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S.1. ADDITIONAL MATERIAL FOR SECTIONS 3 AND 4

IN THIS APPENDIX, we provide a few results that complement the analysis in Sections 3
and 4.

Heterogeneous versus Common Priors (Continued)

In Section 3.3 of the main text, we established an observational equivalence between
a special case of our heterogeneous-prior model and a common-prior variant featuring
idiosyncratic uncertainty. We now elaborate on the bounds that this mapping can impose
on the magnitude and the persistence of the ξt shock in our setting.

Suppose that we had data that allowed the estimation of the AR(1) process described in
condition (3.17). Suppose next that we possessed information on the value for σ̃a, perhaps
from microeconomic observations. This information could be used in Proposition 2 to
derive the bounds on (ϕ�ψ) and then, using Corollary 1, to get bounds on (ρξ�σξ).

Figure 7 depicts these bounds. To construct this figure, we let ν = 0	5 and σ̃a = 0	2. The
latter value is based on the observation that σ̃a determines the uncertainty that islands
face about their terms of trade (demand for their products), and may thus be proxied
by the idiosyncratic risk that the typical firm faces about its productivity and sales.1 In
the left panel of the figure, we plot the set of the (ϕ�ψ) pairs that satisfy the bounds in
Proposition 2, under the assumed value for σ̃a. Using Corollary 1, we can translate this
set into corresponding values for (ρξ�σξ).

In the right panel of the figure, we plot a more useful transformation of this set: instead
of measuring σξ on the vertical axis, we measure the corresponding value of σy , where σy
henceforth stands for the standard deviation of the business-cycle component of output
(i.e., of output bandpass filtered over 6–32 quarters) that is accounted by the confidence
shock. Finally, the dot indicates the values of ϕ (in the left panel) and of σy (in the right
panel) that obtain when we fix ρξ = 0	75 and calibrate the volatilities of the confidence
shock and the technology shock in the model so as to match the volatilities of aggregate
output and employment in the data. The figure shows that under a plausible value for
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FIGURE 7.—The bounds on persistence and volatility.

σ̃a, the range of values for σξ that would be consistent with the restrictions imposed by a
common-prior specification is very large.

Note that the relevant bound remains large even for lower values of σ̃a, say 4%. Such
a value would not appear implausibly large even if we confined first-order uncertainty
to concern aggregate fundamentals. For instance, this value is only about twice as large
as the standard deviation of the quarterly innovations in the aggregate Solow residual.
Furthermore, as the behavior in the richer models used in the quantitative exercises in
this paper is forward-looking, it seems more appropriate to think about a present-value
measure of the uncertainty in fundamentals, as opposed to merely the quarter-by-quarter
changes. Therefore, even though we cannot extend the results of this subsection to such
richer models, we feel confident that our quantitative findings are consistent with realistic
common-prior models. The recent work of Huo and Takayama (2015) seems to corrob-
orate this conjecture. That said, there is no reason to view our approach exclusively as a
proxy for incomplete information and rational confusion.

The Confidence Shock in the Baseline New Keynesian Model

In Section 4 of the main text, we compared the co-movement patterns generated by the
confidence shock to those of a few alternative shocks within the context of the baseline
RBC model. We now extend the comparison to the baseline New Keynesian model. The
latter is obtained from the former by adding monopoly power, sticky prices, and a Taylor
rule for monetary policy.

Table V revisits the exercise conducted in Table I. The preferences, the technology, and
the confidence shock remain as before; the monopoly distortion is offset by a subsidy; the
Calvo parameter is set to 0.75; and the Taylor rule is specified as Rt =φππt with φπ = 1	5.

The following key findings emerge. First, the good and superior to other shocks em-
pirical performance of the confidence shock survives as we move from the RBC model to
the New Keynesian model. Second, with the exception of the monetary shock, none of the
competing shocks is able to generate realistic co-movement patterns in the relevant quan-
tities. Finally, the similarity between the real effects of the confidence shock and those of
the monetary shock provide further justification for our claim that the confidence plays a
similar role in the RBC framework as demand shocks

Belief-Driven Wedges

In this section, we derive the predictions of our theories about the wedges. We consider
both the overall wedges between the marginal rates of substitution and the corresponding
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TABLE V

CONDITIONAL CO-MOVEMENTS (6–32 QUARTERS)a

Filtering Our Mechanism Alternative Mechanisms

(a) (b) (c) (d) I Shock C Shock News E Shock M Shock

σn/σy 0	87 1	07 1	43 1	43 1	44 1	44 0	87 0.70 1	44
σc/σy 0	56 0	52 0	25 0	22 0	44 1	01 0	16 0.19 0	13
σi/σy 3	54 3	65 3	92 4	10 6	09 8	26 4	80 4.30 4	52
σy/n/σy 0	40 0	63 0	44 0	44 0	47 0	49 0	18 0.33 0	45

corr(c� y) 0	86 0	85 0	85 0	76 −0	83 −0	94 −0	16 0.60 0	38
corr(i� y) 0	94 0	95 0	99 0	99 0	99 0	99 0	99 0.99 0	99
corr(n� y) 0	91 0	82 0	99 1	00 0	99 0	98 0	99 0.99 1	00
corr(c�n) 0	86 0	75 0	81 0	70 −0	90 −0	99 −0	25 0.47 0	31
corr(i�n) 0	85 0	81 0	99 1	00 1	00 1	00 1	00 1.00 1	00
corr(c� i) 0	75 0	79 0	78 0	67 −0	90 −0	98 −0	27 0.50 0	29
corr(y� y/n) −0	03 0	21 −0	96 −0	96 −0	90 −0	86 0	76 0.94 −0	97
corr(n� y/n) −0	43 −0	40 −0	98 −0	98 −0	95 −0	93 0	67 0.87 −0	99

σπ/σy 0	16 0	42 – 0	07 0	22 0	04 0	07 0.03 0	10
σR/σy 0	24 0	72 – 0	10 0	34 0	06 0	10 0.05 0	02
corr(y�π) 0	21 −0	90 – 0	96 0	99 0	42 0	37 0.84 0	99
corr(y�R) 0	38 −0	81 – 0	96 0	99 0	42 0	37 0.84 −0	38

aColumns (a) and (b) refer to the residuals that obtain, respectively, from the projection of the data on current and past TFP and
from the removal of the technology shock identified in the same way as in Galí (1999). Column (c) refers to the predictions of our
baseline model and column (d) to those of its New Keynesian variant. All other columns refer to alternative New Keynesian models.

marginal rates of transformation, and their decomposition in household- and firm-side
wedges.

Let us fill in the details. First, denote with MRSNt ≡ νNt + γCt the measured marginal
rate of intra-temporal substitution between leisure and consumption; with MRSCt�t+1 ≡
γ(Ct+1 − Ct) the measured marginal rate of inter-temporal substitution in consumption;
with MPLt ≡ Yt −Nt the measured marginal product of labor; and with MPK t = Yt −Kt

the measured marginal product of capital. Next, define the wedges τnht , τkht , τnft , and τkft
so that the following conditions hold:

MRSNt = wt − τnht � Et[MRSCt�t+1] = (
1 −β(1 − δ))(Rt − τkht

)
� (S.1)

MPLt = wt + τnft � Et[MPK t+1] =Rt + τkft 	 (S.2)

This means that τnht and τkht can be interpreted as taxes paid by the household on labor
income and on the return to savings, while τnft and τkft can be interpreted as taxes paid
by the firm on the use of labor and capital. We finally measure the total labor wedge by
τn ≡ τnht + τnf and the total capital wedge by τk ≡ τkht + τkf .

When the data are generated by the plain-vanilla RBC model, all the wedges are zero.
At the other extreme, the wedges can be arbitrary stochastic processes if the data are
generated by a medium-scale model that lets each of the optimality conditions of the RBC
model be perturbed by a different shock. Our model is in between these two extremes,
arguably closer to the plain-vanilla RBC model than to DSGE models such as Smets
and Wouters (2007): the wedges differ from zero but they are all linear functions of the
underlying confidence shock.

Furthermore, as shown next, ξt > 0 maps to τnht > 0, τkht > 0, τnft < 0, and τkft < 0. That
is, whenever there is a boost in confidence, it is as if the household faces a positive tax on
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its supply of labor and savings, while the firm faces a positive subsidy on its use of labor
and capital services. The first property reflects the excessive optimism that the households
have about their income during a confidence-driven boom; the second property reflects
the excessive optimism that the firms have about the demand for their product and their
terms of trade. Finally, the combination of these forces gives rise to a pro-cyclical labor
wedge and a counter-cyclical capital wedge, in line with the U.S. data.

The Labor Wedge on the Household Side

Consider first τnht , which is defined as the equivalent of a labor-income tax faced by the
as-if representative household:

τnht ≡wt − MRSNt =wt − (Ct + νNt)	

In the equilibrium of our model, the household of every island i equates the local wage to
the local expectation of its marginal rate of substitution between consumption and leisure:

wi�t = Eit[ci�t] − νni�t 	
In addition, the realized outcomes satisfy wi�t = wt , ni�t = Nt , and ci�t = Ct for all i. It
follows that

τnht = Eit[ci�t] −Ct = Eit[ci�t] − cit ∀i�
which reveals that τnht captures the excessive optimism (during a boom) or pessimism
(during a recession) of the households about their own consumption. Condition (3.13) in
the main text, together with the fact that kit =Kt for all i, implies that cit = Γ c

KKt +Γ c
z zit +

Γ c
z zt + Γ c

a At + Γ c
ξ ξt and therefore Eit[cit] = Γ c

KKt + (Γ c
z + Γ c

z + Γ c
a )At + (Γ c

ξ + Γ c
z )ξt .

Realized consumption, on the other hand, is given by Ct = Γ c
KKt + (Γ c

z + Γ c
z + Γ c

a )At +
Γ c
ξ ξt . Combining, we infer that

τnht = Γ c
z ξt	

The adopted parameterization implies τnht = 0	0152ξt .

The Labor Wedge on the Firm Side

Consider next τnft , which is defined as the equivalent of a payroll tax faced by the as-if
representative firm:

τ
nf
t ≡ MPLt −wt = (Yt −Nt)−wt	

In the equilibrium of our model, the firm of every island i equates the local wage to the
local expectation of the marginal revenue product of labor:

wi�t = Eit[MRPLit] = Eit[pit + yit − nit] = Eit[Yt] − nit ∀i	
In addition, the realized outcomes satisfy wit =wt and nit =Nt for all i. It follows that

τ
nf
t = Yt −Eit[Yt] ∀i�

which reveals that τnft captures the excessive optimism or pessimism of the firms about
aggregate income and the resulting demand for the local good. Using conditions (3.12)
and (3.15) from the main text along with the production function, we have that Yt =
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Γ
y
KKt + Γ y

a At + Γ y
z zt + Γ y

ξ ξt and therefore Eit[Yt] = Γ y
KKt + (Γ y

a + Γ y
z )At + (Γ y

z + Γ y
ξ )ξt .

It follows that

τ
nf
t ≡ −Γ y

z ξt	

For our parameterization, we have τnft = −0	2548ξt .

The Capital Wedge on the Firm Side

Consider now τkft , which is defined as the equivalent of an investment tax faced by the
as-if representative firm:

τ
kf
t ≡ Et[MPK t+1] −Rt = Et[Yt+1] −Kt+1 −Rt�

where Et is the rational (or objective) expectation operator. In the equilibrium of our
model,

Rt = E
′
it[MRPK i�t+1] = E

′
it[pi�t+1 + yi�t+1 − ki�t+1] = E

′
it[Yt+1] − ki�t+1 ∀i�

where Ei�t is the subjective expectation operator in the morning of period t. It follows that

τ
kf
t = Et[Yt+1] −E

′
it[Yt+1] ∀i�

which reveals that τkft captures the excessive optimism or pessimism of the firms about
aggregate income and demand next period. Using similar steps as before, we can show
that

τ
kf
t = −Γ y

z ρξt�

where Γ y
z is the elasticity of the realized income of each island with respect to the realized

average signal. For our calibration, we have τkft = −0	1911ξt .

The Savings Wedge on the Household Side

Consider τkht , which is defined as the tax on the returns to savings faced by the as-if
representative household:

τkht ≡Rt − 1
1 −β(1 − δ)Et[MRSCt�t+1] =Rt + γ

1 −β(1 − δ)Et[Ct+1 −Ct]	

In the equilibrium of our model,

Rt = 1
1 −β(1 − δ)E

′
it[MRSCi�t�t+1] = γ

1 −β(1 − δ)E
′
it[ci�t+1 − ct]�

where E
′
it is the subjective operator in the afternoon of period t. It follows that

τkht = γ

1 −β(1 − δ)
(
E

′
it[cit+1] −Et[Ct+1]

)

= γ

1 −β(1 − δ)
(
E

′
it[cit+1] −Et[ci�t+1]

)
�
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which reveals that τkht captures the excessive optimism or pessimism of the households
about their future consumption. From the policy rules for individual and aggregate con-
sumption:

E
′
it[cit+1] = Γ c

KKt+1 + (
Γ c
z + Γ c

z + Γ c
a

)
At +

(
Γ c
z + Γ c

ξ

)
ρξt�

Et[Ct+1] = Γ c
KKt+1 + (

Γ c
z + Γ c

z + Γ c
a

)
At + Γ c

ξ ρξt	

Combining, we infer that

τkht = Γ c
z ρ

1 −β(1 − δ)ξt	

For our parameterization, we have τkht = 0	3277ξt .

The Total Wedges in the Model

Combining the above results, we conclude that the total labor wedge in the calibrated
version of our baseline model is given by τnt = τnht + τ

nf
t = −0	2396ξt , whereas the total

capital wedge is given by τkt = τkht + τkft = 0	1366ξt . That is, the labor wedge is negatively
correlated with the confidence shock, and therefore counter-cyclical, while the capital
wedge is positively correlated with the confidence shock, and therefore pro-cyclical.

In the main text, we claimed that both of these predictions are driven by the fact that
the ξt shock shifts the perceptions of short-run returns without moving much the per-
ceptions of permanent income. Let us now explain why this is the case. As noted above,
our model predicts that the wedges for firms and households move in opposite directions.
Furthermore, the pro-cyclicality of τnht is tied to the effect of the confidence shock on
perceived permanent income, while the counter-cyclicality of τnt f is tied to the effect on
the perceived marginal return to labor. For the reasons already explained, the latter ef-
fect dominates the former. Consequently, the overall labor wedge, τnt , is predicted to be
counter-cyclical. The opposite is true for the capital wedge, τkt . To see why, note first that
the Euler condition equates expected consumption growth with a quantity that is equal
to unity plus the expected return to capital. Note next that, while the variation in τkft is
of similar magnitude to the variation in τnft , it represents a small component in the afore-
mentioned quantity, and is therefore overwhelmed by the variation in τkht , which captures
the household’s optimism and pessimism about future consumption. It follows that τkt
shares the cyclical properties of τkht , that is, the total capital wedge is pro-cyclical.

Estimation of Wedges in the Data

We now turn attention to the estimation of the wedges in U.S. data. This is done in a
similar fashion as in Chari, Kehoe, and McGrattan (2007).

The estimation is based on the baseline RBC model, augmented with ad hoc stochastic
processes for the following four wedges: an efficiency wedge, τet , a labor wedge, τnt , a
capital wedge, τkt , and a resource wedge, τgt . Accordingly, the system to be estimated is
the following:

νNt +Ct = Yt −Nt − τnt � (S.3)

Et[Ct+1] −Ct =
(
1 −β(1 − δ))(Et[Yt+1 −Kt+1] − τkt

)
� (S.4)

Yt + (1 − δ)Kt = Ct +Kt+1 + τgt � (S.5)

Yt = τet + αKt + (1 − α)Nt	 (S.6)
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We set the structural parameters ν, α, β, and δ to the values chosen in our base-
line calibration. As in Chari, Kehoe, and McGrattan (2007), we assume that the vector
Tt = (τet � τnt � τkt � τgt )′ follows a VAR(1) process of the form

Tt =ΦTt−1 + Et �

where Φ is a matrix, Et = (εet � ε
n
t � ε

k
t � ε

g
t )

′ is normally distributed with E(Et) = 0 and
E(EtE ′

t ) = ΩΩ′, and Ω is a lower-triangular matrix. We finally estimate the matrices Φ
and Ω using data on GDP, investment, hours, and the difference between GDP and the
sum of investment and consumption, over the period 1960Q1–2007Q4. The estimation
yields

Φ=
⎛
⎜⎝

0	6537 0	1184 0	2268 0	0049
−0	2487 1	0716 0	1605 0	0089
−0	2808 0	0883 1	1620 0	0068

0	2017 −0	1390 −0	1741 0	9829

⎞
⎟⎠ and

Ω=
⎛
⎜⎝

0	6148 0	0000 0	0000 0	0000
0	2580 0	8828 0	0000 0	0000
0	6261 −0	3505 0	1793 0	0000
0	2492 0	2278 0	4964 1	5210

⎞
⎟⎠ �

and results to the moments reported in Table VI. We thus see that the labor wedge is
counter-cyclical and the capital wedge pro-cyclical, just as predicted by our theory.

S.2. DATA

In this appendix, we describe the data we use in this paper to obtain the various
business-cycle moments and to estimate the models considered in Section 5.

Table VII summarizes the data, all of which are from FRED, the Economic Database of
the Federal Reserve Bank of Saint-Louis. GDP, Y , is measured by the seasonally adjusted
GDP. Consumption, C, is measured by the sum of personal consumption expenditures
in nondurables goods (CND) and services (CS). Investment, I, is measured by the sum
of personal consumption expenditures on durables goods (CD), fixed private investment
(FPI), and changes in inventories (DI). Government Spending, G, is measured by gov-
ernment consumption expenditures (GCE). Hours worked, N , are measured by hours of
all persons in the non-farm business sector. Labor productivity, Y/N , is measured by real
output per hour of all persons in the non-farm business sector. The inflation rate, π, is
the log-change in the implicit GDP deflator. The nominal interest rate, R, is the effective
federal funds rate measured on a quarterly basis. Given that the effective federal funds
rate is available at the monthly frequency, we use the average over the quarter (denoted

TABLE VI

WEDGES IN THE DATA

Efficiency Labor Capital

Standard deviation 0.86 1	40 1.04
Correlation with output 0.78 −0	57 0.91



8 G.-M. ANGELETOS, F. COLLARD, AND H. DELLAS

TABLE VII

DESCRIPTION OF THE DATA

Data Formula

GDP Y=GDP/(GDPDEF×CNP16OV)
Consumption C=(CND+CS)/(GDPDEF×CNP16OV)
Investment I=(CD+FPI+DI)/(GDPDEF×CNP16OV)
Government Spending G=GCE/(GDPDEF×CNP16OV)
Hours Worked H=HOANBS/CNP16OV
Labor Productivity GDP/H
Inflation Rate π = log(GDPDEF)− log(GDPDEF)−1

Nominal Interest Rate R=FEDFUNDS/4

Mnemonic Source

GDP http://research.stlouisfed.org/fred2/series/GDP
CND http://research.stlouisfed.org/fred2/series/PCND
CD http://research.stlouisfed.org/fred2/series/PCEDG
CS http://research.stlouisfed.org/fred2/series/PCESV
FPI http://research.stlouisfed.org/fred2/series/FPI
DI http://research.stlouisfed.org/fred2/series/CBI
GCE http://research.stlouisfed.org/fred2/series/GCE
HOANBS http://research.stlouisfed.org/fred2/series/HOANBS
GDPDEF http://research.stlouisfed.org/fred2/series/GDPDEF
FEDFUNDS http://research.stlouisfed.org/fred2/series/FEDFUNDS
CNP16OV http://research.stlouisfed.org/fred2/series/CNP16OV

FEDFUNDS). Finally, when relevant, Total Factor Productivity (TFP) is measured as in
Fernald (2014), which adjusts for utilization.

The sample ranges from the first quarter of 1960 to the last quarter of 2007. We dropped
the post-2007 data because the models we study are not designed to deal with the financial
phenomena that appear to have played a more crucial role in the recent recession as
opposed to earlier times. All quantities are expressed in real, per capita terms—that is,
deflated by the implicit GDP deflator (GDPDEF) and by the civilian non-institutional
population (CNP16OV). Because the latter is reported monthly, we used the last month
of each quarter as the quarterly observation.

S.3. ADDITIONAL MATERIAL FOR SECTION 5

This appendix contains additional material regarding the two estimated models in Sec-
tion 5. Table VIII reports the priors and the posteriors of the estimated parameters. Fig-
ures 8 and 9 report the IRFs of our estimated models with respect to all the structural
shocks. Tables IX and X report the estimated contribution of the shocks to, respectively,
the variances and the co-variances of the key variables at business-cycle frequencies. The
confidence shock is omitted here, because its contributions were reported in the main
text.

S.4. ESTIMATING � AND σξ

In the main text, we noted that the data considered in Section 5 do not allow us to iden-
tify separately the standard deviation of the confidence shock and the degree of strategic
complementary. Nevertheless, this may be achieved if the data set were augmented to

http://research.stlouisfed.org/fred2/series/GDP
http://research.stlouisfed.org/fred2/series/PCND
http://research.stlouisfed.org/fred2/series/PCEDG
http://research.stlouisfed.org/fred2/series/PCESV
http://research.stlouisfed.org/fred2/series/FPI
http://research.stlouisfed.org/fred2/series/CBI
http://research.stlouisfed.org/fred2/series/GCE
http://research.stlouisfed.org/fred2/series/HOANBS
http://research.stlouisfed.org/fred2/series/GDPDEF
http://research.stlouisfed.org/fred2/series/FEDFUNDS
http://research.stlouisfed.org/fred2/series/CNP16OV
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TABLE VIII

ESTIMATED PARAMETERS

Posteriors

Priors Flexible Price Model Sticky Price Model

Shape Mean Std. Dev. Median 90%HPDI Median 90%HPDI

ν G 0.500 0.200 0.456 [0	226�0	814] 0.282 [0	161�0	429]
α B 0.300 0.150 0.261 [0	234�0	286] 0.255 [0	229�0	280]
ψ B 0.500 0.200 0.576 [0	255�0	856] 0.500 [0	315�0	708]
ϕ G 2.000 1.000 3.370 [2	026�5	346] 3.312 [1	917�5	394]
b B 0.500 0.200 0.860 [0	809�0	899] 0.758 [0	649�0	836]
χ B 0.660 0.100 – – 0.732 [0	673�0	782]
κR B 0.600 0.200 – – 0.198 [0	072�0	371]
κπ N 1.700 0.300 – – 2.271 [1	901�2	660]
κy N 0.125 0.050 – – 0.121 [0	052�0	199]
ρa B 0.500 0.200 0.394 [0	126�0	747] 0.412 [0	115�0	846]
ρn B 0.500 0.200 0.309 [0	113�0	545] 0.224 [0	075�0	428]
ρi B 0.500 0.200 0.365 [0	136�0	626] 0.374 [0	155�0	604]
ρc B 0.500 0.200 0.477 [0	175�0	786] 0.888 [0	802�0	964]
ρg B 0.500 0.200 0.787 [0	588�0	921] 0.786 [0	632�0	902]
ρm B 0.500 0.200 – – 0.647 [0	471�0	753]
ρξ B 0.500 0.200 0.620 [0	369�0	804] 0.833 [0	717�0	911]
σP
a IG 1.000 4.000 0.396 [0	270�0	565] 0.406 [0	278�0	569]
σT
a IG 1.000 4.000 0.338 [0	239�0	489] 0.347 [0	244�0	498]
σn IG 1.000 4.000 0.376 [0	266�0	521] 0.378 [0	263�0	520]
σP
i IG 1.000 4.000 0.845 [0	358�2	252] 0.610 [0	321�1	306]
σT
i IG 1.000 4.000 5.961 [2	046�11	657] 5.805 [2	839�11	029]
σc IG 1.000 4.000 0.658 [0	327�2	676] 0.357 [0	244�0	564]
σg IG 1.000 4.000 1.675 [1	387�2	072] 1.705 [1	431�2	076]
σm IG 1.000 4.000 – – 0.313 [0	256�0	388]
σξ IG 1.000 4.000 1.798 [1	208�2	839] 0.613 [0	348�1	194]

aB, G, IG, N stand, respectively, for Beta, Gamma, Inverse Gamma, and Normal distribution.

include data on expectations. In this appendix, we elaborate on these points and describe
the “augmented estimation” that motivates the value of � used in Section 5.

To illustrate the main identification issue, consider again the example studied in Sec-
tions 3.2 and 3.3. From conditions (3.17) and (3.18), we see that the volatility of the non-
fundamental (confidence-driven) innovations in output is given by

Var
(
Yt −Y ∗

t |history
) =ψ2 = ω2

(1 −ω)4σ
2
ξ � (S.7)

where Y ∗
t is the fundamental (TFP-driven) component, σξ is the standard deviation of the

confidence shock, and ω is the degree of strategic complementarity. Under the assump-
tion, made in the baseline model, that the CES aggregator across the islands is Cobb–
Douglas, � is unity. Relaxing this assumption gives ω as a monotone function of �. From
condition (6.20), it is then evident that exactly the same non-fundamental volatility in
output can be accounted for by a continuum of values for the pair (��σξ). This is the
crux of the identification issue faced in Section 5: the models of that section are more
complicated, something that hinders analytical results, but the issue remains the same.
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FIGURE 8.—Theoretical IRFs, Part I.

To illustrate how data on expectations could possibly aid identification, aggregate con-
dition (3.11) to obtain the following equation:

Nt −N∗
t =ω · Ēt

[
Nt −N∗

t

]
�

where N∗
t denotes the fundamental component of employment. This condition reveals

how expectations of employment (or some other variable) together with a measure of its
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FIGURE 9.—Theoretical IRFs, Part II.

“fundamental” component can be used to identify the degree of strategic complementar-
ity, and therefore �.

The procedure, though, is fraught with difficulties. Unlike the example discussed above,
the models of Section 5 have expectations mattering through multiple horizons and mul-
tiple channels. It is not clear how to combine these expectations into a single measure, or
how to map the theoretical objects to the available empirical measures. For instance, the
University of Michigan Index of Consumer Sentiment, which is known to forecast future
employment and output, is constructed on the basis of answers to qualitative questions
that do not have an immediate counterpart in the theory.

These challenges, in combination with the desire to stay as close as possible to standard
practice, account for our choice to estimate the models of Section 5 on the macroeco-
nomic data alone. Note, though, that this choice does not matter for the estimated con-
tribution of the confidence shock to the business cycle. Fixing the value of � or allowing
it to be estimated freely makes little difference for the shock’s estimated contribution to
the variances and covariances of the macroeconomic quantities.

Does the lack of identification of σξ and � pose a problem for our assertion that confi-
dence shocks are a major driver of the business cycle? We think it does not. Not being able
to rule out values of σξ that seem implausibly high relative to the innovations in aggregate
TFP and other fundamentals only implies that a narrow interpretation of the confidence
shock as capturing mis-coordination and higher-order uncertainty may be tenuous. But it
allows our shock to proxy for alternative kinds of waves of optimism and pessimism, for
instance, irrational beliefs.
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Notwithstanding our preference for a broad interpretation of the confidence shock, we
now describe an exercise that supports the more narrow interpretation and justifies the
value of � used in Section 5. Consider either one of the models of Section 5 and construct
an “augmented” model by adding the following equation, for some k≥ 0:

MCSIt = λĒt[Nt+k] +ηt� (S.8)

where Nt+k is aggregate employment k periods ahead, λ is a scalar, and ηt is a random
variable, that is orthogonal to the confidence shock and other structural shocks, and that
follows an AR(1) process ηt = ρηηt−1 +εηt where ρη ∈ [0�1) and εηt �N (0�σ2

η). We take
MCSIt as the theoretical counterpart of the University of Michigan Consumer Sentiment
Index; ηt as measurement error, or as a crude proxy for misspecification in the “true”
relation between the theory and the aforementioned index;2 and λ as a scaling parameter.

Now let θ be the vector that collects all the parameters of the original model, inclu-
sive of σξ and �. The parameters of the augmented model are given by the union of θ
and (λ�ση�ρη). Trying to estimate all the parameters jointly creates a new problem that
prevents the MCMC from converging properly. This seems to be due to the fact that the
same covariation between the sentiment index and the macroeconomic variables can be
captured with different combinations of the scaling parameter λ, the volatility of the mea-
surement error, and the degree of strategic complementarity. To cut the Gordian knot, we
chose to impose an ad hoc identification restriction that requires the augmented model
to produce a particular value for the share of the variance in MCSIt that is accounted for
by the measurement error ηt . This is equivalent to imposing one’s prior on the noise-to-
signal ratio in the sentiment index.

More specifically, for any k≥ 0, there exists a function vk such that

Var
(
Ēt[Nt+k]

) = vk(θ)	
This function is generated by the same system of equations as the one that pins down the
equilibrium outcomes and is not affected by the addition of equation (S.8). It follows that
the relative contribution of the measurement error in the theoretical counterpart of the
sentiment index is given by

Var(ηt)
Var(MCSIt)

=M
(
λ�θ′) ≡ σ2

η

(1 − ρη)λ2vk(θ)+ σ2
η

�

where θ′ ≡ (θ�ση�ρη). For any θ′ and any target me ∈ (0�1) for the contribution of the
measurement error, solving the equation M(λ�θ′)=me gives the value of λ that is con-
sistent with that target. Fixing a value for me is therefore equivalent to adding an identi-
fication restriction on the parameters of the augmented model; in that case, the MCMC
converges properly and θ′ is well identified for any given me. Our strategy is therefore to
select various values forme and to estimate θ′ on the data used in Section 5 together with
the time series of the aforementioned index.

The results from the “augmented” estimation are reported in Table XI. Let us focus on
the flexible-price model and consider two values forme, the share of the measurement er-
ror, and three values for k, the horizon of the expectations that show up in condition (S.8).

2In the data, the correlation of the Consumer Sentiment Index with hours worked attains a maximal value
of about 0	7 when the former leads the latter by 3 quarters. To some extent, this corroborates the specification
assumed above and suggests k= 3 as a possible benchmark.
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TABLE XI

ESTIMATING BOTH σξ AND �

Estimated Parameters Variance Contribution of Confidence Shock

k me � σξ σ2
ξ/σ

2
a Y C I N

Flexible-Price Model
0 0.25 0.70 0.64 0.99 54.26 54.45 50.29 84.56

0.50 0.72 0.57 0.78 54.41 52.35 52.01 85.19
4 0.25 0.70 0.43 0.40 45.80 24.40 47.79 84.01

0.50 0.70 0.45 0.44 46.26 29.53 49.25 84.78
20 0.25 0.79 0.44 0.41 58.09 46.31 61.04 85.33

0.50 0.77 0.45 0.47 55.60 44.49 58.58 84.75

Sticky-Price Model
0 0.25 0.60 0.58 0.27 12.37 13.52 10.04 21.69

0.50 0.72 0.36 0.32 53.99 50.74 51.06 71.50
4 0.25 0.69 0.36 0.30 45.15 41.93 39.87 64.26

0.50 0.72 0.36 0.30 46.12 43.28 43.05 67.51
20 0.25 0.65 0.38 0.33 50.80 39.60 46.87 70.36

0.50 0.69 0.38 0.33 49.45 41.89 46.34 69.84

For each k and me (first two columns), the table reports the estimated values for � and
σξ (next two columns), the ratio of the estimated σξ to the estimated σa (fifth column),
and the estimated contributions of the confidence shock to the business-cycle volatilities
of output, consumption, investment, and hours (last four columns). The findings suggest
a value of � in the neighborhood of 0	75, which in turn motivates the value used in Sec-
tion 5. Furthermore, the estimated σξ is smaller than the estimated σa, allowing for a
narrow interpretation of the confidence shock. Finally, the estimated contribution of the
confidence shock to the business cycle is of the same magnitude as the one estimated in
Section 5. There are, however, two notable differences: the confidence shock now explains
a larger share of the volatility in hours and a smaller in consumption.

We find the results of this exercise useful even if they do not constitute proof that � and
σξ lie in those ranges.

S.5. LOG-LINEAR SOLUTION

In this appendix, we explain how to augment a large class of DSGE models with our
proposed type of higher-order belief dynamics and how to obtain the solution of the aug-
mented model as a simple transformation of the solution of the original model.

A Prelude

Before considering the general case, it is instructive to review the linearized version of
our baseline model.

The log-linearized equilibrium conditions of the model are given by (3.6)–(3.10) in Sec-
tion 3 and have a familiar interpretation. The only novelty is the presence of two distinct
expectation operators Eit and E

′
it , which denote local expectations in stage 1 and stage 2

of period t, respectively. The difference between these two expectation operators derives
from the fact that islands form beliefs about one another’s signals and thereby about Yt in
stage 1 on the basis of their misspecified priors, but observe the true state of nature and
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the true realized Yt in stage 2. Under the supply first timing protocol, the first expectation
shows up in the optimality condition for labor, while the second shows up in the optimality
condition for consumption/saving.

The following points are worth emphasizing. The aggregate-level variables are, of
course, obtained from averaging the individual-level variables across all islands. In equi-
librium, the realized values of the aggregate variables coincide with the realized values of
the corresponding individual variables; for example, yit = Yt for all i, all t, and all real-
izations of uncertainty. This is because all islands receive the same signals and the same
fundamentals. However, this does not mean that one can just replace the island-specific
variables in the above conditions with the aggregate ones, or vice versa. Even though the
“objective truth” is that all islands receive the same signals, in stage 1 of each period each
island believes that the signals of other islands can differ from its own signal. Accordingly,
each island reasons that yit can differ from Yt , even when all other islands follow the same
strategy as itself and receive the same TFP shock.

Keeping track of this delicate difference between the realizations and the beliefs of
different variables is key to obtaining the solution to the model. Our method deals with
this delicate matter by (i) using appropriate notation to distinguish the signal received by
each agent/island from either the average signal in the population or the true underlying
shock to fundamentals; and (ii) choosing appropriate state spaces for both the individual
policy rules and the aggregate ones.

In what follows, we first set up the general class of log-linear DSGE models that our so-
lution method handles. We next introduce a class of linear policy rules, which describe the
behavior of each agent as a function of his information set. Assuming that all other islands
follow such policy rules, we can use the equilibrium conditions of the model to obtain the
policy rules that are optimal for the individual island; that is, we can characterize the best
responses of the model. Since the policy rules are linear, they are parameterized by a
collection of coefficients (matrices), and the aforementioned best responses reduce to a
system of equations in these coefficients. The solution to this system gives the equilibrium
of the model.

A “Generic” DSGE Model

We henceforth consider an economy whose equilibrium is represented by the following
linear dynamic system:

Myyyit =Myxx
b
it +MyXX

b
t +MyYEitYt +MyfEitx

f
it +MyFEitX

f
t +Myszit�

Mxx0x
b
it+1 =Mxx1x

b
it +MxX1X

b
t +Mxy1yit +MxY1Yt +Mxf1x

f
it +MxF1X

f
t +Mxs1st�

Mff0E
′
itx

f
it+1 =MfF0E

′
itX

f
t+1 +Mff1x

f
it +MfF1X

f
t +Mfx0x

b
it+1 +Mfx1x

b
it +MfX1X

b
t

+Mfy0E
′
ityit+1 +MfY0E

′
itYt+1 +Mfy1yit +MfY1Yt +Mfs0E

′
itst+1 +Mfs1st�

st = Rst−1 + εt�
ξt =Qξt−1 + νt	

This system is a generalization of the one we obtained in our baseline RBC model.
Here, xb, xf , y , s, and ξ are allowed to be vectors; xb collects backward-looking variables
(such as capital in our model); xf collects forward-looking variables that are chosen in
stage 2 of each period (such as consumption and investment in our model); y collects the
variables that are instead chosen in stage 1 (such as employment in our model); s collects
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the shocks to payoff (such as technology); and finally, ξ is meant to capture the shocks to
higher-order beliefs.Xb,Xf , and Y correspond to the aggregate versions of, respectively,
xb, xf , and y .

Beliefs

We assume that, as of stage 2, the realizations of st , of all the signals, and of all the
stage-1 choices become commonly known, which implies that yit , x

f
it , x

b
it+1 and Yt , X

f
t ,

Xb
t+1 are also commonly known in equilibrium. Furthermore, the actual realizations of

the signals satisfy zit = st for all t and all i. However, the agents have misspecified belief
in stage 1. In particular, for all i, all j �= i, all t, and all states of nature, agent i’s beliefs
during stage 1 satisfy

Eit[st] = zit�
Eit[Ejtst] = Eit[zjt] = zit +�ξt�

where zit is the signal received by agent i, ξt is the higher-order belief shocks, and � is a
loading matrix. We next let z̄t denote the average signal in the economy and note that the
“truth” is that zit = z̄t = st . Yet, this truth is publicly revealed only in stage 2 of period t.
In stage 1, instead, each island believes, incorrectly, that

Eit z̄t = zit +�ξt	
Note next that the stage-1 variables, yit , can depend on the local signal zit , along with
the commonly observed belief shock ξt and the backward-looking (predetermined) state
variables xbit andXb

t , but cannot depend on either the aggregate signal z̄t or the underlying
fundamental st , because these variables are not known in stage 1. By contrast, the stage-2
decisions depend on the entire triplet (zit� z̄t� st). As already mentioned, the truth is that
these three variables coincide. Nevertheless, the islands believe in stage 1 that the average
signal can differ from either their own signal or the actual fundamental. Accordingly, it is
important to write stage-2 strategies as functions of the three conceptually distinct objects
in (zit� z̄t� st) in order to specify the appropriate equilibrium beliefs in stage 1. (Note that
this is equivalent to expressing the stage-2 strategies as functions of the realized values of
the stage-1 variables y and Y , which is the approach we took in the characterization of
the recursive equilibrium in Section 3.) In what follows, we show how this belief structure
facilitates a tractable solution of the aforementioned general DSGE model.

Preview of Key Result

To preview the key result, let us first consider the underlying “belief-free” model, that
is, of the complete-information, representative-agent, counterpart of the model we are
studying. The equilibrium system is given by the following:

Yt =MXX
b
t +MEYYt +MFX

f
t +Msst�

Xb
t+1 =NXX

b
t +NYYt +NFX

f
t +Nsst�

(Pf0 − PF0)EtX
f
t+1 = PF1X

f
t + PY0EtYt+1 + PXXb

t + PY1Yt + Psst�
st =Rst−1 + εt�
ξt =Qξt−1 + νt	
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(This system can be obtained from the one we introduced before once we impose the
restriction that all period-t variables are commonly known in period t, which means that
E

′
it[xt] = Eit[xt] = xt for any variable x.) It is well known how to obtain the policy rules

of such a representative-agent model. Our goal in this appendix is to show how the policy
rules of the belief-augmented model that we described above can be obtained as a simple,
tractable transformation of the policy rules of the representative-agent benchmark.

In particular, we will show that the policy rules for our general DSGE economy are as
follows:

Xt =ΘXX
b
t +Θsst +Θξξt�

where Xt = (Yt�X
f
t �X

b
t+1) collects all the variables, ΘX and Θs are the same matrices as

those that appear in the solution of the underlying belief-free model, and Θξ is a new
matrix, which encapsulates the effects of higher-order beliefs.

The Model, Restated

To ease subsequent algebraic manipulations, we henceforth restate the model as fol-
lows:

yit =Mx

(
xbit −Xb

t

) +MXX
b
t +MEYEitYt

+MfEit

(
x
f
it −Xf

t

) +MFEitX
f
t +Mszit�

(S.9)

xbit+1 =Nx

(
xbit −Xb

t

) +NXX
b
t +Ny(yit −Yt)+NYYt

+Nf

(
x
f
it −Xf

t

) +NFX
f
t +Nsst�

(S.10)

Pf0E
′
itx

f
it+1 = Pf1

(
x
f
it −Xf

t

) + PF0E
′
itX

f
t+1 + PF1X

f
t + Px

(
xbit −Xb

t

) + PXXb
t

+ Py0

(
E

′
ityit+1 −E

′
itYt+1

) + PY0E
′
itYt+1 (S.11)

+ Py1(yit −Yt)+ PY1Yt + Psst�
where

Mx =M−1
yy Myx� MX =M−1

yy (Myx +MyX)� MEY =M−1
yy MyY �

Mf =M−1
yy Myf � MF =M−1

yy (Myf +MyF)� Ms =M−1
yy Mys�

Nx =M−1
xx0Mxx1� NX =M−1

xx0(Mxx1 +MxX1)�

Ny =M−1
xx0Mxy1� NY =M−1

xx0(Mxy1 +MxY1)�

Nf =M−1
xx0Mxf1� NF =M−1

xx0(Mxf1 +MxF1)� Ns =M−1
xx0Mxs1�

Pf0 =Mff0� Pf1 =Mff1 +Mfx0Nf� PF0 =MfF0�

PF1 =MfF1 +Mff1 +Mfx0NF�

Px =Mfx1 +Mfx0Nx� PX =MfX1 +Mfx1 +Mfx0NX�

Py0 =Mfy0� PY0 =MfY0 +Mfy0� Py1 =Mfy1 +Mfx0Ny�

PY =Mfy1 +MfY1 +Mfx0NY�

Ps =Mfs0R+Mfs1 +Mfx0Ns	
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Proposed Policy Rules

We propose that the equilibrium policy rules take the following form:

yit =Λx

(
xbit −Xb

t

) +ΛXX
b
t +Λzzit +Λξξt� (S.12)

x
f
it = Γx

(
xbit −Xb

t

) + ΓXXb
t + Γzzit + Γz̄z̄t + Γsst + Γξξt� (S.13)

where the Λ’s and Γ ’s are coefficients (matrices), whose equilibrium values are to be
obtained in the sequel. Following our earlier discussion, note that the stage-2 policy rules
are allowed to depend on the triplet (zit� z̄t� st), while the stage-1 policy rules are restricted
to depend only on the local signal zit . It is also useful to note that we would obtain the
same solution if we were to represent the stage-2 policy rules as functions of yit and Yt in
place of, respectively, zit and z̄t : the latter two variables enter the equilibrium conditions
that determine the stage-2 decisions, namely, conditions (S.10) and (S.11), only through
the realized values of the stage-1 outcomes yit and Yt .

Obtaining the Solution

We obtain the solution in three steps. In step 1, we start by characterizing the equilib-
rium determination of the stage-1 policy rules, taking as given the stage-2 rules. Formally,
we fix an arbitrary rule in (S.13); we assume that all islands believe that the stage-2 vari-
ables are determined according to this rule; and we then look for the particular rule in
(S.12) that solves the fixed-point relation between yit and Yt described in (S.9) under this
assumption. This step, which we can think of as the “static” component of the equilibrium,
gives us a mapping from Γ matrices to the Λ matrices. In step 2, we obtain a converse
mapping by characterizing the policy rules for the forward-looking variables that solve
conditions (S.10) and (S.11) under the assumption that the stage-1 outcomes are deter-
mined according to an arbitrary rule in (S.13). We can think of this step as solving for the
“dynamic” component of the equilibrium. In step 3, we use the fixed point between these
two mappings to obtain the overall solution to the model.

Step 1

As noted above, we start by studying the equilibrium determination of the stage-1 policy
rules, taking as given the stage-2 policy rules.

Thus suppose that all islands follow a policy rule as in (S.13) and consider the beliefs
that a given island i forms, under this assumption, about the stage-2 variables xfit and Xf

t .
From (S.13), we have

x
f
it = Γx

(
xbit −Xb

t

) + ΓXXb
t + Γzzit + Γz̄z̄t + Γsst + Γξξt�

X
f
t = ΓXXb

t + (Γz + Γz̄)z̄t + Γsst + Γξξt	
Along with the fact that Eit[st] = zit and Eit[z̄t] = zit +�ξt , the above gives

Eitx
f
it = Γx

(
xbit −Xb

t

) + ΓXXb
t + (Γz + Γz̄ + Γs)zit + (Γξ + Γz̄�)ξt�

EitX
f
t = ΓXXb

t + (Γz + Γz̄ + Γs)zit +
(
Γξ + (Γz + Γz̄)�

)
ξt�
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which also implies that

x
f
it −Xf

t = Γx
(
xbit −Xb

t

) + Γz(zit − z̄t)�
Eit

(
x
f
it −Xf

t

) = Γx
(
xbit −Xb

t

) − Γz�ξt	
Plugging the above in (S.9), the equilibrium equation for yit , we get

yit =Mx

(
xbit −Xb

t

) +MXX
b
t +MEYEitYt +MfEit

(
x
f
it −Xf

t

) +MFEitX
f
t +Mszit

=Mx

(
xbit −Xb

t

) +MXX
b
t +MEYEitYt +Mf

[
Γx

(
xbit −Xb

t

) − Γz�ξt
]

+MF

[
ΓXX

b
t + (Γz + Γz̄ + Γs)zit +

(
Γξ + (Γz + Γz̄)�

)
ξt

] +Mszit 	

Equivalently,

yit = (Mx +MfΓx)
(
xbit −Xb

t

) + (MX +MFΓX)X
b
t +MEYEitYt

+ (
Ms +MF(Γz + Γz̄ + Γs)

)
zit (S.14)

+ (
MFΓξ +MFΓz̄�+ (MF −Mf)Γz�

)
ξt	

Note that the above represents a static fixed-point relation between yit and Yt . This
relation is itself determined by the Γ matrices (i.e., by the presumed policy rule for the
stage-2 variables). Notwithstanding this fact, we now focus on the solution of this static
fixed point.

Thus suppose that this solution takes the form of a policy rule as in (S.12). If all other
islands follow this rule, then at the aggregate we have

Yt =ΛXX
b
t +Λzz̄t +Λξξt�

and therefore the stage-1 forecast of island i about Yt is given by

EitYt =ΛXX
b
t +Λzzit + (Λξ +Λz�)ξt	

Plugging this into (S.14), we obtain the following best response for island i:

yit = (Mx +MfΓx)
(
xbit −Xb

t

) + (MX +MFΓX)X
b
t

+MEY

(
ΛXX

b
t +Λzzit + (Λξ +Λz�)ξt

)

+ (
Ms +MF(Γz + Γz̄ + Γs)

)
zit +

(
MF(Γξ + Γz̄�)+ (MF −Mf)Γz�

)
ξt	

For this to be consistent with our guess in (S.12), we must have

Λx =Mx +MfΓx� (S.15)

ΛX = (I −MEY)
−1(MX +MFΓX)� (S.16)

Λz = (I −MEY)
−1

[
Ms +MF(Γz + Γz̄ + Γs)

]
� (S.17)

Λξ = (I −MEY)
−1

{
MF(Γξ + Γz̄�)+ (MF −Mf)Γz�+MEYΛz�

}
	 (S.18)

This completes the first step of our solution strategy: we have characterized the “static”
component of the equilibrium and have thus obtained the Λ coefficients as functions of
primitives and of the Γ coefficients.
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Step 2

We now proceed with the second step, which is to characterize the equilibrium behavior
in stage 2, taking as given the behavior in stage 1.

Recall that, once agents enter stage 2, they observe the true current values of the triplet
(zit� z̄t� st) along with the realized values of the past stage-1 outcomes, yit and Yt . Fur-
thermore, in equilibrium this implies common certainty of current choices, namely, of
the variables xfit and Xf

t , and thereby also of the variables xbit+1 and Xb
t+1. Neverthe-

less, agents face uncertainty about the next-period realizations of the aforementioned
triplet and of the corresponding endogenous variables. In what follows, we thus take
special care in characterizing the beliefs that agents form about the relevant future out-
comes.

Consider first an agent’s beliefs about the aggregate next-period stage-1 variables:

Yt+1 =ΛXX
b
t+1 +Λzz̄t+1 +Λξξt+1�

Eit+1Yt+1 =ΛXX
b
t+1 +Λzzit+1 + (Λξ +Λz�)ξt+1�

E
′
itYt+1 =ΛXX

b
t+1 +ΛzRst + (Λξ +Λz�)Qξt	

Consider next his beliefs about his own next-period stage-1 variables:

yit+1 =Λx

(
xbit+1 −Xb

t+1

) +ΛXX
b
t+1 +Λzzit+1 +Λξξt+1�

E
′
ityit+1 =Λx

(
xbit+1 −Xb

t+1

) +ΛXX
b
t+1 +ΛzRst +ΛξQξt	

It follows that

E
′
it(yit+1 −Yt+1)=Λx

(
xbit+1 −Xb

t+1

) −Λz�Qξt	

Consider now his beliefs about his own next-period forward variables:

x
f
it+1 = Γx

(
xbit+1 −Xb

t+1

) + ΓXXb
t+1 + Γzzit+1 + Γz̄z̄t+1 + Γsst+1 + Γξξt+1�

Eit+1x
f
it+1 = Γx

(
xbit+1 −Xb

t+1

) + ΓXXb
t+1 + (Γz + Γz̄ + Γs)zit+1 + (Γξ + Γz̄�)ξt+1�

E
′
itx

f
it+1 = Γx

(
xbit+1 −Xb

t+1

) + ΓXXb
t+1 + (Γz + Γz̄ + Γs)Rst + (Γξ + Γz̄�)Qξt	

For the aggregate next-period forward variables, we have

Eit+1X
f
t+1 = ΓXXb

t+1 + (Γz + Γz̄ + Γs)zit+1 + (
Γξ + (Γz + Γz̄)�

)
ξt+1�

E
′
itX

f
t+1 = ΓXXb

t+1 + (Γz + Γz̄ + Γs)Rst +
(
Γξ + (Γz + Γz̄)�

)
Qξt�

and therefore

E
′
it

(
x
f
it+1 −Xf

t+1

) = Γx
(
xbit+1 −Xb

t+1

) − Γz�Qξt	
Next, note that our guesses for the policy rules imply the following properties for the

current-period variables:

yit −Yt =Λx

(
xbit −Xb

t

) +Λz(zit − z̄t)�
x
f
it −Xf

t = Γx
(
xbit −Xb

t

) + Γz(zit − z̄t)�
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Yt =ΛXX
b
t +Λzz̄t +Λξξt�

X
f
t = ΓXXb

t + (Γz + Γz̄)z̄t + Γsst + Γξξt	
Plugging these results in the law of motion of backward variables, we get

xbit+1 =Nx

(
xbit −Xb

t

) +NXX
b
t +Ny(yit −Yt)+NYYt +Nf

(
x
f
it −Xf

t

) +NFX
f
t +Nsst

=Nx

(
xbit −Xb

t

) +NXX
b
t +Ny

{
Λx

(
xbit −Xb

t

) +Λz(zit − z̄t)
}

+NY

{
ΛXX

b
t +Λzz̄t +Λξξt

}

+Nf

{
Γx

(
xbit −Xb

t

) + Γz(zit − z̄t)
}

+NF

{
ΓXX

b
t + (Γz + Γz̄)z̄t + Γsst + Γξξt

} +Nsst	

Equivalently,

xbit+1 =Ωx

(
xbit −Xb

t

) +ΩXX
b
t +Ωzzit +Ωz̄z̄+Ωsst +Ωξξt�

and hence

Xb
t+1 =ΩXX

b
t + (Ωz +Ωz̄)z̄t +Ωsst +Ωξξt�

xbit+1 −Xb
t+1 =Ωx

(
xbit −Xb

t

) +Ωz(zit − z̄t)�
where

Ωx =Nx +NyΛx +NfΓx� Ωz =NyΛz +NfΓz�

ΩX =NX +NYΛX +NFΓX� Ωz̄ = (NY −Ny)Λz + (NF −Nf)Γz +NFΓz̄�

Ωs =Ns +NFΓs� Ωξ =NYΛξ +NFΓξ	

It follows that

E
′
itx

f
it+1 = Γx

(
xbit+1 −Xb

t+1

) + ΓXXb
t+1 + (Γz + Γz̄ + Γs)Rst + (Γξ + Γz̄�)Qξt

= Γx
{
Ωx

(
xbit −Xb

t

) +Ωz(zit − z̄t)
} + ΓX

{
ΩXX

b
t + (Ωz +Ωz̄)z̄t +Ωsst +Ωξξt

}

+ (Γz + Γz̄ + Γs)Rst + (Γξ + Γz̄�)Qξt�
or equivalently,

E
′
itx

f
it+1 =Φx

(
xbit −Xb

t

) +ΦXX
b
t +Φzzit +Φz̄z̄t +Φsst +Φξξt� (S.19)

where

Φx = ΓxΩx� Φz = ΓxΩz� Φs = ΓXΩs + (Γz + Γz̄ + Γs)R�
ΦX = ΓX�ΩX Φz̄ = (ΓX − Γx)Ωz + ΓXΩz̄� Φξ = ΓXΩξ + (Γξ + Γz̄�)Q	

Similarly, the expectation of the corresponding aggregate variable is given by

E
′
itX

f
t+1 =ΦXX

b
t +Φzzit +Φzzt +Φsst + (Φξ + Γz�Q)ξt	 (S.20)
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With the above steps, we have calculated all the objects that enter the Euler condition
(S.11). We can thus proceed to characterize the fixed-point relation that pins down the
solution for the stage-2 policy rule.

To ease the exposition, let us repeat the Euler condition (S.11) below:

Pf0E
′
itx

f
it+1 =Pf1

(
x
f
it −Xf

t

) + PF0E
′
itX

f
t+1 + PF1X

f
t + Px

(
xbit −Xb

t

) + PXXb
t

+ Py0

(
E

′
ityit+1 −E

′
itYt+1

) + PY0E
′
itYt+1 + Py1(yit −Yt)+ PY1Yt + Psst	

Use now (S.19) to write the left-hand side of the Euler condition as

Pf0E
′
itx

f
it+1 = Pf0

{
Φx

(
xbit −Xb

t

) +ΦXX
b
t +Φzzit +Φz̄z̄t +Φsst +Φξξt

}
	

Next, use our preceding results to replace all the expectations that show up in the right-
hand side of the Euler condition, as well as the stage-1 outcomes. This gives

Pf0E
′
itx

f
it+1 = Pf1

{
Γx

(
xbit −Xb

t

) + Γz(zit − z̄t)
}

+ PF0

{
ΦXX

b
t + (Φz +Φz̄)z̄t +Φsst + (Φξ + Γz�Q)ξt

}

+ PF1

{
ΓXX

b
t + (Γz + Γz̄)z̄t + Γsst + Γξξt

} + Px
{
xbit −Xb

t

}

+ PXXb
t + Py0

{
Λx

(
Ωx

(
xbit −Xb

t

) +Ωz(zit − z̄t)
) −Λz�Qξt

}

+ PY0

{
ΛX

(
ΩXX

b
t + (Ωz +Ωz̄)z̄t +Ωsst +Ωξξt

)

+ΛzRst + (Λξ +Λz�)Qξt
}

+ Py1

{
Λx

(
xbit −Xb

t

) +Λz(zit − z̄t)
} + PY1

{
ΛXX

b
t +Λzz̄t +Λξξt

} + Psst	
For our guess to be correct, the above two expressions must coincide in all states of nature,
and the following must therefore be true:

Pf0Φx = Px + Pf1Γx + Py0ΛxΩx + Py1Λx� (S.21)

(Pf0 − PF0)ΦX = PF1ΓX + PX + PY0ΛXΩX + PY1ΛX� (S.22)

Pf0Φz = Pf1Γz + Py0ΛxΩz + Py1Λz� (S.23)

(Pf0 − PF0)Φz̄ = PF0Φz + (PF1 − Pf1)Γz + PF1Γz̄

+ PY0ΛX(Ωz +Ωz̄)− Py0ΛxΩz + (PY1 − Py1)Λz�
(S.24)

(Pf0 − PF0)Φs = PF1Γs + PY0(ΛXΩs +ΛzR)+ Ps� (S.25)

(Pf0 − PF0)Φξ = PF0Γz�Q+ PF1Γξ + PY0{ΛXΩξ +ΛξQ}
+ (PY0 − Py0)Λz�Q+ PY1Λξ	

(S.26)

Recall that theΦ andΩmatrices are themselves transformations of the Γ andΛmatrices.
Therefore, the above system is effectively a system of equations in Γ and Λmatrices. This
completes step 2.

Step 3

Steps 1 and 2 resulted in two systems of equations in the Λ and Γ matrices, namely,
system (S.15)–(S.18) and system (S.21)–(S.26). We now look at the joint solution of these
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two systems, which completes our guess-and-verify strategy and gives the sought-after
equilibrium policy rules.

First, let us write the solution of the underlying representative-agent model as

Yt =Λ∗
XX

b
t +Λ∗

s st and X
f
t = Γ ∗

XX
b
t + Γ ∗

s st 	

It is straightforward to check that the solution to the beliefs-augmented model satisfies
the following:

ΛX =Λ∗
X� Λz =Λ∗

s � ΓX = Γ ∗
X� and Γz + Γz̄ + Γs = Γ ∗

s 	

That is, the solution for the matrices ΛX , Λz , and ΓX , and for the sum Γ̄s ≡ Γz + Γz̄ + Γs,
can readily be obtained from the solution of the underlying representative-agent model.

With the sum Γ̄s ≡ Γz + Γz̄ + Γs determined as above, we can next obtain each of its
three components as follows. First, Γs can be obtained from (S.25):

(Pf0 − PF0)Φs = PF1Γs + PY0(ΛXΩs +ΛzR)+ Ps	
Plugging the definition of Φs and Ωs in the above, we have

−{(
(PF0 − Pf0)ΓX + PY0ΛX

)
NF + PF1

}
︸ ︷︷ ︸

AS

Γs

= Ps + PY0(ΛzR+ΛXNs)+ (PF0 − Pf0)(Γ̄sR+ ΓXNs)︸ ︷︷ ︸
BS

�

and therefore Γs =A−1
S BS . Next, Γz can be obtained from (S.23). Plugging the definition

of Φz and Ωz in this condition, we have
(
(Pf0Γx − Py0Λx)Nf − Pf1

)
︸ ︷︷ ︸

AZ

Γz = Py1Λz − (Pf0Γx − Py0Λx)NyΛz︸ ︷︷ ︸
BZ

�

and therefore Γz = A−1
Z BZ . Finally, we obtain Γz̄ simply from the fact that Γz̄ = Γ̄s −

Γz − Γs.
Consider now the matrices Λx and Γx. These are readily obtained from (S.15) and

(S.21) once we replace the already-obtained results. It is also straightforward to check
that these matrices correspond to the solution of the version of the model that shuts
down all kinds of uncertainty but allows for heterogeneity in the backward-looking state
variables (“wealth”).

To complete our solution, what remains is to determine the matrices Γξ and Λξ. These
matrices solve conditions (S.18) and (S.26), which we repeat below:

Λξ = (I −MEY)
−1

{
MF(Γξ + Γz̄�)+ (MF −Mf)Γz�+MEYΛz�

}
�

(Pf0 − PF0)Φξ = PF0Γz�Q+ PF1Γξ + PY0{ΛXΩξ +ΛξQ} + (PY0 − Py0)Λz�Q+ PY1Λξ	

Let us use the first condition to substitute away Λξ from the second, and then the facts
that

Ωξ =NYΛξ +NFΓξ�

Φξ = ΓX(NYΛξ +NFΓξ)+ (Γξ + Γz̄�)Q
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to substitute away also Ωξ and Φξ. We then obtain a single equation in Γξ, namely,

BΓξ +AΓξQ+C = 0�

where

A≡ (PF0 − Pf0)+ PY0(I −MEY)
−1MF�

B≡ (
(PF0 − Pf0)ΓXNY + PY0ΛXNY + PY1

)
(I −MEY)

−1MF

+ (PF0 − Pf0)ΓXNF + PF1 + PY0ΛXNF�

C ≡ (
PF0Γz�Q+ (PY0 − Py0)Λz

+ (PF0 − Pf0)Γz̄ + PY0(I −MEY)
−1

[
MFΓz̄ + (MF −Mf)Γz +MEYΛz

])
�Q

+ (
(PF0 − Pf0)ΓXNY + PY0ΛXNY + PY1

)
(I −MEY)

−1

× [
MFΓz̄ + (MF −Mf)Γz +MEYΛz

]
�	

Note that A, B, and C are determined by primitives, plus some of the coefficients that
we have also characterized. The above equation therefore gives us the unique solution
for the matrix Γξ as a function of the primitives of the model. Λξ is then readily obtained
from (S.18). This completes the solution.
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