterizing Unordered Monotonicity in the Small: Fix a value Q
of the thresholds. Denote

∇Dk(S) = ∂Dk

∂S
(S)�

Assume that J ≥ 2 and that there exist two values j1 	= j2 such that ∇j1Dk and ∇j2Dk are not
identically zero. Then:

1. If each component of ∇Dk(S) has a constant sign when S varies over {0�1}J , then some
changes in thresholds do not generate two-way flows, and some others do.

2. If the sign of any component ∇jDk(S) changes when Sj switches between 0 and 1, then
any change in thresholds generates two-way flows.
(In these two statements, we take 0 to have the same sign as both −1 and +1.)

PROOF OF THEOREM A.2: Take ε > 0 small. Remember that, given a change in thresh-
olds ε�Qj ,

�Sj = 1(0 < Vj −Qj < ε�Qj)− 1(ε�Qj < Vj −Qj < 0)�

which is zero or has the sign of �Qj .
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Under our assumptions on the distribution of V , the probability that �Sj 	= 0 is of or-
der ε; the probability that �Sj�Sl 	= 0 is of order ε2, etc. Given Definition A.1, we only
need to work on the first-order terms in expansion (A.1) since the other terms generate
vanishingly small corrections. That is, we use

�Dk 

J∑

j=1

∇jDk(S)×�Sj

=
J∑

j=1

∇jDk(S)× (
1(0 < Vj −Qj < ε�Qj)− 1(ε�Qj < Vj −Qj < 0)

)
�

(A.3)

• Proof of part 1: To prove part 1 of the theorem, assume that each derivative ∇jDk has
a constant sign, independent of S ∈ {0�1}J .

Then it is easy to find changes �Q that only generate one-way flows. First, take each
�Qj to have the sign of ∇jDk.

Since each �Sj has the sign of the corresponding �Qj , each product term in the sum
(A.3) is nonnegative, and so is the change in Dk. Obviously, changing the signs of all �Qj ’s
would generate one-way flows in the opposite direction.

It is equally easy to find changes in instruments that generate two-way flows. Take the
indices j1 and j2 referred to in the statement of the theorem. Take �Qm = 0 for m 	= j1� j2.
Then expansion (A.3) becomes

�Dk 
 ∇j1Dk(S)×�Sj1 + ∇j2Dk(S)×�Sj2 �

Choose some �Qj1��Qj2 	= 0 such that

∇j1Dk(S)×�Qj1 and ∇j2Dk(S)×�Qj2

have opposite signs (which do not vary with S by assumption).
Take |Vj1 − Qj1 | small and |Vj2 − Qj2 | not small, so that �Sj1 has the sign of �Qj1 and

�Sj2 = 0; then �Dk has the sign of ∇j1Dk(S) × �Qj1 . Permuting j1 and j2 generates the
opposite sign; therefore, such a change in thresholds generates two-way flows.

• Proof of part 2: To prove part 2 of the theorem, take j such that ∇jDk changes sign
when the sign of Vj −Qj changes (so that Sj switches between 0 and 1). Let �Qm = 0 for
all m 	= j, so that

�Dk 
 ∇jDk(S)×�Sj�

By the assumption in part 2, the sign of �Dk is the sign of �Sj for some values of V and
the opposite sign for other values. Take any change in the threshold �Qj . Since �Sj is zero
or has the sign of �Qj , �Dk must take opposite values as V varies. Q.E.D.

To illustrate the theorem, first consider the double hurdle model, for which ∇D1(S) =
(S2� S1) ≥ 0. This case is covered by part 1 of Theorem A.2. Changes such that �Q1

and �Q2 have the same sign do not generate two-way flows, but changes that generate
�Q1�Q2 < 0 do.

Now turn to the model of Example 1, where ∇D2(S) = (1 − 2S2�1 − 2S1). This corre-
sponds to part 2 of the theorem, since the sign of (1 − 2s) depends on s = 0�1. Using the
expansion (A.3) gives, with j1 = 1, j2 = 2,

�D2 
 (1 − 2S2)×�S1 + (1 − 2S1)×�S2�
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Depending on the values of V and therefore of S1 and S2, this can be

�S1 +�S2� �S1 −�S2� �S2 −�S1� or −�S1 −�S2�

To get one-way flows only, we would need to change thresholds to induce �S1��S2 = ±1
such that the four numbers above have the same sign. But that is clearly impossible. Hence
any change in instruments creates two-way flows.

APPENDIX B: ADDITIONAL PROOFS

B.1. Proof of Corollary 3.2

First, consider the average treatment effect. Under Assumption 3.5, we have that

EG(Yk)=
∫

E
(
G(Yk)|V = v

)
fV (v)dv�

which implies (3.2) immediately.
Now consider E[G(Yk)−G(Y�)|D = m]. Note that

E
[
G(Yk)−G(Y�)|D =m�Q(Z)= q

]
=E

[
G(Yk)−G(Y�)|dm(V �q) = 1

]

=

∫
1
(
dm(v�q)= 1

)
E

[
G(Yk)−G(Y�)|V = v

]
fV (v)dv∫

1
(
dm(v�q)= 1

)
fV (v)dv

�

Thus,

E
[
G(Yk)−G(Y�)|D =m

]
=EE

[
G(Yk)−G(Y�)|D =m�Q(Z)

]]
=

∫ ∫
1
(
dm(v�q)= 1

)
E

[
G(Yk)−G(Y�)|V = v

]
fV (v)dv∫

1
(
dm(v�q)= 1

)
fV (v)dv

dFQ(Z)|D(q|m)�

By Bayes’s rule, we have that

dFQ(Z)|D(q|m) = Pr[D= m|Q(Z)= q]
Pr(D =m)

dFQ(Z)(q)�

Since

Pr[D=m|Q(Z)= q] =
∫

1
(
dm(v�q)= 1

)
fV (v)dv�
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we have that

E
[
G(Yk)−G(Y�)|D =m

]

=
∫ ∫

1
(
dm(v�q)= 1

)
E

[
G(Yk)−G(Y�)|V = v

]
fV (v)dv

Pr(D= m)
dFQ(Z)(q)

=

∫
Pr

(
dm(v�Q(Z))= 1

)
E

[
G(Yk)−G(Y�)|V = v

]
fV (v)dv

Pr(D= m)

=
∫

�(k��)
MTE(v)ω

m
ATT(v)dv�

We now move to the identification of the policy-relevant treatment effects. Recall that
in the proof of Theorem 3.1 (see equation (6.1)), we have that

E
[
G(Y)Dk|Q(Z)= q

]
=

∫
1
(
dk(v�q)= 1

)
E

[
G(Yk)|V = v

]
fV (v)dv�

Since G(Y)= ∑
k∈KG(Y)Dk, we then have that

E
[
G(Y)

] =
∑
k∈K

E
[
E

[
G(Y)Dk|Q(Z)= q

]]

=
∑
k∈K

∫
Pr

[
dk(v�Q(Z))= 1

]
E

[
G(Yk)|V = v

]
fV (v)dv�

Similarly, we have that

E[D] =
∑
k∈K

kE
[
E[Dk|Q(Z)= q]]

=
∑
k∈K

k

∫
Pr

[
dk(v�Q(Z))= 1

]
fV (v)dv

and that

E[Dk = 1] =E
[
E[Dk|Q(Z)= q]]

=
∫

Pr
[
dk(v�Q(Z))= 1

]
fV (v)dv�

The desired results follow immediately since the new policy only changes Q to Q∗, while
everything else remains the same.

B.2. Proof of Theorem 4.1

It follows from (2.1) in the main paper that

Q1(Z)+Q2(Z)= 2P0(Z)+ P2(Z)� (B.1)
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The right-hand side of (B.1) is identified directly from the data. Suppose that Q̃1(Z) and
Q̃2(Z) also satisfy Q̃1(Z) + Q̃2(Z) = 2P0(Z) + P2(Z), as well as Assumption 4.1. Then,
writing �j(Z) = Qj(Z)− Q̃j(Z) (j = 1�2) gives �1(Z) = −�2(Z). But by Assumption 4.1,
�1 does not depend on Z2, and �2 does not depend on Z1. Therefore, we must have
Q̃1(Z1) = Q1(Z1)+C and Q̃2(Z2) = Q2(Z2)−C, where C is a constant. This proves that
Q1 and Q2 are identified up to an additive constant.

Further, take any (z0
1� z

0
2) ∈Z . If we take Q2(z2)= P(z0

1� z2)−C0
1 for some constant C0

1 ,
then by (B.1),

Q1(z1)= P(z1� z2)− P
(
z0

1� z2

) +C0
1 � (B.2)

Since the right-hand side of (B.2) should not depend on z2, we set

Q1(z1)= P
(
z1� z

0
2

) − P
(
z0

1� z
0
2

) +C0
1 �

Q2(z2)= P
(
z0

1� z2

) −C0
1 �

To describe the possible range of C0
1 , note that we require that

Pr(D= 0)= Pr
[
Q1(Z1) > 0 and Q2(Z2) > 0

]
> 0�

Pr(D= 1)= Pr
[
Q1(Z1) < 1 and Q2(Z2) < 1

]
> 0�

Pr(D= 2)= Pr
[
Q1(Z1) > 0 and Q2(Z2) < 1

] + Pr
[
Q1(Z1) < 1 and Q2(Z2) > 0

]
> 0�

That is, C0
1 must satisfy the following restrictions:

Pr
[
P

(
z0

1� z
0
2

) − P
(
Z1� z

0
2

)
<C0

1 <P
(
z0

1�Z2

)]
> 0�

Pr
[
P

(
z0

1�Z2

) − 1 <C0
1 < 1 + P

(
z0

1� z
0
2

) − P
(
Z1� z

0
2

)]
> 0�

Pr
[
max

{
P

(
z0

1� z
0
2

) − P
(
Z1� z

0
2

)
�P

(
z0

1�Z2

) − 1
}
<C0

1

]
+ Pr

[
C0

1 < min
{
1 + P

(
z0

1� z
0
2

) − P
(
Z1� z

0
2

)
�P

(
z0

1�Z2

)}]
> 0�

B.3. Proof of Theorem 4.2

Recall that we denote H(z1� z2) = Pr(D = 1|Z1 = z1�Z2 = z2) the propensity score.
Under our exclusion restrictions, H(z1� z2)= FV1�V2(G1(z1)�G2(z2)).

Let fV (v1� v2) denote the density of V = (V1� V2). By construction,

H(z1� z2)= FV

(
G1(z1)�G2(z2)

) =
∫ G1(z1)

0

∫ G2(z2)

0
fV (v1� v2)dv1 dv2� (B.3)

Differentiating both sides of (B.3) with respect to z1 gives

∂H

∂z1
(z1� z2)= G′

1(z1)

∫ G2(z2)

0
fV

(
G1(z1)� v2

)
dv2� (B.4)

Now letting z2 → b2 on both sides of (B.4) yields

lim
z2→b2

∂H

∂z1
(z1� z2)=G′

1(z1)

[
lim
z2→b2

∫ G2(z2)

0
fV

(
G1(z1)� v2

)
dv2

]
� (B.5)
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The expression inside the brackets on the right-hand side of (B.5) is 1 since
limz2→b2 G2(z2) = 1 and the marginal distribution of V2 is U[0�1]. Therefore, we iden-
tify G1 by

G1(z1)=
∫ z1

a1

lim
t2→b2

∂H

∂z1
(t1� t2)dt1� (B.6)

Analogously, we identify G2 by

G2(z2)=
∫ z2

a2

lim
t1→b1

∂H

∂z2
(t1� t2)dt2� (B.7)

Returning to (B.3), since G1 and G2 are strictly increasing, we identify FV by

FV (v1� v2)=H
(
G−1

1 (v1)�G
−1
2 (v2)

)
�

B.4. Proof of Theorem 4.3

B.4.1. Proof of Part 1

Given our differentiability assumptions, we can take derivatives of the formula

φ
(
H(z1� z2)

) = φ
(
G1(z1)

) +φ
(
G2(z2)

)
(B.8)

over N . Using

∂2(φ ◦H)

∂z1∂z2
(z1� z2)= 0�

we obtain

φ′′(h)
∂H

∂z1
(z1� z2)

∂H

∂z2
(z1� z2)+φ′(h)

∂2H

∂z1∂z2
(z1� z2)= 0

with h=H(z1� z2).
Take any smooth curve contained in N and parameterize it as h → (z1(h)� z2(h)) with

h=H(z1(h)� z2(h)); then we have a differential equation

φ′′(h)
∂H

∂z1

(
z1(h)� z2(h)

)∂H
∂z2

(
z1(h)� z2(h)

) +φ′(h)
∂2H

∂z1∂z2

(
z1(h)� z2(h)

) = 0� (B.9)

Using (B.8), the partial derivatives H1 and H2 cannot take the value zero on N since G′
1

and G′
2 are never zero. Therefore, we can rewrite (B.9) as

φ′′

φ′ (h)= − H12

H1H2

(
z1(h)� z2(h)

)
over N .

We note that this equation incorporates a sign constraint and over-identifying restric-
tions. For φ to be strictly decreasing and convex, we require H12/(H1H2) ≥ 0. Moreover,
on any admissible curve, the ratio H12/(H1H2) must be the same function of h, which we
denote R(h).



10 S. LEE AND B. SALANIÉ

B.4.2. Proof of Part 2

From now on, we denote (h�h)⊂ (0�1) the image of N by H.
We use the fact that ∂ log(−φ′(h))/∂h =φ′′(h)/φ′(h) to obtain

log
(−φ′(h)

) =
∫ h̄

h

R(t)dt + log
(−φ′(h̄)

)
�

so that

φ′(h) =φ′(h̄)exp
(∫ h̄

h

R(t)dt

)
�

Denoting

T(h) :=
∫ h̄

h

dkexp
(∫ h̄

k

R(t)dt

)

gives us φ(h)= φ(h̄)−φ′(h̄)T(h). Note that, by construction, T is a decreasing function
and T(h̄)= 0. Moreover, φ′(h̄) cannot be zero since φ would be constant.

B.4.3. Proof of Part 3

If φ solves (B.8), then clearly so does αφ for any α > 0; we normalize φ′(h̄) = −1.
Hence, from now on, φ(h)= φ(h̄)−T(h). The constant φ(h̄) must be nonnegative since
φ cannot take negative values. Moreover, since φ is convex, φ′(h̄) = −1, and φ(1) = 0,
we must have φ(h̄) ≤ 1 − h̄. If, moreover, h̄ = supz∈N Pr(D = 1|Z = z) = 1, then φ(h̄) =
φ(1)= 0; this defines directly φ(h)= −T(h) over (h�1).

B.4.4. Proof of Part 4

Since the model is well-specified, there is a solution G1�G2 (the thresholds of the true
DGP). In addition, since any other admissible (G̃1� G̃2) must satisfy

φ
(
G̃1(z1)

) +φ
(
G̃2(z2)

) =φ
(
H(z1� z2)

) = φ
(
G1(z1)

) +φ
(
G2(z2)

)
on N , it must be that

φ
(
G̃1(z1)

) = φ
(
G1(z1)

) − k�

φ
(
G̃2(z2)

) = φ
(
G2(z2)

) + k�

for some constant k. Any such constant must be such that φ(G1(z1))−k and φ(G2(z2))+
k are both nonnegative for all z1 and z2 in the projections of N . That is,

− infφ
(
G2(z2)

) ≤ k≤ infφ
(
G1(z1)

)
�

If, moreover, supz∈N Pr(D = 1|Z = z) = 1, then h̄ = 1. Take a sequence (zn) such that
H(zn) converges to h̄ = 1. Then φ(H(zn)) converges to zero, so that both φ(G1(z1n))
and φ(G2(z2n)) must converge to zero. The double inequality above implies that k = 0,
and G1 and G2 are point-identified on the projections of N .
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APPENDIX C: THE ENTRY GAME

Let us return to Example 2, in which two firms j = 1�2 are considering entry into a new
market. Firm j has profit πm

j if it becomes a monopoly, and πd
j < πm

j if both firms enter.
We saw that if πm

j > 0 > πd
j for both firms, then there are two symmetric equilibria, with

only one firm operating. Now assume that we observe not only the number of entrants
as in Example 2, but also their identity. With profits given by πm

j = Vj − Qj(Z) and πd
j =

V̄j − Q̄j(Z), if only firm 1 entered then we know that πm
1 > 0 and πd

2 < 0, so that

V1 >Q1(Z) and V̄2 < Q̄2(Z)�

That still leaves two possible cases:
1. πm

2 < 0, and the unique equilibrium has only firm 1 entering the market;
2. πm

2 > 0, and there is another, symmetric equilibrium with only firm 2 entering.
Now let us postulate an equilibrium selection rule that has a threshold structure: when
both πm

1 and π2
m are positive, firm 1 is selected to be the unique entrant if and only if

U < q(Z). Then the necessary and sufficient set of conditions for the entry of firm 1 only
is

V1 >Q1(Z) and
(
V2 <Q2(Z) or

(
V̄2 < Q̄2(Z) and U < q(Z)

))
�

This is again a special case of the general framework we analyze in this paper.

APPENDIX D: DETAILED DISCUSSION OF HECKMAN, URZUA, AND VYTLACIL (2008)

Heckman, Urzua, and Vytlacil (2008) considered a multinomial discrete choice model
for treatment. They posited

D= k ⇐⇒ Rk(Z)−Uk >Rl(Z)−Ul for l = 0� � � � �K − 1 such that l 	= k�

where the U ’s are continuously distributed and independent of Z.
Define

R(Z)= (Rk(Z)−Rl(Z))l 	=k and U = (Uk −Ul)l 	=k�

Then Dk = 1(R(Z) > U); and defining Ql(Z) = Pr[U l < Rl(Z)|Z] allows us to write the
treatment model as

D= k iff V <Q(Z)� (D.1)

where each Vl is distributed as U[0�1].
The applications they considered are GED certification (with three treatments: perma-

nent high school dropout, GED, high school degree) and randomized trials with imperfect
compliance (e.g., no training, classroom training, and job search assistance).

They then studied the identification of marginal and local average treatment effects
under assumptions that are similar to ours: continuous instruments that generate enough
dimensions of variation in the thresholds. They assumed that V is continuously distributed
with full support; that (U�V ) ⊥⊥ Z; and that all treatments have positive probabilities.
More importantly, they made either

• assumption (a): for each treatment j, there is a component of Z that drives some
variation in Rj conditional on the other components, and in Rj only;
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• assumption (b): for each treatment j, there is a component of Z that drives contin-
uous variation in Rj conditional on the other components, and no variation in the other
components of R.

For any subset of treatments J ⊂K, they defined YJ to be the outcome when the agent
chooses the best treatment from J . They also defined �J �L = YJ −YL, and in particular,
the MTE

E
(
�J �L|Z�RJ (Z)=RL(Z)

)
�

They showed that
• if we take J = {j} and L = K − {j}, then the LATE is identified under (a) and the

MTE is identified under (b);
• if we take any J and L = K − J , then the results are similar but the MTEs and

LATEs are defined by conditioning on the values of the Q’s rather than on the Z’s.
They did not invoke any large support assumptions to obtain identification results men-
tioned just above.

However, if we take J = {j} and L= {l}, then their corresponding identification results
(see Theorem 3 of Heckman, Urzua, and Vytlacil (2008)) require a large support condi-
tion. To see their logic, suppose that K = 3 and that one of the Rj ’s is sufficiently negative
that the probability of choosing one of the choices is arbitrarily small. This case effectively
reduces to the binary treatment case; their LIV estimand, which is the limit of a sequence
of Wald estimands, identifies the MTE.

We do not rely on this type of identification-at-infinity strategy since we identify the
MTE via multidimensional cross-derivatives. Note that our identification results are con-
ditional on the assumption that Q is already identified. A more stringent assumption on
the support of Z might be necessary to identify Q, as demonstrated in Matzkin (1993,
2007). In this sense, our assumptions are not necessarily weaker than those of Heckman,
Urzua, and Vytlacil (2008). We view our identification results and theirs as complement-
ing each other.

APPENDIX E: NON-RECTANGULAR THRESHOLD CONDITIONS

The threshold conditions we postulated in Assumption 2.1 have the “rectangular” form
Vj < Qj(Z). Suppose that the threshold conditions j = 1� � � � � J have the more general
form

αj ·U ≤Rj(Z)�

where the αj are possibly unknown parameter vectors in R
L and U = (U1� � � � �UL) is

independent of Z. For notational simplicity, assume that each (scalar) random variable
uj ≡ αj ·U has positive density everywhere; denote Hj its cdf. Then, each threshold con-
dition can be written equivalently as

Vj ≡Hj(uj) <Hj

(
Rj(Z)

) ≡Qj(Z)�

By construction, each Vj is distributed uniformly over [0�1]. Moreover, since each thresh-
old Qj is an increasing function of the corresponding Rj only, any exclusion restriction
assumed on either form applies equally to the other, so that we can hope to identify the
thresholds Qj under suitable assumptions. If they are indeed identified, then we can ap-
ply Theorem 3.1 to recover the joint density of V = (V1� � � � � Vj) and the MTE conditional
on v.
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The random variables V and the thresholds Q are only auxiliary objects, and the analyst
is likely to be more interested in the U and R. If the cdf Hj were known, then we could
write Rj =H−1

j (Qj) and by the change-of-variables formula,

fu(u1� � � � � uJ)= fV
(
H−1

1 (u1)� � � � �H
−1
J (uJ)

) ×
J∏

j=1

H ′
j(uj)�

In turn, knowing the joint distribution of u directly gives the density of U if L= J and the
matrix α whose rows are the vectors α′

j is invertible:

fU(U)= fu(αU)× |α|�
If, more realistically, the Hj and αj are unknown, we may still use other restrictions.

As an illustration, take a recursive system, where the matrix α is lower-triangular with
diagonal terms equal to 1. Then, since U2 = u2 −α21u1 =H−1

2 (V2)−α21H
−1
1 (V1), the inde-

pendence of U1 and U2, for instance, would translate into the independence of V1 and of
the variable

W2 ≡H−1
2 (V2)− α21H

−1
1 (V1)�

Now V2 = H2(W2 + α21U1), so this in turn implies that the (identified) distribution of V2

conditional of V1 must satisfy

FV2|V1

(
H2

(
w2 + α21H

−1
1 (v1)

)|v1

) = FW2(w2)= H2(w2)

for all w2 and v1. But as the right-hand side does not depend on v1, this imposes restric-
tions that only hold for some choices of H1, H2, and α21. If we only know H2, then

w2 + α21H
−1
1 (v1)= F−1

V2|V1

(
H2(w2)|v1

)
over-identifies the product α21H

−1
1 (v1); and if we also know H1, then it over-identifies α21.

These results extend directly to higher dimensional systems.
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