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APPENDIX B: EXAMPLE: TRADING WITH ADVERSE SELECTION

IN THIS SECTION, we provide the formal details for the trading environment in
Example 2.5. Let p ∈ �(A×V) be the true distribution; we use subscripts, such
as pA and pV |A, to denote the corresponding marginal and conditional distri-
butions. Let Y = A × V ∪ {�} denote the space of observable consequences,
where � will be a convenient way to represent the fact that there is no trade.
We denote the random variable taking values in V∪ {�} by V̂ . Notice that the
state space in this example is Ω=A×V.

Partial feedback is represented by the function f P : X × A × V → Y such
that f P(x�a� v) = (a� v) if a ≤ x and f P(x�a� v) = (a��) if a > x. Full feed-
back is represented by f F(x�a� v) = (a� v). In all cases, payoffs are given by
π : X × Y → R, where π(x�a� v) = v − x if a ≤ x and 0 otherwise. The ob-
jective distribution for the case of partial feedback, QP , is, ∀x ∈ X, ∀(a� v) ∈
A × V, QP(a�v | x) = p(a�v)1{x≥a}(x), and, ∀x ∈ X, ∀a ∈ A, QP(a�� | x) =
pA(a)1{x<a}(x). The objective distribution for the case of full feedback, QF ,
is, ∀x ∈ X, ∀(a� v) ∈ A × V, QF(a�v | x) = p(a�v), and, ∀x ∈ X, ∀a ∈ A,
QF(a�� | x)= 0.

The buyer knows the environment except for the distribution p ∈ �(A×V).
Then, for any distribution in the subjective model, Qθ, the perceived expected
profit from choosing x ∈ X is

EQθ(·|x)
[
π(x�A� V̂ )

]=
∑

(a�v)∈A×V

1{x≥a}(x)(v− x)Qθ(a� v | x)�(17)

The buyer has either one of two misspecifications over p captured by the pa-
rameter sets ΘI = �(A)×�(V) (i.e., independent beliefs) or ΘA =×j �(A)×
�(V) (i.e., analogy-based beliefs) defined in the main text. Thus, combining
feedback and parameter sets, we have four cases to consider, and, for each
case, we write down the subjective model and wKLD function.

CURSED EQUILIBRIUM: Feedback is f F and the parameter set is ΘI . The
subjective model is, ∀x ∈ X, ∀(a� v) ∈ A × V, QC

θ (a� v | x) = θA(a)θV (v), and,
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2 I. ESPONDA AND D. POUZO

∀x ∈ X, ∀a ∈ A, QC
θ (a�� | x) = 0, where θ = (θA�θV ) ∈ ΘI .47 This is an

analogy-based game. From (17), the perceived expected profit from x ∈ X is

PrθA(A≤ x)(EθV [V ] − x)�(18)

where PrθA denotes probability with respect to θA and EθV denotes expectation
with respect to θV . Also, for all (pure) strategies x ∈ X, the wKLD function is48

KC(x�θ)= EQF(·|x)

[
ln
QF(A� V̂ | x)
QC
θ (A� V̂ | x)

]

=
∑

(a�v)∈A×V

p(a�v) ln
p(a�v)

θA(a)θV (v)
�

For each x ∈ X, θ(x) = (θA(x)�θV (x)) ∈ ΘI = �(A) × �(V), where θA(x) =
pA and θV (x) = pV is the unique parameter value that minimizes KC(x� ·).
Together with (18), we obtain equation ΠCE in the main text.

BEHAVIORAL EQUILIBRIUM (NAIVE VERSION): Feedback is f P and the pa-
rameter set is ΘI . The subjective model is, ∀x ∈ X, ∀(a� v) ∈ A×V, QBE

θ (a� v |
x)= θA(a)θV (v)1{x≥a}(x), and, ∀x ∈X, ∀a ∈ A,QBE

θ (a�� | x)= θA(a)1{x<a}(x),
where θ = (θA�θV ) ∈ ΘI . From (17), perceived expected profit from x ∈ X is
as in equation (18). Also, for all (pure) strategies x ∈X, the wKLD function is

KBE(x�θ)= EQP(·|x)

[
ln
QP(A� V̂ | x)
QBE
θ (A� V̂ | x)

]

=
∑

{a∈A:a>x}
pA(a) ln

pA(a)

θA(a)

+
∑

{(a�v)∈A×V:a≤x}
p(a�v) ln

p(a�v)

θA(a)θV (v)
�

For each x ∈X, θ(x)= (θA(x)�θV (x)) ∈ΘI = �(A)×�(V), where θA(x)= pA
and θV (x)(v) = pV |A(v | A ≤ x) ∀v ∈ V is the unique parameter value that
minimizes KBE(x� ·). Together with (18), we obtain equation ΠBE in the main
text.

ANALOGY-BASED EXPECTATIONS EQUILIBRIUM: Feedback is f F and the
parameter set is ΘA. The subjective model is, ∀x ∈ X, ∀(a� v) ∈ A × Vj , all

47In fact, the symbol � is not necessary for this example, but we keep it so that all feedback
functions are defined over the same space of consequences.

48In all cases, the extension to mixed strategies is straightforward.
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j = 1� � � � �k, QABEE
θ (a� v | x) = θj(a)θV (v), and, ∀x ∈ X, ∀a ∈ A, QABEE

θ (a�� |
x)= 0, where θ= (θ1� � � � � θk�θV ) ∈ΘA. This is an analogy-based game. From
(17), perceived expected profit from x ∈X is

k∑
j=1

PrθV (V ∈Vj)
{
Prθj (A≤ x | V ∈ Vj)

(
EθV [V | V ∈Vj] − x)}�(19)

Also, for all (pure) strategies x ∈X, the wKLD function is

KABEE(x�θ)= EQF(·|x)

[
ln

QF(A� V̂ | x)
QABEE
θ (A� V̂ | x)

]

=
k∑
j=1

∑
(a�v)∈A×Vj

p(a� v) ln
p(a�v)

θj(a)θV (v)
�

For each x ∈ X, θ(x) = (θ1(x)� � � � � θk(x)�θV (x)) ∈ ΘA =×j �(A) × �(V),
where θj(x)(a) = pA|Vj (a | V ∈ Vj) ∀a ∈ A and θV (x) = pV is the unique pa-
rameter value that minimizes KABEE(x� ·). Together with (19), we obtain equa-
tion ΠABEE in the main text.

BEHAVIORAL EQUILIBRIUM (NAIVE VERSION) WITH ANALOGY CLASSES:
It is natural to also consider a case, unexplored in the literature, where feed-
back f P is partial and the subjective model is parameterized by ΘA. Suppose
that the buyer’s behavior has stabilized to some price x∗. Due to the possible
correlation across analogy classes, the buyer might now believe that deviat-
ing to a different price x 	= x∗ affects her valuation. In particular, the buyer
might have multiple beliefs at x∗. To obtain a natural equilibrium refinement,
we assume that the buyer also observes the analogy class that contains her
realized valuation, whether she trades or not, and that Pr(V ∈ Vj�A ≤ x) >
0 for all j = 1� � � � �k and x ∈ X.49 We denote this new feedback assump-
tion by a function f P

∗ : X × A × V → Y
∗, where Y

∗ = A × V ∪ {1� � � � �k}
and f P

∗
(x�a� v) = (a� v) if a ≤ x and f P

∗
(x�a� v) = (a� j) if a > x and

v ∈ Vj . The objective distribution given this feedback function is, ∀x ∈ X,
∀(a� v) ∈ A × V, QP∗

(a� v | x) = p(a�v)1{x≥a}(x), and, ∀x ∈ X, ∀a ∈ A and
all j = 1� � � � �k, QP∗

(a� j | x) = pA|Vj (a | V ∈ Vj)pV (Vj)1{x<a}(x). The sub-
jective model is, ∀x ∈ X, ∀(a� v) ∈ A × Vj and all j = 1� � � � �k, QBEA

θ (a� v |
x) = θj(a)θV (v)1{x≥a}(x), and, ∀x ∈ X, ∀(a� v) ∈ A × Vj and all j = 1� � � � �k,
QBEA
θ (a� j | x) = θj(a)(

∑
v∈Vj θV (v))1{x<a}(x), where θ = (θ1� θ2� � � � � θk�θV ) ∈

49Alternatively, and more naturally, we could require the equilibrium to be the limit of a se-
quence of mixed strategy equilibria with the property that all prices are chosen with positive
probability.
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ΘA. In particular, from (17), perceived expected profit from x ∈ X is as in equa-
tion (19). Also, for all (pure) strategies x ∈X, the wKLD function is

KBEA(x�θ)= EQP∗
(·|x)

[
ln
QP∗

(A� V̂ | x)
QBEA
θ (A� V̂ | x)

]

=
k∑
j=1

∑
{(a�v)∈A×Vj :a≤x}

p(a�v) ln
p(a�v)

θj(a)θV (v)

+
∑

{(a�j)∈A×{1�����k}:a>x}
pA|Vj (a | V ∈ Vj)pV (Vj)

× ln
pA|Vj (a | V ∈Vj)pV (Vj)

θj(a)
∑
v∈Vj

θV (v)
�

For each x ∈ X, θ(x) = (θ1(x)� � � � � θk(x)�θV (x)) ∈ ΘA =×j �(A) × �(V),
where θj(x)(a) = pA|Vj (a | V ∈ Vj) ∀a ∈ A and θV (x)(v) = pV |A(v | V ∈
Vj�A ≤ x)pV (Vj) ∀v ∈ Vj , all j = 1� � � � �k is the unique parameter value
that minimizes KBEA(x� ·). Together with (19), we obtain ΠBEA(x�x∗) =∑k

i=j Pr(V ∈ Vj)Pr(A≤ x | V ∈ Vj)(E[V | V ∈ Vj�A≤ x∗] − x).

APPENDIX C: PROOF OF CONVERSE RESULT: THEOREM 3

Let (μ̄i)i∈I be a belief profile that supports σ as an equilibrium. Consider the
following policy profile φ= (φit)i�t : For all i ∈ I and all t,(

μi� si� ξi
) 
→ φit

(
μi� si� ξi

)

≡
⎧⎨
⎩ϕ

i
(
μ̄i� si� ξi

)
if max

i∈I

∥∥Q̄i
μi

− Q̄i
μ̄i

∥∥≤ 1
2C
εt ,

ϕi
(
μi� si� ξi

)
otherwise,

where ϕi is an arbitrary selection from Ψi, C ≡ maxI{#Yi × sup
Xi×Yi

|πi(xi�
yi)|} <∞, and the sequence (εt)t will be defined below. For all i ∈ I, fix any
prior μi0 with full support on Θi such that μi0(· | Θi(σ)) = μ̄i (where for any
A⊂Θ Borel, μ(· |A) is the conditional probability given A).

We now show that if εt ≥ 0 ∀t and limt→∞ εt = 0, then φ is asymptotically
optimal. Throughout this argument, we fix an arbitrary i ∈ I. Abusing notation,
let Ui(μi� si� ξi� xi)=EQ̄

μi
(·|si�xi)[πi(xi�Y i)] + ξi(xi). It suffices to show that

Ui
(
μi� si� ξi�φit

(
μi� si� ξi

))≥Ui
(
μi� si� ξi� xi

)− εt(20)

for all (i� t), all (μi� si� ξi), and all xi. By construction of φ, equation (20) is
satisfied if maxi∈I ‖Q̄i

μi
− Q̄i

μ̄i
‖ > 1

2C εt . If, instead, maxi∈I ‖Q̄i
μi

− Q̄i
μ̄i

‖ ≤ 1
2C εt ,
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then

Ui
(
μ̄i� si� ξi�φit

(
μi� si� ξi

))= Ui
(
μ̄i� si� ξi�ϕi

(
μ̄i� si� ξi

))
(21)

≥ Ui
(
μ̄i� si� ξi� xi

)
∀xi ∈X

i. Moreover, ∀xi,∣∣Ui
(
μ̄i� si� ξi� xi

)−Ui
(
μi� si� ξi� xi

)∣∣
=
∣∣∣∣∑
yi∈Yi

π
(
xi� yi

)(
Q̄i
μ̄i

(
yi | si� xi)− Q̄i

μi

(
yi | si� xi))∣∣∣∣

≤ sup
Xi×Yi

∣∣πi(xi� yi)∣∣∑
yi∈Yi

∣∣(Q̄i
μ̄i

(
yi | si� xi)− Q̄i

μi

(
yi | si� xi))∣∣

≤ sup
Xi×Yi

∣∣πi(xi� yi)∣∣× #Y
i × max

yi�xi�si

∣∣Q̄i
μ̄i

(
yi | si� xi)− Q̄i

μi

(
yi | si� xi)∣∣�

so by our choice of C, |Ui(μ̄i� si� ξi� xi)−Ui(μi� si� ξi� xi)| ≤ 0�5εt ∀xi. There-
fore, equation (21) implies equation (20); thus φ is asymptotically optimal if
εt ≥ 0 ∀t and limt→∞ εt = 0.

We now construct a sequence (εt)t such that εt ≥ 0 ∀t and limt→∞ εt = 0. Let
φ̄i = (φ̄it)t be such that φ̄it(μ

i� ·� ·) = ϕi(μ̄i� ·� ·) ∀μi; that is, φ̄i is a stationary
policy that maximizes utility under the assumption that the belief is always μ̄i.
Let ζi(μi)≡ 2C‖Q̄i

μi
− Q̄i

μ̄i
‖ and suppose (the proof is at the end) that

Pμ0�φ̄
(

lim
t→∞

max
i∈I

∣∣ζi(μit(h))∣∣= 0
)

= 1(22)

(recall that Pμ0�φ̄ is the probability measure over H induced by the policy
profile φ̄; by definition of φ̄, Pμ0�φ̄ does not depend on μ0). Then by the
second Borel–Cantelli lemma (Billingsley (1995, pp. 59–60)), for any γ > 0,∑

t P
μ0�φ̄(maxi∈I |ζi(μit(h))| ≥ γ) <∞. Hence, for any a > 0, there exists a se-

quence (τ(j))j such that

∑
t≥τ(j)

Pμ0�φ̄
(

max
i∈I

∣∣ζi(μit(h))∣∣≥ 1/j
)
<

3
a

4−j(23)

and limj→∞ τ(j) = ∞. For all t ≤ τ(1), we set εt = 3C, and, for any t >
τ(1), we set εt ≡ 1/N(t), where N(t) ≡∑∞

j=1 1{τ(j) ≤ t}. Observe that, since
limj→∞ τ(j)= ∞, N(t)→ ∞ as t → ∞ and thus εt → 0.

Next, we show that Pμ0�φ(limt→∞ ‖σt(h∞) − σ‖ = 0) = 1, where (σt)t is
the sequence of intended strategies given φ, that is, σit (h)(x

i | si) = Pξ(ξ
i :

φit(μ
i
t(h)� s

i� ξi) = xi). Observe that, by definition, σi(xi | si) = Pξ(ξ
i : xi ∈
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arg maxx̂i∈Xi EQ̄
μ̄i
(·|si�x̂i)[πi(x̂i�Y i)] + ξi(x̂i)). Since ϕi ∈ Ψi, it follows that we

can write σi(xi | si)= Pξ(ξ
i : ϕi(μ̄i� si� ξi)= xi). Let H ≡ {h:‖σt(h)− σ‖ = 0�

for all t}. It is sufficient to show that Pμ0�φ(H)= 1. To show this, observe that

Pμ0�φ(H) ≥ Pμ0�φ

(⋂
t

{
max
i
ζi(μt)≤ εt

})

=
∞∏

t=τ(1)+1

Pμ0�φ

(
max
i
ζi(μt)≤ εt

∣∣∣⋂
l<t

{
max
i
ζi(μl)≤ εl

})

=
∞∏

t=τ(1)+1

Pμ0�φ̄

(
max
i
ζi(μt)≤ εt

∣∣∣⋂
l<t

{
max
i
ζi(μl)≤ εl

})

= Pμ0�φ̄

( ⋂
t>τ(1)

{
max
i
ζi(μt)≤ εt

})
�

where the second line omits the term Pμ0�φ(maxi ζi(μt) < εt for all t ≤ τ(1))
because it is equal to 1 (since εt ≥ 3C ∀t ≤ τ(1)); the third line follows
from the fact that φit−1 = φ̄it−1 if ζi(μt−1) ≤ εt−1, so the probability measure
is equivalently given by Pμ0�φ̄; and where the last line also uses the fact that
Pμ0�φ̄(maxi ζi(μt) < εt for all t ≤ τ(1))= 1. In addition, ∀a > 0,

Pμ0�φ̄

( ⋂
t>τ(1)

{
max
i
ζi(μt)≤ εt

})

= Pμ0�φ̄

( ⋂
n∈{1�2����}

⋂
{t>τ(1):N(t)=n}

{
max
i
ζi(μt)≤ n−1

})

≥ 1 −
∞∑
n=1

∑
{t:N(t)=n}

Pμ0�φ̄
(

max
i
ζi(μt)≥ n−1

)

≥ 1 −
∞∑
n=1

3
a

4−n = 1 − 1
a
�

where the last line follows from (23). Thus, we have shown that Pμ0�φ(H) ≥
1 − 1/a ∀a > 0; hence, Pμ0�φ(H)= 1.

We conclude the proof by showing that equation (22) indeed holds. Observe
that σ is trivially stable under φ̄. By Lemma 2, ∀i ∈ I and all open sets Ui ⊇
Θi(σ),

lim
t→∞

μit
(
Ui
)= 1(24)
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a.s.-Pμ0�φ̄ (over H). Let H denote the set of histories such that xit(h)= xi and
sit(h) = si imply that σi(xi | si) > 0. By definition of φ̄, Pμ0�φ̄(H) = 1. Thus, it
suffices to show that limt→∞ maxi∈I |ζi(μit(h))| = 0 a.s.-Pμ0�φ̄ over H. To do this,
take any A⊆Θ that is closed. By equation (24), ∀i ∈ I, and almost all h ∈H,

lim sup
t→∞

∫
1A(θ)μit+1(dθ)= lim sup

t→∞

∫
1A∩Θi(σ)(θ)μ

i
t+1(dθ)�

Moreover,∫
1A∩Θi(σ)(θ)μ

i
t+1(dθ)

≤
∫

1A∩Θi(σ)(θ)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t∏
τ=1

Qi
θ

(
yiτ | siτ� xiτ

)
μi0(dθ)

∫
Θi(σ)

t∏
τ=1

Qi
θ

(
yiτ | siτ� xiτ

)
μi0(dθ)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= μi0
(
A |Θi(σ)

)= μ̄i(A)�
where the first inequality follows from the fact that Θi(σ)⊆Θi; the first equal-
ity follows from the fact that, since h ∈ H, the fact that the game is weakly
identified given σ implies that

∏t

τ=1Q
i
θ(y

i
τ | siτ� xiτ) is constant with respect

to θ ∀θ ∈ Θi(σ), and the last equality follows from our choice of μi0. There-
fore, we established that a.s.-Pμ0�φ̄ over H, lim supt→∞μ

i
t+1(h)(A)≤ μ̄i(A) for

A closed. By the portmanteau lemma, this implies that, a.s.-Pμ0�φ̄ over H,
limt→∞

∫
Θ
f (θ)μit+1(h)(dθ) = ∫

Θ
f (θ)μ̄i(dθ) for any f real-valued, bounded,

and continuous. Since, by assumption, θ 
→Qi
θ(y

i | si� xi) is bounded and con-
tinuous, the previous result applies to Qi

θ(y
i | si� xi), and since y� s�x take a fi-

nite number of values, this result implies that limt→∞ ‖Q̄i

μit (h)
− Q̄i

μ̄i
‖ = 0 ∀i ∈ I

a.s.-Pμ0�φ̄ over H. Q.E.D.

APPENDIX D: NON-MYOPIC PLAYERS

In the main text, we proved the results for the case where players are my-
opic. Here, we assume that players maximize discounted expected payoffs,
where δi ∈ [0�1) is the discount factor of player i. In particular, players can
be forward looking and decide to experiment. Players believe, however, that
they face a stationary environment and, therefore, have no incentives to influ-
ence the future behavior of other players. We assume for simplicity that players
know the distribution of their own payoff perturbations.

Because players believe that they face a stationary environment, they solve a
(subjective) dynamic optimization problem that can be cast recursively as fol-
lows. By the Principle of Optimality, V i(μi� si) denotes the maximum expected
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discounted payoffs (i.e., the value function) of player i who starts a period by
observing signal si and by holding belief μi if and only if

V i
(
μi� si

)=
∫
Ξi

{
max
xi∈Xi

EQ̄
μi
(·|si�xi)

[
πi
(
xi�Y i

)+ ξi(xi)(25)

+ δEp
Si

[
V i
(
μ̂i� Si

)]]}
Pξ
(
dξi
)
�

where μ̂i = Bi(μi� si� xi�Y i) is the updated belief. For all (μi� si� ξi), let

Φi
(
μi� si� ξi

)= arg max
xi∈Xi

EQ̄
μi
(·|si�xi)

[
πi
(
xi�Y i

)+ ξi(xi)
+ δEp

Si

[
V i
(
μ̂i� Si

)]]
�

The proof of the next lemma relies on standard arguments and is, therefore,
omitted.50

LEMMA 3: There exists a unique solution V i to the Bellman equation (25); this
solution is bounded in �(Θi)× S

i and continuous as a function of μi. Moreover,
Φi is single-valued and continuous with respect to μi, a.s.-Pξ.

Because players believe they face a stationary environment with i.i.d. per-
turbations, it is without loss of generality to restrict behavior to depend on the
state of the recursive problem. Optimality of a policy is defined as usual (with
the requirement that φit ∈Φi ∀t).

Lemma 2 implies that the support of posteriors converges, but posteriors
need not converge. We can always find, however, a subsequence of posteriors
that converges. By continuity of dynamic behavior in beliefs, the stable strategy
profile is dynamically optimal (in the sense of solving the dynamic optimiza-
tion problem) given this convergent posterior. For weakly identified games,
the convergent posterior is a fixed point of the Bayesian operator. Thus, the
players’ limiting strategies will provide no new information. Since the value of
experimentation is nonnegative, it follows that the stable strategy profile must
also be myopically optimal (in the sense of solving the optimization problem
that ignores the future), which is the definition of optimality used in the defini-
tion of Berk–Nash equilibrium. Thus, we obtain the following characterization
of the set of stable strategy profiles when players follow optimal policies.

THEOREM 4: Suppose that a strategy profile σ is stable under an optimal pol-
icy profile for a perturbed and weakly identified game. Then σ is a Berk–Nash
equilibrium of the game.

50Doraszelski and Escobar (2010) studied a similarly perturbed version of the Bellman equa-
tion.



BERK–NASH EQUILIBRIUM 9

PROOF: The first part of the proof is identical to the proof of Theorem 2.
Here, we prove that, given that limj→∞σt(j) = σ and limj→∞μit(j) = μi∞ ∈
�(Θi(σ)) ∀i, then, ∀i, σi is optimal for the perturbed game given μi∞ ∈ �(Θi),
that is, ∀(si� xi),

σi
(
xi | si)= Pξ

(
ξi :ψi(μi∞� si� ξi)= {xi})�(26)

where ψi(μi∞� s
i� ξi)≡ arg maxxi∈Xi EQ̄i

μi∞
(·|si�xi)[πi(xi�Y i)] + ξi(xi).

To establish (26), fix i ∈ I and si ∈ S
i. Then

lim
j→∞

σit(j)(h)
(
xi | si)= lim

j→∞
Pξ
(
ξi :φit(j)

(
μit(j)� s

i� ξi
)= xi)

= Pξ
(
ξi :Φi

(
μi∞� s

i� ξi
)= {xi})�

where the second line follows by optimality of φi and Lemma 3. This implies
that σi(xi | si)= Pξ(ξi :Φi(μi∞� s

i� ξi)= {xi}). Thus, it remains to show that

Pξ
(
ξi :Φi

(
μi∞� s

i� ξi
)= {xi})= Pξ

(
ξi :ψi(μi∞� si� ξi)= {xi})(27)

∀xi such that Pξ(ξi : Φi(μi∞� s
i� ξi) = {xi}) > 0. From now on, fix any such xi.

Since σi(xi | si) > 0, the assumption that the game is weakly identified implies
that Qi

θi1
(· | xi� si)=Qi

θi2
(· | xi� si) ∀θi1� θi2 ∈Θ(σ). The fact that μi∞ ∈ �(Θi(σ))

then implies that

Bi
(
μi∞� s

i� xi� yi
)= μi∞(28)

∀yi ∈Y
i. Thus, Φi(μi∞� s

i� ξi)= {xi} is equivalent to

EQ̄
μi∞ (·|si�xi)

[
πi
(
xi�Y i

)+ ξi(xi)+ δEp
Si

[
V i
(
μi∞� S

i
)]]

>EQ̄
μi∞ (·|si�x̃i)

[
πi
(
x̃i�Y i

)+ ξi(x̃i)
+ δEp

Si

[
V i
(
Bi
(
μi∞� s

i� x̃i�Y i
)
� Si
)]]

≥EQ̄
μi∞ (·|si�x̃i)

[
πi
(
x̃i�Y i

)+ ξi(x̃i)]
+ δEp

Si

[
V i
(
EQ̄

μi∞ (·|si�x̃i)
[
Bi
(
μi∞� s

i� x̃i�Y i
)]
� Si
)]

=EQ̄
μi∞ (·|si�x̃i)

[
πi
(
x̃i�Y i

)+ ξi(x̃i)]+ δEp
Si

[
V i
(
μi∞� S

i
)]

∀x̃i ∈ X
i, where the first line follows by equation (28) and definition of Φi, the

second line follows by the convexity51 of V i as a function of μi and Jensen’s

51See, for example, Nyarko (1994), for a proof of convexity of the value function.
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inequality, and the last line by the fact that Bayesian beliefs have the martin-
gale property. In turn, the above expression is equivalent to ψ(μi∞� s

i� ξi) =
{xi}. Q.E.D.

APPENDIX E: POPULATION MODELS

We discuss some variants of population models that differ in the matching
technology and feedback. The right variant of population model will depend
on the specific application.52

SINGLE PAIR MODEL: Each period, a single pair of players is randomly se-
lected from each of the i populations to play the game. At the end of the period,
the signals, actions, and outcomes of their own population are revealed to ev-
eryone.53 Steady-state behavior in this case corresponds exactly to the notion
of Berk–Nash equilibrium described in the paper.

RANDOM-MATCHING MODEL: Each period, all players are randomly
matched and observe only feedback from their own match. We now modify
the definition of Berk–Nash equilibrium to account for this random-matching
setting. The idea is similar to Fudenberg and Levine’s (1993) definition of a
heterogeneous self-confirming equilibrium. Now each agent in population i
can have different experiences and, hence, have different beliefs and play dif-
ferent strategies in steady state.

For all i ∈ I, define

BRi
(
σ−i)= {σi : σi is optimal given μi ∈ �(Θi

(
σi�σ−i))}�

Note that σ is a Berk–Nash equilibrium if and only if σi ∈ BRi(σ−i) ∀i ∈ I.

DEFINITION 9: A strategy profile σ is a heterogeneous Berk–Nash equilibrium
of game G if, for all i ∈ I, σi is in the convex hull of BRi(σ−i).

Intuitively, a heterogeneous equilibrium strategy σi is the result of convex
combinations of strategies that belong to BRi(σ−i); the idea is that each of
these strategies is followed by a segment of the population i.54

52In some cases, it may be unrealistic to assume that players are able to observe the private
signals of previous generations, so some of these models might be better suited to cases with
public, but not private, information.

53Alternatively, we can think of different incarnations of players born every period who are
able to observe the history of previous generations.

54Unlike the case of heterogeneous self-confirming equilibrium, a definition where each action
in the support of σ is supported by a (possibly different) belief would not be appropriate here.
The reason is that BRi(σ−i) might contain only mixed, but not pure, strategies (e.g., Example 1).
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RANDOM-MATCHING MODEL WITH POPULATION FEEDBACK: Each period,
all players are randomly matched; at the end of the period, each player in pop-
ulation i observes the signals, actions, and outcomes of their own population.
Define

B̄R
i(
σi�σ−i)= {σ̂ i : σ̂ i is optimal given μi ∈ �(Θi

(
σi�σ−i))}�

DEFINITION 10: A strategy profile σ is a heterogeneous Berk–Nash equilib-
rium with population feedback of game G if, for all i ∈ I, σi is in the convex hull
of B̄R

i
(σi�σ−i).

The main difference when players receive population feedback is that their
beliefs no longer depend on their own strategies but rather on the aggregate
population strategies.

E.1. Equilibrium Foundation

Using arguments similar to the ones in the text, it is now straightforward to
conclude that the definition of heterogeneous Berk–Nash equilibrium captures
the steady state of a learning environment with a population of agents in the
role of each player. To see the idea, let each population i be composed of
a continuum of agents in the unit interval K ≡ [0�1]. A strategy of agent ik
(meaning agent k ∈ K from population i) is denoted by σik. The aggregate
strategy of population (i.e., player) i is σi = ∫

K
σik dk.

RANDOM-MATCHING MODEL: Suppose that each agent is optimizing and
that, for all i, (σikt ) converges to σik a.s. in K, so that individual behavior sta-
bilizes.55 Then Lemma 2 says that the support of beliefs must eventually be
Θi(σik�σ−i) for agent ik. Next, for each ik, take a convergent subsequence
of beliefs μikt and denote it μik∞. It follows that μik∞ ∈ �(Θi(σik�σ−i)) and,
by continuity of behavior in beliefs, σik is optimal given μik∞. In particular,
σik ∈ BRi(σ−i) for all ik and, since σi = ∫

K
σik dk, it follows that σi is in the

convex hull of BRi(σ−i).

RANDOM-MATCHING MODEL WITH POPULATION FEEDBACK: Suppose that
each agent is optimizing and that, for all i, σit = ∫

K
σikt dk converges to σi. Then

Lemma 2 says that the support of beliefs must eventually be Θi(σi�σ−i) for
any agent in population i. Next, for each ik, take a convergent subsequence
of beliefs μikt and denote it μik∞. It follows that μik∞ ∈ �(Θi(σi�σ−i)) and, by
continuity of behavior in beliefs, σik is optimal given μik∞. In particular, σik ∈

55We need individual behavior to stabilize; it is not enough that it stabilizes in the aggregate.
This is natural, for example, if we believe that agents whose behavior is unstable will eventually
realize they have a misspecified model.
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B̄R
i
(σ−i) for all i�k and, since σi = ∫

K
σik dk, it follows that σi is in the convex

hull of B̄R
i
(σ−i).

APPENDIX F: LACK OF PAYOFF FEEDBACK

In the paper, players are assumed to observe their own payoffs. We now pro-
vide two alternatives to relax this assumption. In the first alternative, players
observe no feedback about payoffs; in the second alternative, players may ob-
serve partial feedback.

No payoff feedback. In the paper, we had a single, deterministic payoff func-
tion πi : Xi × Y

i → R, which can be represented in vector form as an element
πi ∈ R

#(Xi×Y
i). We now generalize it to allow for uncertain payoffs. Player i

is endowed with a probability distribution Pπi ∈ �(R#(Xi×Y
i)) over the possi-

ble payoff functions. In particular, the random variable πi is independent of
Y i, and so there is nothing new to learn about payoffs from observing con-
sequences. With random payoff functions, the results extend provided that
optimality is defined as follows: A strategy σi for player i is optimal given
μi ∈ �(Θi) if σi(xi | si) > 0 implies that

xi ∈ arg max
x̄i∈Xi

EP
πi
EQ̄i

μi
(·|si�x̄i)

[
πi
(
x̄i�Y i

)]
�

Note that by interchanging the order of integration, this notion of optimality is
equivalent to the notion in the paper where the deterministic payoff function
is given by EP

πi
πi(·� ·).

Partial payoff feedback. Suppose that player i knows her own consequence
function f i : X × Ω → Y

i and that her payoff function is now given by πi :
X ×Ω→ R. In particular, player i may not observe her own payoff, but ob-
serving a consequence may provide partial information about (x−i�ω) and,
therefore, about payoffs. Unlike the case in the text where payoffs are ob-
served, a belief μi ∈ �(Θi) may not uniquely determine expected payoffs. The
reason is that the distribution over consequences implied by μi may be con-
sistent with several distributions over X

−i × Ω; that is, the distribution over
X

−i ×Ω is only partially identified. Define the set Mμi ⊆ �(X−i ×Ω)S
i×X

i to
be the set of conditional distributions over X

−i × Ω given (si� xi) ∈ S
i × X

i

that are consistent with belief μi ∈ �(Θi), that is, m ∈ Mμi if and only if
Q̄i
μi
(yi | si� xi) = m(f i(xi�X−i�W ) = yi | si� xi) for all (si� xi) ∈ S

i × X
i and

yi ∈ Y
i. Then optimality should be defined as follows: A strategy σi for player

i is optimal given μi ∈ �(Θi) if there exists mμi ∈ Mμi such that σi(xi | si) > 0
implies that

xi ∈ arg max
x̄i∈Xi

Em
μi
(·|si�x̄i)

[
πi
(
x̄i�X−i�W

)]
�

Finally, the definition of identification would also need to be changed to
require not only that there is a unique distribution over consequences that
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matches the observed data, but also that this unique distribution implies a
unique expected utility function.

APPENDIX G: GLOBAL STABILITY: EXAMPLE 2.1
(MONOPOLY WITH UNKNOWN DEMAND)

Theorem 3 says that all Berk–Nash equilibria can be approached with prob-
ability 1 provided we allow for vanishing optimization mistakes. In this ap-
pendix, we illustrate how to use the techniques of stochastic approximation
theory to establish stability of equilibria under the assumption that players
make no optimization mistakes. We present the explicit learning dynamics for
the monopolist with unknown demand, Example 2.1, and show that the unique
equilibrium in this example is globally stable. The intuition behind global sta-
bility is that switching from the equilibrium strategy to a strategy that puts more
weight on a price of 2 changes beliefs in a way that makes the monopoly want
to put less weight on a price of 2, and similarly for a deviation to a price of 10.

We first construct a perturbed version of the game. Then we show that the
learning problem is characterized by a nonlinear stochastic system of differ-
ence equations and employ stochastic approximation methods for studying the
asymptotic behavior of such system. Finally, we take the payoff perturbations
to zero.

In order to simplify the exposition and thus better illustrate the mechanism
driving the dynamics, we modify the subjective model slightly. We assume the
monopolist only learns about the parameter b ∈ R; that is, her beliefs about
parameter a are degenerate at a point a= 40 	= a0 and thus are never updated.
Therefore, beliefs μ are probability distributions over R, that is, μ ∈ �(R).

PERTURBED GAME: Let ξ be a real-valued random variable distributed ac-
cording to Pξ; we use F to denote the associated c.d.f. and f the p.d.f. The
perturbed payoffs are given by yx− ξ1{x= 10}. Thus, given beliefs μ ∈ �(R),
the probability of optimally playing x= 10 is

σ(μ)= F(8a− 96Eμ[B])�
Note that the only aspect of μ that matters for the decision of the monopolist
is Eμ[B]. Thus, lettingm=Eμ[B] and slightly abusing notation, we use σ(μ)=
σ(m) as the optimal strategy.

BAYESIAN UPDATING: We now derive the Bayesian updating procedure. We
assume that the prior μ0 is given by a Gaussian distribution with mean and vari-
ance m0� τ

2
0.56 It is possible to show that, given a realization (y�x) and a prior

56This choice of prior is standard in Gaussian settings like ours. As shown below, this choice
simplifies the exposition considerably.
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N(m�τ2), the posterior is also Gaussian and the mean and variance evolve as
follows: mt+1 =mt + (−(Yt+1−a)

Xt+1
−mt)(

X2
t+1

X2
t+1+τ−2

t
) and τ2

t+1 = 1
(X2

t+1+τ−2
t )

.

NONLINEAR STOCHASTIC DIFFERENCE EQUATIONS AND STOCHASTIC AP-
PROXIMATION: For simplicity, let rt+1 ≡ 1

t+1(τ
−2
t +X2

t+1) and note that the pre-
vious nonlinear system of stochastic difference equations can be written as

mt+1 =mt + 1
t + 1

X2
t+1

rt+1

(−(Yt+1 − a)
Xt+1

−mt

)
�

rt+1 = rt + 1
t + 1

(
X2
t+1 − rt

)
�

Let βt = (mt� rt)
′, Zt = (Xt�Yt),

G(βt� zt+1)=
⎡
⎣ x

2
t+1
rt+1

(−(yt+1 − a)
xt+1

−mt

)
(
x2
t+1 − rt

)
⎤
⎦ �

and

G(β)=
[
G1(β)

G2(β)

]
=EPσ

[
G(β�Zt+1)

]

=
[

D(
4 + F(8a− 96m)96 − r)

]
�

where

D= F(8a− 96m)
100
r

(−(a0 − a− b010)
10

−m
)

+ (1 − F(8a− 96m)
)4
r

(−(a0 − a− b02)
2

−m
)
�

and Pσ is the probability over Z induced by σ (and y = a0 − b0x+ω). There-
fore, the dynamical system can be cast as

βt+1 = βt + 1
t + 1

G(βt)+ 1
t + 1

Vt+1

with Vt+1 = G(βt�Zt+1) − G(βt). Stochastic approximation theory (e.g.,
Kushner and Yin (2003)) implies, roughly speaking, that in order to study the
asymptotic behavior of (βt)t , it is enough to study the behavior of the orbits of
the following ODE:

β̇(t)= G
(
β(t)

)
�
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CHARACTERIZATION OF THE STEADY STATES: In order to find the steady
states of (βt)t , it is enough to find β∗ such that G(β∗) = 0. Let H1(m) ≡
F(8a− 96m)10(−(a0 − a)+ (b0 −m)10)+ (1 − F(8a− 96m))2(−(a0 − a)+
(b0 − m)2). Observe that G1(β) = r−1H1(m) and that H1 is continuous and
limm→−∞H1(m) = ∞ and limm→∞H1(m) = −∞. Thus, there exists at least
one solution H1(m) = 0. Therefore, there exists at least one β∗ such that
G(β∗)= 0.

Let b̄ = b0 − a0−a
10 = 4 − 1

5 = 19
5 and b = b0 − a0−a

2 = 4 − 42−40
2 = 3, r̄ = 4 +

F(8a − 96b)96 and r = 4 + F(8a − 96b̄)96, and B ≡ [b� b̄] × [r� r̄]. It follows
thatH1(m) < 0 ∀m> b̄, and thusm∗ must be such thatm∗ ≤ b̄. It is also easy to
see thatm∗ ≥ b. Moreover, dH1(m)

dm
= 96f (8a− 96m)(8(a0 −a)− (b0 −m)96)−

4 − 96F(8a − 96m). Thus, for any m ≤ b̄, dH1(m)

dm
< 0, because m ≤ b̄ implies

8(a0 − a)≤ (b0 −m)80< (b0 −m)96.
Therefore, on the relevant domain m ∈ [b� b̄], H1 is decreasing, thus imply-

ing that there exists only one m∗ such that H1(m
∗)= 0. Therefore, there exists

only one β∗ such that G(β∗)= 0.
We are now interested in characterizing the limit of β∗ as the perturbation

vanishes, that is, as F converges to 1{ξ ≥ 0}. To do this, we introduce some
notation. We consider a sequence (Fn)n that converges to 1{ξ ≥ 0} and use β∗

n

to denote the steady state associated to Fn. Finally, we use Hn
1 to denote the

H1 associated to Fn.
We proceed as follows. First note that since β∗

n ∈ B ∀n, the limit exists (going
to a subsequence if needed). We show that m∗ ≡ limn→∞m∗

n = 8a
96 = 8 40

96 = 10
3 .

Suppose not; in particular, suppose that limn→∞m∗
n <

8a
96 = 10

3 (the argument for
the reverse inequality is analogous and thus omitted). In this case, limn→∞ 8a−
96m∗

n > 0, and thus limn→∞ Fn(8a− 96m∗
n)= 1. Therefore

lim
n→∞

Hn
1

(
β∗
n

)= 10
(−(a0 − a)+ (b0 −m∗)10

)≥ 10
(

−2 + 2
3

10
)
> 0�

But this implies that ∃N such thatHn
1 (β

∗
n) > 0 ∀n≥N , which is a contradiction.

Moreover, define σ∗
n = Fn(8a− 96m∗

n) and σ∗ = limn→∞σn. Since Hn
1 (m

∗
n)=

0 ∀n and m∗ = 10
3 , it follows that

σ∗ =
−2
(

−2 +
(

4 − 10
3

)
2
)

10
(

−2 +
(

4 − 10
3

)
10
)

− 2
(

−2 +
(

4 − 10
3

)
2
) = 1

36
�

GLOBAL CONVERGENCE TO THE STEADY STATE: In our example, it is in fact
possible to establish that behavior converges with probability 1 to the unique
equilibrium. By the results in Benaim (1999, Section 6.3), it is sufficient to



16 I. ESPONDA AND D. POUZO

establish the global asymptotic stability of β∗
n for any n, that is, the basin of

attraction of β∗
n is all of B.

In order to do this, letL(β)= (β−β∗
n)

′P(β−β∗
n) for all β; where P ∈ R

2×2 is
positive definite and diagonal and will be determined later. Note that L(β)= 0
iff β= β∗

n. Also

dL
(
β(t)

)
dt

= ∇L(β(t))′G(β(t))
= 2

(
β(t)−β∗

n

)′
P
(
G
(
β(t)

))
= 2

{(
m(t)−m∗

n

)
P[11]G1

(
β(t)

)+ (r(t)− r∗n
)
P[22]G2

(
β(t)

)}
�

Since G(β∗
n)= 0,

dL
(
β(t)

)
dt

= 2
(
β(t)−β∗

n

)′
P
(
G
(
β(t)

)−G
(
β∗
n

))
= 2

(
m(t)−m∗

n

)
P[11]

(
G1

(
β(t)

)−G1

(
β∗
n

))
+ 2

(
r(t)− r∗n

)
P[22]

(
G2

(
β(t)

)−G2

(
β∗
n

))
= 2

(
m(t)−m∗

n

)2
P[11]

∫ 1

0

∂G1

(
m∗
n + s(m(t)−m∗

n

)
� r∗n
)

∂m
ds

+ 2
(
r(t)− r∗n

)2
P[22]

∫ 1

0

∂G2

(
m∗
n� r

∗
n + s(r(t)− r∗n

))
∂r

ds�

where the last equality holds by the mean value theorem. Note that dG2(m
∗
n�

r∗n + s(r(t) − r∗n))/dr = −1 and
∫ 1

0 (dG1(m
∗
n + s(m(t) − m∗

n)� r
∗
n)/dm)ds =∫ 1

0 (r
∗
n)

−1(dH1(m
∗
n + s(m(t)−m∗

n))/dm)ds. Since r(t) > 0 and r∗n ≥ 0, the first
term is positive, and we already established that dH1(m)

dm
< 0 ∀m in the relevant

domain. Thus, by choosing P[11] > 0 and P[22] > 0, it follows that dL(β(t))

dt
< 0.

Therefore, we show that L satisfies the following properties: is strictly posi-
tive ∀β 	= β∗

n and L(β∗
n)= 0, and dL(β(t))

dt
< 0. Thus, the function satisfies all the

conditions of a Lyapunov function and, therefore, β∗
n is globally asymptotically

stable ∀n (see Hirsch, Smale, and Devaney (2004, p. 194)).
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