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THIS SUPPLEMENT USES the notation and definitions established in the main
paper. Theorems, propositions, and lemmas are numbered S.1, S.2, etc. in this
supplement. Numbers without the prefix S refer to those in the main paper.

S.1. REPRESENTATION THEOREMS

In this section, we provide an axiomatic treatment of our model. We first
introduce a more general representation. Let RX be the space of affine utility
functions u : ΔX → R and π be a measure on ΔS×R

X . Interpret π as the joint
distribution over beliefs and tastes. Assume that u is non-constant π-a.s. The
corresponding regularity condition on π is as follows.

DEFINITION: π is regular if q · (u ◦ f )= q · (u ◦ g) with π-measure 0 or 1 for
any f�g.

We now define a random subjective expected utility (RSEU) representation as
follows.

DEFINITION—RSEU Representation: ρ is represented by a regular π if, for
f ∈ F ∈K,

ρF(f )= π{
(q�u) ∈ ΔS ×R

X |q · (u ◦ f )≥ q · (u ◦ g) ∀g ∈ F}
�

This is a RUM model where both beliefs and tastes are random. In the indi-
vidual interpretation, this describes an agent who receives unobservable shocks
to both beliefs and tastes. In the group interpretation, this describes a group
with unobserved heterogeneity in both beliefs and utilities. Note that in the
special case where the marginal distribution of π on utilities is degenerate, this
reduces to an information representation where the signal distribution μ is the
marginal distribution of π on beliefs.

We now introduce the axioms. The first four are familiar restrictions on
RCRs. Let extF denote the set of extreme acts of F ∈K.1

AXIOM S.1—Monotonicity: ρ is monotone.

1Formally, f ∈ F is an extreme act if it cannot be expressed as ag+ (1 − a)h for any g or h in
F and a ∈ (0�1).
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AXIOM S.2—Linearity: ρ is linear.

AXIOM S.3—Extremeness: ρF(extF)= 1.

AXIOM S.4—Continuity: ρ is continuous.

Monotonicity follows from the fact that when menus are enlarged by adding
new acts, the probability of choosing old acts can only decrease. Linearity and
extremeness follow from the fact that the random utilities in our model are
linear (i.e., agents are subjective expected utility maximizers). In fact, linear-
ity is the version of the independence axiom tested in many experimental set-
tings (see Kahneman and Tversky (1979), for example). Since linear utilities
are used for evaluation, extremeness means that mixtures of acts in a menu
are never chosen (aside from indifferences). Continuity is standard other than
the adjustment for indifferences. Note that if H is the Borel σ-algebra, then
K0 = K and our continuity axiom condenses to the usual continuity.2 These
first four axioms are necessary and sufficient for random expected utility (Gul
and Pesendorfer (2006)).

We now present the new axioms. Call a state s ∈ S null if the RCR treats all
acts that differ only in that state the same, that is, ρF∪f (f )= ρF∪g(g) whenever
f (s′)= g(s′) for all s′ 	= s. Given an act f and state s ∈ S, let f (s) also denote
the constant act that yields the payoff f (s) in every state. Call a menu constant
if it contains only constant acts. Given a menu F and state s ∈ S, let F(s) =⋃

f∈F f (s) denote the constant menu consisting of f (s) for all f ∈ F . We now
present the random choice analog of state-independence.

AXIOM S.5—S-independence: Suppose f (s1) = f (s2), F1(s1) = F2(s2), and
Fi(s)= f (s) for all s 	= si. If s1 is not null, then ρF1(f )= ρF1∪F2(f ).

S-independence states that if an act f yields the same payoff in states s1 and
s2, payoffs of menu F1 in s1 are the same as those of menu F2 in s2, and acts in Fi
only differ in si, then the probability of choosing f in F1 is the same as choosing
f in F1 ∪F2. This is because only payoffs in state si matter in menu Fi, so state-
independent utilities imply that f is optimal in F1 if and only if it is also optimal
in F1 ∪F2. This is the random choice version of the state-independence axiom.3
Finally, non-degeneracy rules out the trivial case of universal indifference.

AXIOM S.6—Non-degeneracy: ρF(f ) < 1 for some F and f ∈ F .

2In general, though, the RCR is not continuous over all menus and is in fact discontinuous at
precisely those menus that contain indifferences. Nevertheless, every menu is arbitrarily (Haus-
dorff) close to some menu in K0, so continuity is preserved over almost all menus.

3Under deterministic choice, Theorem S.1 implies that S-independence is equivalent to the
standard state-independence axiom in the presence of the other axioms.
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We now present the first representation theorem. Axioms S.1–S.6 are neces-
sary and sufficient for a RSEU representation.

THEOREM S.1: ρ satisfies Axioms S.1–S.6 if and only if it has a RSEU repre-
sentation.

Theorem S.1 shows that the characterization of random expected utility can
be comfortably extended to the realm of Anscombe–Aumann acts and the ax-
ioms of subjective expected utility yield intuitive random choice analogs. For
an information representation, we need one additional restriction.

AXIOM S.7—C-determinism: ρF(f ) ∈ {0�1} for constant F .

C-determinism states that the RCR is deterministic over menus consisting
only of constant acts. Under an information representation, choice is stochas-
tic only as a result of varying beliefs. Since beliefs are irrelevant for constant
acts, choice must be deterministic. Thus, adding C-determinism results in an
information representation.

THEOREM S.2: ρ satisfies Axioms S.1–S.7 if and only if it has an information
representation.

Note that if we allow the utility u to be constant, then the non-degeneracy
axiom can be dropped without loss of generality. However, the uniqueness of
μ in the representation would obviously fail in Theorem 1.

We also provide an alternate axiomatization of an information representa-
tion. Consider the following condition.

AXIOM S.5′—S-monotonicity: If ρF(s)(f (s))= 1 for all s ∈ S, then ρF(f )= 1.

S-monotonicity states that if an act is the best regardless of which state
occurs, then it must be chosen for sure. Similar to S-independence, it is
the random choice analog of the standard state-monotonicity condition
from deterministic choice. As in the Anscombe–Aumann model, replacing
S-independence with S-monotonicity results in an alternate axiomatization for
an information representation.

THEOREM S.3: ρ satisfies Axioms S.1–S.4, S.5′, S.6–S.7 if and only if it has an
information representation.

Our treatment so far assumes beliefs are completely subjective. Finally, as
in Section 7, we present an axiomatization that includes as a primitive the ob-
served frequency of states r ∈ ΔS (assume r has full support as before). A cali-
brated information representation is an information representation where the
signal distribution agrees with the objective r.
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DEFINITION—Calibrated Information Representation: ρ is represented by
(μ�u) and

r =
∫
ΔS

qμ(dq)�

We now introduce a consistency axiom that relates r with RCR. Recall that
the conditional worst act f s coincides with the worst act if s occurs and with
the best act otherwise.

AXIOM S.8—Consistency: The mean of f s
ρ

is rs for all s ∈ S.

Axioms S.1–S.8 are necessary and sufficient for a calibrated information rep-
resentation. In other words, calculating means of test functions allows an ana-
lyst to check if the RCR is consistent with the objective frequency r.

THEOREM S.4: ρ satisfies Axioms S.1–S.8 if and only if it has a calibrated
information representation.

PROOF: Let ρ satisfy Axioms S.1–S.7 so by Theorem S.2, ρ is represented
by some (μ�u). Without loss of generality, normalize u such that u(f )= 1 and
u(f )= 0. From Lemma A.6, we know that the mean of f s

ρ
is given by

∫
[0�1]
adf s

ρ
(a)= 1 −

∫
ΔS

q · (u ◦ f s)μ(dq)
= 1 −

∫
ΔS

(1 − qs)μ(dq)=
∫
ΔS

qsμ(dq)�

Thus, ρ satisfies Axiom S.8 iff r = ∫
ΔS
qsμ(dq), as desired. Q.E.D.

S.1.1. Proof of Theorem S.1

Before proving Theorem S.1, we first present a few useful lemmas. The first
shows that without loss of generality, we can consider random choice on a sub-
space of acts without ties. First, note that we can associate each act f ∈H with
its corresponding vector f ∈ R

S×X . Consider a collection of acts f1� f2� � � � � fk
that are tied with g1� g2� � � � � gk, respectively, where

zi := fi − gi
‖fi − gi‖ 	= 0�

and zi · zj = 0 for all i 	= j. Let Z := lin{z1� � � � � zk} be the linear space spanned
by all zi with Z = 0 if no such zi exists. Let k be maximal in that, for any two
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acts f and g that are tied, f − g ∈ Z. Lemmas A.3 and A.4 ensure that k is
well-defined, and note that the vectors zi form an orthonormal basis for the
space of tied acts.

We now define a projection ϕ :H → R
S×X that maps acts to a subspace or-

thogonal to Z and hence contains no ties. Formally, define

ϕ(f ) := f −
∑
i

(f · zi)zi�

and let W := lin(ϕ(H)) be the linear space containing the image of ϕ with
orthonormal basis {w1� � � � �wm}. Note that {z1� � � � � zk�w1� � � � �wm} form an or-
thonormal basis for the space of all acts.

LEMMA S.1: Suppose ρ is monotonic and linear.
(1) ϕ(f )= ϕ(g) if and only if f and g are tied.
(2) w ·ϕ(f )=w · f for all w ∈W .

PROOF: We first prove (1). Suppose f and g are tied so f − g ∈ Z by the
definition of Z. Thus,

f = g+
∑
i

αizi

for some coefficients αi. This implies that

ϕ(f )= g+
∑
i

αizi −
∑
i

[(
g+

∑
j

αjzj

)
· zi

]
zi

= g−
∑
i

(g · zi)zi = ϕ(g)�

as desired. For the converse, suppose ϕ(f )= ϕ(g) so

f −
∑
i

(f · zi)zi = g−
∑
i

(g · zi)zi�

f − g=
∑
i

(
(f − g) · zi

)
zi ∈Z�

Thus, f and g are tied as desired. This proves (1).
We now prove (2). Note that ϕ(f ) ·zi = 0 for all f ∈H. SinceW = lin(ϕ(H))

and ϕ is a linear mapping, w · zi = 0 for all w ∈W . Thus, for all w ∈W ,

w ·ϕ(f )=w ·
(
f −

∑
i

(f · zi)zi
)

=w · f�

proving (2). Q.E.D.
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The next lemma shows that we can apply the Gul and Pesendorfer (2006)
random expected utility representation theorem to obtain a random utility rep-
resentation.

LEMMA S.2: If ρ satisfies Axioms S.1–S.4, then there exists a measure ν on W
such that

ρF(f )= ν{w ∈W |w · f ≥w · g ∀g ∈ F}�

PROOF: Recall that W has basis {w1� � � � �wm}. Let Δ be the m-dimensional
probability simplex and define the mapping T :H → Δ, where

[
T(f )

]
i
= λ

[
ϕ(f ) ·

(
wi −

∑
j

wj

)]
+ 1
m
�

Note that since H is bounded, we can always find some small enough λ such
that [T(f )]i ≥ 0 for all i and

∑
i[T(f )]i = 1 so T(H)⊂ Δ. Now, for each finite

set of lotteries D ⊂ Δ, we can find a p∗ ∈ Δ and a ∈ (0�1) such that Dap∗ ⊂
T(H). Thus, we can define an RCR τ on Δ such that

τD(p) := ρF(f )�
where T(F)=Dap∗ and T(f )= pap∗. Linearity and Lemma S.1 ensure that
τ is well-defined.

Since the mappings ϕ and T are both affine, Axioms S.1–S.4 correspond
exactly to the axioms of Gul and Pesendorfer (2006) on Δ. Thus, by their The-
orem 3, there exists a measure ν̃ on Δ such that, for any menu F that contain
no ties,

ρF(f )= τT(F)
(
T(f )

)
= ν̃{v ∈ Δ|v · (T(f )) ≥ v · (T(g)) ∀g ∈ F}

�

Now, note that

v · (T(f )) =
∑
i

vi

(
λ

[
ϕ(f ) ·

(
wi −

∑
j

wj

)]
+ 1
m

)

= λϕ(f ) ·
∑
i

(vi − 1)wi + 1
m

= λϕ(f ) · ζ(v)+ 1
m
�
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where ζ(v) := ∑
i(vi − 1)wi ∈W . Hence, if we let ν := ν̃ ◦ ζ−1 be the measure

on W induced by ν̃, then

ρF(f )= ν̃{v ∈ Δ|ϕ(f ) · ζ(v)≥ ϕ(g) · ζ(v) ∀g ∈ F}
= ν{w ∈W |ϕ(f ) ·w≥ ϕ(f ) ·w ∀g ∈ F}
= ν{w ∈W |w · f ≥w · g ∀g ∈ F}

�

where the last equality follows from Lemma S.1.
Now, for any menu F ∈ K, let F∗ ⊂ F denote the submenu that does not

contain ties. By Lemma S.1, if f and f ∗ are tied, then

w · f =w ·ϕ(f )=w ·ϕ(
f ∗) =w · f ∗�

Thus, by Lemma A.3, for any f ∈ F ,

ρF(f )= ρF∗
(
f ∗) = ν{w ∈W |w · f ∗ ≥w · g∗ ∀g∗ ∈ F∗}

= ν{w ∈W |w · f ≥w · g ∀g ∈ F}
�

as desired. Q.E.D.

The next lemma shows that non-degeneracy ensures that there is at least one
state that is not null. We will use the shorthand notation ρ(F�G) := ρF∪G(F).

LEMMA S.3: If ρ is non-degenerate, then there exists a non-null state.

PROOF: Suppose ρ is non-degenerate but all states are null and consider any
two acts f and g. Order the states S = {s1� � � � � sn} and define a sequence of acts
f i ∈H for 1 ≤ i≤ n such that

f i(sj)=
{
g(sj) if j ≤ i�
f (sj) if j > i�

In other words, f i coincides with g on states s1 to si and with f on states si+1 to
sn. Since f i and f i+1 differ only on one state and every state is null,

ρ
(
f i� f i+1

) = 1 = ρ(f i+1� f i
)
�

Thus, f i and f i+1 are tied for all i, so by Lemma A.2, f and g are tied. This im-
plies ρF(f )= 1 for any f ∈ F , contradicting non-degeneracy, as desired. Q.E.D.

We are now ready to prove Theorem S.1. We wish to show the following are
equivalent:

(1) ρ satisfies Axioms S.1–S.6,
(2) ρ is represented by some regular π.
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Suppose (1) is true. By Lemma S.2, we know there is a measure ν on W such
that

ρF(f )= ν
{
w ∈W

∣∣∣∑
s

ws
(
f (s)

) ≥
∑
s

ws
(
g(s)

) ∀g ∈ F
}
�

where ws : ΔX → R denotes the linear utility corresponding to w ∈W in state
s ∈ S. Note that if a state s0 ∈ S is null, then for any two acts f and g where
f (s)= g(s) for all s 	= s0,

1 = ρ(f�g)= ν{w ∈W |ws0
(
f (s)

) ≥ws0
(
g(s)

) ∀g ∈ F}
�

Since this is true for all acts f and g, this means that ws0 is constant ν-a.s.
Hence, without loss of generality, we can set ws = 0 for any null state s ∈ S.

Let S∗ ⊂ S be the set of non-null states, which is non-empty by Lemma S.3.
Now, consider two non-null states s1 ∈ S∗ and s2 ∈ S∗. For any p ∈ ΔX , q ∈ ΔX ,
and i ∈ {1�2}, define the following sets:

Hi(p�q) := {
w ∈W |wsi(p) > wsi(q)

}
�

Ii(p�q) := {
w ∈W |wsi(p)=wsi(q)

}
�

Also, define

R(p�q) :=
⋂
i

Hi(p�q)∪
⋂
i

Ii(p�q)∪
⋂
i

Hi(q�p)�

We will show that for any two lotteries p and q, ν(R(p�q)) = 1, that is,
ws1(p)≥ws1(q) iff ws2(p)≥ws2(q) ν-a.s.

Fix two lotteries p and q and consider acts f , g, and h where

p= f (s1)= f (s2)= g(s2)= h(s1)�

q= g(s1)= h(s2)�

and f (s)= g(s)= h(s) for all s /∈ {s1� s2}. Since s1 is not null, S-independence
implies that

ν
{
w ∈W |ws1(p)≥ws1(q)

}
= ρ(f�g)= ρ(f�g ∪ h)
= ν{w ∈W |ws1(p)≥ws1(q) and ws2(p)≥ws2(q)

}
�

This implies that

ν
((
H1(p�q)∪ I1(p�q)

) ∩H2(q�p)
) = 0�
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Since s2 is not null, S-independence also implies that ρ(f�h)= ρ(f�g ∪ h), so

ν
((
H2(p�q)∪ I2(p�q)

) ∩H1(q�p)
) = 0�

By symmetric argument, we also have

ν
((
H1(q�p)∪ I1(p�q)

) ∩H2(p�q)
) = 0�

ν
((
H2(q�p)∪ I2(p�q)

) ∩H1(p�q)
) = 0�

This all implies that

ν
(
R(p�q)

) = ν(H1(p�q)∪ I1(p�q)∪H1(q�p)
) = 1�

as desired.
We now show that ν-a.s. ws1(p)≥ws1(q) iff ws2(p)≥ws2(q) for all p and q.

In other words, we will show that ν(R)= 1, where

R := {
w ∈W |ws1(p)≥ws1(q) iff ws2(p)≥ws2(q)
for all {p�q} ⊂ ΔX}

�

Let C ⊂ ΔX be a countable dense subset of ΔX and note that

R⊂R∗ :=
⋂

(p�q)∈C×C
R(p�q)�

We will show that R = R∗. Suppose otherwise, so there is some w ∈ R∗ \ R.
Without loss of generality, we can find two lotteries p and q where ws1(p) ≥
ws1(q) but ws1(p) < ws1(q). Since s1 is not null, we can find sequences of lot-
teries pk ∈ C and qk ∈ C where pk → p, qk → q, and

ws1(pk)≥ws1(p)≥ws1(q)≥ws1(qk)�
Since w ∈ R∗, this means that ws2(pk) ≥ ws2(qk) for all k, so by continuity,
ws2(p)≥ws2(q), yielding a contradiction. Thus, R=R∗, so

ν(R)= ν(R∗) = 1�

as ν(R(p�q))= 1 for all (p�q) ∈ C ×C .
Fix some non-null state s∗ ∈ S∗ so, for any other s ∈ S∗, we know that ν-a.s.

ws∗(p) ≥ ws∗(q) iff ws(p) ≥ ws(q) for all p and q. In other words, ws∗ and ws
represent the same linear order over lotteries so ν-a.s.

ws = asws∗ + bs�
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Define the mapping φ1 :W → ΔS where

[
φ1(w)

]
(s)= as∑

s∈S∗
as

if s ∈ S∗ and [φ1(w)](s) = 0 otherwise. Also let φ2 : W → R
X be such that

φ2(w)=ws∗ and φ= (φ1�φ2). Thus,

ρF(f )= ν

{
w ∈W

∣∣∣
∑
s∈S∗

(
asws

(
f (s)

) + bs
) ≥

∑
s∈S∗

(
asws

(
g(s)

) + bs
) ∀g ∈ F

}

= ν
{
w ∈W |φ1(w) · (φ2(w) ◦ f ) ≥φ1(w) · (φ2(w) ◦ g) ∀g ∈ F}

= π
{
(q�u) ∈ ΔS×R

X |q · (u ◦ f )≥ q · (u ◦ g) ∀g ∈ F}
�

where π := ν ◦φ−1 is the measure on ΔS ×R
X induced by ν. Finally, we show

that π is regular. Consider any two acts f and g and note that if they are tied,
then q · (u ◦ f )= q · (u ◦ g) π-a.s. On the other hand, if they are not tied, then

π
{
(q�u) ∈ ΔS ×R

X |q · (u ◦ f )= q · (u ◦ g)}
= ρ(f�g)− (

1 − ρ(g� f )) = 0�

Thus π is regular and ρ is represented by π, proving (2).
Now, suppose (2) is true. Monotonicity, linearity, and extremeness all fol-

low trivially from the representation. To show non-degeneracy, suppose ρ is
degenerate. Thus, for any two constant acts f and g,

1 = ρ(f�g)= ρ(g� f )= π{
(q�u) ∈ ΔS ×R

X |u ◦ f = u ◦ g}�
so u is constant, yielding a contradiction. Thus, non-degeneracy is satisfied.
To show S-independence, suppose p= f (s1)= f (s2), D= F1(s1)= F2(s2), and
Fi(s)= f (s) for all s 	= si. Since u is non-constant, every state is not null and

ρFi(f )= π{
(q�u) ∈ ΔS×R

X |u(p)≥ u(q) for all q ∈D} = ρF1∪F2(f )�

This proves S-independence.
Finally, we show continuity. Let Fk → F where {Fk�F} ⊂ K0. Note that for

any {f�g} ⊂ Fk, f and g are not tied. Since π is regular, this implies that q · (u◦
f )= q · (u ◦ g) with π-measure zero. Now, define

I :=
⋃

{f�g}⊂Fk∪F

{
(q�u) ∈ ΔS ×R

X |q · (u ◦ f )= q · (u ◦ g)}
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as the set of all beliefs and utilities that rank some {f�g} ⊂ Fk ∪ F the same.
Note that π(I)= 0, so if we let Q := ΔS × R

X \ I , then μ(Q)= 1. Let π∗ be
the restriction of π on Q. We will now define random variables ξk : Q → H
and ξ : Q →H that have distributions ρFk and ρF , respectively. For each Fk,
let ξk :Q→H be such that

ξk(q�u) := arg max
f∈Fk

q · (u ◦ f )�

and define ξ similarly for F . Note that these are well-defined because there
exists a unique maximizer for every (q�u) ∈ Q. Now, for any measurable set
E ⊂H,

ξ−1
k (E)= {

(q�u) ∈Q|ξk(q · u) ∈E ∩ Fk
}

=
⋃

f∈E∩Fk

{
(q�u) ∈Q|q · (u ◦ f ) > q · (u ◦ g) ∀g ∈ Fk

}
�

which is measurable. Hence, ξk and ξ are random variables. Note that

π∗ ◦ ξ−1
k (E)=

∑
f∈E∩Fk

π∗{(q�u) ∈Q|q · (u ◦ f ) > q · (u ◦ g) ∀g ∈ Fk
}

=
∑

f∈E∩Fk
π

{
(q�u) ∈Q|q · (u ◦ f )≥ q · (u ◦ g) ∀g ∈ Fk

}
= ρFk(E ∩ Fk)
= ρFk(E)�

so ρFk and ρF are the distributions of ξk and ξ, respectively. Note that for any
(q�u) ∈Q⊂ ΔS×R

X , q · (u ◦ f ) is bounded and thus continuous in f . Hence,
by the maximum theorem, ξk(q�u)= arg maxf∈Fk q · (u◦f ) is continuous in Fk.
Since Fk → F , ξk → ξ π∗-a.s. and since a.s. convergence implies convergence
in distribution, ρFk → ρF as desired.

S.1.2. Proof of Theorem S.2

Before proving Theorem 5, we first show a useful lemma. Let τ be an RCR
on ΔX . We say τ is deterministic if τD(p) ∈ {0�1} for all sets of lotteries D. We
show that if τ has a random expected utility representation and is deterministic,
then it reduces to a standard expected utility representation.

LEMMA S.4: Suppose τ is deterministic and there is a regular measure ν on R
X

such that

τD(p)= ν{u ∈R
X |u(p)≥ u(q) ∀q ∈D}

�

Then ν has a degenerate distribution on some u∗ ∈ R
X .
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PROOF: Note that if τ is degenerate, that is τD(p) = 1 for all D so we can
just set u∗ = 0. Thus, assume τ is non-degenerate and note that, for any two p
and q,

τ(p�q)= ν{u ∈ R
X |u(p)≥ u(q)} ∈ {0�1}�

Since X is finite, we can find two degenerate lotteries y and z such that
τ(y�x) = τ(x� z) = 1 for all x ∈ X . Note that u(y) > u(z) ν-a.s. by non-
degeneracy. By linearity, this implies that τ(y�p)= τ(p�z)= 1 for all p ∈ ΔX .
By determinism and continuity, for any p ∈ ΔX , we can find an ap ∈ [0�1] such
that

τ(yapz�p)= τ(p� yapz)= 1�

This implies that

1 = ν{u ∈ R
X |u(p)= apu(y)+ (1 − ap)u(z)

}
�

Since we can always normalize u such that u(y)= 1 and u(z)= 0, this means
that u(p) = ap ν-a.s. so ν has a degenerate distribution on some u∗ ∈ R

X , as
desired. Q.E.D.

We are now ready to prove Theorem S.2. We wish to show the following are
equivalent:

(1) ρ satisfies Axioms S.1–S.7,
(2) ρ is represented by some (μ�u).

Suppose (1) is true, so by Theorem S.1, ρ is represented by some regular π.
Let π1 and π2 be the marginal distributions of π on ΔS and R

X , respectively.
Define the RCR τ on ΔX such that for every constant menu F =D,

τD(p)= ρD(p)= π2

{
u ∈R

X |u(p)≥ u(q) ∀q ∈D}
�

Since C-determinism implies τ is deterministic, Lemma S.4 implies that π2 has
a degenerate distribution on some u. If we let μ= π1, then μ is regular and ρ
is represented by (μ�u), proving (2).

Now, suppose (2) is true, so by Theorem S.1, ρ satisfies Axioms S.1–S.6. To
show that ρ satisfies C-determinism, note that for any constant menu F ,

ρF(f )= μ
{
q ∈ ΔS|u(f )≥ u(g) ∀g ∈ F}

=
{

1 if u(f )≥ u(g) ∀g ∈ F�
0 otherwise.

This proves (1), as desired.
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S.1.3. Proof of Theorem S.3

Let ρ satisfy Axioms S.1–S.4 and S.6–S.7. We wish to show the following are
equivalent:

(1) ρ satisfies S-independence,
(2) ρ satisfies S-monotonicity.

Suppose (1) is true, so by Theorem S.2, ρ is represented by some (μ�u). To
show that ρ satisfies S-monotonicity, suppose ρF(s)(f (s))= 1 for all s ∈ S. This
implies that u(f (s))≥ u(g(s)) for all g ∈ F and s ∈ S so

ρF(f )= μ{
q ∈ ΔS|q · (u ◦ f )≥ q · (u ◦ g) ∀g ∈ F} = 1�

proving (2), as desired.
Now, suppose (2) is true. From Lemma S.2, define the RCR τ on ΔX such

that

τD(p)= ρD(p)= ν
{
w ∈W

∣∣∣∑
s

ws(p)≥
∑
s

ws(q) ∀q ∈D
}
�

C-determinism implies that τ is deterministic, so by Lemma S.4, there is some
u∗ ∈ R

X such that τ(p�q) = 1 iff u∗(p) ≥ u∗(q). Now, for every state s ∈ S,
define the RCR τs on ΔX such that

τsD(p)= ρF(f )= ν{w ∈W |ws(p)≥ws(q) ∀q ∈D}
�

where f (s)= p, F(s)=D, and F(s′)= f (s′) for all s′ 	= s.
We now show that τs is deterministic for every s ∈ S. Suppose otherwise,

so we can find some p ∈ D and q ∈ D such that τsD(p) ∈ (0�1) and τsD(q) ∈
(0�1). By monotonicity, this implies that τs(p�q) < 1 and τs(q�p) < 1. By the
contrapositive of S-monotonicity, it must be that τ(p�q) < 1 and τ(q�p) < 1,
contradicting C-determinism. Thus, τs is deterministic, so by Lemma S.4, there
is some us ∈R

X such that τs(p�q)= 1 iff us(p)≥ us(q).
Next, we show that if s1 is not null, then us1(p) ≥ us1(q) implies us2(p) ≥

us2(q). Suppose otherwise, so us2(p) < us2(q). Let f (s1) = f (s2) = p, fi(si) =
q, and fi(s)= f (s) for all s 	= si. Note that

ρ(f� f1)= ν{w ∈W |us1(p)≥ us1(q)
} = 1�

ρ(f� f2)= ν{w ∈W |us2(p)≥ us2(q)
} = 0�

By the contrapositive of S-monotonicity and C-determinism, ρ(q�p)= 0. This
implies that u∗(q) > u∗(p). By S-monotonicity again, ρ(f1� f )= 1 so us1(p)=
us1(q). Suppose there exists some r where us1(p) > us1(r). Let g be the act
where g(s1) = r and g(s) = f (s) for all s 	= s1 so ρ(g� f ) = 0. By the contra-
positive of S-monotonicity again, ρ(r�p) = 0 so u∗(q) > u∗(p) > u∗(r). Now,
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we can find some a ∈ (0�1) such that u∗(p)= u∗(qar). By S-monotonicity, this
means that

us1(p)= us1(qar)= aus1(q)+ (1 − a)us1(r)�
However, us1(p)= us1(q) > us1(r), yielding a contradiction. Hence, there can
be no such r where us1(p)= us1(q) > us1(r). By symmetric argument, there can
be no such r where us1(r) > us1(p)= us1(q). Since the same argument applies
for any p and q, this means that s1 must be null, yielding a contradiction. Thus,
us1(p)≥ us1(q) implies us2(p)≥ us2(q) whenever s1 is not null.

Finally, we show that ρ satisfies S-independence. Let s1 be not null, p =
f (s1)= f (s2), D= F1(s1)= F2(s2), and Fi(s)= f (s) for all s 	= si. Now,

ρF1(f )= ν{w ∈W |us1(p)≥ us1(q) ∀q ∈D}
�

ρF1∪F2(f )= ν{w ∈W |us1(p)≥ us1(q) and us2(p)≥ us2(q) ∀q ∈D}
�

Note that if s2 is null, then ρF1(f ) = ρF1∪F2(f ) trivially. Thus assume s2 is
not null, so from above, us1(p) ≥ us1(q) iff us2(p) ≥ us2(q). This implies that
ρF1(f )= ρF1∪F2(f ), proving (2), as desired.

S.2. RELATION TO AHN AND SARVER (2013)

In this section, we relate our results to those of Ahn and Sarver (2013). They
introduced a condition called consequentialism to link choice behavior from
the two time periods.4 Consequentialism translates into the following in our
setting.

AXIOM S.9—Consequentialism: If ρF = ρG, then F ∼G.

However, consequentialism fails as a sufficient condition for linking the two
choice behaviors in our setup. This is demonstrated in the following.

EXAMPLE S.1: Let S = {s1� s2}, X = {x� y}, and u(ax+ (1 − a)y)= a. Asso-
ciate each belief q ∈ ΔS with t ∈ [0�1], where t = qs1 is the belief in state s1.
Let μ have the uniform distribution and ν have density 6t(1 − t). Thus, μ is
more informative than ν. Let � be represented by (μ�u) and ρ be represented
by (ν�u). We show that (��ρ) satisfies consequentialism. Consider two menus
F and G, where ρF = ρG with support F+ ⊂ F ∩G. Since f ∈ F \ F+ implies
it is dominated by acts in F+ μ-a.s., it is also dominated by acts in F+ ν-a.s.
Thus, F ∼ F+. A symmetric analysis for G yields G ∼ F+, so F ∼G, proving
consequentialism. However, μ and ν are clearly different distributions.

4Their second axiom deals with indifferences which we resolve using non-measurability.
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The reason for why consequentialism fails in the Anscombe–Aumann setup
is that the representation of DLR is more permissive than that of DLST. In the
lottery setup, if consequentialism is satisfied, then this extra freedom allows us
to construct an ex ante representation that is completely consistent with that of
ex post random choice. On the other hand, information is uniquely identified
in the representation of DLST, so this lack of flexibility prevents us from per-
forming this construction even when consequentialism is satisfied. A stronger
condition is needed to perfectly equate choice behavior from the two time pe-
riods.

AXIOM S.10—Strong Consequentialism: If Fρ and Gρ share the same mean,
then F ∼G.

The following demonstrates why this is a strengthening of consequentialism.

LEMMA S.5: For ρ monotonic, ρF = ρG implies Fρ =Gρ.

PROOF: Let ρ be monotonic and let F+ be the support of ρF . We first show
that F+

ρ = Fρ. Let F 0 := F \ F+, and for a ∈ [0�1], monotonicity yields

0 = ρF
(
F 0

) ≥ ρF∪f a
(
F 0

)
�

Note that by Lemma A.2, both F 0 and F+ are HF -measurable. First, suppose
f a is tied with nothing in F . Hence,

ρF+∪f a
(
F+) + ρF+∪f a

(
f a

) = 1 = ρF∪f a
(
F+) + ρF∪f a

(
f a

)
�

By monotonicity, ρF+∪f a(F+)≥ ρF∪f a(F+) and ρF+∪f a(f a)≥ ρF∪f a(f a), so

F+
ρ (a)= ρF+∪f a

(
F+) = ρF∪f a

(
F+) = ρF∪f a(F)= Fρ(a)�

Now, if f a is tied with some act in F , then by Lemma A.3 and monotonicity,

1 = ρF
(
F+) = ρF∪f a

(
F+) ≤ ρF+∪f a

(
F+)

�

Thus, F+
ρ (a)= 1 = Fρ(a) so F+

ρ = Fρ.
Now, suppose ρF = ρG for two menus F and G. Since ρF(f ) > 0 iff ρG(f ) >

0, F+ =G+. We thus have

Fρ = F+
ρ =G+

ρ =Gρ� Q.E.D.

Thus, if strong consequentialism is satisfied, then consequentialism must also
be satisfied as ρF = ρG implies Fρ = Gρ, which implies that Fρ and Gρ must
have the same mean. Strong consequentialism delivers the corresponding con-
nection between ex ante and ex post choice behaviors that consequentialism
delivered in the lottery setup.
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PROPOSITION S.1: Let � and ρ be represented by (μ�u) and (ν� v), respec-
tively. Then the following are equivalent:

(1) (��ρ) satisfies strong consequentialism,
(2) F �G if and only if F �ρ G,
(3) (μ�u)= (ν�αv+β) for α> 0.

PROOF: Note that the equivalence of (2) and (3) follows from Theorem 2
and the uniqueness properties of the subjective learning representation (see
Theorem 1 of DLST). That (2) implies (1) is immediate, so we only need to
prove that (1) implies (2).

Suppose (1) is true. Since �ρ is represented by (ν� v), we have F ∼ρ G im-
plies F ∼G. Without loss of generality, we assume both u and v are normal-
ized. First, consider only constant acts and let f and f be the worst and best acts
under v. Now, for any constant act f , we can find a ∈ [0�1] such that faf ∼ρ f

which implies faf ∼ f . Thus

v(f )= v(faf )= 1 − a
and

u(f )= au(f )+ (1 − a)u(f )= (
1 − v(f ))u(f )+ v(f )u(f )

= (
u(f )− u(f ))v(f )+ u(f )

for all constant f . Thus, u = αv + β where α := u(f ) − u(f ) and β := u(f ).
Since f ∪ f ∼ρ f implies f ∪ f ∼ f , we have u(f ) ≥ u(f ) so α ≥ 0. If α = 0,
then u= β, contradicting the fact that u is non-constant. Thus, α> 0.

We can now assume without loss of generality that �ρ is represented by
(ν�u). Now, given any F ∈K, we can find some constant act f such that F ∼ρ f ,
which implies F ∼ g. Thus,∫

ΔS

sup
f∈F

q · (u ◦ f )ν(dq)= u(g)=
∫
ΔS

sup
f∈F

q · (u ◦ f )μ(dq)�

so �ρ and � represent the same preference, which implies (2). Thus, (1), (2),
and (3) are all equivalent. Q.E.D.

S.3. RELATION TO CAPLIN AND MARTIN (2015)

In this section, we relate Theorem 5 to Caplin and Martin (2015) who char-
acterized state-dependent random choice with a restriction called No Improv-
ing Action Switches (NIAS). In our setting, ρ satisfies NIAS if, for all g ∈ F ∈K,∑

s∈S
rsρs�F(f )u

(
f (s)

) ≥
∑
s∈S
rsρs�F(f )u

(
g(s)

)
�
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Proposition S.2 below shows that under state-dependent information repre-
sentations, using test functions to calibrate beliefs is equivalent to testing for
NIAS. While both approaches use random choice data, checking means of
test functions involves restrictions on ex ante (i.e., pre-signal) values of menus,
while checking NIAS involves restrictions on ex post (i.e., post-signal) values
of acts.

There is also a close relationship between the NIAS expressions and test
functions. Recall from Theorem 2 that the ex ante valuation of menus is given
by the integral of test functions:

V (F)=
∫

[0�1]
Fρ(a)da�

Proposition S.2 also shows that the marginal ex ante value with respect to an
act is exactly the left-hand expression of the NIAS inequality. Note that this is
a generalization of Theorem 3. This condition linking test functions with NIAS
is necessary and sufficient for well-calibrating beliefs. This is all summarized as
follows.

PROPOSITION S.2: Let ρ be represented by (μ�u). Then the following are all
equivalent.

(1) μ is well-calibrated.
(2) For all F ∈Ks and s ∈ S,∫

[0�1]
Fsρ(a)da= V (F)�

(3) ρ satisfies NIAS.
(4) For all F ∈K and fa := af + (1 − a)f ,

∑
s∈S
rsρs�F∪fa(fa)u

(
f (s)

) = dV (F ∪ fa)
da

�

PROOF: Let ρ be represented by (μ�u). Note that the equivalence of (1)
and (2) follows immediately from Theorem 5 and Lemma B.1. Employ the
notation Fa := F ∪ fa. We first show that

dV (Fa)

da
=

∫
Q
fa
Fa

q · (u ◦ f )μ(dq)�

Without loss of generality, assume u(f )= 0 and u(f )= 1. For f ∈ F ∈ K, de-
fine

Q
f
F := {

q ∈ ΔS|q · (u ◦ f )≥ q · (u ◦ g) ∀g ∈ F}
�
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Consider c := a+ ε for ε > 0 and note that we can partition

Q
fc
Fc

=Qfa
Fa

∪
⋃
g∈F

(
Q
g
Fa

\Qg
Fc

)
�

Along with Lemma B.1, this implies that

V (Fc)− V (Fa)=
∫

[0�1]

(
(Fc)ρ

(
a′) − (Fa)ρ

(
a′))da′

=
∫
ΔS

(
sup
g∈Fc

q · (u ◦ g)− sup
g∈Fa

q · (u ◦ g)
)
μ(dq)

=
∫
Q
fa
Fa

q · (u ◦ (fc − fa)
)
μ(dq)

+
∑
g∈F

∫
Q
g
Fa

\QgFc
q · (u ◦ (fc − g))μ(dq)�

Note that u ◦ (fc − fa)= ε(u ◦ f ) and for all q ∈Qg
Fa

\Qg
Fc

⊂Qfc
Fc

,

q · u ◦ fc ≥ q · u ◦ g≥ q · u ◦ fa�
This second inequality is true iff

q · (u ◦ (fc − g)) ≤ q · (u ◦ (fc − fa)
) = εq · (u ◦ f )�

Hence, for all g ∈ F ,

0 ≤
∫
Q
g
Fa

\QgFc
q · (u ◦ (fc − g))μ(dq)≤ ε

∫
Q
g
Fa

\QgFc
q · (u ◦ f )μ(dq)�

Since μ(Qg
Fa

\Qg
Fc
)→ 0 as ε→ 0, this implies that

dV (Fa)

da
= lim

ε→0

1
ε

(
V (Fa+ε)− V (Fa)

) =
∫
Q
fa
Fa

q · (u ◦ f )μ(dq)�

as desired.
We now show that (1) implies (4) implies (3) implies (1). First, suppose μ is

well-calibrated. Note that∑
s

rsρs�Fa(fa)u
(
f (s)

)

=
∑
s∈S
rsμs

(
Q
fa
Fa

)
u
(
f (s)

) =
∑
s

∫
Q
fa
Fa

qsu
(
f (s)

) rs
qs
μs(dq)
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=
∑
s

∫
Q
fa
Fa

qsu
(
f (s)

)
μ(dq)=

∫
Q
fa
Fa

q · (u ◦ f )μ(dq)

= dV (Fa)

da
�

as desired. Hence, (4) is true.
Now, suppose (4) is true. Note that by considering a= 0, we have

∑
s∈S
rsρs�F(f )u

(
f (s)

) =
∫
Q
f
F

q · (u ◦ f )μ(dq)

for all f ∈ F ∈ K. Now, given any {f�g} ⊂ F , we can always find some G such
that Qf

F =Qg
G. Hence, we have

∑
s

rsμs
(
Q
f
F

)
u
(
f (s)

) =
∫
Q
f
F

q · (u ◦ f )μ(dq)≥
∫
Q
f
F

q · (u ◦ g)μ(dq)

≥
∫
Q
g
G

q · (u ◦ g)μ(dq)=
∑
s

rsμs
(
Q
g
G

)
u
(
g(s)

)

=
∑
s

rsμs
(
Q
f
F

)
u
(
g(s)

)
�

proving (3).
Finally, suppose (3) is true, so for all g ∈ F ∈K and ρF(f ) > 0,∑

s

rsρs�F(f )u
(
f (s)

) ≥
∑
s

rsρs�F(f )u
(
g(s)

)
�

∑
s

rsμs
(
Q
f
F

)
μ

(
Q
f
F

) u
(
f (s)

) ≥
∑
s

rsμs
(
Q
f
F

)
μ

(
Q
f
F

) u
(
g(s)

)
�

qF(f ) · (u ◦ f )≥ qF(f ) · (u ◦ g)�

where qF : F → ΔS is such that qF(f )(s) := rsμs(Q
f
F )

μ(Q
f
F )

. Hence, qF(f ) ∈Qf
F for all

f ∈ F . For each s ∈ S, define the measure νs(Q) := ∫
Q

qs
rs
μ(dq) and note that∑

s rsνs(Q)= μ(Q)= ∑
s rsμs(Q). Now, we also have, for all g ∈ F ,∫

Q
f
F

q · (u ◦ f )μ(dq)≥
∫
Q
f
F

q · (u ◦ g)μ(dq)�
∑
s

rs

∫
Q
f
F

qs

rs
u
(
f (s)

)
μ(dq)≥

∑
s

rs

∫
Q
f
F

qs

rs
u
(
g(s)

)
μ(dq)�
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∑
s

rsνs
(
Q
f
F

)
μ

(
Q
f
F

) u(f (s)) ≥
∑
s

rsνs
(
Q
f
F

)
μ

(
Q
f
F

) u(g(s))�
pF(f ) · (u ◦ f )≥ pF(f ) · (u ◦ g)�

where pF : F → ΔS is such that pF(f )(s) := rsνs(Q
f
F )

μ(Q
f
F )

. Hence, pF(f ) ∈Qf
F for all

f ∈ F .
Consider a partition Pn of ΔS such that, for every Pni ∈Pn, Pni =Qf

F for some
f ∈ F and sup{p�q}⊂Pi |p− q| ≤ 1

n
for every i ∈ {1� � � � � n}. Since both qF(f ) and

pF(f ) are in Pni ,

∣∣∣∣ rsμs
(
Pni

)
μ

(
Pni

) − rsνs
(
Pni

)
μ

(
Pni

) ∣∣∣∣ ≤ 1
n
�

∣∣μs(Pni ) − νs
(
Pni

)∣∣ ≤ μ(
Pni

) 1
nrs
�

Now, for any ψn : ΔS→ R that is Pn-measurable, we have

∑
i

νs
(
Pni

)
ψni − 1

n

∑
i

1
rs
μ

(
Pni

)
ψni

≤
∑
i

μs
(
Pni

)
ψni ≤

∑
i

νs
(
Pni

)
ψni + 1

n

∑
i

1
rs
μ

(
Pni

)
ψni �

For any measurable ψ : ΔS → R, we can find a sequence of Pn-measurable
functions such that ψn →ψ. Hence by dominated convergence,

lim
n→∞

[∫
ΔS

ψn(q)νs(dq)− 1
n

∫
ΔS

1
rs
ψn(q)μ(dq)

]

≤ lim
n→∞

∫
ΔS

ψn(q)μs(dq)

≤ lim
n→∞

[∫
ΔS

ψn(q)νs(dq)+ 1
n

∫
ΔS

1
rs
ψn(q)μ(dq)

]
�

∫
ΔS

ψ(q)μs(dq)=
∫
ΔS

ψ(q)νs(dq)�

Hence, μs = νs so μ is well-calibrated and (1) is true. This concludes the
proof. Q.E.D.
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