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This Online Appendix contains material to support the paper “Nonparametric Stochastic

Discount Factor Decomposition”. Appendix E presents additional simulation evidence. Ap-

pendix F provides further details on the relation between the identification and existence

conditions in Section 2.3 and the identification and existence conditions in Hansen and

Scheinkman (2009) and Borovička et al. (2016). Appendix G presents proofs of results in

Appendix C of the supplementary material and this online appendix.

E Additional Monte Carlo evidence

This section presents additional simulation results using a cubic B-spline basis of dimension

k = 8 for the Monte Carlo design described in Section 5 of the main text. The knots of

the B-splines were placed evenly at the empirical quantiles of the data. As with the results

obtained using Hermite polynomials, the simulation results were reasonably insensitive to

the dimension of the sieve space.

Tables 4 and 5 present bias and RMSE of the estimators across simulations. Figures 5a–

5e present (pointwise) confidence intervals for �, �⇤ and � computed across simulations of

di↵erent sample sizes.

F Additional results on identification

In this appendix we discuss separately existence and identification, and compare the condi-

tions in the present paper with the stochastic stability conditions in Hansen and Scheinkman

(2009) (HS hereafter) and Borovička et al. (2016) (BHS hereafter).
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Power Utility Recursive Preferences

n �̂ �̂

⇤
�̂ �̂

⇤
�̂

Bias

400 0.0144 0.0141 0.0009 0.0241 0.0116
800 0.0113 0.0132 0.0011 0.0190 0.0086
1600 0.0078 0.0101 0.0010 0.0145 0.0057
3200 0.0049 0.0068 0.0009 0.0128 0.0034

RMSE

400 0.1106 0.1334 0.0283 0.3479 0.0988
800 0.0851 0.1043 0.0270 0.3151 0.0734
1600 0.0650 0.0814 0.0235 0.2747 0.0547
3200 0.0500 0.0627 0.0222 0.1702 0.0414

Table 4: Simulation results for �̂, �̂⇤ and �̂ with a cubic B-spline sieve of
dimension k = 8.

Power Utility Recursive Preferences

n ⇢̂ ŷ L̂ ⇢̂ ŷ L̂ �̂

Bias

400 0.0036 -0.0030 0.0030 0.0010 -0.0009 0.0031 0.0028
800 0.0027 -0.0024 0.0024 0.0011 -0.0011 0.0027 0.0019
1600 0.0019 -0.0017 0.0017 0.0010 -0.0009 0.0020 0.0013
3200 0.0012 -0.0011 0.0011 0.0007 -0.0006 0.0013 0.0008

RMSE

400 0.0345 0.0330 0.0272 0.0154 0.0130 0.0305 0.0348
800 0.0254 0.0244 0.0206 0.0155 0.0133 0.0244 0.0209
1600 0.0190 0.0182 0.0157 0.0163 0.0136 0.0208 0.0153
3200 0.0142 0.0135 0.0118 0.0148 0.0123 0.0165 0.0110

Table 5: Simulation results for ⇢̂, ŷ, L̂ and �̂ with a cubic B-spline sieve of
dimension k = 8.
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Figure 5: Simulation results for a cubic B-spline basis with k = 8. Panels (a)–
(d) display pointwise 90% confidence intervals for � and �⇤ across simulations
(light, medium and dark correspond to n = 400, 800, and 1600 respectively;
the true � and �

⇤ plotted as solid lines). Panel (e) displays results for the
positive eigenfunction � of the continuation value operator

3



F.1 Identification

Assumption F.1 Let the following hold:

(a) M is bounded

(b) There exists positive functions �,�⇤ 2 L2

and a positive scalar ⇢ such that (⇢,�) solves

(6) and (⇢,�⇤) solves (7)

(c) M is positive for each non-negative  2 L2

that is not identically zero.

Note that no compactness or power-compactness condition appears in Assumption F.1.

Proposition F.1 Let Assumption F.1 hold. Then: the functions � and �⇤
are the unique

solutions (in L2

) to (6) and (7), respectively.

We now compare the identification results with those in HS and BHS. Some of HS’s conditions

related to the generator of the semigroup of conditional expectation operators eE[·|Xt = x]

under the change of conditional probability induced by MP
t , namely:

eE[ (Xt+⌧ )|Xt = x] := E


MP
t+⌧

MP
t

 (Xt+⌧ )

�

�

�

�

Xt = x

�

. (OA.1)

In discrete-time environments, both multiplicative functionals and semigroups are indexed

by non-negative integers. Therefore, the “generator” in discrete-time is just the single-period

distorted conditional expectation operator  7! eE[ (Xt+1

)|Xt = · ].
The following are discrete-time versions of Assumptions 6.1, 7.1, 7.2, 7.3, and 7.4 in HS.

Condition F.1 (a) {MP
t : t 2 T} is a positive multiplicative functional

(b) There exists a probability measure &̂ such that

Z

eE[ (Xt+1

)|Xt = x] d&̂(x) =

Z

 (x) d&̂(x)

for all bounded measurable  : X ! R
(c) For any ⇤ 2 X with &̂(⇤) > 0,

eE

" 1
X

t=1

1l{Xt 2 ⇤}
�

�

�

�

�

X
0

= x

#

> 0

for all x 2 X
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(d) For any ⇤ 2 X with &̂(⇤) > 0,

eP

 1
X

t=1

1l{Xt 2 ⇤} = 1
�

�

�

�

�

X
0

= x

!

= 1

for all x 2 X , where

eP({Xs}ts=0

2 A|X
0

= x) =

Z

E[(MP
t /M

P
0

)1l{{Xs}ts=0

2 A}|X
0

= x] d&̂(x)

for each A 2 Ft.

Condition F.1(a) is satisfied by construction of MP in (8). For Condition F.1(b), let � and

�⇤ be as in Assumption F.1(b) and normalize �⇤ such that E[�(Xt)�⇤(Xt)] = 1. Under this

normalization we can define a probability measure &̂ by &̂(A) = E[�(Xt)�⇤(Xt)1l{Xt 2 A}]
for all A 2 X . Proposition F.3 below shows that this probability measure is precisely the

measure used to define the unconditional expectation eE in the long-run approximation (9).

Recall that Q is the stationary distribution of X. We then have:

Z

eE[ (Xt+1

)|Xt = x] d&̂(x)

=

Z

E


⇢�1m(Xt, Xt+1

)
�(Xt+1

)

�(Xt)
 (Xt+1

)

�

�

�

�

Xt = x

�

�(x)�⇤(x) dQ(x)

= ⇢�1E [�⇤(Xt)(M(� )(Xt))]

= ⇢�1E [((M⇤�⇤)(Xt+1

))�(Xt+1

) (Xt+1

)]

= E[�⇤(Xt+1

)�(Xt+1

) (Xt+1

)] =

Z

 (x) d&̂(x) .

Therefore, Condition F.1(b) is satisfied. A similar derivation is reported for continuous-time

semigroups in an preliminary 2005 draft of HS with Q replaced by an arbitrary measure.

For Condition F.1(c), note that &̂(⇤) > 0 implies Q(⇤) > 0 under our construction of

&̂. Therefore, &̂(⇤) > 0 implies �(x)1l{x 2 ⇤} is positive on a set of positive Q measure.

Moreover, by definition of eE we have:

eE

" 1
X

t=1

1l{Xt 2 ⇤}
�

�

�

�

�

X
0

= x

#

=
1

�(x)

1
X

t=1

⇢�tMt(�(·)1l{· 2 ⇤})(x)

� 1

�(x)

1
X

t=1

��tMt(�(·)1l{· 2 ⇤})(x)
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for any � � r(M) where r(M) denotes the spectral radius of M. Assumption F.1(c) implies M
is irreducible and, by definition of irreducibility,

P1
t=1

��tMt(�(·)1l{· 2 ⇤})(x) > 0 (almost

everywhere) holds for � > r(M). Therefore, Assumption F.1(c) implies Condition F.1(c), up

to the “almost everywhere” qualification.

Part (d) is a Harris recurrence condition which does not translate clearly in terms of the

operator M. When combined with existence of an invariant measure and irreducibility (Con-

dition F.1(b) and (c), respectively), it ensures both uniqueness of &̂ as the invariant measure

for the distorted expectations as well as �-ergodicity, i.e.,

lim
⌧!1

sup
0 �

�

�

�

�

eE


 (Xt+⌧ )

�(Xt+⌧ )

�

�

�

�

Xt = x

�

�
Z

 (x)

�(x)
d&̂(x)

�

�

�

�

= 0 (OA.2)

(almost everywhere) where the supremum is taken over all measurable  such that 0    �

(Meyn and Tweedie, 2009, Proposition 14.0.1). Result (OA.2) is a discrete-time version of

Proposition 7.1 in HS, which they use to establish identification of �. Assumption F.1 alone

is not enough to obtain a convergence result like (OA.2). On the other hand, the conditions

in the present paper assume existence of �⇤ whereas no positive eigenfunction of the adjoint

of M is guaranteed under the conditions in HS. Indeed, for non-stationary environments it

is not even clear how to restrict the class of functions appropriately to define an adjoint (for

instance, HS do not appear to restrict � to belong to a Banach space). This suggests the

Harris recurrence condition is of a very di↵erent nature from Assumption F.1.

BHS assume thatX is ergodic under the eP probability measure, for which Conditions F.1(b)–

(d) are su�cient. Also notice that Condition F.1(a) is satisfied by construction in BHS.

The identification results in HS and the proof of proposition 3.3 in BHS shows that uniqueness

is established in the space of functions  for which eE[ (Xt)/�(Xt)] is finite, where eE denotes

expectation under the stationary distribution corresponding to (OA.1). Under Assumption

F.1, their result establishes identification in the space of functions  for which

eE[ (Xt)/�(Xt)] = E[ (Xt)�
⇤(Xt)]

is finite. The right-hand side is finite for all  2 L2 (by Cauchy-Schwarz). So in this sense

the identification result in HS and BHS applies to a larger class of functions than our result.
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F.2 Existence

We obtain the following existence result by replacing Assumption F.1(b)(c) by the slightly

stronger quasi-compactness and positivity conditions in Assumption 2.1. The following result

is essentially Theorems 6 and 7 of Sasser (1964).15 Say that M is quasi-compact if M is

bounded and there exists ⌧ 2 T and a bounded linear operator V such that M⌧ � V is

compact and r(V) < r(M)⌧ . Quasi-compactness of M is implied by Assumption 2.1.

Proposition F.2 Let Assumption 2.1(a) hold and let M be quasi-compact. Then:

(a) There exists positive functions �,�⇤ 2 L2

and a positive scalar ⇢ such that (⇢,�) solves

(6) and (⇢,�⇤) solves (7).

(b) The functions � and �⇤
are the unique solutions (in L2

) to (6) and (7), respectively.

(c) The eigenvalue ⇢ is simple and isolated and it is the largest eigenvalue of M.

A similar existence result to part (a) was presented in a 2005 preliminary version of HS. For

that result, HS assumed that r(M) was positive and that the (continuous-time) semigroup of

operators had an element which was compact. The further properties of ⇢ that we establish

in part (c) of Proposition F.2 are essential to our derivation of the large-sample theory. A

similar proposition was derived under di↵erent conditions in Christensen (2015).

HS establish existence of � in possibly non-stationary, continuous-time environments by

appealing to the theory of ergodic Markov processes. Equivalent conditions for discrete-time

environments are now presented and compared with our identification conditions. As with

the identification conditions, we use analogues of generators and resolvents for discrete-time

semigroups where appropriate.

Condition F.2 (a) There exists a function V : X ! R with V � 1 and a finite constant

a > 0 such that MV (x)  aV (x) for all x 2 X
15I thank an anonymous referee for bringing Theorems 6 and 7 of Sasser (1964) to my attention. Theorems

6 and 7 of Sasser (1964) replace Assumption 2.1(a) in Proposition F.2 by the condition that M is quasi-
positive, i.e. for each non-negative  and  

⇤ in L

2 that are not identically zero there exists ⌧ 2 T such
that h ⇤

,M⌧ i > 0. Notice that quasi-compactness also requires that r(M) > 0. Assumption 2.1(a) is
su�cient for these two conditions (i.e. quasi-positivity and r(M) > 0). The condition r(M) > 0 together with
power-compactness of M (Assumption 2.1(b)) is su�cient for quasi-compactness.
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(b) There exists a measure ⌫ on (X ,X ) such that J1l{· 2 ⇤}(x) > 0 for any ⇤ 2 X with

⌫(⇤) > 0, where J is given by

J (x) =
1
X

t=0

a�(t+1)

Mt(V  )(x)

V (x)

for a > a

(c) The operators J and K are bounded, where K is given by

K (x) =
1
X

t=0

��t((J� s⌦ ⌫)t )(x)

where s : X ! R
+

is such that

R

s d⌫ > 0 and J (x) � s(x)
R

 d⌫ for all  � 0 (s

exists by part (b)), (s⌦ ⌫) (x) := s(x)
R

 d⌫, and � 2 �(J).

HS show that Ks is a positive eigenfunction of M under the preceding conditions (see their

Lemma D.3). Condition F.2(b) is satisfied under Assumption 2.1 with ⌫ = Q whenever

a > r(M). To see this, take ⇤ 2 X with Q(⇤) > 0 and observe that:

1
X

t=1

a�tMt(V (·)1l{· 2 ⇤})(x) �
1
X

t=1

a�tMt1l{· 2 ⇤} > 0

(almost everywhere) where the first inequality is by positivity and the second is by irre-

ducibility. It follows that J1l{· 2 ⇤}(x) > 0 (almost everywhere). This verifies part (b), up

to the “almost everywhere” qualification.

On the other hand, Conditions F.2(a)(c) seem quite di↵erent from the conditions of Propo-

sition F.2. For instance, Assumption 2.1 does not presume existence of the function V but

imposes a quasi-compactness condition. HS do not restrict the function space for M ex ante

so there is no notion of a bounded or power-compact operator on the space to which � be-

longs. The requirement that K be bounded (or the su�cient conditions for this provided in

HS) do not seem to translate clearly in terms of the operator M.

F.3 Long-run pricing

We now present a version of the long-run pricing approximation of HS that holds under our

existence and identification conditions. We impose the normalization E[�(Xt)�⇤(Xt)] = 1
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and define the operator (�⌦ �⇤) : L2 ! L2 by:

(�⌦ �⇤) (x) = �(x)

Z

�⇤ dQ .

Proposition F.3 Let Assumption 2.1 hold. Then: there exists c > 0 such that:

k⇢�⌧M⌧ � (�⌦ �⇤)k = O(e�c⌧ )

as ⌧ ! 1.

Proposition F.3 is similar to Proposition 7.4 in HS. Proposition F.3 establishes convergence of

⇢�⌧M⌧ to (�⌦�⇤), with the approximation error vanishing exponentially in the payo↵ horizon

n. A similar proposition (without the rate of convergence) was reported in a 2005 draft of

HS. There, HS assumed directly that the distorted conditional expectations converged to

an unconditional expectation characterized by �, �⇤, and an arbitrary measure. Proposition

F.3 shows that in stationary environments the unconditional expectation eE[ (Xt)/�(Xt)]

appearing in the long-run approximation (9) is characterized by �, �⇤ and Q, namely:

eE


 (Xt)

�(Xt)

�

= E[ (Xt)�
⇤(Xt)] .

G Proofs of results in Appendices C and F

G.1 Proofs for Appendix C.1

Proof of Lemma C.1. Lemma 2.2 of Chen and Christensen (2015) gives the bound

kbGo � Ik = Op(⇠k(log n)/
p
n). We first prove that kcMo �Mok = Op(⇠

1+2/r
k (log n)/

p
n).

Let {Tn : n � 1} be a sequence of positive constants to be defined below. Let b̃k = G�1/2bk

be the orthogonalized basis functions and let ⌅t,n = n�1b̃k(Xt)m(Xt, Xt+1

)b̃k(Xt+1

)0. Write:

cMo �Mo =
n�1

X

t=0

⌅trunc
t,n +

n�1

X

t=0

⌅tail
t,n where

⌅trunc
t,n = ⌅t,n1l{k⌅t,nk  Tn/n}� E[⌅t,n1l{k⌅t,nk  Tn/n}]
⌅tail
t,n = ⌅t,n1l{k⌅t,nk > Tn/n}� E[⌅t,n1l{k⌅t,nk > Tn/n}] .
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Note E[⌅trunc
t,n ] = 0 and k⌅trunc

t,n k  2n�1Tn by construction. Let Sk�1 = {u 2 Rk : kuk = 1}.
For any u, v 2 Sk�1 and any 0  t, s  n� 1, we have:

|u0E[⌅trunc
t,n (⌅trunc

s,n )0]v| . ⇠2k
n2

E[|u0b̃k(Xt)m(Xt, Xt+1

)m(Xs, Xs+1

)b̃k(Xs)
0v|]

 ⇠2k
n2

E[|m(Xt, Xt+1

)|r]2/r ⇥ E[|(u0b̃k(Xt))|q]1/q ⇥ E[|(v0b̃k(Xs))|q]1/q

. ⇠2k
n2

E[|(u0b̃k(Xt))|q]1/q ⇥ E[|(v0b̃k(Xs))|q]1/q

where the second line is by Hölder’s inequality choosing q such that 1 = 2

r
+ 2

q
and the third

is because E[|m(Xt, Xt+1

)|r] < 1. Since E[(b̃k(X
0

)0u)2] = kuk2 = 1 for any u 2 Sk�1, we

have:

E[|(u0b̃k(Xt))|q]1/q  (⇠q�2

k E[(u0b̃k(Xt))
2])1/q = ⇠1�2/q

k

and so:

kE[⌅trunc
t,n (⌅trunc

s,n )0]k . sup
u,v2Sk�1

|u0E[⌅trunc
t,n (⌅trunc

s,n )0]v| = O(⇠2+4/r
k /n2) .

The same argument gives kE[(⌅trunc
t,n )0⌅trunc

s,n ]k = O(⇠2+4/r
k /n2). By Corollary 4.2 of Chen and

Christensen (2015):
�

�

�

�

n�1

X

t=0

⌅trunc
t,n

�

�

�

�

= Op(⇠
1+2/r
k (log n)/

p
n)

provided Tn(log n)/n = o(⇠1+2/r
k /

p
n).

Now consider the remaining term. If m is bounded we can set ⌅tail
t,n ⌘ 0 by taking Tn = C⇠2k

for su�ciently large C. Otherwise, by the triangle and Jensen inequalities:

E


�

�

�

�

n�1

X

t=0

⌅tail
t,n

�

�

�

�

�

 2nE[k⌅t,nk1l{k⌅t,nk > Tn/n}]

 2nr

T r�1

n

E[k⌅t,nkr1l{k⌅t,nk > Tn/n}]  2⇠2rk
T r�1

n

E[|m(X
0

, X
1

)|r] .

By Markov’s inequality:
�

�

�

�

n�1

X

t=0

⌅tail
t,n

�

�

�

�

= Op(⇠
2r
k /T r�1

n ) .

choosing Tn so that ⇠2rk /T r�1

n ⇣ ⇠1+2/r
k (log n)/

p
n, we obtain:

�

�

�

�

n�1

X

t=0

⌅tail
t,n

�

�

�

�

= Op(⇠
1+2/r
k (log n)/

p
n) .
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The condition Tn(log n)/n = o(⇠1+2/r
k /

p
n) is, with this choice of Tn, equivalent to the con-

dition (⇠k(log n)/
p
n)(r�2)/(r�1) = o(1), which holds because ⇠k(log n)/

p
n = o(1) and r > 2.

We have therefore shown that kcMo �Mok = Op(⇠
1+2/r
k (log n)/

p
n).

Result (1) now follows from Lemma D.3(b), noting that

k(bGo)�1

cMo �Mok = Op(⇠
1+2/r
k (log n)/

p
n)

which is op(1) under the condition ⇠1+2/r
k (log n)/

p
n = o(1). Result (2) follows from Result

(1) and definition of the operator norm. Result (3) is immediate from the fact that kbGo�Ik =

Op(⇠k(log n)/
p
n) and kcMo �Mok = Op(⇠

1+2/r
k (log n)/

p
n).

Proof of Lemma C.2. Similar arguments to the proof of Lemmas 4.8 and 4.12 of Gobet

et al. (2004) give the bounds kbGo � Ik = Op(⇠k
p

k/n), k(bGo � I)c̃kk = Op(⇠k/
p
n), and

kc̃⇤0k (bGo � I)k = Op(⇠k/
p
n). We first establish analogous bounds for cMo.

Let u
1

, . . . , uk be an orthonormal basis for Rk. Then:

E[kcMo �Mok2] 
k
X

l=1

E[k(cMo �Mo)ulk2]

=
k
X

l=1

k
X

j=1

Var

"

1

n

n
X

t=1

(b̃kj(Xt)
2m(Xt, Xt+1

)2(b̃k(Xt+1

)0ul)

#

.

Now, by the covariance inequality for rho-mixing processes:

E[kcMo �Mok2]  C

n

k
X

l=1

k
X

j=1

E
h

b̃kj(Xt)
2m(Xt, Xt+1

)2(b̃k(Xt+1

)0ul)
2

i

 C⇠2k
n

k
X

l=1

E
h

m(Xt, Xt+1

)2(b̃k(Xt+1

)0ul)
2

i

where the constant C depends only on the rho-mixing coe�cients. By Hölder’s inequality:

E[m(Xt, Xt+1

)2(b̃k(Xt+1

)0ul)
2]  E[|m(X

0

, X
1

)|r]2/r ⇥ E[(b̃k(X
0

)0ul)
2r
r�2 ]

r�2
r

 E[|m(X
0

, X
1

)|r]2/r ⇥ ⇠4/rk ⇥ E[(b̃k(X
0

)0ul)
2]

r�2
r . ⇠4/rk

since E[|m(X
0

, X
1

)|r] < 1 and kulk = 1. Substituting into the above, we obtain

E[kcMo �Mok2] . ⇠2+4/r
k k/n
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which, by Markov’s inequality, yields kcMo � Mok = Op(⇠
1+2/r
k

p

k/n). Similar arguments

give k(cMo �Mo)c̃kk = Op(⇠
1+2/r
k /

p
n) and kec⇤0k (cMo �Mo)k = Op(⇠

1+2/r
k /

p
n).

Result (1) now follows from Lemma D.3(b), noting that

k(bGo)�1

cMo �Mok = Op(⇠
1+2/r
k

p

k/n)

which is op(1) under the condition ⇠1+2/r
k

p

k/n = o(1).

For result (2), note that whenever kbGo � Ik  1

2

, we have k(bGo)�1k  2 and hence:

k((bGo)�1

cMo �Mo)c̃kk  k(bGo)�1(cMo �Mo)c̃kk+ k((bGo)�1 � I)Moc̃kk
 2k(cMo �Mo)c̃kk+ 2⇢kk(bGo � I)c̃kk .

The result for c̃k follows form the bounds k(bGo � I)c̃kk = Op(⇠k/
p
n) and k(cMo �Mo)c̃kk =

Op(⇠
1+2/r
k /

p
n). The result for c̃⇤k follows similarly.

Result (3) is immediate from the fact that kbGo � Ik = Op(⇠k
p

k/n) and kcMo � Mok =

Op(⇠
1+2/r
k

p

k/n).

Proof of Lemma C.3. The proof will follow by the same arguments as the proof of results

(1)–(3) in Lemma C.1, provided we show that kcMo�Mok = Op(⇠
1+2/r
k (log n)/

p
n) also holds

in this case. First write:

cMo �Mo =

 

1

n

n�1

X

t=0

b̃k(Xt)
⇣

m(Xt, Xt+1

; ↵̂)�m(Xt, Xt+1

;↵
0

)
⌘

b̃k(Xt+1

)

!

+

 

1

n

n�1

X

t=0

b̃k(Xt)m(Xt, Xt+1

;↵
0

)b̃k(Xt+1

)�Mo

!

=: b�
1,k + b�

2,k

where kb�
2,kk = Op(⇠

1+2/r
k (log n)/

p
n) by the proof of Lemma C.1. For b�

1,k, condition (a)

implies that ↵̂ 2 N wpa1. Whenever ↵̂ 2 N we may take a mean value expansion (valid by

condition (b)) to obtain:

kb�
1,kk =

�

�

�

�

�

1

n

n�1

X

t=0

b̃k(Xt)b̃
k(Xt+1

)0
✓

@m(Xt, Xt+1

; ↵̃)

@↵0 (↵̂� ↵
0

)

◆

�

�

�

�

�

wpa1

12



for ↵̃ in the segment between ↵̂ and ↵
0

. Therefore, wpa1 we have:

kb�
1,kk = sup

u,v2Sk�1

�

�

�

�

�

1

n

n�1

X

t=0

(u0b̃k(Xt))(v
0b̃k(Xt+1

))

✓

@m(Xt, Xt+1

; ↵̃)

@↵0 (↵̂� ↵
0

)

◆

�

�

�

�

�

 ⇠k ⇥
 

sup
u2Sk�1

1

n

n�1

X

t=0

|u0b̃k(Xt)|⇥ m̄(Xt, Xt+1

)

!

⇥ k↵̂� ↵
0

k

 ⇠k ⇥
✓

sup
u2Sk�1

u0
bGou

◆

1/2

⇥
 

1

n

n�1

X

t=0

m̄(Xt, Xt+1

)2
!

1/2

⇥ k↵̂� ↵
0

k

where the first line is because kAk = supu,v2Sk�1 |u0Av| and the second and third lines

are by condition (b) and the Hölder and Cauchy-Schwarz inequalities. Finally, notice that

supu2Sk�1 u0
bGou = kbGok = 1+op(1) by the proof of Lemma C.1, and 1

n

Pn�1

t=0

m̄(Xt, Xt+1

)2 =

Op(1) by the ergodic theorem and condition (b). Therefore kb�
1,kk = Op(⇠k/

p
n) and so

kcMo �Mok = Op(⇠
1+2/r
k (log n)/

p
n), as required.

Proof of Lemma C.4. The proof will follow by the same arguments as the proof of results

(1)–(3) in Lemma C.1, provided we show that

kcMo �Mok = Op

 

⇠1+2/r
k (log n)p

n
+
⇠
2� 2s�v

2sv
k

p
k log kp
n

!

.

As in the proof of Lemma C.3, it su�ces to bound:

b�
1,k :=

1

n

n�1

X

t=0

b̃k(Xt)
⇣

m(Xt, Xt+1

; ↵̂)�m(Xt, Xt+1

;↵
0

)
⌘

b̃k(Xt+1

) .

Let h↵(x0

, x
1

) = m(x
0

, x
1

;↵)�m(x
0

, x
1

;↵
0

) and let:

htrunc
↵ (x

0

, x
1

) = h↵(x0

, x
1

)1l{kb̃k(x
0

)kkb̃k(x
1

)kE(x
0

, x
1

)  Tn}
htail
↵ (x

0

, x
1

) = h↵(x0

, x
1

)1l{kb̃k(x
0

)kkb̃k(x
1

)kE(x
0

, x
1

) > Tn}

13



where {Tn : n � 1} be a sequence of positive constants to be defined below. Then:

kb�
1,kk  sup

↵2A

�

�

�

�

�

1

n

n�1

X

t=0

b̃k(Xt)h
trunc
↵ (Xt, Xt+1

)b̃k(Xt+1

)� E[b̃k(Xt)h
trunc
↵ (Xt, Xt+1

)b̃k(Xt+1

)]

�

�

�

�

�

+ sup
↵2A

�

�

�

�

�

1

n

n�1

X

t=0

b̃k(Xt)h
tail
↵ (Xt, Xt+1

)b̃k(Xt+1

)

�

�

�

�

�

+ sup
↵2A

�

�

�

E[b̃k(Xt)h
tail
↵ (Xt, Xt+1

)b̃k(Xt+1

)]
�

�

�

+
�

�

�

E[b̃k(Xt)h↵̂(Xt, Xt+1

)b̃k(Xt+1

)]
�

�

�

=: b�
1,k,1 + b�

1,k,2 + b�
1,k,3 + b�

1,k,4 .

Let Hn,k = {(c0
0

b̃k(x
0

))(c0
1

b̃k(x
1

))htrunc
↵ (x

0

, x
1

) : c
0

, c
1

2 Sk�1,↵ 2 A} where Sk�1 is the unit

sphere in Rk. Then:
b�

1,k,1  n�1/2 ⇥ suph2Hn,k
|Zn(h)|

by definition of the operator norm, where Zn is the centered empirical process on Hn,k. By

Theorem 2 of Doukhan et al. (1995):

E[suph2Hn,k
|Zn(h)|] = O

 

'(�n,k) +
Tnq'2(�n,k)

�2

n,k

p
n

+
p
nTn�q

!

(OA.3)

where q 2 {1, 2, . . .}, �n,k � suph2Hn,k
khk

2,� for the norm k·k
2,� defined on p. 400 of Doukhan

et al. (1995), and '(�) is the bracketing entropy integral:

'(�) =

Z �

0

q

logN
[ ]

(u,Hn,k, k · k2,�) du .

Exponential �-mixing and Lemma 2 of Doukhan et al. (1995) (with �(x) = xv) imply:

k · k
2,�  Ck · k

2v on L2v (OA.4)

for any v > 1, where the constant C < 1 depends only on v and the �-mixing coe�cients.

Taking 1 < v < 2s, by Hölder’s inequality and condition (a) we have:

sup
h2Hn,k

khk
2,�  C sup

h2Hn,k

khk
2v  C⇠

2� 2s�v
2sv

k kEk
4s .

We therefore take �n,k = C⇠
2� 2s�v

2sv
k kEk

4s.

To bound the bracketing entropy, define H⇤
n,k = {b

0

(x
0

)b
1

(x
1

)h(x
0

, x
1

) : b
0

, b
1

2 B⇤
k, h 2 H⇤

n}
where B⇤

k = {(c0b̃k)/⇠k : c 2 Sk�1} and H⇤
n = {htrunc

↵ /E : ↵ 2 A}. For B⇤
k, note that

14



|c0
0

b̃k(x)/⇠k � c0
1

b̃k(x)/⇠k|  (⇠�1

k kb̃k(x)k) ⇥ kc
0

� c
1

k where k(kb̃k(x)k/⇠k)kp  (k/⇠2k)
1/p for

any p > 2. By Theorem 2.7.11 of van der Vaart and Wellner (1996) and Lemma 2.5 of van de

Geer (2000):

N
[ ]

(u,B⇤
k, k · kp)  N

✓

u

2(k/⇠2k)
1/p

, Sk�1, k · k
◆


✓

8(k/⇠2k)
1/p

u
+ 1

◆k

.

It follows by Lemma 9.25(ii) in Kosorok (2008) that:

N
[ ]

(3u,H⇤
n,k, k · kp) 

✓

8(k/⇠2k)
1/p

u
+ 1

◆

2k

N
[ ]

(u,H⇤
n, k · kp) . (OA.5)

Let [fl, fu] be a "-bracket for H⇤
n,k under the L

4sv
2s�v norm. Then [⇠2kEfl, ⇠2kEfu] is a ⇠2kkEk

4s"-

bracket for Hn,k under the L2v norm, because k⇠2kE(fu � fl)k2v  ⇠2kkEk
4skfu � flk 4sv

2s�v
.

Taking p = 4sv
2s�v

in display (OA.5) and using the fact that truncation of M⇤ doesn’t increase

its bracketing entropy, we obtain:

N
[ ]

(u,Hn,k, k · k2v)  N
[ ]

⇣ u

⇠2kkEk
4s

,H⇤
n,k, k · k 4sv

2s�v

⌘


⇣24kEk

4s⇠
2� 2s�v

2sv
k k

2s�v
4sv

u
+ 1
⌘

2k

N
[ ]

⇣ u

3⇠2kkEk
4s

,M⇤, k · k 4vs
2s�v

⌘

. (OA.6)

Now, by displays (OA.4) and (OA.6) and condition (b):

'(�) =

Z �

0

q

logN
[ ]

(u,Hn,k, k · k2,�) du


Z �

0

q

logN
[ ]

(u/C,Hn,k, k · k2v) du

. k1/2

Z �

0

r

log
⇣

1 + 24CkEk
4s⇠

2� 2s�v
2sv

k k
2s�v
4sv /u

⌘

du+ (⇠2kkEk
4s)

⇣ �
1�⇣

1� ⇣

. kEk
4s⇠

2� 2s�v
2sv

k k
1
2+

2s�v
4sv

Z �/(24CkEk4s⇠2�
2s�v
2sv

k k
2s�v
4sv

)

0

p

log(1 + 1/u) du+ (⇠2kkEk
4s)

⇣ �
1�⇣

1� ⇣
.

Since �n,k = C⇠
2� 2s�v

2sv
k kEk

4s, we obtain:

'(�n,k) . kEk
4s⇠

2� 2s�v
2sv

k k
1
2+

2s�v
4sv

Z

1
24k

� 2s�v
4sv

0

p

log(1 + 1/u) du+ (⇠2kkEk
4s)

⇣(⇠
2� 2s�v

2sv
k kEk

4s)
1�⇣

. kEk
4s⇠

2� 2s�v
2sv

k

p

k log k + kEk
4s⇠

2� 2s�v
2sv +⇣ 2s�v

2sv
k
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since
R �

0

p

log(1 + 1/u) du = O(�
p� log �) as � ! 0+. If ⇠

⇣ 2s�v
2sv

k . p
k log k then the first

term dominates and we obtain '(�n,k) = O(⇠
2� 2s�v

2sv
k

p
k log k). It follows by display (OA.3)

that:

b�
1,k,1 = Op

✓

⇠
2� 2s�v

2sv
k

p
k log kp
n

+
Tnqk log k

n
+ Tn�q

◆

.

By Markov’s inequality we may deduce b�
1,k,2 = Op(⇠8sk /T 4s�1

n ) and b�
1,k,3 = O(⇠8sk /T 4s�1

n ).

Choosing Tn so that:

⇠8sk
T 4s�1

n

⇣ ⇠
2� 2s�v

2sv
k

p
k log kp
n

and q = C
0

log n for su�ciently large C
0

ensures, in view of the condition log n = O(⇠1/3k ),

that b�
1,k,1, b�1,k,2, and b�1,k,3 are all Op(⇠2�

2s�v
2sv

p

(k log k)/n). For the remaining term, by

condition (c) we have:

b�
1,k,4 = k⇧k(M(↵̂) �M)|Bk

k  `⇤(↵̂) =
1p
n

p
n ˙̀⇤

↵0
[↵̂� ↵

0

] +O(k↵̂� ↵
0

k2A) = Op(n
�1/2)

which is of smaller order.

G.2 Proofs for Appendix C.2

Proof of Lemma C.5. Lemma 2.2 of Chen and Christensen (2015) gives the bound

kbGo � Ik = Op(⇠k(log n)/
p
n). Let {Tn : n � 1} be a sequence of positive constants to be

defined and let:

Gtrunc
t+1

= G1��
t+1

1l{kb̃k(xt)kkb̃k(xt+1

)k�|G1��
t+1

|  Tn}
Gtail

t+1

= G1��
t+1

1l{kb̃k(xt)kkb̃k(xt+1

)k�|G1��
t+1

| > Tn} .

We then have:

sup
v:kvkc

kbTov �Tovk  sup
v:kvkc

�

�

�

�

�

1

n

n�1

X

t=0

b̃k(Xt)G
trunc
t+1

|b̃k(Xt+1

)0v|� � E[b̃k(Xt)G
trunc
t+1

|b̃k(Xt+1

)0v|�]
�

�

�

�

�

+ sup
v:kvkc

�

�

�

�

�

1

n

n�1

X

t=0

b̃k(Xt)G
tail
t+1

|b̃k(Xt+1

)0v|�
�

�

�

�

�

+ sup
v:kvkc

�

�

�

E[b̃k(Xt)G
tail
t+1

|b̃k(Xt+1

)0v|�]
�

�

�

=: bT
1

+ bT
2

+ bT
3

.
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Let Hn,k = {w0b̃k(x
0

)Gtrunc
1

|b̃k(x
1

)0v|� : v 2 Rk, kvk  c, w 2 Sk�1}. Then:

bT
1

 n�1/2 ⇥ suph2Hn,k
|Zn(h)|

where Zn is the centered empirical process on Hn,k. Each h 2 Hn,k is uniformly bounded by

c�Tn. Therefore, by Condition (a) and Theorem 2 of Doukhan et al. (1995):

E[suph2Hn,k
|Zn(h)|] = O

 

'(�n,k) +
c�Tnq'2(�n,k)

�2

n,k

p
n

+
p
nc�Tn�q

!

(OA.7)

where q 2 {1, 2, . . .}, �n,k � suph2Hn,k
khk

2,� for the norm k·k
2,� defined on p. 400 of Doukhan

et al. (1995), and '(�) is the bracketing entropy integral:

'(�) =

Z �

0

q

logN
[ ]

(u,Hn,k, k · k2,�) du .

To calculate �n,k, by (OA.4) and Hölder’s inequality we have:

sup
h2Hn,k

khk
2,�  C sup

h2Hn,k

khk
2s  Cc�kG1��k

2s⇠
1+�
k

where kG1��k
2s is finite by condition (b). Set �n,k = Cc�kG1��k

2s⇠
1+�
k .

To bound the bracketing entropy, first fix q > 2 and let w
1

, . . . , wN1 be a "-cover for Sk�1

and v
1

, . . . , vN2 be a "1/�-cover for {v 2 Rk : kvk  c}. For any w 2 Sk�1 and v 2 {v 2 Rk :

kvk  c} there exist vi 2 {v
1

, . . . , vN1} and wj 2 {w
1

, . . . , wN2} such that:

w0
j b̃

k(x
0

)Gtrunc
1

|b̃k(x
1

)0vi|� � "
⇣

(1 + c�)kb̃k(x
0

)kkb̃k(x
1

)k�|Gtrunc
1

|
⌘

 w0b̃k(x
0

)Gtrunc
1

|b̃k(x
1

)0v|�

 w0
j b̃

k(x
0

)Gtrunc
1

|b̃k(x
1

)0vi|� + "
⇣

(1 + c�)kb̃k(x
0

)kkb̃k(x
1

)k�|Gtrunc
1

|
⌘

where:

�

�

�

2"
⇣

(1 + c�)kb̃k(x
0

)kkb̃k(x
1

)k�|Gtrunc
1

|
⌘

�

�

�

2s
 2"(1 + c�)kG1��k

2s⇠
1+�
k = "C

0

⇠1+�k .

where C
0

= 2(1 + c�)kG1��k
2s. Therefore, given a "-cover of Sk�1 and a "1/�-cover for

{v 2 Rk : kvk  c} we can construct "C
0

⇠1+�k -brackets for Hn,k under the L2s norm, and so
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by Lemma 2.5 of van de Geer (2000):

N
[ ]

�

u,Hn,k, k · k
2s

� 
⇣4C

0

⇠1+�k

u
+ 1
⌘k⇣4c(C

0

⇠1+�k )1/�

u1/�
+ 1
⌘k

.

By (OA.4) and the above display:

'(�) =

Z �

0

q

logN
[ ]

(u,Hn,k, k · k2,�) du


Z �

0

q

logN
[ ]

(u/C,Hn,k, k · k2s) du

 k1/2

✓

Z �

0

q

log
�

1 + 4CC
0

⇠1+�k /u
�

du+

Z �

0

q

log
�

1 + 4c(CC
0

⇠1+�k /u)1/�
�

du

◆

.

Since �n,k = Cc�kG1��k
2s⇠

1+�
k , by a change of variables we obtain '(�n,k) = O(⇠1+�k

p
k).

Substituting into (OA.7):

bT
1

= Op

✓

⇠1+�k

p
kp

n
+

Tnqk

n
+ Tn�q

◆

.

By Markov’s inequality we may deduce bT
2

= Op(⇠
(1+�)2s
k /T 2s�1

n ) and bT
3

= O(⇠(1+�)2sk /T 2s�1

n ).

Choosing Tn so that ⇠(1+�)2sk /T 2s�1

n ⇣ ⇠1+�k

p

k/n and q = C
0

log n for large enough C
0

ensures, in view of the condition (log n)(2s�1)/(s�1)k/n = o(1), that bT
1

, bT
2

, and bT
3

are all

Op(⇠
1+�
k

p

k/n).

The expression for ⌫n,k now follows from display (S.18) and the rates for bGo and bTo.

G.3 Proofs for Appendix F

Proof of Proposition F.1. We first show that any positive eigenfunction of M must

have eigenvalue ⇢. Suppose that there is some positive  2 L2 and scalar � such that

M (x) = � (x). Then we obtain:

�h�⇤, i = h�⇤,M i = hM⇤�⇤, i = ⇢h�⇤, i

with h�⇤, i > 0 because �⇤ and  are positive, hence � = ⇢. A similar argument shows that

any positive eigenfunction of M⇤ must correspond to the eigenvalue ⇢.

It remains to show that � and �⇤ are the unique eigenfunctions (in L2) of M and M⇤ with

eigenvalue ⇢. We do this in the following three steps. Let F = { 2 L2 : M = ⇢ }. We first
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show that if  2 F then the function | | given by | |(x) = | (x)| also is in F . In the second

step we show that  2 F implies  = | | or  = �| |. Finally, in the third step we show

that F = {s� : s 2 R}.
For the first step, first observe that F 6= {0} because � 2 F by Assumption F.1(b). Then

by Assumption F.1(c), for any  2 F we have M| | � |M | = ⇢| | and so M| |� ⇢| | � 0

(almost everywhere). On the other hand,

h�⇤,M| |� ⇢| |i = hM⇤�⇤, | |i � ⇢h�⇤, | |i = 0

which implies that M| | = ⇢| | and hence | | 2 F .

For the second step, take any  2 F that is not identically zero. Suppose that  = | | on
a set of positive Q measure (otherwise we can take � in place of  ). We will prove by

contradiction that this implies | | =  . Assume not, i.e. | | 6=  on a set of positive Q

measure. Then | |� � 0 (almost everywhere) and | |� 6= 0. But by step 1 we also have

that M(| |�  ) = ⇢(| |�  ). Then for any � > r(M) we have

(⇢/�)

1� (⇢/�)
(|⇠|� ⇠) =

X

n�1

⇣⇢

�

⌘n

(|⇠|� ⇠) =
X

n�1

��nMn(|⇠|� ⇠) > 0

(almost everywhere) by Assumption F.1(c). Therefore, | | >  (almost everywhere). This

contradicts the fact that  = | | on a set of positive Q measure. A similar proof shows that

if � = | | holds on a set of positive Q measure then � = | |.
For the third step we use an argument based on the Archimedean axiom (see, e.g., p. 66 of

Schaefer (1974)). Take any positive  2 F and define the sets S
+

= {s 2 R :  � s�} and

S� = {s 2 R : ⇣  s�} (where the inequalities are understood to hold almost everywhere).

It is easy to see that S
+

and S� are convex and closed. We also have (�1, 0] ✓ S
+

so

S
+

is nonempty. Suppose S� is empty. Then  > s� on a set of positive measure for all

s 2 (0,1). By step 2 we therefore have  > s� (almost everywhere). But then because L2

is a lattice we must have k k � sk�k for all s 2 (0,1) which is impossible because  2 L2.

Therefore S� is nonempty. Finally, we show that R = S
+

[ S�. Take any s 2 R. Clearly
 � s� 2 F . By Claim 2 we know that either:  � s� � 0 (almost everywhere) which implies

s 2 S
+

or  � s�  0 (almost everywhere) which implies s 2 S�. Therefore R = S
+

[ S�.

The Archimedean axiom implies that the intersection S
+

\S� must be nonempty. Therefore

S
+

\ S� = {s⇤} (the intersection must be a singleton else  = s� and  = s0� with s 6= s0)

and so  = s⇤� (almost everywhere). This completes the proof of the third step.
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A similar argument implies that �⇤ is the unique positive eigenfunction of M⇤.

Proof of Proposition F.2. Assumption 2.1(a) implies that r(M) > 0 (see Proposition

IV.9.8 and Theorem V.6.5 of Schaefer (1974)). The result now follows by Theorems 6 and 7

of Sasser (1964) with ⇢ = r(M). That ⇢ is isolated follows from the discussion on p. 1030 of

Sasser (1964).

Proof of Proposition F.3. Consider the operator M = ⇢�1M with ⇢ = r(M). Proposition

F.2 implies that {1} = {� 2 �(M) : |�| = 1}. Further, since M is power compact it has

discrete spectrum (Dunford and Schwartz, 1958, Theorem 6, p. 579). We therefore have

sup{|�| : � 2 �(M),� 6= 1} < 1 and hence M = (�⌦�⇤)+V where r(V) < 1 and M, (�⌦�⇤)

and V commute (see, e.g., p. 331 of Schaefer (1974) or pp. 1034-1035 of Sasser (1964)). Since

these operators commute, a simple inductive argument yields:

V⌧ = (M� (�⌦ �⇤))⌧ = M⌧ � (�⌦ �⇤) = ⇢�⌧M⌧ � (�⌦ �⇤)

for each ⌧ 2 T . By the Gelfand formula, there exists ✏ > 0 such that:

lim
⌧!1

kV⌧k1/⌧ = r(V)  1� ✏ (OA.8)

Let {⌧k : k � 1} ✓ T be the maximal subset of T for which kV⌧kk > 0. If this subsequence is

finite then the proof is complete. If this subsequence is infinite, then by expression (OA.8),

lim sup
⌧k!1

log kV⌧kk
⌧k

< 0 .

Therefore, there exists a finite positive constant c such that for all ⌧k large enough, we have:

log kV⌧kk  �c⌧k

and hence:

k⇢�⌧kM⌧k � (�⌦ �⇤)k  e�c⌧k

as required.
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Borovička, J., L. P. Hansen, and J. A. Scheinkman (2016). Misspecified recovery. Journal of
Finance 71 (6), 2493–2544.

Chen, X. and T. M. Christensen (2015). Optimal uniform convergence rates and asymptotic nor-

20



mality for series estimators under weak dependence and weak conditions. Journal of Economet-
rics 188 (2), 447–465.

Christensen, T. M. (2015). Nonparametric identification of positive eigenfunctions. Econometric
Theory 31 (6), 1310–1330.

Doukhan, P., P. Massart, and E. Rio (1995). Invariance principles for absolutely regular empirical
processes. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques 31, 393–427.
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