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APPENDIX A: IDENTIFICATION

A.1. Proofs of Propositions 1 and 2

IN ORDER TO PROVE PROPOSITION 1, we first present and prove the following
lemmas.

LEMMA 1: Let ϕ(x� t) : I × [c�d] → R, where I is a compact subset of Rm.
Suppose ϕ(x� t) and its partial derivative, ϕ2(x� t), are continuous and that ϕ
is integrable with respect to the probability measure α for each t. Then f (t) =∫
ϕ(x� t)dα(x) is continuously differentiable on [c�d].
PROOF: By Theorem 5 (p. 97) of Roussas (2004), f ′(t) = ∫

ϕ2(x� t)dα(x)
for all t ∈ [c�d]. Let s1� s2 ∈ [c�d]:

∣∣f ′(s1)− f ′(s2)
∣∣ =

∣∣∣∣
∫
ϕ2(x� s1)dα(x)−

∫
ϕ2(x� s2)dα(x)

∣∣∣∣
≤

∫ ∣∣ϕ2(x� s1)−ϕ2(x� s2)
∣∣dα(x)�

The continuity of ϕ2(x� t) on the compact set I × [c�d] implies uniform
continuity, and therefore we can choose a δ such that |s1 − s2| < δ im-
plies |ϕ2(x� s1) − ϕ2(x� s2)| < ε

α(I)
for all x ∈ I, which in turn implies that

|f ′(s1)− f ′(s2)|< ε. Q.E.D.

LEMMA 2: Under Assumptions 1(i), 3(ii), and 4, f (v) is continuously differen-
tiable and strictly positive on IV .

PROOF: The continuous differentiability of f (v) follows from Assump-
tion 1(i), Assumption 4, and Lemma 1. f (V ) ≥ ∫

AU
fV |U=u(v)dFU(u) > 0 fol-

lows directly from Assumption 3(ii). Q.E.D.

In order to prove Proposition 2, we present and prove the following lem-
mas. Let S be a sub-vector of the random vector (U�ε�UB′�UV ′) that at
least includes U and ε, and let S∗ denote the vector of the random vari-
ables in (U�ε�UB′�UV ′) but not in S. Let Q be a sub-vector of the random
vector (ε�UB′�UV ′) that at least includes ε, and let Q∗ denote the vector of
the random variables in (U�ε�UB′�UV ′) but not in Q. Let IV ∗ , IS , IS∗ , IQ,
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and IQ∗ be the smallest closed rectangle that contains the support of V ∗, S,
S∗, Q, and Q∗, respectively. In the proofs, we only consider the case where
πij(V �U�ε�UV ′�UB′) > 0 for all i� j = 0�1 since the proofs for the cases where
some of the πij = 0 are similar in spirit and simpler.

LEMMA 3: (a) fS∗|S=s(s∗) is continuous on IS∗�S; (b) fQ∗|Q=q(q∗) is continuous
on IQ∗�Q.

PROOF: We prove part (a), and the proof for part (b) is similar. There are
three cases: (1) S∗ =UV ′ , (2) S∗ =UB′ and (3) S∗ = (UV ′�UB′). For case (1),

fUV ′ |UB′ =uB′ �U=u�ε=e(uV ′)= fUV ′ �UB′ |U=u�ε=e(uV ′�uB′)

fUB′ |U=u�ε=e(uB′)
(A.1)

=

∫
fV �UV ′ �UB′ |U=u�ε=e(v�uV ′�uB′)dv∫ ∫
fV �UV ′ �UB′ |U=u�ε=e(v�uV ′�uB′)dvduV ′

�

Note that the numerator of (A.1) is exactly fS∗|S=s(s∗) in case (3). Both the nu-
merator and the denominator are continuous as guaranteed by Assumption 4a
and Proposition 1 in Section 17.5 of Zorich (2004). Since the denominator is
strictly positive, fUV ′ |UB′ =uB′ �U=u�ε=e(uV ′) is continuous. The proof for case (2) is
analogous with the roles of UV ′ and UB′ exchanged. Q.E.D.

LEMMA 4: (a) ∂
∂v
fV |S=s(v) is continuous on IV �S ; (b) ∂

∂v
fV |Q=q(v) is continuous

on IV �Q.

PROOF: We only prove part (a), and the proof of part (b) is similar. Note
that

fV |S=s�S∗=s∗(v)= fV �UV ′ �UB′ |U=u�ε=e(v�uV ′�uB′)

fUV ′ �UB′ |U=u�ε=e(uV ′�uB′)
�

fV |S=s(v)=
∫
fV �UV ′ �UB′ |U=u�ε=e(v�uV ′�uB′)

fUV ′ �UB′ |U=u�ε=e(uV ′�uB′)
fS∗|S=s

(
s∗

)
ds∗�

where the first line follows by Bayes’ rule, and we integrate both sides over
fS∗|S=s(s∗) to arrive at the second line. Taking derivatives with respect to v
on both sides, interchanging differentiation and integration (permitted by As-
sumption 4a, Lemma 3, and Roussas (2004)), we obtain the result following
Lemma 1. Q.E.D.

LEMMA 5: (a) ∂
∂v∗ fV ∗|S=s(v∗) is continuous on IV ∗�S; (b) ∂

∂v∗ fV ∗|Q=q(v∗) is con-
tinuous on IV ∗�Q.
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PROOF: We only prove part (a), and the proof of part (b) is similar. Note
that after applying Bayes’ rule and rearranging, we obtain

fV ∗|S=s�S∗=s∗
(
v∗)

= Pr
[
UV = 0|S = s� S∗ = s∗]fV |S=s�S∗=s∗�UV =0

(
v∗)

+ Pr
[
UV �= 0|S = s� S∗ = s∗]fV ∗|S=s�S∗=s∗�UV �=0

(
v∗)

= Pr
[
UV = 0|S = s� S∗ = s∗]Pr

[
UV = 0|V = v∗� S = s� S∗ = s∗]

× fV |S=s�S∗=s∗
(
v∗)

Pr
[
UV = 0|S = s� S∗ = s∗] + Pr

[
UV �= 0|S = s� S∗ = s∗]

× Pr
[
UV �= 0|V = v∗ − uV ′� S = s� S∗ = s∗]

× fV |S=s�S∗=s∗
(
v∗ − uV ′

)
Pr

[
UV �= 0|S = s� S∗ = s∗]

= Pr
[
UV = 0|V = v∗� S = s� S∗ = s∗]fV |S=s�S∗=s∗

(
v∗)

+ Pr
[
UV �= 0|V = v∗ − uV ′� S = s� S∗ = s∗]fV |S=s�S∗=s∗

(
v∗ − uV ′

)
�

Multiplying both sides of the last line by fS∗|S=s(s∗) and integrating over s∗,
taking the partial derivative with respect to v∗, and applying Assumptions 4a
and 5 and Lemmas 3 and 4, we have the desired result. Q.E.D.

LEMMA 6: (a) ∂
∂v∗ Pr[GV = i�GB = j|V ∗ = v∗� S = s] and ∂

∂v∗ Pr[GV = i|V ∗ =
v∗� S = s] are continuous on the set {(v∗� s) : fV ∗|S=s(v∗) > 0} for i� j = 0�1;
(b) ∂

∂v∗ Pr[GV = i�GB = j|V ∗ = v∗�Q = q] and ∂
∂v∗ Pr[GV = i|V ∗ = v∗�Q = q]

are continuous on the set {(v∗� q) : fV ∗|Q=q(v∗) > 0} for i� j = 0�1.

PROOF: Again we only prove part (a). First, note that the continuous differ-
entiability of Pr[GV = i�GB = j|V ∗ = v∗� S = s] and Pr[GV = i|V ∗ = v∗� S = s]
is only needed on the set {(v∗� s) : fV ∗|S=s(v∗) > 0} for the purpose of prov-
ing Proposition 2, because these quantities are always multiplied by fV ∗|S=s(v∗)
when they appear in subsequent proofs. We consider the two cases of i = 0�1
separately. For case 1, where i= 0,

Pr
[
GV = 0�GB = j|V ∗ = v∗� S = s]

= fV ∗|S=s�GV =0�GB=j
(
v∗)Pr[GV = 0�GB = j|S = s]

fV ∗|S=s
(
v∗)

= fV |S=s�GV =0�GB=j
(
v∗)Pr[GV = 0�GB = j|S = s]

fV ∗|S=s
(
v∗)



4 CARD, LEE, PEI, AND WEBER

= fV |S=s�GV =0�GB=j
(
v∗)Pr[GV = 0�GB = j|S = s]

fV |S=s
(
v∗) fV |S=s

(
v∗)

fV ∗|S=s
(
v∗)

= Pr
[
GV = 0�GB = j|V = v∗� S = s] fV |S=s

(
v∗)

fV ∗|S=s
(
v∗)

=
∫
π0j

(
v∗�u�ε�uV ′�uB′

)
fS∗|V =v∗�S=s

(
s∗

)
ds∗

fV |S=s
(
v∗)

fV ∗|S=s
(
v∗)

=
∫
π0j

(
v∗�u�ε�uV ′�uB′

)
fV |S∗=s∗�S=s

(
v∗)fS∗|S=s

(
s∗

)
fV |S=s

(
v∗) ds∗ fV |S=s

(
v∗)

fV ∗|S=s
(
v∗) �

The partial derivative of the right-hand side w.r.t. v∗ in the last line is con-
tinuous on IV ∗�S by Assumption 5 and Lemmas 3, 4, and 5. For case 2 where
i= 1,

Pr
[
GV = 1�GB = j|V ∗ = v∗� S = s]

=
∫

Pr
[
GV = 1�GB = j|V ∗ = v∗� S = s� S∗ = s∗]fS∗|V ∗=v∗�S=s

(
s∗

)
ds∗

=
∫

Pr
[
GV = 1�GB = j|V = v∗ − uV ′� S = s� S∗ = s∗]

× fV ∗|S=s�S∗=s∗
(
v∗)fS∗|S=s

(
s∗

)
fV ∗|S=s

(
v∗) ds∗

=
∫
π1j

(
v∗ − uV ′�u�ε�uV ′�uB′

)fV ∗|S=s�S∗=s∗
(
v∗)fS∗|S=s

(
s∗

)
fV ∗|S=s

(
v∗) ds∗�

Its partial derivative w.r.t. v∗ is continuous on IV ∗�S for the same reason as in
case 1.

Since Pr[GV = i|V ∗ = v∗� S = s] = ∑
j Pr[GV = i�GB = j|V ∗ = v∗� S = s],

the continuous differentiability with respect to v∗ of Pr[GV = i�GB = j|V ∗ =
v∗� S = s] implies that of Pr[GV = i|V ∗ = v∗� S = s]. Q.E.D.

PROOF OF PROPOSITION 2: For part (a), the proof is the same as for part (a)
in Proposition 1, replacing V with V ∗, letting the pair (U�ε) serve the role of
U and using Lemma 5.

For part (b), we can write

E
[
Y |V ∗ = v∗](A.2)

=
∫
E

[
Y |V ∗ = v∗�U = u�ε= e]dFU�ε|V ∗=v∗(u� e)
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=
∫ (
E

[
Y |UV = 0� V ∗ = v∗�U = u�ε= e]

× Pr
[
UV = 0|V ∗ = v∗�U = u�ε= e]

+E[
Y |UV �= 0� V ∗ = v∗�U = u�ε= e]

× Pr
[
UV �= 0|V ∗ = v∗�U = u�ε= e])dFU�ε|V ∗=v∗(u� e)

=
∫ (

z1z2 +
[∫

z3z4 duV ′

]
· [1 − z2]

)
z5 dFU�ε(u� e)�

where the second line follows from the law of iterated expectations, and to ease
exposition below, we use the notation:

z1 ≡ y(b(v∗� e
)
� v∗�u

)
�

z2 ≡ Pr
[
V = V ∗|V ∗ = v∗�U = u�ε= e]�

z3 ≡ y(b(v∗ − uV ′� e
)
� v∗ − uV ′�u

)
�

z4 ≡ fUV ′ |UV �=0�V ∗=v∗�U=u�ε=e(uV ′)�

z5 ≡ fV ∗|U=u�ε=e
(
v∗)

fV ∗
(
v∗) �

The derivative of E[Y |V ∗ = v∗] in equation (A.2) with respect to v∗ is

dE
[
Y |V ∗ = v∗]
dv∗ =

∫
z′

1z2z5 dFU�ε(u� e)+
∫
z1
∂(z2z5)

∂v∗ dFU�ε(u� e)(A.3)

+
∫ ∂

[(∫
z3z4 duV ′

)
[1 − z2]z5

]

∂v∗ dFU�ε(u� e)�

where z′
j denotes the partial derivative of zj with respect to v∗, provided that

the integrands are continuous.
In a parallel fashion, we can write

E
[
B∗|V ∗ = v∗]
=

∫ {[
z6 + z8(1 − z7)

]
z13

+
[(∫

z9z10 duV ′

)
z11 +

(∫
(z9 + uB′)z12 duV ′ duB′

)
(1 − z11)

]

× (1 − z13)

}
z14 dFε(e)�
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with

z6 ≡ b(v∗� e
)
�

z7 ≡ Pr
[
UB = 0|UV = 0� V ∗ = v∗� ε= e]�

z8 ≡
∫
uB′fUB′ |UV =0�UB �=0�V ∗=v∗�ε=e(uB′)duB′�

z9 ≡ b(v∗ − uV ′� e
)
�

z10 ≡ fUV ′ |UB=0�UV �=0�V ∗=v∗�ε=e(uV ′)�

z11 ≡ Pr
[
UB = 0|UV �= 0� V ∗ = v∗� ε= e]�

z12 ≡ fUV ′ �UB′ |UV �=0�UB �=0�V ∗=v∗�ε=e(uV ′�uB′)�

z13 ≡ Pr
[
V = V ∗|V ∗ = v∗� ε= e]�

z14 ≡ fV ∗|ε=e
(
v∗)

fV ∗
(
v∗) �

And the analogous derivative with respect to v∗ is

dE
[
B∗|V ∗ = v∗]
dv∗(A.4)

=
∫
z′

6z13z14 dFε(e)+
∫
z6
∂

∂v∗ (z13z14)dFε(e)

+ ∂

∂v∗

∫ [
z8(1 − z7)z13z14

]
dFε(e)

+ ∂

∂v∗

∫ {∫
z9z10 duV ′ · z11

+
∫ ∫

(z9 + uB′)z12 duV ′ duB′ · (1 − z11)

}
(1 − z13z14)}dFε(e)�

provided that the integrands are continuous.
The proof of part (b) follows from showing that the partial derivatives of

z2,
∫
z3z4 duV ′ , z5, z7, z8,

∫
z9z10 duV ′ , z11,

∫ ∫
(z9 + uB′)z12 duV ′ duB′ , and z13z14

with respect to v∗ are continuous, and noting that z1 and z6 are continuous by
Assumptions 1a, 2, and 3a. From this, it follows that there is no discontinuity
in all but the first term on the right-hand side of (A.3) and (A.4) at v∗ = 0 and
that the RKD estimand is the ratio of the discontinuities in the first terms of
those two equations.

As shown by Lemma 6, z2 is continuously differentiable in v∗.
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z4 is continuously differentiable in v∗ because

fUV ′ |UV �=0�V ∗=v∗�U=u�ε=e(uV ′)

= (
Pr

[
UV �= 0|UV ′ = uV ′� V ∗ = v∗�U = u�ε= e]

× fUV ′ |V ∗=v∗�U=u�ε=e(uV ′)
)

/
(
Pr

[
UV �= 0|V ∗ = v∗�U = u�ε= e])

=
((

1 − Pr
[
UV = 0|UV ′ = uV ′� V ∗ = v∗�U = u�ε= e])

× fV ∗|UV ′ =uV ′ �U=u�ε=e
(
v∗)fUV ′ |U=u�ε=e(uV ′)

fV ∗|U=u�ε=e
(
v∗)

)/
(1 − z2)

and the derivative of the last line is continuous by Lemmas 3, 5, and 6.
We break up the integral

∫
z3z4 duV ′ into two pieces

∫
z3z4 duV ′ =

∫ v∗

cUV ′
z3z4 duV ′ +

∫ dUV ′

v∗
z3z4 duV ′

=
∫ v∗

cUV ′
y
(
b+(

v∗ − uV ′� e
)
� v∗ − uV ′�u

)
z4 duV ′

+
∫ dUV ′

v∗
y
(
b−(

v∗ − uV ′� e
)
� v∗ − uV ′�u

)
z4 duV ′�

where cUV ′ and dUV ′ are the lower and upper end point of the support of UV ′ ,
b+(v� e)= b(v� e) for v≥ 0 and all e, and b−(v� e)= b(v� e) for v≤ 0 and all e.
Denote y(b±(v∗ − uV ′� e)� v∗ − uV ′�u) by z±

3 . Note that z+
3 and z−

3 are contin-
uously differentiable in v∗ on [cUV ′ � v

∗] and [v∗� dUV ′ ] respectively by Assump-
tions 1a, 2, and 3a, where cUV ′ and dUV ′ are the lower and upper endpoints of
the support IU ′

V
. Since z4 is also continuously differentiable as shown above, we

can apply the Newton–Leibniz formula, which yields

∂

∂v∗

(∫ v∗

cUV ′
z+

3 z4 duV ′ +
∫ dUV ′

v∗
z−

3 z4 duV ′

)

=
∫ v∗

cUV ′

∂

∂v∗
(
z+

3 z4

)
duV ′ +

∫ dUV ′

v∗

∂

∂v∗
(
z−

3 z4

)
duV ′

+ z+
3 z4|uV ′ =v∗ − z−

3 z4|uV ′ =v∗ �
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By Assumptions 1a and 3a, z3 is continuous, and it follows that z+
3 z4|uV ′ =v∗ −

z−
3 z4|uV ′ =v∗ = 0. Since

∫ v∗
cUV ′

∂
∂v∗ (z

+
3 z4)duV ′ and

∫ dUV ′
v∗

∂
∂v∗ (z

−
3 z4)duV ′ are continu-

ous,
∫
z3z4 duV ′ is continuously differentiable in v∗.

z5 is continuously differentiable in v∗ by Lemma 5 and Assumption 3a—note
that the continuous differentiability of fV ∗(v∗) = ∫

fV ∗|U=u�ε=e dFU�ε(u� e) is a
part of Corollary 1, and it follows directly from Lemma 5; z6 is continuously
differentiable by Assumption 3a, and z7 is continuously differentiable in v∗

because

Pr
[
UB = 0|UV = 0� V ∗ = v∗� ε= e]

= Pr
[
UV = 0�UB = 0|V ∗ = v∗� ε= e]

Pr
[
UV = 0|V = v∗� ε= e] �

where the derivative of the right-hand side is continuous in v∗ by Lemma 6.
z8 is continuously differentiable in v∗ because

∫
uB′fUB′ |UV =0�UB �=0�V ∗=v∗�ε=e(uB′)duB′

=
∫
uB′ Pr

[
UV = 0|UB′ = uB′� V ∗ = v∗� ε= e]

× fUB′ |V ∗=v∗�ε=e(uB′)

Pr
[
UV = 0|V ∗ = v∗� ε= e] duB′

=
∫
uB′ Pr

[
UV = 0|UB′ = uB′� V ∗ = v∗� ε= e]

× fV ∗|UB′ =uB′ �ε=e
(
v∗)fUB′ |ε=e(uB′)

fV ∗|ε=e
(
v∗)Pr

[
UV = 0|V = v∗� ε= e] duB′�

where the continuous differentiability of the last line in v∗ is implied by
Lemmas 3, 5, and 6. By a similar application of Bayes’ rule, we can show
that z10 is continuously differentiable in v∗. Consequently,

∫
z9z10 duV ′ is

continuously differentiable in v∗ by applying the same argument used for∫
z3z4 duV ′ .
The quantity z11 is continuously differentiable in v∗ because of Lemma 6

and

z11 = Pr
[
UB = 0�UV �= 0|V ∗ = v∗� ε= e]
Pr

[
UV �= 0|V ∗ = v∗� ε= e] �
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z12 can be expressed as

fUV ′ �UB′ |UV �=0�UB �=0�V ∗=v∗�ε=e(uV ′�uB′)

= Pr
[
UV �= 0�UB �= 0|UV ′ = uV ′�UB′ = uB′� V ∗ = v∗� ε= e]

Pr
[
UV �= 0�UB �= 0|V ∗ = v∗� ε= e]

× fUV ′ �UB′ |V ∗=v∗�ε=e(uV ′�uB′)

= Pr
[
UV �= 0�UB �= 0|UV ′ = uV ′�UB′ = uB′� V ∗ = v∗� ε= e]

Pr
[
UV �= 0�UB �= 0|V ∗ = v∗� ε= e]

× fV ∗|UV ′ =uV ′ �UB′ =uB′ �ε=e
(
v∗)

fV ∗|ε=e
(
v∗) fUV ′ �UB′ |ε=e(uV ′�uB′)�

and z12 is continuously differentiable by Lemmas 3, 5, and 6. It follows that∫ ∫
(z9 + uB′)z12 duV ′ duB′ is continuously differentiable by the same argu-

ment as that for
∫
z3z4 duV ′ . Finally, z13 is continuously differentiable in v∗ by

Lemma 6 and z14 by Lemma 5 and Assumption 3a.
As a result of the smoothness of the above terms along with Theorem 5 on

p. 97 of Roussas (2004), we can write

lim
v0→0+

dE
[
Y |V ∗ = v∗]
dv∗

∣∣∣∣
v∗=v0

− lim
v0→0−

dE
[
Y |V ∗ = v∗]
dv∗

∣∣∣∣
v∗=v0

(A.5)

= lim
v0→0+

∫
z′

1z2z5 dFU�ε(u� e)− lim
v0→0−

∫
z′

1z2z5 dFU�ε(u� e)

=
∫ (

lim
v0→0+ z

′
1 − lim

v0→0− z
′
1

)
z2z5|v∗=v0 dFU�ε(u� e)

=
∫
y1

(
b(0� e)�0�u

)(
b+

1 (e)− b−
1 (e)

)
z2z5|v∗=v0 dFU�ε(u� e)�

The interchange of limit and integration is allowed by the dominated conver-
gence theorem since z′

1z2z5 is continuous over a compact rectangle. The last
line follows from Assumptions 1a and 3a.

Similarly, we can write

lim
v0→0+

dE
[
B∗|V ∗ = v∗]
dv∗

∣∣∣∣
v∗=v0

− lim
v0→0−

dE
[
B∗|V ∗ = v∗]
dv∗

∣∣∣∣
v∗=v0

(A.6)

= lim
v0→0+

∫
z′

6z13z14 dFε(e)− lim
v0→0−

∫
z′

6z13z14 dFε(e)
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=
∫ (

lim
v0→0+ z

′
6 − lim

v0→0− z
′
6

)
z13z14|v∗=v0 dFε(e)

=
∫ (
b+

1 (e)− b−
1 (e)

)
z13z14|v∗=v0 dFε(e)�

Finally, consider the term z2z5|v∗=v0 . First, a similar argument as in (6) leads
to

z2 = Pr
[
V = V ∗|V = v∗�U = u�ε= e] fV |U=u�ε=e

(
v∗)

fV ∗|U=u�ε=e
(
v∗) �

After applying Bayes’ rule and rearranging, we have

z2z5|v∗=v0 = Pr
[
V = V ∗|V = 0�U = u�ε= e]

× fV |U=u�ε=e(0)
fV ∗|U=u�ε=e(0)

fV ∗|U=u�ε=e(0)
fV ∗(0)

= Pr
[
V = V ∗|V = 0�U = u�ε= e]fV |U=u�ε=e(0)

fV (0)
fV (0)
fV ∗(0)

�

Similarly, we can derive

z13z14|v∗=v0 = Pr
[
V = V ∗|V = 0� ε= e]fV |ε=e(0)

fV (0)
fV (0)
fV ∗(0)

�

Because fV (0)
fV ∗ (0) can be pulled out of the integral in both (A.5) and (A.6), we

have the result

lim
v0→0+

dE
[
Y |V ∗ = v∗]
dv∗ |v∗=v0 − lim

v0→0−

dE
[
Y |V ∗ = v∗]
dv∗ |v∗=v0

lim
v0→0+

dE
[
B∗|V ∗ = v∗]
dv∗ |v∗=v0 − lim

v0→0−

dE
[
B∗|V ∗ = v∗]
dv∗ |v∗=v0

=
∫
y1

(
b(0� e)�0�u

)
ϕ(u�e)dFU�ε(u� e)�

where

ϕ(u�e)

=
Pr[UV = 0|V = 0�U = u�ε= e](b+

1 (e)− b−
1 (e)

)fV |U=u�ε=e(0)
fV (0)∫

Pr[UV = 0|V = 0� ε=ω](b+
1 (ω)− b−

1 (ω)
)fV |ε=ω(0)
fV (0)

dFε(ω)

�
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Note that Assumptions 3a and 6 guarantee nonnegative, finite weights and
that

∫
ϕ(u�e)dFU�ε(u� e)= 1. Q.E.D.

A.2. Identification in the Presence of Both Slope and Level Changes—Remark 3

In Remark 3, we consider the identification of the treatment effect when
there is both a level change and a slope change at the threshold V = 0.
To ease exposition, define limv0→0+ b′(v0) = b′(0+), limv0→0− b′(v0) = b′(0−),
limv0→0+ b(v0) = b(0+), and limv0→0− b(v0) = b(0−). We study the case where
b′(0+) �= b′(0−) and b(0+) �= b(0−), but b(·) is still a smooth function on IV /{0}.
Similarly to the derivation in the proof of Proposition 1, we can show that the
RK estimand identifies the following parameter:

lim
v0→0+

dE[Y |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[Y |V = v]
dv

∣∣∣∣
v=v0

lim
v0→0+

db(v)

dv

∣∣∣∣
v=v0

− lim
v0→0−

db(v)

dv

∣∣∣∣
v=v0

=
(
b′(0+)∫

y1

(
b
(
0+)
�0�u

)fV |U=u(0)
fV (0)

dFU(u)

− b′(0−)∫
y1

(
b
(
0−)
�0�u

)fV |U=u(0)
fV (0)

dFU(u)

)
/(
b′(0+) − b′(0−))

+
(∫ {[

y2

(
b
(
0+)
�0�u

) − y2

(
b
(
0−)
�0�u

)]fV |U=u(0)
fV (0)

+ [
y
(
b
(
0+)
�0�u

) − y(b(0−)
�0�u

)] ∂
∂v

fV |U=u(0)
fV (0)

}
dFU(u)

)
/(
b′(0+) − b′(0−))

�

which is, in general, not readily interpretable as a weighted average of the
causal effect.

On the other hand, we can show that the RD estimand identifies a weighted
average of the causal effect of interest:

lim
v0→0+E[Y |V = v0] − lim

v0→0−E[Y |V = v0]
lim
v0→0+ b(v0)− lim

v0→0− b(v0)

=
(

lim
v0→0+E

[
y
(
b(v0)� v0�U

)|V = v0

]
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− lim
v0→0−E

[
y
(
b(v0)� v0�U

)|V = v0

])
/(

lim
v0→0+ b(v0)− lim

v0→0− b(v0)
)

=E
[
y
(
b
(
0+)
�0�U

) − y(b(0−)
�0�U

)
b
(
0+) − b(0−) ∣∣∣V = 0

]

=E[
y1(b̃�0�U)|V = 0

]
�

where b̃ is between b(0+) and b(0−) and the last line follows from the mean
value theorem.

Similarly, in the fuzzy framework of Section 2.2.2, it can be shown that the
RK estimand no longer identifies the causal effect of interest if we allow a
discontinuity in b(·� e) for some e at the threshold. However, the RD esti-
mand still identifies a weighted average of the causal effect y1. To see this, let
limv∗0→0+ b(v∗

0� e) ≡ b(0�+ e), limv∗0→0− b(v∗
0� e) ≡ b(0−� e) and modify Assump-

tion 3a and Assumption 6 by replacing b±
1 (e) with b(0±� e); using notations

from the proof of Proposition 2, we have

lim
v0→0+E

[
Y |V ∗ = v0

] − lim
v0→0−E

[
Y |V ∗ = v0

]
lim
v0→0+E

[
B∗|V ∗ = v0

] − lim
v0→0−E

[
B∗|V ∗ = v0

]

=
lim
v0→0+

∫
z1z2z5 dFU�ε(u� e)− lim

v0→0−

∫
z1z2z5 dFU�ε(u� e)

lim
v0→0+

∫
z6z13z14 dFU�ε(u� e)− lim

v0→0−

∫
z6z13z14 dFU�ε(u� e)

=
∫ [
y
(
b
(
0+� e

)
�0�u

) − y(b(0−� e
)
�0�u

)]

× Pr[UV = 0|V = 0�U = u�ε= e]fV |U=u�ε=e(0)
fV (0)

dFU�ε(u� e)

/(∫ [
b
(
0+� e

) − b(0−� e
)]

Pr[UV = 0|V = 0� ε= e]

× fV |ε=e(0)
fV (0)

dFε(e)

)

=
∫
y
(
b
(
0+� e

)
�0�u

) − y(b(0−� e
)
�0�u

)
b
(
0+� e

) − b(0−� e
) [

b
(
0+� e

) − b(0−� e
)]

× Pr[UV = 0|V = 0�U = u�ε= e]fV |U=u�ε=e(0)
fV (0)

dFU�ε(u� e)
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/(∫ [
b
(
0+� e

) − b(0−� e
)]

Pr[UV = 0|V = 0� ε= e]

× fV |ε=e(0)
fV (0)

dFε(e)

)

=
∫
y
(
b̃(e)�0�u

)
ψ(e�u)dFU�ε(u� e)�

where b̃(e) is a value between b(0+� e) and b(0−� e) for each e and

ψ(e�u)= [
b
(
0+� e

) − b(0−� e
)]

Pr[UV = 0|V = 0�U = u�ε= e]

× fV |U=u�ε=e(0)
fV (0)/(∫ [
b
(
0+� e

) − b(0−� e
)]

Pr[UV = 0|V = 0� ε= e]

× fV |ε=e(0)
fV (0)

dFε(e)

)
�

A.3. Applying RKD When the Treatment Variable Is Binary—Remark 6

We provide details on the RK identification result stated in Remark 6. The
identifying assumptions are the following:

ASSUMPTION 1c—Regularity: (i) The support of U and η are bounded: they
are subsets of the arbitrarily large compact set IU ⊂ R

m and Iη = [cη�dη] ⊂ R, re-
spectively. (ii) y(t� v�u) is continuous on IV �U for t = 0�1. (iii) t(b� v�n) is contin-
uously differentiable on Ib(V )�V �η and is strictly increasing in n for all b�v ∈ Ib(V )�V .

By Assumption 1c and the implicit function theorem, we can define the
continuously differentiable function η̃ : Ib(V ) × IV → R such that t(b� v�
η̃(b� v))= 0. Let η̃(b(V )�V ) be the image of Ib(V )�V under the mapping η̃.

ASSUMPTION 2c—Smooth Effect of V : y2(t� v�u) is continuous on IV �U for
each t = 0�1.

ASSUMPTION 3c—First-Stage and Nonnegligible Population at the Kink:
(i) b(·) is a known function, everywhere continuous and continuously dif-
ferentiable on IV \ {0}, but limv→0+ b′(v) �= limv→0− b′(v). (ii) The set AU ≡
{u : fV �η|U=u(v�n) > 0 ∀(v�n) ∈ IV �η̃(b(V )�V )} has a positive measure under U :∫
AU
dFU(u) > 0. (iii) t1(b0�0� n0) �= 0.

ASSUMPTION 4c—Smooth Density: The conditional density fV �η|U=u(v�n)
and its partial derivative w.r.t. v, ∂fV �η|U=u(v�n)

∂v
, are continuous on IV �η�U .
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PROPOSITION 3: Under Assumptions 1c–4c:
(a) Pr(U ≤ u|V = v) is continuously differentiable in v at v= 0 ∀u ∈ IU .
(b)

lim
v0→0+

dE[Y |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[Y |V = v]
dv

∣∣∣∣
v=v0

lim
v0→0+

dE[T |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[T |V = v]
dv

∣∣∣∣
v=v0

=
∫ [
y(1�0�u)− y(0�0�u)

]fV �η|U=u
(
0� n0

)
fV �η

(
0� n0

) dFU(u)�

PROOF: The proof of (a) is analogous to that of Proposition 1(a).
For part (b), note that

d

dv
E[T |V = v]

= d

dv
E[1[T ∗≥0]|V = v] = d

dv

∫ dη

η̃(b(v)�v)

fη|V=v(n)dn

=
∫ dη

η̃(b(v)�v)

∂

∂v

[
fη|V=v(n)

]
dn

− [
η̃1

(
b(v)� v

)
b′(v)+ η̃2

(
b(v)� v

)]
fη|V =v

(
η̃

(
b(v)� v

))
�

where η̃k denotes the partial derivative of η̃ with respect to its kth argument.
The second line follows from Assumption 1c, and the interchange of differenti-
ation and integration in the third line is permitted by Assumption 4c. It follows
that the denominator can be expressed as

lim
v0→0+

dE[T |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[T |V = v]
dv

∣∣∣∣
v=v0

= −
[

lim
v0→0+ b

′(v0)− lim
v0→0− b

′(v0)
]
η̃1(b0�0)fη|V=0

(
η̃(b0�0)

)

= −
[

lim
v0→0+ b

′(v0)− lim
v0→0− b

′(v0)
]
η̃1(b0�0)

fV �η
(
0� n0

)
fV (0)

�

Similarly, by Assumptions 1c, 2c, and 4c,

d

dv
E[Y |V = v]

= d

dv
E

[
y(T�V �U)|V = v]
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= d

dv

∫ {∫ dη

η̃(b(v)�v)

y(1� v�u)fη|V=v�U=u(n)dn

+
∫ η̃(b(v)�v)

cη

y(0� v�u)fη|V=v�U=u(n)dn
}
dFU |V =v(u)

=
∫ {∫ dη

η̃(b(v)�v)

∂

∂v

[
y(1� v�u)fη|V=v�U=u(n)

]
dn

+
∫ η̃(b(v)�v)

cη

∂

∂v

[
y(0� v�u)fη|V=v�U=u(n)

]
dn

}
dFU |V =v(u)

−
∫ [
y(1� v�u)− y(0� v�u)]fη|V =v�U=u

(
η̃

(
b(v)� v

))
× [
η̃1

(
b(v)� v

)
b′(v)+ η̃2

(
b(v)� v

)]
dFU |V=v(u)�

and it follows that the numerator is

lim
v0→0+

dE[Y |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[Y |V = v]
dv

∣∣∣∣
v=v0

= −
[

lim
v0→0+ b

′(v0)− lim
v0→0− b

′(v0)
]
η̃1(b0�0)

×
∫ [
y(1�0�u)− y(0�0�u)

]
fη|V =0�U=u

(
n0

)
dFU |V =0(u)

= −
[

lim
v0→0+ b

′(v0)− lim
v0→0− b

′(v0)
]
η̃1(b0�0)

×
∫ [
y(1�0�u)− y(0�0�u)

]fV �η|U=u
(
0� n0

)
fV (0)

dFU(u)�

Assumption 3c(iii) and the implicit function theorem imply that η̃1(b0�0) �= 0,
and therefore,

lim
v0→0+

dE[Y |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[Y |V = v]
dv

∣∣∣∣
v=v0

lim
v0→0+

dE[T |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[T |V = v]
dv

∣∣∣∣
v=v0

(A.7)

=
∫ [
y(1�0�u)− y(0�0�u)

]fV �η|U=u
(
0� n0

)
fV �η

(
0� n0

) dFU(u)

by Assumption 3c. Q.E.D.
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When the benefit variable b directly affects the outcome, that is, Y =
y(T�B�V �U), the fuzzy RKD estimand no longer identifies the causal effect
of T on Y ; rather, the effect of T on Y is confounded by the direct effect of B
on Y . If Assumptions 1c–4c are modified accordingly, it can be shown that the
RK estimand identifies the parameter

∫ [
y(1�0�u)− y(0�0�u)

]fV �η|U=u
(
0� n0

)
fV �η

(
0� n0

) dFU(u)

︸ ︷︷ ︸
(i)

− E
[
y2

(
T�b(V )�V �U

)|V = 0
]

η̃1(b0�0)fη|V=0(n0)︸ ︷︷ ︸
(ii)

�

where term (i) is the same as the RHS of equation (A.7) and term (ii) is
the component that depends on the direct impact of B on Y . To the ex-
tent that the researcher can determine the sign of (ii), which involves signing
E[y2(T�b(V )�V �U)|V = 0] and η̃1(b0�0), she can bound the treatment effect
(i) with the RKD estimand. For example, when η represents a student’s ability
in the empirical example in Remark 6, we may assert that η̃1(b0�0) < 0 be-
cause the expected return from college attendance increases with the amount
of financial aid. The conditional expectation of the direct impact of B on Y ,
E[y2(T�b(V )�V �U)|V = 0], may be positive because a more generous aid
package allows a student more time to focus on her study. If these arguments
were true, then the RKD estimand would serve as an upper bound on the eco-
nomic returns to college attendance.

As stated in Remark 6, we can also allow the relationship between B and V
to be fuzzy as in Section 2.2.2: B= b(V �ε). In addition, we allow measurement
error in V , UV , which has a point mass at 0, and we only observe V ∗ = V +UV .
We do not need to consider the measurement error in B since the observed
value of B does not appear in the RK estimand. We abstract away from poten-
tial measurement error in T and leave it for future research. The modified set
of identifying assumptions are:

ASSUMPTION 1d—Regularity: In addition to the conditions in Assumption 1c,
the support of ε is bounded: it is a subset of the arbitrarily large compact set
Iε ⊂R

k.

ASSUMPTION 3d—First-Stage and Nonnegligible Population at the Kink:
b(v� e) is continuous on IV �ε and b1(v� e) is continuous on (IV \ {0}) × Iε. Let
b+

1 (e)≡ limv→0+ b1(v� e), b−
1 (e)≡ limv→0− b1(v� e), Aε ≡ {e : fV |ε=e(0) > 0}, and

n0(e) ≡ η̃(b(0� e)�0); then
∫ {|b+

1 (e) − b−
1 (e)||η̃1(b(0� e)�0)|Pr[UV = 0|V =

0� ε= e�η= n0(e)]fV �η|ε=e(0� n0(e))dFε(e) > 0.
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ASSUMPTION 4d—Smooth Density: The conditional density

fV �η�UV ′ |U=u�ε=e(v�n�uV ′)

and its partial derivative w.r.t. v,

∂fV �η�UV ′ |U=u�ε=e(v�n�uV ′)

∂v
�

are continuous on IV �η�UV ′ �U�ε.

ASSUMPTION 5d—Smooth Probability of No Error in V and B: As a function
of the realized values of V ,U , ε, η, andUV ′ , the conditional probability ofUV = 0,
denoted by π(v�u�e�uV ′�uB′), and its partial derivative w.r.t. v are continuous on
IV �U�ε�η�UV ′ .

ASSUMPTION 6d—Monotonicity: (i) Either b+
1 (e)≥ b−

1 (e) for all e or b+
1 (e)≤

b−
1 (e) for all e. (ii) t1(b(0� e)�0� n0(e)) ≥ 0 for all e or t1(b(0� e)�0� n0(e)) ≤ 0

for all e.

PROPOSITION 4: Under Assumptions 1d, 2, 3d–6d:
(a) Pr(U ≤ u�ε = e�η = n|V ∗ = v∗) is continuously differentiable in v∗ at

v∗ = 0 ∀(u� e�n) ∈ IU�ε�η.
(b)

lim
v0→0+

dE[Y |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[Y |V = v]
dv

∣∣∣∣
v=v0

lim
v0→0+

dE[T |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[T |V = v]
dv

∣∣∣∣
v=v0

=
∫ [
y(1�0�u)− y(0�0�u)

]
ϕ̃(u� e)dFU�ε(u� e)�

where ϕ̃(u� e)≡ [b+
1 (e)−b−

1 (e)]η̃1(b(0�e)�0)Pr[UV =0|V =0�U=u�ε=e�η=n0(e)]fV �η|U=u�ε=e(0�n0(e))∫ {[b+
1 (e)−b−

1 (e)]η̃1(b(0�e)�0)Pr[UV =0|V=0�ε=e�η=n0(e)]fV �η|ε=e(0�n0(e))dFε(e)
.

PROOF: The proof is similar to that of Proposition 2 and is omitted. Q.E.D.

APPENDIX B: ESTIMATION

B.1. Two-Sample RKD

As suggested by a referee, the triplet (Y�B�V ) may not be jointly observed
from a single data source. Instead, the vectors (Yi�Vi) for i= 1� � � � � n1 are ob-
served in data set 1 and (Bj�Vj) for j = 1� � � � � n2 are observed in data set 2.
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Because of the requirement of a zero point mass in the UV distribution in As-
sumption 3a, an RKD typically calls for administrative data as opposed to sur-
veys based on a complex sampling design. Therefore, we assume that (Yi�Vi)
and (Bj�Vj) are independent i.i.d. samples as per Inoue and Solon (2010). The
variances of the first-stage and reduced-form kink estimators, τ̂B = κ̂+

1 − κ̂−
1 and

τ̂Y = β̂+
1 − β̂−

1 , can be calculated by using the sharp RKD variance estimator,
and the covariance between τ̂B and τ̂Y is zero by the independence assump-
tion. It follows that the variance of the fuzzy RKD estimator τ̂Y

τ̂B
can be calcu-

lated by an application of the delta method. The robust confidence intervals
in Calonico, Cattaneo, and Titiunik (2014c) can be constructed analogously by
setting the covariances between the first-stage and reduced-form estimators to
zero.

B.2. Optimal Bandwidth in Fuzzy RKD

In this section, we propose bandwidth selectors that minimize the asymp-
totic MSE of the fuzzy RD/RKD estimators, building on that in Imbens and
Kalyanaraman (2012) (henceforth, IK bandwidth) and Calonico, Cattaneo,
and Titiunik (2014c) (henceforth, CCT bandwidth). First we introduce nota-
tion similar to Calonico, Cattaneo, and Titiunik (2014c). Define μ(ν)·+ and μ(ν)·−
as the νth right and left derivatives of the conditional expectation of a ran-
dom variable (Y or B) with respect to V at V = 0; let τY�ν ≡ μ(ν)Y+ − μ(ν)Y− and
τB�ν ≡ μ(ν)B+ − μ(ν)B−. In addition, let σ2

Y+, σ2
Y−, σ2

B+, σ2
B−, σYB+, and σYB− be the

conditional variances of Y and B and their conditional covariance on two sides
of the threshold. Finally, let

ς̃ν�p�s(h)= 1
τB�ν

[(
μ̂(ν)Y+(h)− (−1)sμ̂(ν)Y−(h)

) − (
μ(ν)Y+ − (−1)sμ(ν)Y−

)]

+ τY�ν

τ2
B�ν

[(
μ̂(ν)B+(h)− (−1)sμ̂(ν)B−(h)

) − (
μ(ν)B+ − (−1)sμ(ν)B−

)]
�

where μ̂(ν)·+ and μ̂(ν)·− are the pth order local polynomial estimator of μ(ν)·+ and
μ(ν)·− , respectively.

Next we propose the lemma that generalizes Lemma 2 of Calonico, Catta-
neo, and Titiunik (2014c) and serves as the fuzzy analog of its Lemma 1:

LEMMA 7: Assume that Assumptions 1–3 in Calonico, Cattaneo, and Titiunik
(2014c) are satisfied with S ≥ p+ 1 and ν ≤ p. If h→ 0 and nh→ ∞, then

MSEν�p�s = E
[(
ς̃ν�p�s(h)

)2|{Vi}ni=1

]
= h2(p+1−ν)[B2

F�ν�p�p+1�s + op(1)
] + 1

nh1+2ν
n

[
VF�ν�p + op(1)

]
�
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where

BF�ν�p�r�s =
(

1
τB�ν

μ(r)Y+ − (−1)ν+r+sμ(r)Y−
r! − τY�ν

τ2
B�ν

μ(r)B+ − (−1)ν+r+sμ(r)B−
r!

)

× ν!e′
νΓ

−1
p ϑp�r�

VF�ν�p =
(

1
τ2
B�ν

σ2
Y− + σ2

Y+
f

− 2τY�ν
τ3
B�ν

σYB− + σYB+
f

+ τ2
Y�ν

τ4
B�ν

σ2
B− + σ2

B+
f

)

× ν!2e′
νΓ

−1
p ΨpΓ

−1
p eν�

with eν , Γp, Ψp, and ϑp�r as defined in Calonico, Cattaneo, and Titiunik (2014c).
If, in addition, BF�ν�p�r�s �= 0, then the asymptotic MSE-optimal bandwidth is
hMSE�F�ν�p = C1/(2p+3)

F�ν�p�s n
−1/(2p+3), where CF�ν�p�s = (2ν+1)VF�ν�p

2(p+1−ν)B2
F�ν�p�p+1�s

.

PROOF: The proof of Lemma 7 is analogous to that of Lemma A2 of
Calonico, Cattaneo, and Titiunik (2014c). Q.E.D.

Note that Lemma 2 of Calonico, Cattaneo, and Titiunik (2014c) is a special
case of Lemma 7 above with s = 0. As in the sharp case, the bias of the fuzzy
RD estimator depends on the difference or sum of the derivative estimator
from the first stage and the outcome equation. Whether it is a difference or
sum depends on the order of the derivative estimated as well as the order of the
estimating polynomial. Based on Lemma 7, we propose procedures to compute
the CCT and IK bandwidths adapted to the fuzzy RD/RKD designs in the two
following subsections.

B.2.1. Fuzzy Bandwidth Based on the CCT Procedure

Define the local variance estimator

V̂F�ν�p(h)= 1
τ̃2
B�ν

V̂YY�ν�p(h)− 2τ̃Y�ν
τ̃3
B�ν

V̂YB�ν�p(h)+ τ̃2
Y�ν

τ̃4
B�ν

V̂BB�ν�p(h)�

where

V̂R1R2�ν�p(h)= V̂R1R2+�ν�p(h)+ V̂R1R2−�ν�p(h)

= ν!2e′
νΓ

−1
+�p(h)Ψ̂R1R2+�p(h)Γ −1

+�p(h)eν/nh
2ν

+ ν!2e′
νΓ

−1
−�p(h)Ψ̂R1R2−�p(h)Γ −1

−�p(h)eν/nh
2ν�

with R1 and R2 serving as place holders for Y and B, and the quantities
eν , Γ+�p(h), and Ψ̂R1R2+�p(h) as defined in Calonico, Cattaneo, and Titiunik
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(2014c). The constants Γp, ϑp�q, Bν�p, and Cν�p(K) also follow the same defini-
tions in Calonico, Cattaneo, and Titiunik (2014c).

Step 0: Use the CCT bandwidth (optimal in the MSE sense for estimating
τY�ν) to obtain preliminary estimates τ̃Y�ν and τ̃B�ν .

Step 1: υ and c
1. υ= ConstK ·min{SV � IQRV /1�349} ·n−1/5 where ConstK = ( 8

√
π

∫
K(u)2 du

3(
∫
u2K(u)du)2

)1/5;
S2
V and IQRV denote the sample variance and interquartile range of V . The

selection of υn, which is based on Silverman’s rule of thumb, is the same as
in Calonico, Cattaneo, and Titiunik (2014c). Use υ to compute the variance
estimator V̂F�q+1�q+1(υ̂), V̂F�p+1�q(υ̂), and V̂F�ν�p(υ̂).

2. Run global polynomials of order q + 2 separately for B and Y on each
side of the threshold. Obtain estimators of the (q + 2)th derivatives on both
sides of the threshold e′

q+2γ̂Y±�q+2 and e′
q+2γ̂B±�q+2, and use them to calculate

the bandwidth c: c = Č1/(2q+5)
F�q+1�q+1�ν+qn

−1/(2q+5),

ČF�q+1�q+1�ν+q = (2q+ 3)nυ2q+3
n V̂F�q+1�q+1(υ̂)/(

2B2
q+1�q+1

{
1
τ̃B�ν

[
e′
q+2γ̂Y+�q+2 − (−1)ν+qe′

q+2γ̂Y−�q+2

]

− τ̃Y�ν

τ̃2
B�ν

[
e′
q+2γ̂B+�q+2 − (−1)ν+qe′

q+2γ̂B−�q+2

]}2)
�

Step 2: hq
Perform local regressions with bandwidth c to estimate the (q + 1)th

derivatives on both sides of the threshold and calculate bandwidth hq: ĥq =
Ĉ

1/(2q+3)
F�p+1�q�ν+q+1n

−1/(2q+3),

ĈF�p+1�q�ν+q+1

= (2p+ 3)nυ2p+3
n V̂F�p+1�q(υ̂)/(

2(q−p)

×B2
p+1�q

{
1
τ̃B�ν

[
e′
q+1β̂Y+�q+1(ĉ)− (−1)ν+q+1e′

q+1β̂Y−�q+1(ĉ)
]

− τ̃Y�ν

τ̃2
B�ν

[
e′
q+1β̂B+�q+1(ĉ)− (−1)ν+q+1e′

q+1β̂B−�q+1(ĉ)
]}2)

�

Step 3: h
Perform local regression with bandwidth hq to estimate the bias in the

fuzzy RD/RKD estimator τ̂F�ν�p and calculate the resulting main bandwidth h:
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ĥ= Ĉ1/(2p+3)
F�ν�p�ν+p+1n

−1/(2p+3),

ĈF�ν�p�ν+p+1

= (2ν+ 1)nυ2ν+1
n V̂F�ν�p(υ̂)/(

2(p+ 1 − ν)

×B2
ν�p

{
1
τ̃B�ν

[
e′
p+1β̂Y+�q(ĥq)− (−1)ν+p+1e′

p+1β̂Y−�q(ĥq)
]

− τ̃Y�ν

τ̃2
B�ν

[
e′
p+1β̂B+�q(ĥq)− (−1)ν+p+1e′

p+1β̂B−�q(ĥq)
]}2)

�

Similarly to Calonico, Cattaneo, and Titiunik (2014c), we have the following
consistency result for the fuzzy CCT bandwidth selectors proposed above.

PROPOSITION 5—Consistency of the CCT Bandwidth Selectors: Let ν ≤
p < q. Suppose Assumptions 1–3 in Calonico, Cattaneo, and Titiunik (2014c)
hold with S ≥ q+ 2 and that

1
τ̃B�ν

[
e′
q+2γ̂Y+�q+2 − (−1)ν+qe′

q+2γ̂Y−�q+2

]

− τ̃Y�ν

τ̃2
B�ν

[
e′
q+2γ̂B+�q+2 − (−1)ν+qe′

q+2γ̂B−�q+2

] p→ c �= 0�

Step 1. If BF�p+1�q�q+1�ν+p+1 �= 0, then

ĥq

hMSE�F�p+1�q�ν+p+1

p→ 1 and
MSEF�p+1�q�ν+p+1(ĥq)

MSEp+1�q�ν+p+1(hMSE�p+1�q�ν+p+1)

p→ 1�

Step 2. If BF�ν�p�p+1�0 �= 0, then

ĥ

hMSE�F�ν�p�0

p→ 1 and
MSEF�ν�p�0(ĥ)

MSEF�ν�p�0(hMSE�F�ν�p�0)

p→ 1�

PROOF: Because the CCT bandwidth optimal for estimating τY�ν shrinks at
the rate of n−1/(2p+3), the preliminary estimators, τ̃Y�ν and τ̃B�ν , are consistent.
The rest of the proof follows the arguments in the proof of Theorem A4 in
Calonico, Cattaneo, and Titiunik (2014c). Q.E.D.

The optimal fuzzy RD bandwidth was proposed in Imbens and Kalyanara-
man (2012). We suggest an extension to be used in the fuzzy RKD case (ν = 1)
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and state the bandwidth selectors for a generic ν. Calonico, Cattaneo, and
Titiunik (2014c), Calonico, Cattaneo, and Titiunik (2014b), and Calonico,
Cattaneo, and Titiunik (2014a) adapted the IK bandwidth selection proce-
dure to hq so that it can be used to bias-correct the RD estimator. Building
upon these studies, we propose a further extension of the bandwidth selec-
tor for hq to a general fuzzy design with a discontinuity in the νth deriva-
tive.

B.2.2. Fuzzy Bandwidth Based on the IK Procedure

Step 1: Use the sharp IK bandwidth (optimal in the MSE sense for estimating
τY�ν) to obtain preliminary estimates τ̃Y�ν and τ̃B�ν .

Step 2: υ
1. υ̂= 1�84 · SV · n−1/5.
2. Use ĥ1 to estimate σ̂2

Y±(υ̂), σ̂
2
B±(υ̂), σ̂YB±(υ̂), and f̂ (υ̂) as specified

in Imbens and Kalyanaraman (2012) (note that Imbens and Kalyanaraman
(2012) used W to denote the treatment variable and use h1 to denote this pre-
liminary bandwidth).

Step 3: hq
Run global regressions:

Y = δY · 1[V ≥0] · V ν + αY0 + αY1 V + · · · + αYq+2V
q+2 + εY �

B= δB · 1[V ≥0] · V ν + αB0 + αB1 V + · · · + αBq+2V
q+2 + εB�

and use α̂Yq+2 and α̂Bq+2 to construct

• ĥY−�q+1 = (Cq+1�q+1(KU)
σ̂2
Y−(υ̂)/f̂ (υ̂)
n−(α̂Yq+2)

2 )
1/(2q+5),

• ĥY+�q+1 = (Cq+1�q+1(KU)
σ̂2
Y+(υ̂)/f̂ (υ̂)
n+(α̂Yq+2)

2 )
1/(2q+5),

• ĥB−�q+1 = (Cq+1�q+1(KU)
σ̂2
B−(υ̂)/f̂ (υ̂)
n−(α̂Bq+2)

2 )
1/(2q+5),

• ĥB+�q+1 = (Cq+1�q+1(KU)
σ̂2
B+(υ̂)/f̂ (υ̂)
n+(α̂Bq+2)

2 )
1/(2q+5).

Perform (q + 1)th order local regressions of Y and B on each side of the
threshold with the uniform kernel KU and bandwidths ĥY±�q+1 and ĥB±�q+1. Us-
ing in the resulting estimators β̂Y±�q+1(ĥY±�q+1) and β̂B±�q+1(ĥB±�q+1), we obtain
ĥq = Ĉ1/(2q+3)

F�p+1�q�ν+q+1n
−1/(2q+3),

ĈF�p+1�q�ν+q+1

= Cp+1�q(K) ·
(

1

f̂ (υ̂)

{
1
τ̃2
B�ν

[
σ̂2
Y+(υ̂)+ σ̂2

Y−(υ̂)
]
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− 2τ̃Y�ν
τ̃3
B�ν

[
σ̂2
YB−(υ̂)+ σ̂2

YB+(υ̂)
] + τ̃2

Y�ν

τ̃4
B�ν

[
σ̂2
B−(υ̂)+ σ̂2

B+(υ̂)
]})

/
(D1 −D2)

2�

where

D1 = 1
τ̃B�ν

[
e′
q+1β̂Y+�q+1(ĥY+�q+1)− (−1)ν+q+1e′

q+1β̂Y−�q+1(ĥY−�q+1)
]

and

D2 = τ̃Y�ν

τ̃2
B�ν

[
e′
q+1β̂B+�q+1(ĥB+�q+1)− (−1)ν+q+1e′

q+1β̂B−�q+1(ĥB−�q+1)
]
�

Step 4: h
Run global regressions:

Y = δY · 1[V ≥0] · V ν + γY0 + γY1 V + · · · + γYq+1V
q+1 + εY �

B= δB · 1[V ≥0] · V ν + γB0 + γB1 V + · · · + γBq+1V
q+1 + εB�

and use γ̂Yq+1 and γ̂Bq+1 to construct

• ĥY−�q = (Cp+1�q(KU)
σ̂2
Y−(υ̂)/f̂ (υ̂)
n−(γ̂Yq+1)

2 )
1/(2q+3),

• ĥY+�q = (Cp+1�q(KU)
σ̂2
Y+(υ̂)/f̂ (υ̂)
n+(γ̂Yq+1)

2 )
1/(2q+3),

• ĥB−�q = (Cp+1�q(KU)
σ̂2
B−(υ̂)/f̂ (υ̂)
n−(γ̂Bq+1)

2 )
1/(2q+3),

• ĥB+�q = (Cp+1�q(KU)
σ̂2
B+(υ̂)/f̂ (υ̂)
n+(γ̂Bq+1)

2 )
1/(2q+3).

Perform qth order local regressions of Y and B on each side of the thresh-
old with bandwidths ĥY±�qand ĥB±�q and obtain local regression estimators
β̂Y±�q(ĥY±�q) and β̂B±�q(ĥB±�q). Plugging them in, we have an estimate of the
main bandwidth h: ĥ= Ĉ1/(2p+3)

F�ν�p�ν+p+1n
−1/(2p+3),

ĈF�ν�p�ν+p+1

= Cν�p(K)
(

1

f̂ (υ̂)

{
1
τ̃2
B�ν

[
σ̂2
Y+(υ̂)+ σ̂2

Y−(υ̂)
]

− 2τ̃Y�ν
τ̃3
B�ν

[
σ̂2
YB−(υ̂)+ σ̂2

YB+(υ̂)
] + τ̃2

Y�ν

τ̃4
B�ν

[
σ̂2
B−(υ̂)+ σ̂2

B+(υ̂)
]})
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/{
1
τ̃B�ν

[
e′
p+1β̂Y+�q(ĥY+�q)− (−1)ν+p+1e′

p+1β̂Y−�q(ĥY−�q)
]

− τ̃Y�ν

τ̃2
B�ν

[
e′
p+1β̂B+�q(ĥB+�q)− (−1)ν+p+1e′

p+1β̂B−�q(ĥB−�q)
]}2

�

We have a similar consistency result for the IK bandwidth selectors below.

PROPOSITION 6—Consistency of the IK Bandwidth Selectors: Let ν ≤ p <
q. Suppose Assumptions 1–3 in Calonico, Cattaneo, and Titiunik (2014c) hold
with S ≥ q+ 2 and that αYq+2, αBq+2, γYq+1, and γBq+1 are nonzero. Selector for hq: If
BF�p+1�q�q+1�ν+p+1 �= 0, then

ĥq

hMSE�F�p+1�q�ν+p+1

p→ 1 and
MSEF�p+1�q�ν+p+1(ĥq)

MSEp+1�q�ν+p+1(hMSE�p+1�q�ν+p+1)

p→ 1�

Selector for h. If BF�ν�p�p+1�0 �= 0, then

ĥ

hMSE�F�ν�p�0

p→ 1 and
MSEF�ν�p�0(ĥ)

MSEF�ν�p�0(hMSE�F�ν�p�0)

p→ 1�

PROOF: Because the IK bandwidth optimal for estimating τY�ν shrinks at
the rate of n−1/(2p+3), the preliminary estimators, τ̃Y�ν and τ̃B�ν , are consistent.
The density, variance, and covariance estimators are consistent as argued in
Imbens and Kalyanaraman (2012). Since the higher derivative estimators also
converge to their population counterparts, ĈF�p+1�q�ν+q+1

p→ CF�p+1�q�ν+q+1 and
ĈF�ν�p�ν+p+1

p→ CF�ν�p�ν+p+1, and the results of the proposition follow. Q.E.D.
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