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IN THIS SUPPLEMENTAL MATERIAL, we give proofs of the results in the pa-
per along with supplementary results deriving surplus bounds for discrete and
continuous choice, some generalized conditions for the bounds under some
knowledge of income effects, results on the potential size of income effects in
the gasoline demand application, and additional details on the general bounds
application. Assumptions, lemmas, and theorems specific to this Supplemental
Material are listed with an “A” prefix, for example, Assumption A1, Lemma A1,
Theorem A1, etc.

A1. PROOFS OF THEOREMS IN THE PAPER

The following two technical conditions are referred to in the text and used
in the proofs.

ASSUMPTION A1: η belongs to a complete, separable metric space and q(x�η)
and ∂q(x�η)/∂x are continuous in (x�η).

ASSUMPTION A2: η = (u�ε) for scalar ε and Assumption A1 is satisfied for
η = (u�ε) for a complete, separable metric space that is the product of a complete
separable metric space for u with Euclidean space for ε, q(x�η) = q(x�u�ε)
is continuously differentiable in ε, there is C > 0 with ∂q(x�u�ε)/∂ε ≥ 1/C ,
‖∂q(x�η)/∂x‖ ≤ C everywhere, εi is continuously distributed conditional on ui,
with conditional p.d.f. fε(ε|u) that is bounded and continuous in ε.

Before proving Theorem 1, we give a result on the derivatives of the quantile
with respect to x.

LEMMA A1: If Assumptions 1 and A2 are satisfied, then q(x�ηi) is continu-
ously distributed for each x ∈ χ and Pr(q(x�ηi) ≤ r) and Q(τ|x) are continu-
ously differentiable in r and x, and for the p.d.f. fq(r) of q(x�ηi) at r,

∂Pr
(
q(x�ηi)≤ r

)
∂x

= −fq(r)E

[
∂q(x�ηi)

∂x

∣∣∣∣q(x�ηi) = r

]
�

∂Q(τ|x)
∂x

= E

[
∂q(x�ηi)

∂x

∣∣∣∣q(x�ηi)=Q(τ|x)
]
�
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PROOF: Let Fε(e|u) = Pr(ε≤ e|u) = ∫ e

−∞ fε(r|u)dr. Then by the fundamen-
tal theorem of calculus, Fε(e|η) is differentiable in e, and the derivative fε(e|u)
is continuous in e by hypothesis. Let q−1(x�u� r) denote the inverse function
of q(x�u�ε) as a function of ε. Then

Pr
(
q(x�ηi)≤ r

) =E
[
1
(
εi ≤ q−1(x�ui� r)

)] =E
[
Fε

(
q−1(x�ui� r)|ui

)]
�

By the inverse function theorem, q−1(x�u� r) is continuously differentiable in
x and r, with

∂q−1(x�u� r)/∂r = [
∂q

(
x�u�q−1(x�u� r)

)
/∂ε

]−1
�

∂q−1(x�u� r)/∂x= −∂q
(
x�u�q−1(x�u� r)

)
/∂x

∂q
(
x�u�q−1(x�u� r)

)
/∂ε

�

By Assumption A2, both ∂q−1(x�u� r)/∂r and ∂q−1(x�u� r)/∂x are bounded.
Then by the chain rule, F(q−1(x�ui� r)|ui) is differentiable in r and x with
bounded continuous derivatives, so that E[Fε(q

−1(x�ui� r)|ui)] is differentiable
in r and x with

∂E
[
Fε

(
q−1(x�ui� r)|ui

)]
∂r

=E
[
fε

(
q−1(x�ui� r)|ui

){
∂q

(
x�u�q−1(x�ui� r)

)
/∂ε

}−1]
=E

[
fr(r|ui)

] = fr(r)�

where fr(r) and fr(r|u) are the marginal and conditional p.d.f. of q(x�ηi),
respectively, and the second equality follows by the change of variables r =
q(x�ui� εi). Similarly,

∂E
[
Fε

(
q−1(x�ui� r)|ui

)]
∂x

= −E

[
fε

(
q−1(x�ui� r)|ui

)∂q(
x�ui� q

−1(x�ui� r)
)
/∂x

∂q
(
x�ui� q

−1(x�ui� r)
)
/∂ε

]

= −
∫

fr�u(r�u)

[
∂q

(
x�u�q−1(x�u� r)

)
∂x

]
dμ(u)

= −fr(r)E

[
∂q(x�ηi)

∂x

∣∣∣∣q(x�ηi)= r

]
�

where fr�u(r�u) is a joint p.d.f. with respect to the product of Lebesgue measure
and a dominating measure μ for ui, and the last equality follows by multiplying
and dividing by fr(r). This result gives the first conclusion. The second conclu-
sion follows by the inverse function theorem. Q.E.D.
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PROOF OF THEOREM 1: Since q(x�η) satisfies Assumption 1, we have
∂q(x�ηi)/∂p+q(x�ηi)∂q(x�ηi)/∂y ≤ 0 for all ηi. Therefore, following Dette,
Hoderlein, and Neumeyer (2011), we have by Lemma A1 that, for each τ with
0 < τ < 1, the quantile Q(τ|x) is continuously differentiable in x and

∂Q(τ|x)
∂p

+Q(τ|x)∂Q(τ|x)
∂y

=E

[
∂q(x�ηi)

∂p
+Q(τ|x)∂q(x�ηi)

∂y

∣∣∣∣q(x�ηi)= Q(τ|x)
]

=E

[
∂q(x�ηi)

∂p
+ q(x�ηi)

∂q(x�ηi)

∂y

∣∣∣∣q(x�ηi)=Q(τ|x)
]

≤ 0�

It is well known that, with two goods and a continuously differentiable demand
function, the Slutzky condition for the non numeraire good suffices for the
function to be a demand function for p> 0� y > 0, giving the first conclusion.

For the second conclusion, note that q̃(x� η̃) satisfies Assumption 1 for
0 < η̃ < 1 by hypothesis. Also, Q(τ|x) ≤ r if and only if τ ≤ F(r|x�q�G) by
the definition of Q(τ|x) and the properties of F(r|x�q�G) as a function of r.
To show this, suppress the x�q�G arguments in F and Q. Note that by the
definition Q(τ) = inf{r̃ : F(r̃) ≥ τ}, we have Q(τ) > r implies τ > F(r). Now
suppose τ > F(r). By F(r) continuous from the right, there is ε > 0 such that
F(r̃) < τ for r̃ ∈ [r� r+ε). Also, by F(r) monotonic increasing, F(r̃) ≥ τ implies
r̃ ≥ r + ε. Therefore, Q(τ) > r. It follows that Q(τ) > r if and only if τ > F(r).
This also implies its contrapositive, Q(τ) ≤ r if and only if τ ≤ F(r). It then
follows that

∫
1
(
q̃(x� η̃) ≤ r

)
G̃(dη̃) =

∫ 1

0
1
(
Q(η̃|x) ≤ r

)
dη̃

=
∫ 1

0
1
(
η̃≤ F(r|x�q�G)

)
dη̃

= F(r|x�q�G)� Q.E.D.

PROOF OF THEOREM 2: In this proof, we proceed by calculating the true
average surplus and the quantile average surplus and finding that they are nu-
merically different for the specification given in the statement of Theorem 2.
We first consider the true average surplus for the demand specification

q(p� y�η)= η1 −p+η2y� η1 ∼ U(0�1)�

Pr(η2 = 1/3)= Pr(η3 = 2/3)= 1/2�
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for a price change with p0 = 0�1, p1 = 0�2, and ȳ = 3/4. Note that for all
η1 ∈ [0�1], η2 ∈ {1/3�2/3}, and p ∈ [0�1�0�2], we have

η1 −p+η2ȳ ≥ 0� p(η1 −p+η2ȳ)≤ ȳ�

−1 +η2(η1 −p+η2ȳ) < 0�

so that over the range of η and p, we consider demand is positive, within the
budget constraint, and satisfies the Slutzky condition.

Next, for a linear demand function (which has constant income effect η3)
and two goods, we have

S(η)= 	p

∫ 1

0
q
(
p0 + t	p� ȳ�η

)
exp(−tη3	p)

=
∫ 1

0
(A+Bt)exp(−Ct)dt

= A

−C

[
exp(−Ct)

]1

0
+ B

−C

[
t exp(−Ct)

]1

0
+ B

−C2

[
exp(−Ct)

]1

0

= A

C
+ B

C2 − e−C

(
A

C
+ B

C
+ B

C2

)
�

A= 	p
(
η1 +η2p

0 +η3ȳ
)
� B = (	p)2η2�C = η3	p�

Note that A and B are linear in η1 and η2. Assuming that (η1�η2) is indepen-
dent of η3 gives

∫
S(η)G(dη1� dη2�η3)= Ā

C
+ B̄

C2 − e−C

(
Ā

C
+ B̄

C
+ B̄

C2

)
�

Ā= 	p
(
η̄1 + η̄2p

0 +η3ȳ
)
� B̄ = (	p)2η̄2�

For p0 = 0�1, p1 = 0�2, ȳ = 3/4� η̄1 = 1/2� η̄2 = −1 and for η3 equal to 1/3 or
2/3 with probability 0�5, we find that

S̄ = 0�070673�

Next, we derive the quantile demand and then calculate average surplus.
For clarity, we do this when η1 ∼ U(0�1), η2 is a constant β, and when η3 = ¯bwith probability π and η3 = b̄ with probability (1 − π), where b̄ > ¯b and η3 is
independent of η1. Define

r0 = βp+ ¯by� r1 = βp+ b̄y�

r2 = βp+ 1 + ¯by� r3 = βp+ 1 + b̄y�
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Assuming that 1 + ¯by > b̄y , we have that

F(r|x) = Pr
(
q(x�η) ≤ r

)
= Pr(η1 +βp+η3y ≤ r)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0� r < r0,
π(r − r0)� r0 ≤ r < r1,
(r − r1)+ F(r1|x)� r1 ≤ r < r2,
(1 −π)(r − r2)+ F(r2|x)� r2 ≤ r < r3,
1� r ≥ r3.

Note that this CDF is a mixture, over two values of η3, of two CDFs for a
U(0�1). It has slope π or 1 − π over the ranges where only one CDF is in-
creasing, and slope 1 where both are increasing. Inverting this function as a
function of r gives the corresponding quantile function

Q(τ|p�y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r0 + τ

π
� 0 < τ ≤ π(r1 − r0)�

r1 + τ −π(r1 − r0)�
π(r1 − r0) < τ < r2 − r1 +π(r1 − r0)�

r2 + τ − [
r2 − r1 +π(r1 − r0)

]
1 −π

�

r2 − r1 +π(r1 − r0)≤ τ < 1�

In terms of the original parameters, the quantile function is given by

Q(τ|p�y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

βp+ ¯by + τ

π
� 0 < τ ≤ π(b̄− ¯b)y�

βp+ b̄y + τ −π(b̄− ¯b)y�π(b̄− ¯b)y < τ < 1 − (1 −π)(b̄− ¯b)y�
1 +βp+ ¯by + τ − [

1 − (1 −π)(b̄− ¯b)y
]

1 −π
�

1 − (1 −π)(b̄− ¯b)y ≤ τ < 1�

Plugging in β = −1, π = 0�5, ¯b = 1/3, and b̄ = 2/3, we obtain the quantile
demand implied by the true model, equaling

Q(τ|p�y)=
{−p+ y/3 + 2τ� 0 < τ ≤ y/6,

−p+ y/2 + τ� y/6 < τ < 1 − y/6,
−p+ 2y/3 + 2τ − 1 1 − y/6 ≤ τ < 1.

We can rewrite this as a function of y for given τ = η̃ as

q̃(p� y� η̃)=

⎧⎪⎪⎨
⎪⎪⎩

−p+ 1(y < 6η̃)(y/2 + η̃)+ 1(y ≥ 6η̃)(y/3 + 2η̃)�
η̃≤ 1/2�

−p+ 1
(
y < 6(1 − η̃)

)
(y/2 + η̃)

+ 1
(
y ≥ 6(1 − η̃)

)
(2y/3 + 2η̃− 1)� η̃ > 1/2�
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where we have used the fact that we only need to evaluate this demand where
y < 3. This is the quantile demand function, which is observationally equivalent
to the true demand by construction. It is nonlinear in y , with an income effect
that varies as y crosses over a threshold.

Note that y ≤ 3/4 is in the income range relevant for our calculation. When
η̃ ∈ [1/8�7/8], the demand function will be linear income over the evaluation
range for the consumer surplus calculation, with income effect equal to 1/2.
For smaller η̃ or values of η̃ closer to 1, the income effect can change with y .
The mix of nonlinearities that is evident in the comparison of this complicated
demand function with the simple true linear, varying coefficients specification
results in the quantile average surplus being different from the true average
surplus.

Because the demand function is nonlinear in y for η̃ /∈ [1/8�7/8], we com-
pute surplus numerically for each value of η̃ and then average. We do this by
drawing 50,000 values of η̃ from a U(0�1), computing the equivalent varia-
tion from a price change with p0 = 0�1, p1 = 0�2, ȳ = 3/4, π = 1/2, ¯b = 1/3,
b̄ = 2/3, and averaging across the draws to obtain an average quantile surplus
of 0�070774. This value is different than the true average surplus computed
above. Therefore, average surplus for the observationally equivalent quantile
demand is different than for true demand and hence average surplus is not
identified. Q.E.D.

PROOF OF THEOREM 3: By q(p(t)� ȳ − s�η) Lipschitz in t and s, we know
that the solution s(t�η) to the differential equation (3.1) exists and is unique.
By condition (i), we have ds(t�η)/dt ≤ 0 so that s(t�η) ≥ 0 for all t ∈ [0�1] by
s(1�η)= 0. Let

sB(t�η)= eBt
∫ 1

t

[
q
(
p(s)� ȳ�η

)T dp(s)
ds

]
e−Bs ds

be the solution to

dsB(t�η)

dt
= a(t�η)+BsB(t�η)� sB(1�η)= 0�(A1.1)

a(t�η) = −q
(
p(t)� ȳ�η

)T dp(t)
dt

�

Then, applying the inequality from condition (ii) of Theorem 3, it follows
that

ds(t�η)

dt
(A1.2)

= −q
(
p(t)� ȳ − s(t�η)�η

)T
dp(t)/dt



INDIVIDUAL HETEROGENEITY AND AVERAGE WELFARE 7

≥ −q
(
p(t)� ȳ�η

)T
dp(t)/dt + ¯Bs(t�η)

= ds
¯B
(t�η)

dt
�

where ṡ(t�η) is a mean value in [0� s(t�η)]. Since s(1�η) = 0 = s
¯B
(1�η),

it follows by this inequality that s
¯B
(t�η) ≥ s(t�η). It follows similarly that

sB̄(t�η) ≤ s(t�η), so that, evaluating at t = 0, we have

sB̄(0�η)≤ s(0�η)= S(η) ≤ s
¯B
(0�η)�(A1.3)

Evaluating at t = 0, we have sB(0�η) = ∫ 1
0 q(p(t)� ȳ�η)T [dp(t)/dt]e−Bt dt.

Also note that dp(t)/dt is bounded by continuity of dp(t)/dt on [0�1],
and that, by all the elements of p(t) bounded away from zero and
q(p(t)� ȳ�η)Tp(t) ≤ ȳ , the demand vector q(p(t)� ȳ�η) is bounded uniformly
in η and t. Therefore, by the Fubini theorem,

E
[
sB(0�ηi)

] =
∫ 1

0
q̄
(
p(t)� ȳ

)T [
dp(t)/dt

]
e−Bt dt = S̄B�

Taking expectations of equation (A1.3) then gives

S̄B̄ = E
[
sB̄(0�ηi)

] ≤ S̄ ≤E
[
s

¯B
(0�ηi)

] = S̄
¯B
� Q.E.D.

PROOF OF COROLLARY 4: It follows by Lemma A1 that Q1(τ|x) is continu-
ously differentiable in x and

∂Q1(τ|x)
∂p

=E

[
∂q1(x�ηi)

∂p

∣∣∣∣q1(x�ηi)=Q1(τ|x)
]
�

∂Q1(τ|x)
∂y

=E

[
∂q1(x�ηi)

∂y

∣∣∣∣q1(x�ηi)=Q1(τ|x)
]
�

As shown by Dette, Hoderlein, and Neumeyer (2011), it follows that the
Slutzky condition for the first price is satisfied by the conditional quantile, that
is,

∂Q1(τ|x)
∂p1

+Q1(τ|x)∂Q1(τ|x)
∂y

≤ 0�

Therefore, at each 0 < τ < 1, Q1(τ|x) is a demand function as a function of p1

and y . Furthermore, by ¯B ≤ 	p1∂q1(x�η)/∂y ≤ B̄, we have

¯B ≤E

[
	p1

∂q1(x�ηi)

∂y

∣∣∣∣q1(x�ηi)=Q1(τ|x)
]

= 	p1
∂Q1(τ|x)

∂y
≤ B̄�
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Consider the demand process q̃1(x� η̃) = Q1(η̃|x) for η̃ ∼ U(0�1). Note that∫ 1
0 Sτ dτ is average surplus for this demand process. Also,

∫
q̃1(x� η̃)G̃(dη̃) =

∫ 1

0
Q1(η̃|x)dη̃= q̄1(x)�

Therefore, the conclusion follows by the conclusion of Theorem 3. Q.E.D.

A2. THE EXPENDITURE FUNCTION AND EXACT CONSUMER SURPLUS
FOR DISCRETE AND CONTINUOUS CHOICE

Discrete and continuous choice models are important in applications. For in-
stance, gasoline demand could be modeled as gasoline purchases that are made
jointly with the purchase of automobiles. In those models, the heterogeneity
can influence the discrete choices as well as the demand for a particular com-
modity; for example, see Dubin and McFadden (1984) and Hausman (1985).
Multiple sources of heterogeneity are an integral part of these models, with
separate disturbances for discrete and continuous choices. The general het-
erogeneity we consider allows for such multi-dimensional heterogeneity. Here
we consider discrete and continuous choice with general heterogeneity, focus-
ing on the effect of price changes in the continuous demand. Bhattacharya
(2015) has recently considered surplus for changes in the prices of the discrete
alternatives with general heterogeneity.

We first consider the individual choice problem and the associated expendi-
ture function. We adopt the framework of Dubin and McFadden (1984) and
Hausman (1985), extending previous results to the expenditure function. Sup-
pose that the agent is choosing among J discrete choices in addition to choos-
ing q. The consumer choice problem is

max
j�q�a

Uj(q�a�η) s.t. pTq+ a+ rj ≤ y�(A2.1)

where rj is the usage price of choice j relative to the price of the numeraire
good a. Here we assume that, for each η and j, the function Uj(q�a) is strictly
quasi-concave (preferences are strictly convex) and satisfies local nonsatiation.
Let

qj(p� y�η)= arg max
q

Uj(q�a�η) s.t. pTq+ a≤ y

be the demand function associated with the jth utility function and let

Vj(p� y�η)= Uj

(
qj(p� y�η)� y −pTqj(p� y�η)�η

)
be the associated indirect utility function. The utility maximizing choice of
the discrete good will be arg maxj Vj(p� y − rj�η) and the indirect utility func-
tion will be V (p� r� y�η)= maxj Vj(p� y − rj�η), where r = (r1� � � � � rJ)

T . When
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there is a unique discrete choice j (depending on p, r, y , and η) that maxi-
mizes utility, that is, where Vj(p� y − rj�η) > Vk(p� y − rk�η) for all k �= j, the
demand q(p�y� r�η) will be

q(p� r� y�η)= qj(p� y − rj�η)�

When there are multiple values of the discrete choice that maximize utility,
the demand will generally be a correspondence, containing one point for each
value of j that maximizes utility.

In what follows, we will assume that (V1(p� y − r1�η)� � � � � VJ(p� y − rJ�η)) is
continuously distributed and that the probability of ties is zero. Nevertheless,
the case with ties is important for us. Surplus is calculated by integrating the
demand function as price changes while income is compensated to keep utility
constant. As compensated income changes, ties may occur and the demand
for q may jump. With gasoline demand, compensated income changes could
result in a choice of car with different gas mileage, leading to a jump. Such
jumps must be accounted for in the bounds analysis.

Turning to welfare analysis, let e(p� r�u�η) denote the expenditure function
in this discrete/continuous choice setting, defined as

e(p� r�u�η)

= min
{
y s.t. max

j�q�a

{
Uj(q�a�η) s.t. pTq+ a+ rj ≤ y

} ≥ u
}
�

As usual, it is the minimum value of income that allows individual η to attain
utility level u. There is a simple, intuitive relationship between this expenditure
function, the ones associated with the continuous choice of q for each j, and the
indirect utility function V (p� r� y�η) = maxj Vj(p� y − rj�η). Let ej(p�u�η) =
minq�a{pTq + a : Uj(q�a�η) ≥ u} be the expenditure function for the utility
function Uj(q�a�η) (j = 1� � � � � J).

LEMMA A2: If, for each j and η, the utility Uj(q�a�η) is strictly quasi-
concave and satisfies local nonsatiation, then e(p�u�η)= minj{ej(p�u�η)+ rj},
V (p� r� e(p� r�u�η)�η)= u, and e(p� r�V (p� r� y�η)�η)= y .

PROOF: For notational convenience, drop the η argument. Define
ē(p� r�u) = minj{ej(p�u) + rj}. By the definition of ē(p� r�u), it follows that
ē(p� r�u) = ej∗(p�u) + rj∗ for some j∗ that need not be unique. By the defini-
tion of ej∗(p�u) and standard results, there is q∗ such that Uj∗(q

∗� a∗) ≥ u and
pTq∗ +a∗ = ej∗(p�u), so pTq∗ +a∗ + rj∗ = ē(p� r�u). Since Uj∗(q

∗� a∗)≥ u and
pTq∗ + a∗ + rj∗ ≤ ē(p� r�u), it follows that

max
q�j

{
Uj(q�a� j) s.t. pTq+ a+ rj ≤ ē(p� r�u)

} ≥ Uj

(
q∗� a∗) ≥ u�
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It follows that e(p� r�u)≤ ē(p� r�u). Next, consider any ȳ < ē(p� r�u). Then
by the definition of ē(p� r�u), we have ȳ − rj < ej(p�u) for all j ∈ {1� � � � � J}.
Since ej(p�u) is the expenditure function, it follows that maxq�a{Uj(q�a) s.t.
pTq + a ≤ ȳ − rj} < u for every j, and so maxq�a�j{Uj(q�a) s.t. pTq + a ≤
ȳ − rj} < u. It follows that ȳ < e(p� r�u). Since this is true for every ȳ <
ē(p� r�u), it follows that ē(p� r�u)= e(p� r�u).

Next, note that by the definition of the expenditure function e(p� r�u) as
the minimum income level that will allow an individual to reach utility u, we
have V (p� r� e(p� r�u))≥ u. Also, V (p� r� y) is monotonically increasing in y by
Vj(p� y − rj) monotonically increasing in y for each j and Vk(p�ek(p�u)) = u
by standard results for indirect utility and expenditure functions. By the defini-
tion of V (p� r� y) and monotonicity of Vj(p� y − rj) in y , there is j with

V
(
p� r� e(p� r�u)

) = Vj

(
p�e(p�u)− rj

) ≤ Vj

(
p�ej(p�u)

) = u�

where the inequality holds by the first conclusion that implies e(p�u) ≤
ej(p�u) + rj . Therefore, we have V (p�e(p� r�u)� r) = u. Similarly, we have
e(p� r�V (p� r� y)) ≤ y by the definitions and there is j such that, by ej(p�u)
increasing in u,

e
(
p� r�V (p� r� y)

) = ej
(
p�V (p� r� y)

) + rj

≥ ej
(
p�Vj(p� y − rj)

) + rj = y�

so that e(p� r�V (p� r� y))= y . Q.E.D.

Turning now to exact surplus for discrete/continuous choice, the equivalent
variation for a price change from p0 to p1 with income ȳ for individual η is
S(η) = ȳ − e(p0� r�u1�η), where u1 is the utility at p1� r, and ȳ . Consider a
price path p(t) as in the body of the paper. Then s(t�η)= ȳ − e(p(t)� r�u1�η)
is the equivalent variation for a price change from p(t) to p1 for income ȳ ,
where u1 is the utility at p1. The next result gives conditions for s(t�η) to
satisfy the same differential equation as in the continuous case.

LEMMA A3: If, for each j and η, the utility Uj(q�a�η) is strictly quasi-concave
and satisfies local nonsatiation, then at any p(t) and η such that there is j with
Vj(p(t)� ȳ− s(t�η)− rj�η) > Vk(p(t)� ȳ− s(t�η)− rk�η) for all k �= j, it follows
that s(t�η) is differentiable and

ds(t�η)

dt
= −q

(
p(t)� r� ȳ − s(t�η)�η

)T
dp(t)/dt�

PROOF: For notational convenience, suppress the η argument and let
p = p(t). By definition, we have s(t�η) = ȳ − e(p(t)� r�u1�η). Consider j∗

such that

V
(
p� r� e

(
p� r�u1

)) = Vj∗
(
p�e

(
p� r�u1

) − rj∗
)
�
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For any k �= j∗, it follows by duality that Vk(p�ek(p�u
1)) = u1. Therefore, we

have

Vk

(
p�ek

(
p�u1

)) = u1

= V
(
p� r� e

(
p� r�u1

))
= Vj∗

(
p�e

(
p� r�u1

) − rj∗
)

> Vk

(
p�e

(
p� r�u1

) − rk
)
�

By Vk(p� y) monotonically increasing in y , it follows that ek(p�u
1) >

e(p� r�u1)− rk. Since this is true for every k �= j∗, we have

e
(
p� r�u1

) = ej∗
(
p�u1

) + rj∗ < ek
(
p�u1

) + rk� for all k �= j�

Also note that by standard duality results, for the Hicksian demand hj∗(p�u),

∂ej
(
p�u1

)
∂p

= hj∗(p�u)= qj∗
(
p�ej∗(p�u)

) = qj∗
(
p�e

(
p� r�u1

) − rj∗
)

= qj∗
(
p� ȳ − s(t)− rj∗

) = q
(
p� r� ȳ − s(t)

)
�

where the last equality follows by the q(p� r� y) = qj∗(p� y − rj∗) when
Vj∗(p� y − rj∗) > Vk(p� y − rk) for all k �= j∗. Since each ek(p�u

1) is contin-
uous in p, the previous inequality continues to hold in a neighborhood of p.
Therefore, by ej∗(p�u1) differentiable, Shephard’s Lemma, and the chain rule,
on that neighborhood s(t)= y − e(p(t)� r�u1) is differentiable and

ds(t)

dt
= −de

(
p(t)� r�u1

)
dt

= −∂ej
(
p(t)�u1

)
∂p

T
dp(t)

dt

= −q
(
p(t)� r� ȳ − s(t)

)T dp(t)
dt

� Q.E.D.

The discontinuity of individual demand does affect the bounds for aver-
age consumer surplus. The previous bounds depend on income effects. With
jumps, we construct bounds that are based on limits on the size of the jump
and on the proportion of individuals whose demand would jump as income is
compensated along with the price change. For that purpose, we make use of a
demand decomposition into continuous and jump components.

ASSUMPTION A3: There are functions q̇(p� r� y�η), q̌(p� r� y�η), A(η) and
constants ¯B, B̄ such that Ā = E[A(η)] exists and for t ∈ [0�1], and
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0 ≤ s ≤ s(t�η),

q
(
p(t)� r� ȳ − s�η

) = q̇
(
p(t)� r� ȳ − s�η

) + q̌
(
p(t)� r� ȳ − s�η

)
�∣∣q̌(

p(t)� r� ȳ − s�η
)T

dp(t)/dt
∣∣ ≤ A(η)�

¯Bs ≤ [
q̇
(
p(t)� r� ȳ�η

) − q̇
(
p(t)� r� ȳ − s�η

)]T
dp(t)/dt ≤ B̄s�

Here we assume that the demand function can be decomposed into a jump
component q̌(p� r� y�η) and a Lipschitz continuous component q̇(p� r� y�η),
with lower and upper bounds ¯B and B̄, respectively, on how much q̇(p(t)� r�
ȳ−s�η)T dp(t)/dt may vary with s > 0. The term A(η) is an individual specific
bound on the jump. It will be zero for individuals whose demand function does
not jump as income is compensated up to the surplus amount S(η) = s(0�η).
For example, for gasoline demand, it will be zero for individuals who would not
change car types over the range of income being compensated.

To describe bounds on average surplus that allow for jumps, let

s̄a�B(t)= eBt
∫ 1

t

[
q̄
(
p(s)� r� ȳ

)T
dp(s)/ds − a

]
e−Bs ds

be the solution to the differential equation

ds̄a�B(t)

dt
= −q̄

(
p(t)� r� ȳ

)T dp(t)
dt

+ a+Bs̄a�B(t)� s̄a�B(1)= 0�

Letting S̄a�B = s̄a�B(0), we have

S̄a�B =
∫ 1

0

[
q̄
(
p(t)� r� ȳ

)T
dp(t)/dt

]
e−Bt + a

B

(
e−B − 1

)
�

THEOREM A4: If Assumptions 1, A1, and A3 are satisfied, the elements of p(t)
are bounded away from zero, and with probability 1 for all but a finite number of t
values there is j with Vj(p(t)� ȳ − s(t�η)− rj�η) > Vk(p(t)� ȳ − s(t�η)− rk�η)
for all k �= j, it follows that

S̄2Ā�B̄ ≤ S̄ ≤ S̄−2Ā�¯B
�

Also, if q(p(t)� r� y − s�η)T dp(t)/dt ≤ q(p(t)� r� y�η)T dp(t)/dt for all
t ∈ [0�1] and s ∈ [0� s(t�η)], then S̄ ≤ S̄0 = ∫ 1

0 [q̄(p(t)� r� y)T dp(t)/dt]dt.
PROOF: For notational convenience, suppress the η argument. Let

sa�B(t)= eBt
∫ 1

t

[
q
(
p(s)� r� ȳ

)T
dp(s)/ds − a

]
e−Bs ds
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be the solution to the differential equation

dsa�B(t)

dt
= −q

(
p(t)� r� ȳ

)T
dp(t)/dt + a+Bsa�B(t)� sa�B(1)= 0�

By Assumption A3,

[
q
(
p(t)� r� ȳ

) − q
(
p(t)� r� ȳ − s

)]T dp(t)
dt

= [
q̇
(
p(t)� r� ȳ

) − q̇
(
p(t)� r� ȳ − s

) + q̌
(
p(t)� r� ȳ

)
− q̌

(
p(t)� r� ȳ − s

)]T dp(t)
dt

≤ B̄s + 2A�

Therefore, by Lemma A3, it follows that at any point where Vj(p(t)� ȳ − s(t)−
rj) > Vk(p(t)� ȳ − s(t)− rk) for all k �= j, s(t) is differentiable and

ds(t)

dt
= −q

(
p(t)� r� ȳ − s(t)

)T dp(t)
dt

≤ −q
(
p(t)� r� ȳ

)T dp(t)
dt

+ B̄s(t)+ 2A= ds2A�B̄(t)

dt
�

Note that s(t) is continuous by continuity of the expenditure function and
p(t). Consider the event E where there are no ties in the values of the indi-
rect utility functions (i.e., where there is j∗ depending on t such that Vj∗(p(t)�
ȳ − s(t�η) − rj∗) > Vk(p(t)� ȳ − s(t�η) − rk) for all k �= j∗), at all t except a
finite number. When E occurs, we have

s(t)= −
∫ 1

t

ds(u)

du
du�

Similarly, we have s2A�B̄(t) = − ∫ 1
t
[ds2A�B̄(u)/du]du. Then, by ds(t)/dt ≤

ds2A�B̄(t)/dt, it follows that s(t) ≥ s2A�B̄(t). Evaluating at t = 0, we get
S ≥ s2A�B̄(0). It follows similarly that S ≤ s−2A�¯B

(0). Thus, adding back the η
notation, when the event E occurs, we have

s2A�B̄(0�η)≤ S(η) ≤ s−2A�¯B
(0�η)�

Also, it follows similarly to the proof of Theorem 3 that

E
[
sa�B(0�η)

] = S̄a�B�

Since Pr(E) = 1, taking expectations through the previous inequality gives the
first conclusion.
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For the second conclusion, note that q(p(t)� r� y − s(t�η)�η)T dp(t)/dt ≤
q(p(t)� r� y�η)T dp(t)/dt, so that

ds(t�η)

dt
= −q

(
p(t)� r� ȳ − s(t)�η

)T dp(t)
dt

≥ −q
(
p(t)� r� ȳ�η

)T dp(t)
dt

�

The second conclusion then follows similarly to the first one. Q.E.D.

These bounds adjust for the possible presence of discontinuity in individ-
ual demands by adding 2E[D(η)] to −q̄(p� y) in the equation for the upper
bound and subtracting the same term in the equation for the lower bound.
This adjustment will be small when the largest possible jump is small or when
the proportion of individuals with a discontinuity is small. One can drop this
term for the bound for normal goods.

A3. GENERALIZED CONDITIONS FOR BOUNDS
ON EXACT CONSUMER SURPLUS

The purpose of this section is to show that known bounds on income effects
are not required for validity of the bounds in Theorem 3. To describe this result,
let

Bu(η)= max
t∈[0�1]�s∈[0�S(η)]

∂q
(
p(t)� y − s�η

)
∂y

T
dp(t)

dt
�

This bound is an individual specific upper bound for income effects. Such
bounds always exist for continuous demand functions. This can be thought of
as an individual specific version of the income effect bounds. Also let

Su(η) =
∫ 1

0

[
q
(
p(t)� ȳ�η

)T
dp(t)/dt

]
e−Bu(η)t dt�

S̄′
u =

∫
1
(
Bu(η)≥ B

)
Su(η)G(dη)�

S̄′′
u =

∫
1
(
Bu(η) < B

)
Su(η)G(dη)�

SB(η) =
∫ 1

0

[
q
(
p(t)� ȳ�η

)T
dp(t)/dt

]
e−Bt dt�

S̄′
B =

∫
1
(
Bu(η) ≥ B

)
sB(η)G(dη)�

S̄′′
B =

∫
1
(
Bu(η) < B

)
sB(η)G(dη)�
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We have the following result:

THEOREM A5: Suppose that Assumptions 1 and A1 are satisfied,
(i) q(x�η)T dp(t)/dt ≥ 0, and (ii) all prices in p(t) are bounded away from
zero. If S̄′

B − S̄′
u ≤ S̄′′

u − S̄′′
B, then

S̄ ≥ S̄B� D̄ ≥ S̄B − q̄
(
p1� ȳ

)T
	p�

Also, if S̄′
B ≤ c, then

S̄ ≥ S̄B − c� D̄≥ S̄B − c − q̄
(
p1� ȳ

)T
	p�

PROOF: Let us note that Su(η)= su(0�η), where

su(t�η) = eBu(η)t

∫ 1

t

[
q
(
p(s)� ȳ�η

)T
dp(s)/ds

]
e−Bu(η)s ds

is the solution to

dsu(t�η)

dt
= a(t�η)+Bu(η)su(t�η)� su(1�η)= 0�

a(t�η)= −q
(
p(t)� ȳ�η

)T dp(t)
dt

�

It follows exactly in the proof of Theorem 3 that S(η) ≥ Su(η), so that

S̄u =E
[
Su(η)

] ≤ S̄�

Also, we have

S̄u = S̄′
u + S̄′′

u� S̄B = S̄′
B + S̄′′

B�

Therefore, S̄′
B − S̄′

u ≤ S̄′′
u − S̄′′

B if and only if S̄B ≤ S̄u, which implies S̄B ≤ S̄.
Now suppose S̄′

B ≤ c. Note that S̄′′
B ≤ S̄′′

u and S̄′
u ≥ 0. Then

S̄B − c = S̄′′
B + S̄′

B − c ≤ S̄′′
B ≤ S̄′′

u ≤ S̄u ≤ S̄� Q.E.D.

The first conclusion of this result gives a more general condition for validity
of the bounds. Although the result is simple, the decomposition helps clarify
that the surplus bounds hold over a much wider class of conditions than just
bounded income effects. When B is well into the tail of the distribution of
Bu(η), it should be the case that S̄′

B − S̄′
u is small while S̄′′

u − S̄′′
B is large, leading

to the bounds being satisfied.
The second conclusion gives a more general bound that may sometimes

be applicable. For example, suppose that only the price of the first good is
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changing and let Q̄B = sup0≤t≤1 E[q1(p(t)� ȳ�η)|Bu(η)≥ B]. Then by the usual
Chebyshev inequality type argument,

S̄′
B =

∫
1
(
Bu(η)≥ B

){∫ 1

0

[
q
(
p(t)� ȳ�η

)T
dp(t)/dt

]
e−Bt dt

}
G(dη)

= 	p1

∫ 1

0
Pr

(
Bu(η) ≥ B

)
E

[
q1

(
p(t)� ȳ�η

)|Bu(η) ≥ B
]
e−Bt dt

≤ Q̄B	p1

(∫ 1

0
e−Bt dt

)
Pr

(
Bu(η) ≥ B

) ≤ Q̄B	p1E
[
Bu(η)

r
]

Br �

where the last inequality follows by e−Bt ≤ 1, and hence
∫ 1

0 e−Bt dt ≤ 1, and by
the Holder inequality.

A4. BOUNDING SURPLUS BOUND ERROR IN GASOLINE APPLICATION

This reasoning just above applies to the justification of the lower bound for
surplus in the gasoline demand example. In a linear varying coefficients model,
we estimate the bounding term in the above equation for r = 2 to be

Q̄B	p1E
[
Bu(η)

2
]

B2 = Q̄B	p1

[
(0�000726)2 + (0�00241)2

]
(0�0197)2

≤ Q̄B	p1(0�015)�

It is reasonable to suppose that average demand for large income effects is not
very large relative to overall average demand. If anything, given the essential
nature of transportation, we might expect that average demand is smaller for
those with high income effects. This makes Q̄B	p1 ≤ 2S̄B̄ a very reasonable
assumption. Applying the inequality at the end of the last section, we thus find
that if the linear random coefficients model were true, S̄′

B ≤ (0�03)S̄B. Then by
the second conclusion of Theorem A5, we have S̄ ≥ (0�97)S̄B̄, so that the lower
bound given in the empirical application is very close to correct. We note that
this calculation of (0�97)S̄B̄ as a lower bound is very conservative, giving us high
confidence in the lower bound used in the empirical application.

A5. DETAILS FOR GENERAL BOUNDS ESTIMATION

We used a third order power series in lnp and ln y to estimate the quan-
tile of lnq. We also used the same power series for mj(x), which corre-
sponds to the empirical specification with income effect bounds. We estimated
the conditional quantile at 99 evenly spaced values, τ ∈ {0�01�0�02� � � � �0�99}.
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We imposed the Slutzky condition appropriate for the natural log of de-
mand on the quantiles at 81 values of x corresponding to nine price and in-
come values drawn randomly from the range of the data. We drew one set
of L = 1,000 coefficients, ensuring that each coefficient vector gave a de-
mand at each τ ∈ {0�01�0�02� � � � �0�99} satisfying the Slutzky condition on a
grid that is the 0.01, 0.03, 0.05, 0.07, and 0.09 quantiles of ln(p) and ln(y).
We evaluated the constraints at five quantile values for r including the me-
dian. We calculated the bounds as described in Section 6, using F̂(r|x) =∑99

k=1 �([r − Q̂(0�01k|x)]/0�01) in place of F(r|x) in the constraints, where
�(s) is the N(0�1) CDF that is used to smooth out Q̂−1(r|x).
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