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NOTES AND COMMENTS

MATCHING ON THE ESTIMATED PROPENSITY SCORE

BY ALBERTO ABADIE AND GUIDO W. IMBENS1

Propensity score matching estimators (Rosenbaum and Rubin (1983)) are widely
used in evaluation research to estimate average treatment effects. In this article, we de-
rive the large sample distribution of propensity score matching estimators. Our deriva-
tions take into account that the propensity score is itself estimated in a first step, prior to
matching. We prove that first step estimation of the propensity score affects the large
sample distribution of propensity score matching estimators, and derive adjustments
to the large sample variances of propensity score matching estimators of the average
treatment effect (ATE) and the average treatment effect on the treated (ATET). The
adjustment for the ATE estimator is negative (or zero in some special cases), implying
that matching on the estimated propensity score is more efficient than matching on the
true propensity score in large samples. However, for the ATET estimator, the sign of
the adjustment term depends on the data generating process, and ignoring the estima-
tion error in the propensity score may lead to confidence intervals that are either too
large or too small.

KEYWORDS: Matching estimators, propensity score matching, average treatment ef-
fects, causal inference, program evaluation.

1. INTRODUCTION

PROPENSITY SCORE MATCHING ESTIMATORS (Rosenbaum and Rubin (1983))
are widely used to estimate treatment effects.2  Rosenbaum and Rubin (1983)
defined the propensity score as the conditional probability of assignment to a
treatment given a vector of covariates. Suppose that adjusting for a set of co-
variates is sufficient to eliminate confounding. The key insight of Rosenbaum
and Rubin (1983) is that adjusting only for the propensity score is also suffi-
cient to eliminate confounding. Relative to matching directly on the covariates,
propensity score matching has the advantage of reducing the dimensionality of
matching to a single dimension. This greatly facilitates the matching process

1We are grateful to the editor and three referees for helpful comments, to Ben Hansen, Ju-
dith Lok, James Robins, Paul Rosenbaum, Donald Rubin, and participants in many seminars for
comments and discussions, and to Jann Spiess for expert research assistance. Financial support
by the NSF through Grants SES 0820361 and SES 0961707 is gratefully acknowledged.

2Following the terminology in Abadie and Imbens (2006), the term “matching estimator” is
reserved in this article to estimators that match each unit (or each unit of some sample subset, e.g.,
the treated) to a small number of units with similar characteristics in the opposite treatment arm.
Thus, our discussion does not refer to regression imputation methods, like the kernel matching
method of Heckman, Ichimura, and Todd (1998), which use a large number of matches per unit
and nonparametric smoothing techniques to consistently estimate unit-level regression values
under counterfactual treatment assignments. See Hahn (1998), Heckman, Ichimura, and Todd
(1998), Imbens (2004), and Imbens and Wooldridge (2009) for a discussion of such estimators.
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because units with dissimilar covariate values may nevertheless have similar
values for their propensity scores.

In observational studies, propensity scores are not known, so they have to
be estimated prior to matching. In spite of the great popularity that propensity
score matching methods have enjoyed since they were proposed by Rosenbaum
and Rubin in 1983, their large sample distribution has not yet been derived for
the case when the propensity score is estimated in a first step.3 A possible rea-
son for this void in the literature is that matching estimators are non-smooth
functionals of the distribution of the matching variables, which makes it dif-
ficult to establish an asymptotic approximation to the distribution of match-
ing estimators when a matching variable is estimated in a first step. This has
motivated the use of bootstrap standard errors for propensity score matching
estimators. However, recently it has been shown that the bootstrap is not, in
general, valid for matching estimators (Abadie and Imbens (2008)).4

In this article, we derive large sample approximations to the distribution of
propensity score matching estimators. Our derivations take into account that
the propensity score is itself estimated in a first step. We show that propensity
matching estimators have approximately Normal distributions in large sam-
ples. We demonstrate that first step estimation of the propensity score affects
the large sample distribution of propensity score matching estimators, and de-
rive adjustments to the large sample variance of propensity score matching
estimators that correct for first step estimation of the propensity score. We do
this for estimators of the average treatment effect (ATE) and the average treat-
ment effect on the treated (ATET). The adjustment for the ATE estimator is
negative (or zero in some special cases), implying that matching on the esti-
mated propensity score is more efficient than matching on the true propensity
score in large samples. As a result, treating the estimated propensity score as
it was the true propensity score for estimating the variance of the ATE esti-
mator leads to conservative confidence intervals. However, for the ATET esti-
mator, the sign of the adjustment depends on the data generating process, and
ignoring the estimation error in the propensity score may lead to confidence
intervals that are either too large or too small.

2. MATCHING ESTIMATORS

The setup in this article is a standard one in the program evaluation litera-
ture, where the focus of the analysis is often the effect of a binary treatment,

3Influential papers using matching on the estimated propensity score include Heckman,
Ichimura, and Todd (1997), Dehejia and Wahba (1999), and Smith and Todd (2005).

4In contexts other than matching, Heckman, Ichimura, and Todd (1998), Hirano, Imbens, and
Ridder (2003), Abadie (2005), Wooldridge (2007), and Angrist and Kuersteiner (2011) derived
large sample properties of statistics based on a first step estimator of the propensity score. In
all these cases, the second step statistics are smooth functionals of the propensity scores and,
therefore, standard stochastic expansions for two-step estimators apply (see, e.g., Newey and
McFadden (1994)).
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represented in this paper by the indicator variable W , on some outcome vari-
able, Y . More specifically, W = 1 indicates exposure to the treatment, while
W = 0 indicates lack of exposure to the treatment. Following Rubin (1974),
we define treatment effects in terms of potential outcomes. We define Y(1) as
the potential outcome under exposure to treatment, and Y(0) as the potential
outcome under no exposure to treatment. Our goal is to estimate the average
treatment effect,

τ =E
[
Y(1)−Y(0)

]
�

where the expectation is taken over the population of interest. Alternatively,
the goal may be estimation of the average effect for the treated,

τt =E
[
Y(1)−Y(0)|W = 1

]
�

Estimation of these average treatment effects is complicated by the fact that for
each unit in the population, we observe at most one of the potential outcomes:

Y =
{
Y(0) if W = 0,
Y(1) if W = 1.

Let X be a vector of covariates of dimension k. The propensity score is p(X)=
Pr(W = 1|X), and p∗ = Pr(W = 1) is the probability of being treated. The
following assumption is often referred to as “strong ignorability” (Rosenbaum
and Rubin (1983)). It means that adjusting for X is sufficient to eliminate all
confounding.

ASSUMPTION 1: (i) Y(1)�Y(0) ⊥⊥ W |X almost surely; (ii) p ≤ p(X) ≤ p

almost surely, for some p> 0 and p< 1.

Assumption 1(i) uses the conditional independence notation in Dawid
(1979). This assumption is often referred to as “unconfoundedness.” It will
hold, for example, if all confounders are included in X , so that after control-
ling for X , treatment exposure is independent of the potential outcomes. Hahn
(1998) derived asymptotic variance bounds and studied asymptotically efficient
estimation under Assumption 1(i). Assumption 1(ii) implies that, for almost all
values of X , the population includes treated and untreated units. Moreover,
Assumption 1(ii) bounds the values of the propensity score away from zero
and 1. Khan and Tamer (2010) have shown that this condition is necessary for
root-N consistent estimation of the average treatment effect.

Let μ(w�x) = E[Y |W = w�X = x] and σ2(w�x) = var(Y |W = w�X = x)
be the conditional mean and variance of Y given W = w and X = x. Simi-
larly, let μ̄(w�p) = E[Y |W = w�p(X) = p] and σ̄2(w�p) = var(Y |W = w�
p(X) = p) be the conditional mean and variance of Y given W = w and
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p(X)= p. Under Assumption 1,

τ = E
[
μ(1�X)−μ(0�X)

]
and

τt =E
[
μ(1�X)−μ(0�X)|W = 1

]
(see Rubin (1974)). Therefore, adjusting for differences in the distribution of
X between treated and nontreated removes all confounding and, therefore,
allows identification of ATE and ATET. Rosenbaum and Rubin (1983) proved
that W and X are independent conditional on the propensity score, p(X),
which implies that under Assumption 1:

τ = E
[
μ̄

(
1�p(X)

) − μ̄
(
0�p(X)

)]
and

τt =E
[
μ̄

(
1�p(X)

) − μ̄
(
0�p(X)

)|W = 1
]
�

In other words, under Assumption 1, adjusting for the propensity score only
is enough to remove all confounding. This result motivates the use of propen-
sity score matching estimators. A propensity score matching estimator for the
average treatment effect can be defined as

τ̂∗
N = 1

N

N∑
i=1

(2Wi − 1)
(
Yi − 1

M

∑
j∈JM(i)

Yj

)
�

where M is a fixed number of matches per unit and JM(i) is the set of matches
for unit i.5 (The superscript ∗ on τ̂∗

N indicates that matching is done on the true
propensity score.) For concreteness, in this article we will consider matching
with replacement, so each unit in the sample can be used as a match multiple
times. In the absence of matching ties, the set of matches JM(i) can formally

5In typical applications, M is small, often M = 1. Choosing a small M reduces finite sample
biases caused by matches of poor quality, that is, matches between individuals with substantial
differences in their propensity score values. Larger values of M produce lower large sample vari-
ances (see Abadie and Imbens (2006, Section 3.4)), and one could consider increasing M in a
particular application if such increase has a small effect on the size of the matching discrepan-
cies, which are observed in the data (Abadie and Imbens (2011)). Similarly to Yatchew’s (1997)
work on semiparametric differencing estimators, we derive a large sample approximation to the
distribution of matching estimators for fixed values of M . Large sample approximations based
on fixed values of smoothing parameters have been shown to increase accuracy in other contexts
(see, in particular, Kiefer and Vogelsang (2005)).
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be defined as

JM(i) =
{
j = 1� � � � �N :Wj = 1 −Wi�( ∑
k:Wk=1−Wi

1[|p(Xi)−p(Xk)|≤|p(Xi)−p(Xj)|]

)
≤M

}
�

where 1[·] is a binary indicator that takes value 1 if the event inside brackets
is true, and value zero if not. For the average effect on the treated, τt , the
corresponding estimator is

τ̂∗
t�N = 1

N1

N∑
i=1

Wi

(
Yi − 1

M

∑
j∈JM(i)

Yj

)
�

where N1 = ∑N

i=1 Wi is the number of treated units in the sample.
The large sample distributions of τ̂∗

N and τ̂∗
t�N can be easily derived from re-

sults on matching estimators in Abadie and Imbens (2006), applied to the case
where the only matching variable is the known propensity score. However, one
of the assumptions in Abadie and Imbens (2006) requires that the density of
the matching variables is bounded away from zero. Although this assumption
may be appropriate in settings where the matching is carried out directly on
the covariates, X , it is much less appealing for propensity score matching es-
timators. For example, if the propensity score has the form p(X) = F(X ′θ),
then even if the density of X is bounded away from zero on its support, the
density of F(X ′θ) will generally not be bounded away from zero on its sup-
port. We therefore generalize the results in Abadie and Imbens (2006) to al-
low the density of propensity score to take values that are arbitrarily close to
zero.

ASSUMPTION 2: (i) The propensity score p(X) is continuously distributed, has
interval support [p�p], and has a density that is a continuous function on [p�p];
(ii) for w = 0�1, μ̄(w�p) and σ̄2(w�p) are Lipschitz-continuous and continuous
in p, respectively; (iii) for w = 0�1, there exists δ > 0 such that E[|Y |2+δ|W = w�
p(X)= p] is uniformly bounded.

ASSUMPTION 3: {(Yi�Wi�Xi)}Ni=1 are independent draws from the distribution
of (Y�W �X).

The next proposition presents the large sample distributions of τ̂∗
N and τ̂∗

t�N

under Assumptions 1–3.

PROPOSITION 1: Suppose Assumptions 1–3 hold. Then, (i)
√
N

(̂
τ∗
N − τ

) d→N
(
0�σ2

)
�
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where

σ2 = E
[(
μ̄

(
1�p(X)

) − μ̄
(
0�p(X)

) − τ
)2]

+E

[
σ̄2

(
1�p(X)

)( 1
p(X)

+ 1
2M

(
1

p(X)
−p(X)

))]
+E

[
σ̄2

(
0�p(X)

)
×

(
1

1 −p(X)
+ 1

2M

(
1

1 −p(X)
− (

1 −p(X)
)))]

�

and (ii)

√
N

(̂
τ∗
t�N − τt

) d→ N
(
0�σ2

t

)
�

where

σ2
t = 1

E
[
p(X)

]2E
[
p(X)

(
μ̄

(
1�p(X)

) − μ̄
(
0�p(X)

) − τt
)2]

+ 1

E
[
p(X)

]2E
[
σ̄2

(
1�p(X)

)
p(X)

]
+ 1

E
[
p(X)

]2E

[
σ̄2

(
0�p(X)

)
×

(
p2(X)

1 −p(X)
+ 1

M
p(X)+ 1

2M
p2(X)

1 −p(X)

)]
�

The proof of this proposition is available in the Supplemental Material
(Abadie and Imbens (2016)).

Motivated by the fact that, in observational studies, propensity scores are
not known, we are interested in the case where matching is not on the true
propensity score p(X), but on an estimate of the propensity score. Following
Rosenbaum and Rubin (1983) and most of the empirical literature, we consider
a generalized linear specification for the propensity score, p(x) = F(x′θ). In
empirical research, the link function F is usually specified as Logit or Probit.
It is straightforward to extend our results to more general parametric models
for the propensity score.6 For unit i, and for arbitrary values for θ, let JM(i�θ)

6Misspecification of the propensity score typically leads to inconsistency of the treatment effect
estimator, unless the misspecified propensity score constitutes a balancing score, that is, a func-
tion, b(X), of the covariates such that X ⊥⊥ W |b(X) (see Rosenbaum and Rubin (1983)). Moti-
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denote the set of M matches where we match on F(X ′θ):

JM(i�θ) =
{
j = 1� � � � �N :Wj = 1 −Wi�( ∑
k:Wk=1−Wi

1[|F(X ′
iθ)−F(X ′

k
θ)|≤|F(X ′

iθ)−F(X ′
jθ)|]

)
≤M

}
�

The matching estimator for the average treatment effect where we match on
F(X ′θ) is then

τ̂N(θ) = 1
N

N∑
i=1

(2Wi − 1)
(
Yi − 1

M

∑
j∈JM(i�θ)

Yj

)
�

Let θ∗ denote the true value of the propensity score model parameter vec-
tor, so that p(X) = F(X ′θ∗). Then, the estimator based on matching on the
true propensity score can be written as τ̂∗

N = τ̂N(θ
∗). We are interested in the

case where τ̂N(θ) is evaluated at an estimator θ̂N of θ∗, based on a sample
{Yi�Wi�Xi}Ni=1. We focus on the case where θ̂N is the maximum likelihood esti-
mator of θ:7

θ̂N = arg max
θ

L(θ|W1�X1� � � � �WN�XN)�

where the log-likelihood function is

L(θ|W1�X1� � � � �WN�XN)

=
N∑
i=1

Wi lnF
(
X ′

iθ
) + (1 −Wi) ln

(
1 − F

(
X ′

iθ
))
�

The propensity score matching estimator of τ that matches on the estimated
propensity score can now be written as

τ̂N = τ̂N(θ̂N)= 1
N

N∑
i=1

(2Wi − 1)
(
Yi − 1

M

∑
j∈JM(i�θ̂N )

Yj

)
�

vated by this consideration, empirical researchers routinely use measures of balance in the distri-
bution of the covariates between treated and nontreated, conditional on the estimated propen-
sity score, to perform specification searches on the propensity score (see, e.g., Dehejia and Wahba
(1999)). An alternative safeguard against misspecification of the propensity score is the use “dou-
bly robust” matching estimators, like the bias-corrected matching estimator of Abadie and Im-
bens (2011).

7It is straightforward to extend our results to other asymptotically linear estimators of θ∗.
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Similarly, the propensity score matching estimator of τt that matches on the
estimated propensity score can be written as

τ̂t�N = τ̂t�N(θ̂N)= 1
N1

N∑
i=1

Wi

(
Yi − 1

M

∑
j∈JM(i�θ̂N )

Yj

)
�

Whenever confusion is possible, we will be explicit in the dependence of the
matching estimators on θ. If the argument is omitted, τ̂N and τ̂t�N are used as
shorthand for τ̂N(θ̂N) and τ̂t�N(θ̂N), respectively.

The two main questions addressed in this article are (i) do the estimators
based on matching on the estimated propensity score have Normal large sam-
ple distributions, and (ii) if so, how does their large sample variance compare to
that of the estimators that match on the true propensity score, given in Propo-
sition 1? In the next section, we answer these two questions and derive the
large sample distribution of τ̂N(θ̂N) and τ̂t�N(θ̂N). Conventional linearization
methods for two-step statistics are difficult to apply in the context of matching
estimators because matching estimators are complicated functionals of the dis-
tribution of the data. We therefore follow a different route, building on work
by Andreou and Werker (2012) on residual based statistics, and the martingale
representations for matching estimators derived in Abadie and Imbens (2012).

3. LARGE SAMPLE DISTRIBUTION

In the first part of this section, we derive the large sample approximation
to the sampling distribution of τ̂N(θ̂N), and in the second part, we present the
results for τ̂t�N(θ̂N).

Let Pθ be the distribution of Z = {Y�W �X} induced by the propensity score,
F(X ′θ), the marginal distribution of X , and the conditional distribution of Y
given X and W . We index this distribution Pθ by θ, and will consider properties
of estimators for different values of θ, under the same marginal distribution
for X , and the same conditional distribution for Y given W and X . Given
Assumption 1, the average treatment effect is equal to

τ = E
[
Y(1)−Y(0)

] = E
[
E[Y |W = 1�X] −E[Y |W = 0�X]]�

From this equation, it can be seen that ATE does not depend on the propensity
score; it only depends on the conditional distribution of Y given W and X and
the marginal distribution of X . The average treatment effect for the treated is

τt = E
[
Y(1)−Y(0)|W = 1

]
= E

[
E[Y |W = 1�X] −E[Y |W = 0�X]|W = 1

]
= E

[
F

(
X ′θ∗)(E[Y |W = 1�X] −E[Y |W = 0�X])]

E
[
F

(
X ′θ∗)] �
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In contrast to the average treatment effect, τ, the average treatment effect for
the treated, τt , depends on the propensity score, and we make this dependence
explicit by indexing τt by θ wherever appropriate. In particular, τt = τt(θ

∗) is
the average effect of the treatment on the treated.

To derive the large sample distribution of τ̂N and τ̂t�N , we invoke some addi-
tional regularity conditions. First, we extend Assumption 2 to hold for all θ in
a neighborhood of θ∗.

ASSUMPTION 4: (i) θ∗ ∈ int(Θ) with Θ compact, X has a bounded support,
and E[XX ′] is nonsingular; (ii) F :R 	→ (0�1) is continuously differentiable with
strictly positive and bounded derivative f ; (iii) there exists a component of X that
is continuously distributed, has nonzero coefficient in θ∗, and admits a continuous
density function conditional on the rest of X; and (iv) there exists ε > 0 such that,
for all θ with ‖θ− θ∗‖ ≤ ε, E[Y |W = w�F(X ′θ) = p] is Lipschitz-continuous in
p, var(Y |W = w�F(X ′θ) = p) is continuous in p, and there is δ > 0 such that
E[|Y |2+δ|W =w�F(X ′θ) = p] is uniformly bounded.

The case of only discrete regressors is left out from Assumption 4, but, as
noted in Abadie and Imbens (2006), it is a simple case to treat separately.
With only discrete regressors, each observation (or each treated observation
in the case of ATET) can be matched to every observation with identical esti-
mated propensity score value in the opposite treatment arm. In this case, the
propensity score matching estimator is identical to the subclassification estima-
tor in Cochran (1968) and Angrist (1998), and valid analytical and bootstrap
standard errors can be easily derived.

We will study the behavior of certain statistics under sequences θN that are
local to θ∗. Consider ZN�i = {YN�i�WN�i�XN�i} with distribution given by the lo-
cal “shift” PθN with θN = θ∗ + h/

√
N , where h is a conformable vector of con-

stants. Let ΛN(θ|θ′) be the difference between the value of the log-likelihood
function evaluated at θ and the value of the log-likelihood function evaluated
at θ′:

ΛN

(
θ|θ′) =L(θ|ZN�1� � � � �ZN�N)−L

(
θ′|ZN�1� � � � �ZN�N

)
�

Let ΔN(θ) be the normalized score function, or central sequence,

ΔN(θ) = 1√
N

∂

∂θ
L(θ|ZN�1� � � � �ZN�N)

= 1√
N

N∑
i=1

XN�i

WN�i − F
(
X ′

N�iθ
)

F
(
X ′

N�iθ
)(

1 − F
(
X ′

N�iθ
))f (

X ′
N�iθ

)
�
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Finally, let

Iθ =E

[
f
(
X ′θ

)2

F
(
X ′θ

)(
1 − F

(
X ′θ

))XX ′
]

be the Fisher Information Matrix for θ. The expectation in this equation is
taken over the marginal distribution of X , which does not depend on θ, so the
indexing by θ solely reflects the value of θ where f (X ′θ) and F(X ′θ) are eval-
uated. The following intermediate lemma derives some important regularity
properties of the propensity score model that will be needed for our deriva-
tions.

LEMMA 1: Suppose that Assumptions 3, 4(i), and 4(ii) hold. Then, under PθN ,

ΛN

(
θ∗|θN

) = −h′ΔN(θN)− 1
2
h′Iθ∗h+ op(1)�(1)

ΔN(θN)
d→ N(0� Iθ∗)�(2)

where Iθ∗ is not singular, and

√
N(θ̂N − θN)= I−1

θ∗ ΔN(θN)+ op(1)�(3)

The proof of this proposition is available in the Supplemental Material
(Abadie and Imbens (2016)). For regular parametric models, equation (1) can
be established using Proposition 2.1.2 in Bickel, Klaassen, Ritov, and Well-
ner (1998). Also for regular parametric models, equation (2) is derived in
the proof of Proposition 2.1.2 in Bickel et al. (1998). Equation (3) can be
established using the same set of results in combination with classical con-
ditions for asymptotic linearity of maximum likelihood estimators (see, e.g.,
van der Vaart (1998, Theorem 5.39), Lehmann and Romano (2005, Theo-
rem 12.4.1)).

Let Eθ be the expectation operator with respect to the distributions Pθ. The
following assumption is a regularity condition that will be used later in this
section.

ASSUMPTION 5: EθN [r(Y�W �X)|W�F(X ′θN)] converges to E[r(Y�W �X)|
W�F(X ′θ∗)] almost surely, for any Rk+2-to-R bounded and measurable function,
r(y�w�x), continuous in x, and any sequence, θN → θ∗.

Primitive conditions for this assumption are provided in the Supplemental
Material.
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3.1. Large Sample Distribution for τ̂N(θ̂N)

Our derivation of the limit distribution of
√
N(̂τN − τ) is based on the tech-

niques developed in Andreou and Werker (2012) to analyze the limit distribu-
tion of residual-based statistics. We proceed in three steps. First, we derive the
joint limit distribution of (

√
N(̂τN(θN) − τ)�

√
N(θ̂ − θN)�ΛN(θ

∗|θN)) under
PθN .

PROPOSITION 2: Suppose that Assumptions 1–5 hold. Then, under PθN ,⎛⎝
√
N

(̂
τN(θN)− τ

)
√
N(θ̂N − θN)

ΛN

(
θ∗|θN

)
⎞⎠

d→ N

⎛⎝( 0
0

−h′Iθ∗h/2

)
�

⎛⎝ σ2 c′I−1
θ∗ −c′h

I−1
θ∗ c I−1

θ∗ −h

−h′c −h′ h′Iθ∗h

⎞⎠⎞⎠ �

where

c = E

[(
cov

(
X�μ(1�X)|F(

X ′θ∗))
F

(
X ′θ∗)(4)

+ cov
(
X�μ(0�X)|F(

X ′θ∗))
1 − F

(
X ′θ∗) )

f
(
X ′θ∗)]�

All proofs for the results in this section are provided in the Appendix.
Asymptotic Normality of the first component,

√
N(̂τN(θN) − τ), under Pθ∗

follows from Proposition 1. Asymptotic joint Normality of the last two com-
ponents,

√
N(θ̂N − θN) and ΛN(θ

∗|θN), follows from Lemma 1. Proposition 2
derives the joint large sample distribution of the three components under PθN .
The proof extends the martingale techniques of Abadie and Imbens (2012) to
derive the result of the proposition.

In the second step of our argument, we use Le Cam’s third lemma (e.g.,
van der Vaart (1998, p. 90)). Given the result of Proposition 2, Le Cam’s third
lemma implies that, under Pθ∗ ,(√

N
(̂
τN(θN)− τ

)
√
N(θ̂N − θN)

)
d→N

((−c′h
−h

)
�

(
σ2 c′I−1

θ∗

I−1
θ∗ c I−1

θ∗

))
�

Substituting θN = θ∗ +h/
√
N , this implies that (still under Pθ∗), for any h ∈R

k,(√
N

(̂
τN

(
θ∗ + h/

√
N

) − τ
)

√
N

(
θ̂N − θ∗)

)
d→ N

((−c′h
0

)
�

(
σ2 c′I−1

θ∗

I−1
θ∗ c I−1

θ∗

))
�(5)
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If equation (5) was an exact result rather than an approximation based on con-
vergence in distribution, it would directly lead to the result of interest. In that
case, it would follow that

√
N

(̂
τN

(
θ∗ + h/

√
N

) − τ
)|√N

(
θ̂N − θ∗)

= h∼N
(
0�σ2 − c′I−1

θ∗ c
)

(see, e.g., Goldberger (1991, p. 197)). Because
√
N(θ̂N − θ∗) = h implies θ∗ +

h/
√
N = θ̂N , and thus implies that τ̂N(θ

∗ + h/
√
N) = τ̂N(θ̂N) = τ̂N , the last

displayed equation can also be written as

√
N(̂τN − τ)|√N(θ̂N − θ) = h∼N

(
0�σ2 − c′I−1

θ∗ c
)
�

Because this conditional distribution does not depend on h, this in turn implies
that, under Pθ∗ , unconditionally,

√
N(̂τN − τ)∼N

(
0�σ2 − c′I−1

θ∗ c
)
�

which is the result we are looking for: the distribution of the matching estima-
tor based on matching on the estimated propensity score.

A challenge formalizing this argument is that convergence of
√
N(̂τN − τ)|√

N(θ̂N − θ∗) = h involves convergence in a conditioning event. To overcome
this challenge, in the third step of the argument, we employ a Le Cam dis-
cretization device, as proposed in Andreou and Werker (2012). Consider a
grid of cubes in R

k with sides of length d/
√
N , for arbitrary positive d. Then

θ̄N is the discretized estimator, defined as the midpoint of the cube θ̂N belongs
to. If θ̂N�j is the jth component of the k-vector θ̂N , then the jth component of
the k-vector θ̄N is θ̄N�j = (d/

√
N)[√Nθ̂N�j/d], where [·] is the nearest integer

function. Now we can state the main result of the paper.

THEOREM 1: Suppose Assumptions 1–5 hold. Then, under Pθ∗ ,

lim
d↓0

lim
N→∞

Pr
(√

N
(
σ2 − c′I−1

θ∗ c
)−1/2(̂

τN(θ̄N)− τ
) ≤ z

)
=

∫ z

−∞

1√
2π

exp
(

−1
2
x2

)
dx�

An implication of Theorem 1 is that we can approximate the distribution
of

√
N(̂τN(θ̂N) − τ) by a Normal distribution with mean zero and variance

σ2 − c′I−1
θ∗ c. The result in Theorem 1 indicates that the adjustment to the stan-
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dard error of the propensity score matching estimator for first step estimation
of the propensity score is always negative, or zero in some special cases as dis-
cussed below. This implies that using matching on the estimated propensity
score, rather than on the true propensity score, to estimate ATE increases pre-
cision in large samples. As we will see later, this gain in precision from using
the estimated propensity score does not necessarily hold for the estimation of
parameters different than ATE.

Equation (4) and the fact that X and W are independent conditional on
the propensity score imply that if the covariance of X and μ(W �X) given
F(X ′θ∗) and W is equal to zero, then c = 0 and first step estimation of the
propensity score does not affect the large sample variance of

√
N(θ̂N − θ∗).

This would be the case if the propensity score provides no “dimension re-
duction,” that is, if the propensity score is a bijective function of X . In that
case, each value of the propensity score corresponds to only one value of X , so
cov(X�μ(W �X)|W�F(X ′θ∗))= 0 and, therefore, c = 0.

For concreteness, our derivations focus on the case of matching with replace-
ment. However, as shown in Abadie and Imbens (2012), martingale represen-
tations analogous to the one employed in the proof of Proposition 2 exist for
alternative matching estimators (e.g., estimators that construct the matches
without using replacement). An inspection of the proof of Proposition 2 reveals
that the adjustment term, −c′Iθ∗c, does not depend on the type of matching
employed to obtain the estimators. Therefore, the result in Theorem 1 trans-
lates easily to other matching settings. A different type of matching scheme
may change the form of σ2 in the result of Theorem 1, but not the adjustment
term, −c′Iθ∗c.

3.2. Large Sample Distribution for τ̂t�N

In this section, we consider the asymptotic distribution for
√
N(̂τt�N −

τt(θ
∗)). The derivations are similar to those for the case of ATE, so we rel-

egate details to the Supplemental Material. The following theorem provides
the result.

THEOREM 2: Suppose Assumptions 1–5 hold, and let

ct = 1
E

[
F

(
X ′θ∗)]E[

Xf
(
X ′θ∗)(μ̄(

1�F
(
X ′θ∗)) − μ̄

(
0�F

(
X ′θ∗)) − τt

)]
+ 1

E
[
F

(
X ′θ∗)]E[(

cov
(
X�μ(1�X)|F(

X ′θ∗))
+ F

(
X ′θ∗)

1 − F
(
X ′θ∗) cov

(
X�μ(0�X)|F(

X ′θ∗)))f (
X ′θ∗)]�
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Then, under Pθ∗ ,

lim
d↓0

lim
N→∞

Pr
(√

N

(
σ2

t − c′
tI

−1
θ∗ ct + ∂τt

(
θ∗)

∂θ

′
I−1
θ∗

∂τt
(
θ∗)

∂θ

)−1/2

× (̂
τt�N(θ̄N)− τt

) ≤ z

)
=

∫ z

−∞

1√
2π

exp
(

−1
2
x2

)
dx�

Notice that, in contrast to the ATE case, the adjustment for first step es-
timation of the propensity score for the ATET estimator may result in a de-
crease or an increase in the standard error. The adjustment to the standard
error of the ATET estimator will be positive, for example, if the propensity
score does not provide “dimension reduction,” so ct = 0, and ∂τt(θ

∗)/∂θ �= 0
(which will typically be the case if the average effect of the treatment varies
with the covariates, X). In contrast, if ct �= 0 and ∂τt(θ

∗)/∂θ = 0, the adjust-
ment is negative. Like for the case of ATE, it can be shown that the adjust-
ment term does not depend on the particular type of matching estimator of
ATET.

4. ESTIMATION OF THE ASYMPTOTIC VARIANCE

In this section, we discuss estimation of the large sample variances of ATE
and ATET adjusting for first step estimation of the propensity score. As shown
in the previous section, the asymptotic variance for

√
N(̂τN − τ) is

σ2
adj = σ2 − c′I−1

θ∗ c�(6)

and the asymptotic variance for
√
N(̂τt�N − τt) is

σ2
t�adj = σ2

t − c′
tI

−1
θ∗ ct + ∂τt

(
θ∗)

∂θ

′
I−1
θ∗

∂τt
(
θ∗)

∂θ
�(7)

To estimate σ2
adj and σ2

t�adj, we define estimators of each of the components of
the right-hand sides of equations (6) and (7). First, estimation of the informa-
tion matrix, Iθ∗ , is standard:

Îθ∗ = 1
N

N∑
i=1

f
(
X ′

i θ̂N

)2

F
(
X ′

i θ̂N

)(
1 − F

(
X ′

i θ̂N

))XiX
′
i �

Consider next estimation of the variances corresponding to matching on the
true propensity score, σ2 and σ2

t . For these components, we use estimators
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that are based on those in Abadie and Imbens (2006). Let KM�θ(i) be the
number of times that observation i is used as a match (when matching on
F(X ′θ)):

KM�θ(i)=
N∑
j=1

1[i∈JM(j�θ)]�(8)

and let ̂̄σ2
(Wi�F(X

′
iθ

∗)) be an asymptotically unbiased (but not necessarily
consistent) estimator of σ̄2(Wi�F(X

′
iθ

∗)). The Abadie and Imbens (2006) vari-
ance estimators are

σ̂2 = 1
N

N∑
i=1

(
(2Wi − 1)

(
Yi − 1

M

∑
j∈JM(i�θ̂)

Yj

)
− τ̂N

)2

+ 1
N

N∑
i=1

((
KM�θ̂(i)

M

)2

+ 2M − 1
M

(
KM�θ̂(i)

M

))̂̄σ2(
Wi�F

(
X ′

iθ
∗))

and

σ̂2
t = N

N2
1

N∑
i=1

Wi

(
Yi − 1

M

∑
j∈JM(i�θ̂)

Yj − τ̂t�N

)2

+ N

N2
1

N∑
i=1

(1 −Wi)

(
KM�θ̂(i)

(
KM�θ̂(i)− 1

)
M2

)̂̄σ2(
Wi�F

(
X ′

iθ
∗))�

To obtain the estimator ̂̄σ2
(Wi�F(X

′
iθ

∗)), let HL(i� θ) be the set of units in
the same treatment arm as unit i that have the closest L values of F(X ′θ) to
F(X ′

iθ),

HL(i� θ) =
{
j = 1� � � � �N :Wj =Wi�( ∑
k:Wk=Wi

1[|F(X ′
iθ)−F(X ′

k
θ)|≤|F(X ′

iθ)−F(X ′
jθ)|]

)
≤L

}
�

where L is generic notation for a (small) positive integer. Later, we will also
use the set H(−i)

L (i� θ), which is similarly defined but excludes i:

H(−i)
L (i� θ) =

{
j = 1� � � � �N : i �= j�Wj =Wi�( ∑
k:Wk=Wi�k �=i

1[|F(X ′
iθ)−F(X ′

k
θ)|≤|F(X ′

iθ)−F(X ′
jθ)|]

)
≤L

}
�
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The sets HL(i� θ), H(−i)
L (i� θ), and JL(i� θ) (this last one defined in Section 2)

will be used to estimate the different components of σ2
adj and σ2

t�adj. The value
of L can vary for different components.

For L ≥ 2 (typically, L = 2), consider the following matching estimator of
σ̄2(Wi�F(X

′
iθ

∗)):

̂̄σ2(
Wi�F

(
X ′

iθ
∗)) = 1

L− 1

∑
j∈HL(i�θ̂N )

(
Yj − 1

L

∑
k∈HL(i�θ̂N )

Yk

)2

�

That is, ̂̄σ2
(Wi�F(X

′
iθ

∗)) is a local variance estimator that uses information
only from units with the same value of W as unit i and with similar values of
F(X ′θ̂N). Because θ̂N − θ∗ converges in probability to zero, ̂̄σ2

(Wi�F(X
′
iθ

∗))
becomes asymptotically unbiased as N → ∞. But because L is fixed, the vari-
ance of ̂̄σ2

(Wi�F(X
′
iθ

∗)) does not converge to zero and ̂̄σ2
(Wi�F(X

′
iθ

∗)) is not
consistent for σ̄2(Wi�F(X

′
iθ

∗)). The objects of interest, however, are σ2 and
σ2

t , rather than σ̄2(Wi�F(X
′
iθ

∗)). The estimators σ̂2 and σ̂2
t average terms that

are bounded in probability and asymptotically unbiased. As a result, as shown
in Abadie and Imbens (2006), σ̂2 and σ̂2

t are consistent for σ2 and σ2
t , respec-

tively.
Next consider estimation of c and ct . Notice first that

cov
(
X�Y |F(

X ′θ∗)�W = 1
)

= cov
(
X�μ(1�X)|F(

X ′θ∗)�W = 1
)

+ cov
(
X�Y −μ(1�X)|F(

X ′θ∗)�W = 1
)

= cov
(
X�μ(1�X)|F(

X ′θ∗))
+ cov

(
X�Y −μ(1�X)|F(

X ′θ∗)�W = 1
)
�

Using the Law of Iterated Expectations,

cov
(
X�Y −μ(1�X)|F(

X ′θ∗)�W = 1
)

=E
[
X

(
Y −μ(1�X)

)|F(
X ′θ∗)�W = 1

]
−E

[
X|F(

X ′θ∗)�W = 1
]

×E
[
Y −μ(1�X)|F(

X ′θ∗)�W = 1
]

=E
[
X

(
μ(1�X)−μ(1�X)

)|F(
X ′θ∗)�W = 1

]
−E

[
X|F(

X ′θ∗)�W = 1
]

×E
[
μ(1�X)−μ(1�X)|F(

X ′θ∗)�W = 1
]

= 0�
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Therefore,

cov
(
X�μ(1�X)|F(

X ′θ∗)) = cov
(
X�Y |F(

X ′θ∗)�W = 1
)
�

and the analogous result is valid conditional on Wi = 0:

cov
(
X�μ(0�X)|F(

X ′θ∗)) = cov
(
X�Y |F(

X ′θ∗)�W = 0
)
�

If Wi =w, cov(Xi�μ(w�Xi)|F(X ′
iθ

∗)) can be estimated as

ĉov
(
Xi�μ(w�Xi)|F

(
X ′

iθ
∗))

= 1
L− 1

∑
j∈HL(i�θ̂N )

(
Xj − 1

L

∑
k∈HL(i�θ̂N )

Xk

)(
Yj − 1

L

∑
k∈HL(i�θ̂N )

Yk

)
�

for L≥ 2 (typically, L = 2). If Wi �=w, then

ĉov
(
Xi�μ(w�Xi)|F

(
X ′

iθ
∗))

= 1
L− 1

∑
j∈JL(i�θ̂N )

(
Xj − 1

L

∑
k∈JL(i�θ̂N )

Xk

)(
Yj − 1

L

∑
k∈JL(i�θ̂N )

Yk

)
�

also for L ≥ 2 (typically, L = 2). Like ̂̄σ2
(Wi�F(X

′
iθ

∗)), the estimators
ĉov(Xi�μ(w�Xi)|F(X ′

iθ
∗)) are asymptotically unbiased and bounded in prob-

ability. This allows us to construct a consistent analog estimator of c that aver-
ages ĉov(Xi�μ(w�Xi)|F(X ′

iθ
∗)) over the sample:

ĉ = 1
N

N∑
i=1

(
ĉov

(
Xi�μ(1�Xi)|F

(
X ′

iθ
∗))

F
(
X ′

i θ̂N

)
+ ĉov

(
Xi�μ(0�Xi)|F

(
X ′

iθ
∗))

1 − F
(
X ′

i θ̂N

) )
f
(
X ′

i θ̂N

)
�

For ct , we propose separate estimators for the two components, ct�1 and ct�2,
where

ct�1 = 1
E

[
F

(
X ′θ∗)]E[

Xf
(
X ′θ∗)

× (
μ̄

(
1�F

(
X ′θ∗)) − μ̄

(
0�F

(
X ′θ∗)) − τt

)]
�

ct�2 = 1
E

[
F

(
X ′θ∗)]E[(

cov
(
X�μ(1�X)|F(

X ′θ∗))
+ F

(
X ′θ∗)

1 − F
(
X ′θ∗) cov

(
X�μ(0�X)|F(

X ′θ∗)))f (
X ′θ∗)]�
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and ct = ct�1 + ct�2. The second component, ct�2, is similar to ct , and our pro-
posed estimator for ct�2 is correspondingly similar to the estimator for c:

ĉt�2 = 1
N1

N∑
i=1

(
ĉov

(
Xi�μ(1�Xi)|F

(
X ′

iθ
∗))(9)

+ F
(
X ′

i θ̂N

)
1 − F

(
X ′

i θ̂N

) ĉov
(
Xi�μ(0�Xi)|F

(
X ′

iθ
∗)))f (

X ′
i θ̂N

)
�

The first component, ct�1, involves the regression functions μ̄(w�F(X ′θ∗)). We
estimate these regression functions using matching:

̂̄μ(
0�F

(
X ′

iθ
∗)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
L

∑
j∈H(−i)

L (i�θ̂N )

Yj if Wi = 0,

1
L

∑
j∈JL(i�θ̂N )

Yj if Wi = 1,

and

̂̄μ(
1�F

(
X ′

iθ
∗)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
L

∑
j∈JL(i�θ̂N )

Yj if Wi = 0,

1
L

∑
j∈H(−i)

L (i�θ̂N )

Yj if Wi = 1,

for L≥ 1 (typically, L = 1). Our proposed estimator for ct�1 is

ĉt�1 = 1
N1

N∑
i=1

Xif
(
X ′

i θ̂N

)(̂̄μ(
1�F

(
X ′

iθ
∗)) − ̂̄μ(

0�F
(
X ′

iθ
∗)) − τ̂t

)
�

Notice that if Wi = w, the estimator of μ̄(w�F(X ′
iθ

∗)) is an average over
H(−i)

L (i� θ̂N), rather than over HL(i� θ̂N). If observation i was not excluded
to estimate μ̄(Wi�F(X

′
iθ

∗)), then Yi would be one of the terms of the aver-
age ̂̄μ(Wi�F(X

′
iθ

∗)). Therefore, if observation i was not excluded, the estima-
tor ĉt�1 would contain terms of the type Xif (X

′
i θ̂N)(Yi − ̂̄μ(0�F(X ′

iθ
∗)) − τ̂t)

when Wi = 1 and terms of the type Xif (X
′
i θ̂N)(̂̄μ(1�F(X ′

iθ
∗))−Yi − τ̂t) when

Wi = 0. These terms estimate E[Xf(X ′θ∗)(μ(1�X) − μ̄(0�F(X ′θ∗)) − τt)]
and E[Xf(X ′θ∗)(μ̄(1�F(X ′θ∗)) − μ(0�X) − τt)], respectively, rather than
E[Xf(X ′θ∗)(μ̄(1�F(X ′θ∗))− μ̄(0�F(X ′θ∗))− τt)]. To avoid this problem, we
exclude observation i for the estimation of μ̄(Wi�F(X

′
iθ

∗)).



MATCHING ON THE ESTIMATED PROPENSITY SCORE 799

For the remaining variance component, ∂τt(θ∗)/∂θ, notice that

∂τt

∂θ

(
θ∗) = 1

E
[
F

(
X ′θ∗)]E[

Xf
(
X ′θ∗)(Y(1)−Y(0)− τt

)]
= 1

E
[
F

(
X ′θ∗)]E[

Xf
(
X ′θ∗)(μ(1�X)−μ(0�X)− τt

)]
�

To estimate this component, we need to estimate the regression functions
μ(1�X) and μ(0�X), which is done by matching on the covariates rather than
on the propensity score. Define the matching set (on covariates):

J X
L (i) =

{
j = 1� � � � �N :Wj = 1 −Wi�( ∑
k:Wk=1−Wi

1[‖Xi−Xk‖≤‖Xi−Xj‖]

)
≤L

}
�

Our estimator of ∂τt(θ∗)/∂θ is

∂̂τt

∂θ
= 1

N1

N∑
i=1

Xif
(
X ′

i θ̂N

)(
(2Wi − 1)

(
Yi − 1

L

∑
j∈JX

L (i)

Yj

)
− τ̂t

)
�

Putting these results together, our estimator of the large sample variance
of the propensity score matching estimator of the average treatment effect,
adjusted for first step estimation of the propensity score, is

σ̂2
adj = σ̂2 − ĉ′Î−1

θ∗ ĉ�

The corresponding estimator for the variance for the estimator for the average
effect for the treated is

σ̂2
adj�t = σ̂2

t − ĉ′
t Î

−1
θ∗ ĉt + ∂̂τt

∂θ

′
Î−1
θ∗

∂̂τt

∂θ
�

Consistency of these estimators for fixed L can be shown using the results in
Abadie and Imbens (2006) and the arguments employed in Section 3.

5. CONCLUSIONS AND EXTENSIONS

In this article, we derive the large sample distribution of propensity score
matching estimators for the case where the propensity score is unknown and
needs to be estimated in a first step prior to matching. We show that first step
estimation of the propensity score generally affects the asymptotic variance
of matching estimators, and derive adjustments for propensity score matching
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estimators of ATE and ATET. These results allow, for the first time, valid large
sample inference for estimators that use matching on the estimated propensity
score.

For concreteness, we frame the article within the context of estimation of
average treatment effects under the assumption that treatment assignment is
independent of potential outcomes conditional on a set of covariates, X (As-
sumption 1(i)). Without this assumption, the results of this article apply still to
the estimation of the “controlled comparison” parameters

E
[
E[Y |X�W = 1] −E[Y |X�W = 0]]

and

E[Y |W = 1] −E
[
E[Y |X�W = 0]|W = 1

]
�

which have the same form as ATE and ATET parameters but lack a causal in-
terpretation in the absence of Assumption 1(i). Controlled contrasts are the
building blocks of Oaxaca–Blinder-type decompositions, commonly applied
in economics (Oaxaca (1973), Blinder (1973), DiNardo, Fortin, and Lemieux
(1996)). The ideas and results in this article can easily be applied to other con-
texts where it is required to adjust for differences in the distribution of covari-
ates between two samples. An important example is estimation with missing
data when missingness is random conditional on a set of covariates (see, e.g.,
Little and Rubin (2002), Wooldridge (2007)).

APPENDIX

Before proving Proposition 2, we introduce some additional notation. Using
the definition of KM�θ(i) in (8), the estimator τ̂N(θ) can be written as

τ̂N(θ) = 1
N

N∑
i=1

(2Wi − 1)
(

1 + KM�θ(i)

M

)
Yi�

Define μ̄θ(w�p) = Eθ[Y |W = w�F(X ′θ) = p], where Eθ is the expectation
operator under Pθ,

DN(θ) = 1√
N

N∑
i=1

(
μ̄θ

(
1�F

(
X ′

iθ
)) − μ̄θ

(
0�F

(
X ′

iθ
)) − τ

)
+ 1√

N

N∑
i=1

(2Wi − 1)
(

1 + KM�θ(i)

M

)(
Yi − μ̄θ

(
Wi�F

(
X ′

iθ
)))
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and

RN(θ) = 1√
N

N∑
i=1

(2Wi − 1)

×
(
μ̄θ

(
1 −Wi�F

(
X ′

iθ
)) − 1

M

∑
j∈JM(i)

μ̄θ

(
1 −Wi�F

(
X ′

jθ
)))

�

Now the normalized estimator can be written as

√
N

(̂
τN(θ)− τ

) =DN(θ)+RN(θ)�

PROOF OF PROPOSITION 2: It can be seen that the result of Lemma S.1 in
the Supplemental Material (Abadie and Imbens (2016)) holds uniformly in θ

for ‖θ − θ∗‖ ≤ ε. This implies RN(θN)
p→ 0. Therefore, in order to prove the

result in the proposition, it suffices to prove that, under PθN ,⎛⎝ DN(θN)√
N(θ̂N − θN)

ΛN

(
θ∗|θN

)
⎞⎠

d→ N

⎛⎝( 0
0

−h′Iθ∗h/2

)
�

⎛⎝ σ2 c′I−1
θ∗ −c′h

I−1
θ∗ c I−1

θ∗ −h

−h′c −h′ h′Iθ∗h

⎞⎠⎞⎠ �

By Lemma 1, under PθN ,

ΛN

(
θ∗|θN

) = −h′ΔN(θN)− 1
2
h′Iθ∗h+ op(1)

and

√
N(θ̂N − θN)= I−1

θ∗ ΔN(θN)+ op(1)�

Therefore, it suffices to prove that, under PθN ,(
DN(θN)
ΔN(θN)

)
d→ N

((
0
0

)
�

(
σ2 c′

c Iθ∗

))
�(A.1)

To prove (A.1), we extend the martingale representation of matching estima-
tors (Abadie and Imbens (2012)) to allow for estimation of the propensity
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score. Consider the linear combination CN = z1DN(θN)+ z′
2ΔN(θN):

CN = z1
1√
N

N∑
i=1

(
μ̄θN

(
1�F

(
X ′

N�iθN

)) − μ̄θN

(
0�F

(
X ′

N�iθN

)) − τ
)

+ z1
1√
N

N∑
i=1

(2WN�i − 1)
(

1 + KM�θN (i)

M

)
× (

YN�i − μ̄θN

(
WN�i�F

(
X ′

N�iθN

)))
+ z′

2

1√
N

N∑
i=1

XN�i

WN�i − F
(
X ′

N�iθN

)
F

(
X ′

N�iθN

)(
1 − F

(
X ′

N�iθN

))f (
X ′

N�iθN

)
�

We analyze CN using martingale methods. First, notice that

CN =
3N∑
k=1

ξN�k�

where

ξN�k = z1
1√
N

(
μ̄θN

(
1�F

(
X ′

N�kθN

)) − μ̄θN

(
0�F

(
X ′

N�kθN

)) − τ
)

+ z′
2

1√
N
E

[
XN�k|F

(
X ′

N�kθN

)]
× WN�k − F

(
X ′

N�kθN

)
F

(
X ′

N�kθN

)(
1 − F

(
X ′

N�kθN

))f (
X ′

N�kθN

)
for 1 ≤ k≤N ,

ξN�k = z′
2

1√
N

(
XN�k−N −E

[
XN�k−N |F(

X ′
N�k−NθN

)])
×

(
WN�k−N − F

(
X ′

N�k−NθN

))
f
(
X ′

N�k−NθN

)
F

(
X ′

N�k−NθN

)(
1 − F

(
X ′

N�k−NθN

))
+ z1

1√
N
(2WN�k−N − 1)

(
1 + KM�θN (k−N)

M

)
× (

μ(WN�k−N�XN�k−N)− μ̄θN

(
WN�k−N�F

(
X ′

N�k−NθN

)))
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for N + 1 ≤ k≤ 2N , and

ξN�k = z1
1√
N
(2WN�k−2N − 1)

(
1 + KM�θN (k− 2N)

M

)
× (

YN�k−2N −μ(WN�k−2N�XN�k−2N)
)
�

for 2N + 1 ≤ k ≤ 3N . Consider the σ-fields FN�k = σ{WN�1� � � � �WN�k�X
′
N�1θN�

� � � �X ′
N�kθN} for 1 ≤ k ≤ N , FN�k = σ{WN�1� � � � �WN�N�X

′
N�1θN� � � � �X

′
N�NθN�

XN�1� � � � �XN�k−N} for N + 1 ≤ k ≤ 2N , and FN�k = σ{WN�1� � � � �WN�N�
XN�1� � � � �XN�N�YN�1� � � � �YN�k−N} for 2N + 1 ≤ k≤ 3N . Then,{

i∑
j=1

ξN�j�FN�i�1 ≤ i ≤ 3N

}

is a martingale for each N ≥ 1. Therefore, the limiting distribution of CN can
be studied using a Martingale Central Limit Theorem (e.g., Theorem 35.12
in Billingsley (1995, p. 476); importantly, notice that this theorem allows that
the probability space varies with N). Because of Assumption 4, and because
KM�θ(i) has uniformly bounded moments (see Abadie and Imbens (2016)), it
follows that

3N∑
k=1

EθN

[|ξN�k|2+δ
] → 0 for some δ > 0�

Lindeberg’s condition in Billingsley’s theorem follows easily from the last
equation (Lyapunov’s condition). As a result, we obtain that, under PθN ,

CN
d→N

(
0�σ2

1 + σ2
2 + σ2

3

)
�

where

σ2
1 = plim

N∑
k=1

EθN

[
ξ2
N�k|FN�k−1

]
�

σ2
2 = plim

2N∑
k=N+1

EθN

[
ξ2
N�k|FN�k−1

]
�

σ2
3 = plim

3N∑
k=2N+1

EθN

[
ξ2
N�k|FN�k−1

]
�
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Assumption 5 implies

σ2
1 = z2

1E
[(
μ̄

(
1�F

(
X ′θ∗)) − μ̄

(
0�F

(
X ′θ∗)) − τ

)2]
+ z′

2E

[
f 2

(
X ′θ∗)

F
(
X ′θ∗)(1 − F

(
X ′θ∗))

×E
[
X|F(

X ′θ∗)]E[
X ′|F(

X ′θ∗)]]z2�

Expectations of the sums of terms involving (1 + KM�θN (i)/M)2 can be calcu-
lated as in Abadie and Imbens (2016). We obtain

σ2
2 = z′

2E

[
f 2

(
X ′θ∗)

F
(
X ′θ∗)(1 − F

(
X ′θ∗)) var

(
X|F(

X ′θ∗))]z2

+ z2
1E

[
var

(
μ(1�X)|F(

X ′θ∗))
F

(
X ′θ∗) + var

(
μ(0�X)|F(

X ′θ∗))
1 − F

(
X ′θ∗) ]

+ z2
1

1
2M

E

[(
1

F
(
X ′θ∗) − F

(
X ′θ∗)) var

(
μ(1�X)|F(

X ′θ∗))]

+ z2
1

1
2M

E

[(
1

1 − F
(
X ′θ∗) − (

1 − F
(
X ′θ∗)))

× var
(
μ(0�X)|F(

X ′θ∗))]

+ 2z′
2E

[(
cov

(
X�μ(1�X)|F(

X ′θ∗))
F

(
X ′θ∗)

+ cov
(
X�μ(0�X)|F(

X ′θ∗))
1 − F

(
X ′θ∗) )

f
(
X ′θ∗)]z1�

Here we use the fact that, conditional on the propensity score, X is indepen-
dent of W . Finally, notice that

1
N

N∑
i=1

(
1 + KM�θN (i)

M

)2

× (
var(Yi|Wi�Xi)−E

[
var(Yi|Wi�Xi)|Wi�F

(
X ′

iθN

)])
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is a sum of martingale differences

ζN�i = 1
N

(
1 + KM�θN (i)

M

)2

× (
var(Yi|Wi�Xi)−E

[
var(Yi|Wi�Xi)|Wi�F

(
X ′

iθN

)])
with respect to the filtration FN�i = σ{W1� � � � �WN�X

′
1θN� � � � �X

′
1θN�

X1� � � � �Xi}. As a result, we obtain that, for i > j, E[ζN�iζN�j|FN�i−1] =
E[ζN�i|FN�i−1]ζN�j = 0. Therefore, using the Law of Iterated Expectations to
eliminate the cross-products, we obtain

E

[(
1
N

N∑
i=1

ζN�i

)2]
= 1

N2E

[
N∑
i=1

ζ2
N�i

]
→ 0�

Therefore,

σ2
3 = z2

1 plim
1
N

N∑
i=1

(
1 + KM�θN (i)

M

)2

E
[
var(Yi|Wi�Xi)|Wi�F

(
X ′

iθN

)]
= z2

1E

[
E

[
var(Y |X�W = 1)|F(

X ′θ∗)]
F

(
X ′θ∗)

+ E
[
var(Y |X�W = 0)|F(

X ′θ∗)]
1 − F

(
X ′θ∗) ]

+ z2
1

1
2M

E

[(
1

F
(
X ′θ∗) − F

(
X ′θ∗))

×E
[
var(Y |X�W = 1)|F(

X ′θ∗)]]
+ z2

1

1
2M

E

[(
1

1 − F
(
X ′θ∗) − (

1 − F
(
X ′θ∗)))

×E
[
var(Y |X�W = 0)|F(

X ′θ∗)]]�
Collecting terms and applying the fact that W is independent of X given
F(X ′θ), we obtain

σ2
1 + σ2

2 + σ2
3 = z2

1σ
2 + z′

2Iθ∗z2 + 2z′
2cz1�
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Hence, by the Martingale Central Limit Theorem and the Cramer–Wold de-
vice, under PθN ,(

DN(θN)
ΔN(θN)

)
d→ N

((
0
0

)
�

(
σ2 c′

c Iθ∗

))
�

proving (A.1) and thus Proposition 2. Q.E.D.

PROOF OF THEOREM 1: Given our preliminary results, Theorem 1 follows
from Andreou and Werker (2012). Q.E.D.

The proof of Theorem 2 can be found in the Supplemental Material.
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