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SUPPLEMENT TO “PREEMPTIVE POLICY EXPERIMENTATION”:
APPENDIX

(Econometrica, Vol. 82, No. 4, July 2014, 1509–1528)

BY STEVEN CALLANDER AND PATRICK HUMMEL

THIS APPENDIX PROVES THE MAIN RESULTS OF THE PAPER. The proof of
Lemma 1 is omitted since this result is a restatement of Proposition 1 in Callan-
der (2011a). We next present a formal characterization of R’s best responses
to the various possible outcomes resulting from D’s first period policy choice.

LEMMA S1: (a) If p1 > 0, then R chooses a policy satisfying
(i) p∗

2 = 0 if ψ(p1) <− 4μγ2

σ2 − σ2

4μ + γ,

(ii) p∗
2 >p1 such that E[ψ(p∗

2)] = γ− σ2

2μ if ψ(p1) ∈ [− 4μγ2

σ2 − σ2

4μ +γ�γ− σ2

2μ),

(iii) p∗
2 = p1 if ψ(p1) ∈ [γ− σ2

2μ �
√
γ2 + p1σ

2

2 ], and

(iv) p∗
2 ∈ (0�p1) if ψ(p1) >

√
γ2 + p1σ

2

2 .
(b) If p1 < 0, then R chooses a policy satisfying

(i) p∗
2 > 0 such that E[ψ(p∗

2)] = γ− σ2

2μ if ψ(p1) < γ−
√

2γσ2

μ
− σ4

4μ2 ,

(ii) p∗
2 = p1 if ψ(p1) ∈ [γ−

√
2γσ2

μ
− σ4

4μ2 �
√
γ2 − p1σ

2

2 ], and

(iii) p∗
2 ∈ (p1�0) if ψ(p1) >

√
γ2 − p1σ

2

2 .

PROOF: (a) SupposeD chooses a policy of the form p1 > 0 and the ultimate
outcome satisfies ψ(p1) <−γ. Note that if R then chooses a policy of the form
p2 > p1 in the second period, the expected policy outcome is then ψ(p1) +
μ(p2 −p1) and the variance in this policy outcome is (p2 −p1)σ

2. From this it
follows that R’s expected utility from the second period from choosing a policy
p2 >p1 is uR(p2)= −[γ − (ψ(p1)+μ(p2 −p1))]2 − (p2 −p1)σ

2. Differenti-
ating uR(p2) with respect to p2 indicates that if p2 is an optimal policy for R,
it must be the case that 2μ[γ − ψ(p1)− μ(p2 − p1)] − σ2 = 0, which in turn
implies that p2 − p1 = − σ2

2μ2 + γ−ψ(p1)

μ
. By substituting this into the expression

for R’s expected utility, it follows that if it is optimal for R to use a policy of
the form p2 > p1 in the second period, it must be the case that R obtains an
expected utility uR(p2)= σ4

4μ2 − (γ−ψ(p1))σ
2

μ
.

By contrast, if R chooses the policy p2 = 0 in the second period, then R
obtains an expected utility of uR(0)= −4γ2. From this it follows that R prefers
to choose p2 = 0 over a policy of the form p2 > p1 in the second period if
and only if σ4

4μ2 − (γ−ψ(p1))σ
2

μ
< −4γ2. Since this holds if and only if ψ(p1) <
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− 4μγ2

σ2 − σ2

4μ +γ, it follows that R chooses the policy p2 = 0 in the second period

if and only if ψ(p1) <− 4μγ2

σ2 − σ2

4μ + γ.

Now suppose that ψ(p1)≥ − 4μγ2

σ2 − σ2

4μ +γ, but ψ(p1)≤ γ. If it is optimal for
R to choose a policy of the form p2 >p1 in the second period, then it must be
the case that the optimal p2 > p1 from the first paragraph of the proof of this
step satisfies p2 −p1 > 0. From this it follows that if it is optimal forR to choose
a policy of the form p2 >p1 in the second period, then it must be the case that
p2 −p1 = − σ2

2μ2 + γ−ψ(p1)

μ
> 0, meaning it must be the case that ψ(p1) < γ− σ2

2μ .
From this it follows that R chooses a policy of the form p2 > p1 in the second
period if and only if ψ(p1)≥ − 4μγ2

σ2 − σ2

4μ +γ and ψ(p1) < γ− σ2

2μ . Moreover, in

these cases, the optimal policy p∗
2 satisfies E[ψ(p∗

2)] = γ− σ2

2μ .
Next suppose that ψ(p1) > γ and consider what happens if R chooses a pol-

icy of the form p2 ∈ (0�p1) in the second period. Note that ifR chooses a policy
of the form p2 ∈ (0�p1), then the expected policy outcome is −γ+ p2

p1
(ψ(p1)+

γ) and the variance in this policy outcome is p2(p1−p2)

p1
σ2. From this it follows

that if R chooses a policy of the form p2 ∈ (0�p1), then R obtains an expected
utility of uR(p2)= −[2γ− p2

p1
(ψ(p1)+ γ)]2 − p2(p1−p2)

p1
σ2 in the second period.

Differentiating with respect to p2 indicates that if p2 ∈ (0�p1) is an optimal
policy for R, it must be the case that 2(ψ(p1) + γ)[2γ − p2

p1
(ψ(p1) + γ)] +

(2p2 −p1)σ
2 = 0. Simple algebra then implies that the optimal p2 satisfies

p1 −p2 = p1

2
2(ψ(p1)− γ)(ψ(p1)+ γ)−p1σ

2

(ψ(p1)+ γ)2 −p1σ2
�

Now if R prefers to choose a policy of the form p2 ∈ (0�p1) over the policy
p1, it must be the case that the derivative u′

R(p2) < 0 when this derivative is
evaluated at p2 = p1. This takes place if and only if 2ψ(p1)+γ

p1
[2γ − (ψ(p1) +

γ)] + σ2 < 0. Simple algebra then indicates that this inequality holds if and

only if ψ(p1) >
√
γ2 + p1σ

2

2 , so from this it follows that R will not choose a

policy of the form p2 ∈ (0�p1) unless ψ(p1) >
√
γ2 + p1σ

2

2 . Furthermore, R
will indeed prefer a policy of the form p2 ∈ (0�p1) over p2 = 0 in these cases
for any reasonable choices of p1 > 0 (e.g., if p1 <

16γ2

σ2 ).
Combining all these results indicates that R chooses a policy of the form

p2 = 0 satisfying E[ψ(p∗
2)] = γ − σ2

2μ in the second period if ψ(p1) < − 4μγ2

σ2 −
σ2

4μ + γ, R chooses a policy of the form p2 > p1 satisfying E[ψ(p2)] = γ − σ2

2μ

if ψ(p1) ∈ [− 4μγ2

σ2 − σ2

4μ + γ�γ − σ2

2μ), R chooses a policy of the form p2 = p1
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if ψ(p1) ∈ [σ2

2μ �
√
γ2 + p1σ

2

2 ], and R chooses a policy of the form p2 ∈ (0�p1) if

ψ(p1) >
√
γ2 + p1σ

2

2 .
(b) Now suppose D chooses a policy of the form p1 < 0. Note that if R

chooses a policy of the form p2 > 0, then we know from the same reasoning as
in Lemma 1 that R will choose a policy satisfying −γ+μp2 = γ− σ2

2μ , meaning

R will choose the policy p2 = 2γ
μ

− σ2

2μ2 . Thus, if R chooses a policy of the form

p2 > 0, then the expected policy outcome will be −γ + μp2 = γ − σ2

2μ and the

variance in this policy outcome will be p2σ
2 = 2γσ2

μ
− σ4

2μ2 . From this it follows
that if R chooses a policy of the form p2 > 0, then R obtains an expected utility
from the second period equal to −(γ− (γ− σ2

2μ))
2 − ( 2γσ2

μ
− σ4

2μ2 )= σ4

4μ2 − 2γσ2

μ
.

Now if R chooses the policy p2 = p1, then R obtains a utility from the
second period equal to −(γ − ψ(p1))

2. From this it follows that R prefers
to choose the optimal policy p2 > 0 over the policy p2 = p1 if and only if

−(γ−ψ(p1))
2 < σ4

4μ2 − 2γσ2

μ
, which holds if and only if ψ(p1) < γ−

√
2γσ2

μ
− σ4

4μ2

(or ψ(p1) > γ +
√

2γσ2

μ
− σ4

4μ2 ). Thus, if the final policy outcome satisfies

ψ(p1) < γ−
√

2γσ2

μ
− σ4

4μ2 , then R will choose the policy p2 = 2γ
μ

− σ2

2μ2 .
Now suppose that ψ(p1) > γ and consider what happens if R chooses a pol-

icy of the form p2 ∈ (p1�0) in the second period. Note that ifR chooses a policy
of the formp2 ∈ (p1�0) in the second period, then the expected policy outcome
is −γ + p2

p1
(ψ(p1)+ γ) and the variance in this policy outcome is p2(p2−p1)

p1
σ2,

meaning R obtains an expected utility of uR(p2)= −[2γ − p2
p1
(ψ(p1)+ γ)]2 −

p2(p2−p1)

p1
σ2 in the second period. Differentiating with respect to p2 then indi-

cates that if p2 ∈ (p1�0) is an optimal policy for R, it must be the case that
2(ψ(p1) + γ)[2γ − p2

p1
(ψ(p1) + γ)] − (2p2 − p1)σ

2 = 0. Simple algebra then
implies that the optimal p2 satisfies

p2 −p1 = −p1

2
2(ψ(p1)− γ)(ψ(p1)+ γ)+p1σ

2

(ψ(p1)+ γ)2 +p1σ2
�

Now if R prefers to choose a policy of the form p2 ∈ (p1�0) over the policy
p1, it must be the case that the derivative u′

R(p2) is positive when evaluated
at p2 = p1. This holds if and only if 2ψ(p1)+γ

p1
[2γ − (ψ(p1)+ γ)] − σ2 > 0, and

simple algebra then indicates that this in turn holds if and only if ψ(p1) >√
γ2 − p1σ

2

2 . From this it follows that R will not choose a policy of the form

p2 ∈ (p1�0) unless ψ(p1) >
√
γ2 − p1σ

2

2 . And R will indeed prefer the optimal
p2 ∈ (p1�0) over the optimal p2 > 0 in these cases for any reasonable choices
of p1 < 0 (e.g., p1 >

σ2

μ2 − 8γ
μ

is a sufficient condition).
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Combining all these results shows that R chooses a policy of the form p2 > 0

satisfying E[ψ(p2)] = γ− σ2

2μ if ψ(p1) < γ −
√

2γσ2

μ
− σ4

4μ2 , R chooses the policy

p2 = p1 if ψ(p1) ∈ [γ−
√

2γσ2

μ
− σ4

4μ2 �
√
γ2 − p1σ

2

2 ], and R chooses a policy of the

form p2 ∈ (p1�0) if ψ(p1) >
√
γ2 − p1σ

2

2 . Q.E.D.

PROOF OF THEOREM 1: The proof proceeds in several steps, which are out-
lined below.

Step 1. We first derive exact expressions for D’s expected utility from choos-
ing policies of the form p1 > 0.

Step 2. Next we derive exact expressions forD’s expected utility from choos-
ing policies of the form p1 < 0.

Step 3. We then derive expressions for the difference between D’s expected
utility from choosing a policy of the form p1 > 0 and D’s expected utility from
choosing p1 = 0, and we rewrite these expressions in terms of a variable k
representing the ratio of γ to σ2

4μ and a variable β representing the ratio of p1

to σ2(k−1)4

48μ2 .
Step 4. We also derive expressions for the difference between D’s expected

utility from choosing a policy of the form p1 < 0 and D’s expected utility from
choosing p1 = 0, and we rewrite these expressions in terms of the variable k
defined above and a variable α representing the ratio of |p1| to σ2(k−√

2k−1)2

12μ2 .
The key benefit of this transformation is that now the expressions for the

expected utility differences in Steps 3 and 4 both break down into terms rep-
resenting the short-term expected costs from choosing a less favorable policy
initially and a term representing the expected benefits from potentially favor-
ably influencing R’s policy choice in the second period.

Step 5. We then illustrate that for values of γ that are only slightly greater
than σ2

4μ , it must be the case thatD prefers the optimal policy p1 > 0 over p1 = 0
and also prefers the optimal policy p1 < 0 over p1 = 0. We do this by showing
that when k is only slightly greater than 1, the expected benefits from choosing
a policy p1 �= 0 and potentially influencing R’s second period policy choice are
an order of magnitude greater than the expected costs.

Step 6. We show that for sufficiently large values of γ, it must be the case that
D chooses the policy p1 = 0 by showing that when k is sufficiently large, the
short-term expected costs to choosing a policy p1 �= 0 are exponentially larger
than the expected benefits from potentially influencing R’s policy choice.

Step 7. We then illustrate that if D prefers the optimal value of p1 > 0 over
p1 = 0 for some γ > σ2

4μ , then D also prefers the optimal value of p1 > 0 over

p1 = 0 for all smaller values of γ that are still greater than σ2

4μ . We do this by
showing that the ratio of the expected benefits from potentially influencing R’s
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policy choice to the expected costs from choosing a policy p1 > 0 is increasing
in k for such values of k.

Step 8. By combining the insights in Steps 5–7, it follows that if D were re-
stricted to only choosing policies of the form p1 ≥ 0, he would use a cutoff
strategy characterized by a cutoff γ̂ such that he chooses p1 = 0 if γ ≤ σ2

4μ or

γ > γ̂, p1 > 0 if γ ∈ (σ2

4μ � γ̂), and would be indifferent between the optimal
policy p1 > 0 and p1 = 0 if γ = γ̂.

Step 9. We then illustrate that if D prefers the optimal value of p1 < 0 over
p1 = 0 for some γ > σ2

4μ , then D also prefers the optimal value of p1 < 0 over

p1 = 0 for all smaller values of γ that are still greater than σ2

4μ by a similar proof
technique to that in Step 7.

Step 10. By combining the insights in Steps 5, 6, and 9, it follows that if D
were restricted to only choosing policies of the form p1 ≤ 0, then he would
use a cutoff strategy characterized by some other cutoff γ̃ such that he chooses
p1 = 0 if γ ≤ σ2

4μ or γ > γ̃, p1 < 0 if γ ∈ (σ2

4μ � γ̃), and would be indifferent be-
tween the optimal policy p1 < 0 and p1 = 0 if γ = γ̃.

Step 11. We then illustrate that the optimal p1 > 0 will afford D a greater
utility than the optimal p1 < 0 for values of γ that are only slightly greater than
σ2

4μ by bounding the utility differences in Steps 3 and 4 for values of k close to 1.

Step 12. We illustrate that the smallest value of γ > σ2

4μ for which p1 = 0 is
(weakly) preferred to the optimal value of p1 > 0 must be smaller than the
smallest value of γ > σ2

4μ for which p1 = 0 is (weakly) preferred to the optimal
value of p1 < 0.

Step 13. We then illustrate that for values of γ such that both the optimal
policy p1 > 0 and the optimal policy p1 < 0 are preferred to p1 = 0, it must be
the case that there is some intermediate value of γ, say γ′, such that D prefers
the optimal policy p1 > 0 over the optimal policy p1 < 0 for values of γ < γ′,
prefers the optimal policy p1 < 0 over the optimal policy p1 > 0 for values of
γ > γ′, and is indifferent between the optimal policy p1 > 0 and the optimal
policy p1 < 0 for values of γ = γ′.

Step 14. Finally we note why the policy must vary continuously with γ in
regions where D always chooses p1 > 0 or where D always chooses p1 < 0.

Step 15. By combining all these intermediate results, we then note that the
equilibrium must be of the form given in the proposition.

We now tackle each of these steps in turn.

STEP 1: If D chooses a policy p1 > 0 and R chooses a policy of the form
p2 >p1 in the second period, then we know from the proof of Lemma S1 that
R chooses a second period policy satisfying p2 − p1 = − σ2

2μ2 + γ−ψ(p1)

μ
, which

will lead to an expected policy outcome γ − σ2

2μ with variance (γ−ψ(p1))σ
2

μ
− σ4

2μ2 .
Thus, when R chooses a policy of the form p2 > p1 in the second period, D
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obtains an expected utility of uD = −[−γ − (γ − σ2

2μ)]2 + σ4

2μ2 − (γ−ψ(p1))σ
2

μ
from

the second period, which simplifies to −4γ2 + γσ2

μ
+ σ4

4μ2 + ψ(p1)σ
2

μ
. From this it

follows that if ψ(p1)≥ − 4μγ2

σ2 − σ2

4μ + γ and ψ(p1) < γ− σ2

2μ , then D obtains an

expected utility of uD = −4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2 in the second period since
R chooses a policy of the form p2 > p1 if ψ(p1) satisfies these two inequali-
ties.

Also note that D obtains a second period expected utility of uD = 0 if
ψ(p1) < − 4μγ2

σ2 − σ2

4μ + γ since we have seen that R will choose the policy
p2 = 0 in this case. And D will obtain a second period expected utility of

uD = −(−γ − ψ(p1))
2 if ψ(p1) ≥ γ − σ2

2μ and ψ(p1) <
√
γ2 + p1σ

2

2 since we
have seen that R simply chooses the policy p2 = p1 in this case.

Now if ψ(p1) >
√
γ2 + p1σ

2

2 , then we know from the proof of Lemma S1 that
R will choose a policy p2 ∈ (0�p1) satisfying

p1 −p2 = p1

2
2(ψ(p1)− γ)(ψ(p1)+ γ)−p1σ

2

(ψ(p1)+ γ)2 −p1σ2
�

which in turn implies that

p2 = p1
4γ(ψ(p1)+ γ)−p1σ

2

2((ψ(p1)+ γ)2 −p1σ2)
�

Thus if ψ(p1) >
√
γ2 + p1σ

2

2 , then the expected policy outcome will be

−γ+ p2

p1

(
ψ(p1)+ γ)

= −γ+ 4γ(ψ(p1)+ γ)−p1σ
2

2((ψ(p1)+ γ)2 −p1σ2)

(
ψ(p1)+ γ)

and the variance in this policy outcome will be

p2(p1 −p2)

p1
σ2

= [4γ(ψ(p1)+ γ)−p1σ
2][2(ψ(p1)− γ)(ψ(p1)+ γ)−p1σ

2]
4((ψ(p1)+ γ)2 −p1σ2)2

×p1σ
2�
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which means that if ψ(p1) >
√
γ2 + p1σ

2

2 , then D obtains a second-period ex-
pected utility of

−
(

4γ(ψ(p1)+ γ)−p1σ
2

2((ψ(p1)+ γ)2 −p1σ2)

(
ψ(p1)+ γ))2

− [4γ(ψ(p1)+ γ)−p1σ
2][2(ψ(p1)− γ)(ψ(p1)+ γ)−p1σ

2]
4((ψ(p1)+ γ)2 −p1σ2)2

×p1σ
2�

Now D’s expected utility in the first period from choosing a policy p1 > 0 is
E[u1

D|p1] = −μ2p2
1 −p1σ

2. Putting all this together, we see that if f (ψ(p1);p1)
denotes the density corresponding to a normal distribution with mean −γ +
μp1 and variance p1σ

2 at the point ψ(p1), then D’s total expected utility for
the game from choosing a policy p1 > 0 is

E[uD|p1] = −μ2p2
1 −p1σ

2

+
∫ γ−σ2/(2μ)

−4μγ2/σ2−σ2/(4μ)+γ

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)

+
∫ √

γ2+p1σ
2/2

γ−σ2/(2μ)
−(−γ−ψ(p1)

)2
f
(
ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2+p1σ

2/2
−

(
4γ(ψ(p1)+ γ)−p1σ

2

2((ψ(p1)+ γ)2 −p1σ2)

(
ψ(p1)+ γ))2

× f (ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2+p1σ

2/2
−[

4γ
(
ψ(p1)+ γ) −p1σ

2
]

× [
2
(
ψ(p1)− γ)(

ψ(p1)+ γ) −p1σ
2
]

/
(
4
((
ψ(p1)+ γ)2 −p1σ

2
)2)
p1σ

2f
(
ψ(p1);p1

)
dψ(p1)�

STEP 2: Now suppose D chooses a policy of the form p1 < 0. If R chooses
a policy of the form p2 > 0, then we know from the proof of Lemma S1 that
R will choose the policy p2 = 2γ

μ
− σ2

2μ2 , meaning the expected policy outcome

will be −γ + μp2 = γ − σ2

2μ and the variance in this policy outcome will be

p2σ
2 = 2γσ2

μ
− σ4

2μ2 . Since R chooses a policy of the form p2 > 0 if and only if
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ψ(p1) < γ−
√

2γσ2

μ
− σ4

4μ2 , it then follows that if ψ(p1) < γ−
√

2γσ2

μ
− σ4

4μ2 , then

D’s expected utility from the second period will be −(−γ−(γ− σ2

2μ))
2 −( 2γσ2

μ
−

σ4

2μ2 )= −4γ2 + σ4

4μ2 .
Also note that D obtains a second period utility of −(−γ − ψ(p1))

2 if

ψ(p1) ≥ γ −
√

2γσ2

μ
− σ4

4μ2 and ψ(p1) <
√
γ2 − p1σ

2

2 because we know from

Lemma S1 that R will choose the policy p2 = p1 if ψ(p1) ≥ γ −
√

2γσ2

μ
− σ4

4μ2

and ψ(p1)≤
√
γ2 − p1σ

2

2 .

Now if ψ(p1) >
√
γ2 − p1σ

2

2 , then we know from the proof of Lemma S1 that
R chooses a policy p2 ∈ (p1�0) of the form

p2 −p1 = −p1

2
2(ψ(p1)− γ)(ψ(p1)+ γ)+p1σ

2

(ψ(p1)+ γ)2 +p1σ2
�

which can also be expressed as

p2 = p1
4γ(ψ(p1)+ γ)+p1σ

2

2((ψ(p1)+ γ)2 +p1σ2)
�

Thus if ψ(p1) >
√
γ2 − p1σ

2

2 , then the expected policy outcome will be

−γ+ p2

p1

(
ψ(p1)+ γ) = −γ+ 4γ(ψ(p1)+ γ)+p1σ

2

2((ψ(p1)+ γ)2 +p1σ2)

(
ψ(p1)+ γ)

and the variance in this policy outcome will be

p2(p2 −p1)

p1
σ2

= −(4γ(ψ(p1)+ γ)+p1σ
2)(2(ψ(p1)− γ)(ψ(p1)+ γ)+p1σ

2)

4((ψ(p1)+ γ)2 +p1σ2)2

×p1σ
2�

Thus ifψ(p1) >
√
γ2 − p1σ

2

2 , thenD will obtain a second period expected utility
of

−
(

4γ(ψ(p1)+ γ)+p1σ
2

2((ψ(p1)+ γ)2 +p1σ2)

(
ψ(p1)+ γ))2

+ (4γ(ψ(p1)+ γ)+p1σ
2)(2(ψ(p1)− γ)(ψ(p1)+ γ)+p1σ

2)

4((ψ(p1)+ γ)2 +p1σ2)2

×p1σ
2�
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Now D’s expected utility in the first period from choosing a policy p1 < 0 is
E[u1

D|p1] = −μ2p2
1 +p1σ

2. Putting all this together, we see that if g(ψ(p1);p1)
denotes the density corresponding to a normal distribution with mean −γ +
μp1 and variance −p1σ

2 at the point ψ(p1), then D’s total expected utility for
the game from choosing a policy p1 < 0 is

E[uD|p1] = −μ2p2
1 +p1σ

2 +
∫ γ−

√
2γσ2/μ−σ4/(4μ2)

−∞

(
−4γ2 + σ4

4μ2

)

× g(ψ(p1);p1

)
dψ(p1)

+
∫ √

γ2−p1σ
2/2

γ−
√

2γσ2/μ−σ4/(4μ2)

−(−γ−ψ(p1)
)2

× g(ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2−p1σ

2/2
−

(
4γ(ψ(p1)+ γ)+p1σ

2

2((ψ(p1)+ γ)2 +p1σ2)

(
ψ(p1)+ γ))2

× g(ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2−p1σ

2/2

(
4γ

(
ψ(p1)+ γ) +p1σ

2
)(

2
(
ψ(p1)− γ)

× (
ψ(p1)+ γ) +p1σ

2
)
/
(
4
((
ψ(p1)+ γ)2 +p1σ

2
)2)

×p1σ
2g

(
ψ(p1);p1

)
dψ(p1)�

STEP 3: Note that when f (ψ(p1);p1) denotes the density corresponding to
a normal distribution with mean −γ + μp1 and variance p1σ

2 at the point
ψ(p1), then by exploiting the facts that

∫ ∞
−∞ f (ψ(p1);p1)dψ(p1) = 1 and∫ ∞

−∞ψ(p1)f (ψ(p1);p1)dψ(p1)= −γ+μp1, we see that∫ ∞

−∞

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)
f
(
ψ(p1);p1

)
dψ(p1)

= −4γ2 + σ4

4μ2
+p1σ

2�

From this it follows that∫ γ−σ2/(2μ)

−4μγ2/σ2−σ2/(4μ)+γ

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)

= −4γ2 + σ4

4μ2
+p1σ

2
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−
∫ ∞

γ−σ2/2μ

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)

−
∫ −4μγ2/σ2−σ2/4μ+γ

−∞

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)�

Substituting this into our expression for E[uD|p1] from Step 1 then gives

E[uD|p1] = −4γ2 + σ4

4μ2
−μ2p2

1

−
∫ ∞

γ−σ2/2μ

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)

−
∫ −4μγ2/σ2−σ2/(4μ)+γ

−∞

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)

+
∫ √

γ2+p1σ
2/2

γ−σ2/(2μ)
−(−γ−ψ(p1)

)2
f
(
ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2+p1σ

2/2
−

(
4γ(ψ(p1)+ γ)−p1σ

2

2((ψ(p1)+ γ)2 −p1σ2)

(
ψ(p1)+ γ))2

× f (ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2+p1σ

2/2
−[

4γ
(
ψ(p1)+ γ) −p1σ

2
]

× [
2
(
ψ(p1)− γ)(

ψ(p1)+ γ) −p1σ
2
]

/
(
4
((
ψ(p1)+ γ)2 −p1σ

2
)2)
p1σ

2f
(
ψ(p1);p1

)
dψ(p1)�

Now ifD simply chooses the policy p1 = 0 in the first period, then D obtains
an expected payoff of −4γ2 + σ4

4μ2 from the game since this is the payoff D
obtains when the first period policy outcome ψ(p1) satisfies ψ(p1) = 0. By
combining this with the previous result, we see that the difference betweenD’s
expected utility from choosing a policy of the form p1 > 0 and D’s expected



PREEMPTIVE POLICY EXPERIMENTATION 11

utility from choosing the policy p1 = 0 is

E[uD|p1] −E[uD|p1 = 0]
= −μ2p2

1 −
∫ ∞

γ−σ2/(2μ)

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)

−
∫ −4μγ2/σ2−σ2/(4μ)+γ

−∞

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)

+
∫ √

γ2+p1σ
2/2

γ−σ2/(2μ)
−(−γ−ψ(p1)

)2
f
(
ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2+p1σ

2/2
−

(
4γ(ψ(p1)+ γ)−p1σ

2

2((ψ(p1)+ γ)2 −p1σ2)

(
ψ(p1)+ γ))2

× f (ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2+p1σ

2/2
−[

4γ
(
ψ(p1)+ γ) −p1σ

2
]

× [
2
(
ψ(p1)− γ)(

ψ(p1)+ γ) −p1σ
2
]

/
(
4
((
ψ(p1)+ γ)2 −p1σ

2
)2)

×p1σ
2f

(
ψ(p1);p1

)
dψ(p1)�

We can also rewrite this as

E[uD|p1] −E[uD|p1 = 0]

= −μ2p2
1 −

∫ ∞

γ−σ2/(2μ)

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)

−
∫ −4μγ2/σ2−σ2/(4μ)+γ

−∞

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)

+
∫ ∞

γ−σ2/(2μ)
−(−γ−ψ(p1)

)2
f
(
ψ(p1);p1

)
dψ(p1)

+O
(

Pr
(
w>

√
γ2 + p1σ2

2

))
�
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where O(Pr(w >
√
γ2 + p1σ

2

2 )) denotes a (positive) term that is of an order no

greater than the probability that w >
√
γ2 + p1σ

2

2 when w is a random variable
drawn from the distribution with density f (ψ(p1);p1). We can further simplify
this expression by adding the terms representing integrals from γ− σ2

2μ to ∞ to
get

E[uD|p1] −E[uD|p1 = 0]

= −
∫ −4μγ2/σ2−σ2/(4μ)+γ

−∞

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)

−μ2p2
1

−
∫ ∞

γ−σ2/(2μ)

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2
+ (−γ−ψ(p1)

)2
)

× f (ψ(p1);p1

)
dψ(p1)

+O
(

Pr
(
w>

√
γ2 + p1σ2

2

))
�

Now we wish to rewrite this expressions in terms of other variables. To
do this, let k denote a variable defined by k ≡ 4μγ

σ2 so that γ = kσ2

4μ . Also

suppose that we write p1 in the form p1 = βσ2(k−1)4

48μ2 for some positive num-
ber β, define z to be equal to z ≡ −γ+μp1−ψ(p1)

σ
√
p1

, and write ψ(p1) as ψ(p1) =
− 4μγ2

σ2 − σ2

4μ + γ − εσ
√
p1 for some ε > 0. Note that this formulation implies

that μ2p2
1 = β2(k−1)8σ4

2304μ2 . After several steps of algebra, one can also show that

this formulation implies that z = √
β(k−1)2

4
√

3
+

√
3√
β

+ ε and −4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+

σ4

4μ2 = −σ4

μ2 [ k(k−1)
2 + ε

√
β(k−1)2

4
√

3
]. Finally, the fact that z ≡ −γ+μp1−ψ(p1)

σ
√
p1

implies
that the distribution of z is the same as the distribution of a standard nor-
mal variable with mean 0 and variance 1. From this it follows that the inte-
gral

−
∫ −4μγ2/σ2−σ2/(4μ)+γ

−∞

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2

)

× f (ψ(p1);p1

)
dψ(p1)
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also equals

σ4

μ2

∫ ∞

0

[
k(k− 1)

2
+ ε

√
β(k− 1)2

4
√

3

]

× 1√
2π
e−(√β(k−1)2/(4

√
3)+√

3/
√
β+ε)2/2 dε�

Now suppose that ψ(p1) = γ − σ2

2μ + εσ
√
p1. When this holds, several

steps of algebra show that −4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2 + (−γ − ψ(p1))
2 =

ε
√
β(k−1)2σ4

4
√

3μ2 (k + ε
√
β(k−1)2

4
√

3
). Also note that if z ≡ γ+ψ(p1)−μp1

σ
√
p1

, then z has the
same distribution as a standard normal variable with mean 0 and vari-
ance 1, and z = 2

√
3√

β(k−1) − √
β(k−1)2

4
√

3
+ ε. From this it follows that the inte-

gral

∫ ∞

γ−σ2/2μ

(
−4γ2 + γσ2

μ
+ ψ(p1)σ

2

μ
+ σ4

4μ2
+ (−γ−ψ(p1)

)2
)

× f (ψ(p1);p1

)
dψ(p1)

also equals

σ4

μ2

∫ ∞

0

ε
√
β(k− 1)2

4
√

3

(
k+ ε

√
β(k− 1)2

4
√

3

)

× 1√
2π
e−(2√

3/(
√
β(k−1))−√

β(k−1)2/(4
√

3)+ε)2/2 dε�

Also note that if ψ(p1)=
√
γ2 + p1σ

2

2 = σ2

4μ

√
k2 + β(k−1)4

6 and z ≡ γ+ψ(p1)−μp1
σ

√
p1

,

then we can rewrite z as z =
√

3k√
β(k−1)2 +

√
3k2+β(k−1)4/2√
β(k−1)2 + √

β(k−1)2

4
√

3
. Since the distri-

bution of z = γ+ψ(p1)

σ
√
p1

− μ
√
p1
σ

is the same as the distribution of a standard normal
random variable with mean 0 and variance 1, it follows that

O

(
Pr

(
w>

√
γ2 + p1σ2

2

))

=O
(∫ ∞

0

1√
2π

exp
(

−
(
ε+

√
3k√

β(k− 1)2
+

√
3k2 +β(k− 1)4/2√

β(k− 1)2

+
√
β(k− 1)2

4
√

3

)2/
2
)
dε

)
�
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Putting all this together, we see that we can express the difference between
D’s expected utility from choosing a policy p1 > 0 andD’s expected utility from
choosing the policy p1 = 0 as

E[uD|p1] −E[uD|p1 = 0]

= σ4

μ2

∫ ∞

0

[
k(k− 1)

2
+ ε

√
β(k− 1)2

4
√

3

]

× 1√
2π
e−(√β(k−1)2/(4

√
3)+√

3/
√
β+ε)2/2 dε

− σ4

μ2

∫ ∞

0

ε
√
β(k− 1)2

4
√

3

(
k+ ε

√
β(k− 1)2

4
√

3

)

× 1√
2π
e−(2√

3/(
√
β(k−1))−√

β(k−1)2/(4
√

3)+ε)2/2 dε− σ4

μ2

β2(k− 1)8

2304

+O
(∫ ∞

0

1√
2π

exp
(

−
(
ε+

√
3k√

β(k− 1)2

+
√

3k2 +β(k− 1)4/2√
β(k− 1)2

+
√
β(k− 1)2

4
√

3

)2/
2
)
dε

)
�

STEP 4: Note that when g(ψ(p1);p1) denotes the density corresponding to
a normal distribution with mean −γ + μp1 and variance −p1σ

2 at the point
ψ(p1) for some p1 < 0, then the integral

∫ γ−
√

2γσ2/μ−σ4/(4μ2)

−∞

(
−4γ2 + σ4

4μ2

)
g
(
ψ(p1);p1

)
dψ(p1)

= −4γ2 + σ4

4μ2

−
∫ ∞

γ−
√

2γσ2/μ−σ4/(4μ2)

(
−4γ2 + σ4

4μ2

)
g
(
ψ(p1);p1

)
dψ(p1)�

Substituting this for our expression for E[uD|p1] when p1 < 0 then gives

E[uD|p1] = −μ2p2
1 +p1σ

2 − 4γ2 + σ4

4μ2

−
∫ ∞

γ−
√

2γσ2/μ−σ4/(4μ2)

(
−4γ2 + σ4

4μ2

)
g
(
ψ(p1);p1

)
dψ(p1)
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+
∫ √

γ2−p1σ
2/2

γ−
√

2γσ2/μ−σ4/(4μ2)

−(−γ−ψ(p1)
)2

× g(ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2−p1σ

2/2
−

(
4γ(ψ(p1)+ γ)+p1σ

2

2((ψ(p1)+ γ)2 +p1σ2)

(
ψ(p1)+ γ))2

× g(ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2−p1σ

2/2

(
4γ

(
ψ(p1)+ γ) +p1σ

2
)

× (
2
(
ψ(p1)− γ)(

ψ(p1)+ γ) +p1σ
2
)

/
(
4
((
ψ(p1)+ γ)2 +p1σ

2
)2)
p1σ

2g
(
ψ(p1);p1

)
dψ(p1)�

If D simply chooses the policy p1 = 0 in the first period, then D obtains an
expected payoff of −4γ2 + σ4

4μ2 from the game since this is the payoffD obtains
when the first period policy outcome ψ(p1) satisfies ψ(p1)= 0. By combining
this with the previous result, we see that the difference between D’s expected
utility from choosing a policy of the form p1 < 0 and D’s expected utility from
choosing the policy p1 = 0 is

E[uD|p1] −E[uD|p1 = 0]
= −μ2p2

1 +p1σ
2

−
∫ ∞

γ−
√

2γσ2/μ−σ4/(4μ2)

(
−4γ2 + σ4

4μ2

)
g
(
ψ(p1);p1

)
dψ(p1)

+
∫ √

γ2−p1σ
2/2

γ−
√

2γσ2/μ−σ4/(4μ2)

−(−γ−ψ(p1)
)2
g
(
ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2−p1σ

2/2
−

(
4γ(ψ(p1)+ γ)+p1σ

2

2((ψ(p1)+ γ)2 +p1σ2)

(
ψ(p1)+ γ))2

× g(ψ(p1);p1

)
dψ(p1)

+
∫ ∞
√
γ2−p1σ

2/2

(
4γ

(
ψ(p1)+ γ) +p1σ

2
)

× (
2
(
ψ(p1)− γ)(

ψ(p1)+ γ) +p1σ
2
)

/
(
4
((
ψ(p1)+ γ)2 +p1σ

2
)2)
p1σ

2g
(
ψ(p1);p1

)
dψ(p1)�
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We can rewrite this as

E[uD|p1] −E[uD|p1 = 0]
= −μ2p2

1 +p1σ
2

−
∫ ∞

γ−
√

2γσ2/μ−σ4/(4μ2)

(
−4γ2 + σ4

4μ2

)
g
(
ψ(p1);p1

)
dψ(p1)

+
∫ ∞

γ−
√

2γσ2/μ−σ4/(4μ2)

−(−γ−ψ(p1)
)2
g
(
ψ(p1);p1

)
dψ(p1)

+O
(

Pr
(
y >

√
γ2 − p1σ2

2

))
�

where O(Pr(y >
√
γ2 − p1σ

2

2 )) denotes a (positive) term that is of an order no

greater than the probability that y >
√
γ2 − p1σ

2

2 when y is a random variable
drawn from the distribution with density g(ψ(p1);p1). We can further simplify

this expression by adding the terms representing integrals from γ−
√

2γσ2

μ
− σ4

4μ2

to ∞ to get

E[uD|p1] −E[uD|p1 = 0]
= −μ2p2

1 +p1σ
2

−
∫ ∞

γ−
√

2γσ2/μ−σ4/(4μ2)

(
−4γ2 + σ4

4μ2
+ (−γ−ψ(p1)

)2
)

× g(ψ(p1);p1

)
dψ(p1)

+O
(

Pr
(
y >

√
γ2 − p1σ2

2

))
�

Now we wish to rewrite this expression in terms of other variables. To do
this, again let k denote a variable defined by k ≡ 4μγ

σ2 so that γ = kσ2

4μ . Also

suppose that we write p1 in the form −p1 = ασ2(k−√
2k−1)2

12μ2 for some positive
number α, defined z to be equal to z ≡ γ−μp1+ψ(p1)

σ
√−p1

, and write ψ(p1) as ψ(p1)=
γ−

√
2γσ2

μ
− σ4

4μ2 + εσ√−p1 for some ε > 0. Note that this formulation implies

that μ2p2
1 = α2(k−√

2k−1)4σ4

144μ2 and p1σ
2 = −ασ4(k−√

2k−1)2

12μ2 . Several steps of algebra

also show that this formulation implies that z = √
α(k−√

2k−1)
2
√

3
+

√
3√
α
+ε and −4γ2 +

σ4

4μ2 + (−γ −ψ(p1))
2 = σ4

4μ2 [−k2 + 1 + (k− √
2k− 1)2(1 + ε

√
α√
3
)2]. Finally, the

fact that z = γ−μp1+ψ(p1)

σ
√−p1

implies that the distribution of z is the same as the
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distribution of a standard normal variable with mean 0 and variance 1. From
this it follows that the integral

−
∫ ∞

γ−
√

2γσ2/μ−σ4/(4μ2)

(
−4γ2 + σ4

4μ2
+ (−γ−ψ(p1)

)2
)

× g(ψ(p1);p1

)
dψ(p1)

also equals

σ4

μ2

∫ ∞

0

1
4

[
k2 − 1 − (k−

√
2k− 1)2

(
1 + ε

√
α√
3

)2]

× 1√
2π
e−(√α(k−√

2k−1)/(2
√

3)+√
3/

√
α+ε)2/2 dε�

Also note that if ψ(p1) =
√
γ2 − p1σ

2

2 = σ2

4μ

√
k2 + 2α(k−√

2k−1)2

3 and z ≡
γ−μp1+ψ(p1)

σ
√−p1

, then we can rewrite z as z = √
α(k−√

2k−1)
2
√

3
+

√
3(k+

√
k2+2α(k−√

2k−1)2/3)

2
√
α(k−√

2k−1)
.

Since the distribution of z is the same as the distribution of a standard normal
random variable with mean 0 and variance 1, it follows that

O

(
Pr

(
y >

√
γ2 − p1σ2

2

))

=O
(∫ ∞

0

1√
2π

exp
(

−
(
ε+

√
α(k− √

2k− 1)

2
√

3

+
√

3(k+
√
k2 + 2α(k− √

2k− 1)2/3)

2
√
α(k− √

2k− 1)

)2/
2
)
dε

)
�

Putting all this together, we see that we can express the difference between
D’s utility from choosing the policy p1 < 0 and D’s utility from choosing the
policy p1 = 0 as

E[uD|p1] −E[uD|p1 = 0]

= −σ
4

μ2

α2(k− √
2k− 1)4

144
− σ4

μ2

α(k− √
2k− 1)2

12

+ σ4

μ2

∫ ∞

0

1
4

[
k2 − 1 − (k−

√
2k− 1)2

(
1 + ε

√
α√
3

)2]

× 1√
2π
e−(√α(k−√

2k−1)/(2
√

3)+√
3/

√
α+ε)2/2 dε
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+O
(∫ ∞

0

1√
2π

exp
(

−
(
ε+

√
α(k− √

2k− 1)

2
√

3

+
√

3(k+
√
k2 + 2α(k− √

2k− 1)2/3)

2
√
α(k− √

2k− 1)

)2/
2
)
dε

)
�

STEP 5: To prove that D prefers the optimal policy p1 > 0 over the policy
p1 = 0 for values of γ that are only slightly greater than σ2

4μ2 , it suffices to show
that in the limit as k approaches 1 from above, it must be the case that there is
some function β that depends only on k, β(k), such that the final expression
at the end of Step 3 is guaranteed to be positive when β = β(k). To see that
this holds, note that if β = 1

k−1 , then the final expression at the end of Step 3
reduces to

E[uD|p1] −E[uD|p1 = 0]

= σ4

μ2

∫ ∞

0

[
k(k− 1)

2
+ ε(k− 1)3/2

4
√

3

]

× 1√
2π
e−((k−1)3/2/(4

√
3)+

√
3(k−1)+ε)2/2 dε

− σ4

μ2

∫ ∞

0

ε(k− 1)3/2

4
√

3

(
k+ ε(k− 1)3/2

4
√

3

)

× 1√
2π
e−(2√

3/
√
k−1−(k−1)3/2/(4

√
3)+ε)2/2 dε− σ4

μ2

(k− 1)6

2304

+O
(∫ ∞

0

1√
2π

exp
(

−
(
ε+

√
3k

(k− 1)3/2
+

√
3k2 + (k− 1)3/2
(k− 1)3/2

+ (k− 1)3/2

4
√

3

)2/
2
)
dε

)
�

Now in the limit as k approaches 1 from above, the first integral in
this expression equals a term that is Ω(k − 1) since k(k−1)

2 + ε(k−1)3/2

4
√

3
≥ k−1

2

for all k ≥ 1 and ε ≥ 0, and limk→1

∫ ∞
0

1√
2π
e−((k−1)3/2/(4

√
3)+

√
3(k−1)+ε)2/2 dε =∫ ∞

0
1√
2π
e−ε2/2 dε= 1

2 . Further note that this first integral is always positive.
Also note that in the limit as k approaches 1 from above, the second in-

tegral in this expression equals a term that is O(e−(6/(k−1))) and the third in-
tegral in this expression equals a term that is O(e−(6/(k−1)3)). These results
hold because e−(2√

3/
√
k−1−(k−1)3/2/(4

√
3)+ε)2/2 approaches e−(2√

3/
√
k−1+ε)2/2, which

satisfies e−(2√
3/

√
k−1+ε)2/2 ≤ e−((2√

3/
√
k−1)2+ε2)/2 = e−6/(k−1)e−ε2/2 for all ε ≥ 0, and
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e−(ε+√
3k/(k−1)3/2+

√
3k2+(k−1)3/2/(k−1)3/2+(k−1)3/2/(4

√
3))2/2 approaches e−(ε+2

√
3/(k−1)3/2)2/2,

which satisfies e−(ε+2
√

3/(k−1)3/2)2/2 ≤ e−((2√
3/(k−1)3/2)2+ε2)/2 = e−6/(k−1)3e−ε2/2 for all

ε > 0.
Finally note that it is clearly the case that the σ4

μ2
(k−1)6

2304 is O((k− 1)6) in the
limit as k approaches 1 from above.

Thus in the limit as k approaches 1 from above, the first term in the above
equation isΩ(k−1) and is positive, and all other terms are o(k−1). From this
it follows that the above equation is strictly positive for values of k sufficiently
close to 1 and D prefers the optimal policy p1 > 0 over the policy p1 = 0 for
values of γ that are only slightly greater than σ2

4μ2 .
To prove that D prefers the optimal policy p1 < 0 over the policy p1 = 0 for

values of γ that are only slightly greater than σ2

4μ2 , it suffices to show that in
the limit as k approaches 1 from above, it must be the case that there is some
function α that depends only on k, α(k), such that the final expression at the
end of Step 4 is guaranteed to be positive when α= α(k). To see that this holds,
note that if α= 1

(k−√
2k−1)

, then the final expression at the end of Step 4 reduces
to

E[uD|p1] −E[uD|p1 = 0]

= −σ
4

μ2

(k− √
2k− 1)2

144
− σ4

μ2

(k− √
2k− 1)

12

+ σ4

μ2

∫ ∞

0

1
4

[
k2 − 1 − (k−

√
2k− 1)2

×
(

1 + ε√
3(k− √

2k− 1)

)2] 1√
2π
e−(7

√
3(k−√

2k−1)/6+ε)2/2 dε

+O
(∫ ∞

0

1√
2π

exp
(

−
(
ε+

√
k− √

2k− 1

2
√

3

+
√

3(k+
√
k2 + 2(k− √

2k− 1)3/2/3)

2
√
k− √

2k− 1

)2/
2
)
dε

)
�

Now in the limit as k approaches 1 from above,
√

2k− 1 = √
k2 − (k− 1)2 =√

k2 − h(k) = k − h(k), where h(k) is a nonnegative function that satisfies
h(k) = Θ(k − 1)2. From this it follows that k − √

2k− 1 = Θ((k − 1)2) for
values of k that are slightly greater than 1. Thus the −σ4

μ2
(k−√

2k−1)2

144 term in the

above equation is Θ((k− 1)4) and the −σ4

μ2
(k−√

2k−1)
12 term is Θ((k− 1)2).
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Now note that k2 − 1 − (k − √
2k− 1)2 = 2k(

√
2k− 1 − 1) = 2k(k −

1 − h(k)) = Θ(k − 1) in the limit as k approaches 1 from above. This
in turn implies that k2 − 1 − (k − √

2k− 1)2(1 + ε√
3(k−√

2k−1)
)2 = k2 − 1 −

(k − √
2k− 1)2(1 + 2ε√

3(k−√
2k−1)

+ ε2

3(k−√
2k−1)

) = Θ(k − 1) for all values of

ε= o( 1
(k−√

2k−1)1/4
).

But in the limit as k approaches 1 from above, the first integral in
the above expression approaches

∫ ∞
0

1
4 [2k(

√
2k− 1 − 1) − 2ε(k−√

2k−1)3/2√
3

−
ε2(k−√

2k−1)
3 ] 1√

2π
e−ε2/2 dε. Since 2k(

√
2k− 1 − 1) − 2ε(k−√

2k−1)3/2√
3

− ε2(k−√
2k−1)

3 =
Θ(k− 1) for all values of ε = o( 1

(k−√
2k−1)1/4

), it then follows that this integral
must be Θ(k− 1) for values of k that are slightly greater than 1.

Finally, note that it must be the case that the last integral in the above ex-
pression equals a term that is O(e−3/(2(k−1)2)) in the limit as k approaches 1 for
the following reason:

⎛
⎜⎜⎜⎜⎝ε+

√
k− √

2k− 1

2
√

3
+

√
3
(
k+

√
k2 + 2(k− √

2k− 1)3/2

3

)

2
√
k− √

2k− 1

⎞
⎟⎟⎟⎟⎠

2

≥ ε2 +

⎛
⎜⎜⎜⎜⎝

√
3
(
k+

√
k2 + 2(k− √

2k− 1)3/2

3

)

2
√
k− √

2k− 1

⎞
⎟⎟⎟⎟⎠

2

≥ ε2 +
( √

3√
k− √

2k− 1

)2

= ε2 + 3

k− √
2k− 1

;

hence, it must be the case that the integral is O(e−3/(2(k−√
2k−1))) =

O(e−3/(2(k−1)2)).
Thus in the limit as k approaches 1 from above, the second integral in the

above equation isΘ(k−1) and all other terms are o(k−1). From this it follows
that the above equation is strictly positive for values of k sufficiently close to 1
and D prefers the optimal policy p1 < 0 over the policy p1 = 0 for values of γ
that are only slightly greater than σ2

4μ2 .

STEP 6: Note that for any fixed value of k > 1, the minimum possible value
of

√
β(k−1)2

4
√

3
+

√
3√
β

that is achieved when β> 0 is achieved when the derivative of

this expression with respect to
√
β is 0, which occurs when (k−1)2

4
√

3
−

√
3
β

= 0 or
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when β= 12
(k−1)2 and

√
β= 2

√
3

k−1 . Thus the minimum possible value of
√
β(k−1)2

4
√

3
+

√
3√
β

when β> 0 is k−1. From this it follows that for all values of β> 0, it is nec-

essarily the case that e−(√β(k−1)2/(4
√

3)+√
3/

√
β+ε)2/2 ≤ e−((k−1)+ε)2/2 ≤ e−(k−1)2/2e−ε2/2.

Thus, the first integral in the final equation of Step 3 is necessarily no greater
than

σ4

μ2

∫ ∞

0

[
k(k− 1)

2
+ ε

√
β(k− 1)2

4
√

3

]
1√
2π
e−(k−1)2/2e−ε2/2 dε�

Since this term is O(k2e−(k−1)2/2) in the limit as k goes to infinity, it follows
that the first integral in the final equation of Step 3 is also O(k2e−(k−1)2/2) in the
limit as k goes to infinity.

Now the −σ4

μ2
β2(k−1)8

2304 term that appears in the final equation of Step 3 is
Θ(β2(k− 1)8) and is negative. And the total of the two last integrals that ap-
pear in the final equation of Step 3 is necessarily negative for all k. Since a
term that is Θ(β2(k− 1)8) is necessarily greater in magnitude than a term that
is O(k2e−(k−1)2/2) in the limit as k goes to infinity as long as β does not become
arbitrarily small in the limit as k goes to infinity, it thus follows that the final
equation in Step 3 is necessarily negative for sufficiently large k as long as this
expression is also negative for values of β> 0 that are arbitrarily close to 0.

But for any fixed k > 1, the derivative of the final equation in Step 3 with
respect to β is necessarily negative when β is arbitrarily close to 0 because the
derivative of each of the integrals with respect to β is an exponentially small
term, whereas the derivative of the −σ4

μ2
β2(k−1)8

2304 term with respect to β is only a
polynomially small term. Since the derivative of this last term with respect to
β is negative, it then follows that the derivative of the final equation in Step 3
with respect to β is necessarily negative when β is arbitrarily close to 0.

But from this it follows that for sufficiently large values of k, the expression
in the final equation in Step 3 is necessarily negative for all values of β > 0.
From this it follows that D prefers to choose the policy p1 = 0 over any policy
p1 > 0 when γ is sufficiently large.

Next note that for any fixed value of k > 1, the minimum possible value of√
α(k−√

2k−1)
2
√

3
+

√
3√
α

that is achieved when α> 0 is achieved when the derivative of

this expression with respect to
√
α is 0, which occurs when k−√

2k−1
2
√

3
−

√
3
α

= 0 or

when α = 6
k−√

2k−1
and

√
α =

√
6√

k−√
2k−1

. Thus, the minimum possible value of
√
α(k−√

2k−1)
2
√

3
+

√
3√
α

when α > 0 is
√

2(k− √
2k− 1). From this it follows that for

all values of α> 0, it is necessarily the case that e−(√α(k−√
2k−1)/(2

√
3)+√

3/
√
α+ε)2/2 ≤

e−(
√

2(k−√
2k−1)+ε)2/2 ≤ e−(k−√

2k−1)/2e−ε2/2. Thus, the sum of the two integrals in
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the final equation of Step 4 is necessarily no greater than

σ4

μ2

∫ ∞

0

1
4
k2 1√

2π
e−(k−√

2k−1)/2e−ε2/2 dε�

Since this term is O(k2e(k−√
2k−1)/2) in the limit as k goes to infinity, it fol-

lows that the sum of the integrals in the final equation of Step 4 is also
O(k2e(k−√

2k−1)/2) in the limit as k goes to infinity.
Now the −σ4

μ2
α2(k−√

2k−1)4

144 and −σ4

μ2
α(k−√

2k−1)2

12 terms that appear in the final
equation of Step 4 are both negative, and are also Θ(α2(k− √

2k− 1)4) and
Θ(α(k − √

2k− 1)2), respectively. Since a term that is Θ(α(k − √
2k− 1)2)

is necessarily greater in magnitude than a term that is O(k2e(k−√
2k−1)/2) in the

limit as k goes to infinity as long as α does not become arbitrarily small in the
limit as k goes to infinity, it thus follows that the final equation in Step 4 is
necessarily negative for sufficiently large k as long as this expression is also
negative for values of α> 0 that are arbitrarily close to 0.

But for any fixed k > 1, the derivative of the final equation in Step 4 with
respect to α is necessarily negative when α is arbitrarily close to 0 because the
derivative of each of the integrals with respect to α is an exponentially small
term, whereas the derivative of the −σ4

μ2
α2(k−√

2k−1)4

144 term with respect to α is

only a polynomially small term and the derivative of the −σ4

μ2
α(k−√

2k−1)2

12 term
with respect to α is a constant. Since the derivative of this last term with respect
to α is negative, it then follows that the derivative of the final equation in Step
4 with respect to α is necessarily negative when α is arbitrarily close to 0.

But from this it follows that for sufficiently large values of k, the expression
in the final equation in Step 4 is necessarily negative for all values of α > 0.
From this it follows that D prefers to choose the policy p1 = 0 over any policy
p1 < 0 when γ is sufficiently large.

STEP 7: In this step, we wish to show that if D prefers the optimal value of
p1 > 0 over p1 = 0 for some γ > σ2

4μ , then it must be the case that D prefers
the optimal value of p1 > 0 over p1 = 0 for all smaller values of γ that are still
greater than σ2

4μ . To prove this, it suffices to show that if, for a particular value
of k> 1, the expression forD’s utility difference E[uD|p1]−E[uD|p1 = 0] that
is given in the final equation in Step 3 from choosing some value of β > 0 is
strictly positive, then for all smaller values of k that are still greater than 1, the
expression for D’s utility difference E[uD|p1] − E[uD|p1 = 0] that is given in
the final equation in Step 3 from choosing this β is also strictly positive.

To see this, let k denote some particular constant that is greater than 1 such
that D’s utility difference E[uD|p1] − E[uD|p1 = 0] that is given in the final
equation of Step 3 from choosing some value of β> 0 is strictly positive. Con-
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sider some k′ ∈ (1�k) and compareD’s utility from choosing the same value of
β under this k′ with D’s utility from choosing this β under k.

Note that changing the value of k to some k′ ∈ (1�k) changes the value of
the first integral in the final equation of Step 3 by a factor η> (k′−1)2

(k−1)2 . The value

of the term e−(√β(k−1)2/(4
√

3)+√
3/

√
β+ε)2/2 in this integral becomes greater when k

is replaced by some k′ ∈ (1�k). And the value of the term k(k−1)
2 + ε

√
β(k−1)2

4
√

3

in this integral changes by a factor no less than (k′−1)2

(k−1)2 when k is replaced by
k′ ∈ (1�k). Thus, changing the value of k to k′ changes the value of the first
integral in the final equation of Step 3 by a factor η that is larger than (k′−1)2

(k−1)2 .
Next note that changing the value of k to some k′ ∈ (1�k) changes the sum

of the remaining terms (which has negative value) by a factor ν < (k′−1)2

(k−1)2 . The

value of the term −σ4

μ2
β2(k−1)8

2304 changes by a factor of (k′−1)8

(k−1)8 <
(k′−1)2

(k−1)2 when k is

replaced by k′ ∈ (1�k). The value of the term e−(2√
3/(

√
β(k−1))−√

β(k−1)2/(4
√

3)+ε)2/2

that appears in the second integral in the final equation of Step 3 becomes
smaller when k is replaced by some k′ ∈ (1�k). And the value of the term
ε
√
β(k−1)2

4
√

3
(k+ ε

√
β(k−1)2

4
√

3
) that appears in the second integral in the final equation

of Step 3 changes by a factor that is strictly less than (k′−1)2

(k−1)2 when k is replaced

by some k′ ∈ (1�k) since the ε
√
β(k−1)2

4
√

3
term changes by a factor of exactly (k′−1)2

(k−1)2

and the (k+ ε
√
β(k−1)2

4
√

3
) term becomes smaller when k is replaced by some k′ ∈

(1�k). From this it follows that changing the value of k to some k′ ∈ (1�k)
changes the remaining terms (which have negative sum) by a factor ν that is
strictly less than (k′−1)2

(k−1)2 .
By combining the results in the previous two paragraphs, we see that chang-

ing the value of k to some k′ ∈ (1�k) changes the value of the positive terms in
Step 3 by a factor that is larger than (k′−1)2

(k−1)2 and changes the value of the nega-

tive terms in Step 3 by a factor that is strictly less than (k′−1)2

(k−1)2 . Thus ifD’s utility
difference E[uD|p1]−E[uD|p1 = 0] in the final equation of Step 3 from choos-
ing some value of β > 0 is strictly positive for some particular k > 1, then D’s
utility difference E[uD|p1] −E[uD|p1 = 0] in the final equation of Step 3 from
choosing this β is also strictly positive for some k′ ∈ (1�k). From this it follows
that if D prefers the optimal value of p1 > 0 over p1 = 0 for some γ > σ2

4μ , then
it must be the case that D prefers the optimal value of p1 > 0 over p1 = 0 for
all smaller values of γ that are still greater than σ2

4μ .

STEP 8: From the results in Steps 5–7, it follows that if D were restricted to
only choosing policies of the form p1 ≥ 0, then when γ > σ2

4μ , D would use a
cutoff strategy characterized by a cutoff γ̂ such thatD would choose the policy
p1 = 0 if γ > γ̂ and choose a policy p1 > 0 if γ ∈ (σ2

4μ � γ̂). Since D’s maximal
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utility from choosing some particular p1 > 0 must vary continuously with γ, it
then follows that D would be indifferent between the optimal policy p1 > 0
and p1 = 0 if γ = γ̂. And we have seen that D chooses the policy p1 = 0 when
γ ≤ σ2

4μ . Thus, if D were restricted to only choosing policies of the form p1 ≥ 0,
then D would use a cutoff strategy characterized by a cutoff γ̂ such that D
would choose the policy p1 = 0 if γ ≤ σ2

4μ or γ > γ̂, choose a policy p1 > 0 if

γ ∈ (σ2

4μ � γ̂), and would be indifferent between the optimal policy p1 > 0 and
p1 = 0 if γ = γ̂.

STEP 9: In this step, we wish to show that if D prefers the optimal value of
p1 < 0 over p1 = 0 for some γ > σ2

4μ , then it must be the case that D prefers
the optimal value of p1 < 0 over p1 = 0 for all smaller values of γ that are still
greater than σ2

4μ . To prove this, it suffices to show that if, for a particular value
of k> 1, the expression forD’s utility difference E[uD|p1]−E[uD|p1 = 0] that
is given in the final equation in Step 4 from choosing some value of α > 0 is
strictly positive, then for all smaller values of k that are still greater than 1, the
expression for D’s utility difference E[uD|p1] − E[uD|p1 = 0] that is given in
the final equation in Step 4 from choosing this α is also strictly positive.

Note that D’s utility difference E[uD|p1] −E[uD|p1 = 0] that is given in the
final equation in Step 4 from choosing some value of α > 0 is strictly positive
if and only if this utility difference divided by (k − √

2k− 1)2 is also strictly
positive. Thus, to prove the claim given in the previous paragraph, it suffices to
show that if the expression for D’s utility difference E[uD|p1] − E[uD|p1 = 0]
that is given in the final equation in Step 4 divided by (k− √

2k− 1)2 is strictly
positive for some k = k∗ > 1, then this expression for D’s utility difference
E[uD|p1] − E[uD|p1 = 0] divided by (k− √

2k− 1)2 is decreasing in k for all
k ∈ (1�k∗).

The expression forD’s utility difference E[uD|p1]−E[uD|p1 = 0] divided by
(k− √

2k− 1)2 is equal to

E[uD|p1] −E[uD|p1 = 0]
(k− √

2k− 1)2

= −σ
4

μ2

α2(k− √
2k− 1)2

144
− σ4

μ2

α

12

+ σ4

μ2

∫ ∞

0

1
4

[
k2 − 1

(k− √
2k− 1)2

−
(

1 + ε
√
α√
3

)2]

× 1√
2π
e−(√α(k−√

2k−1)/(2
√

3)+√
3/

√
α+ε)2/2 dε
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+O
(∫ ∞

0

1√
2π

exp
(

−
(
ε+

√
α(k− √

2k− 1)

2
√

3

+
√

3(k+
√
k2 + 2α(k− √

2k− 1)2/3)

2
√
α(k− √

2k− 1)

)2/
2
)
dε

)
�

Now the −σ4

μ2
α2(k−√

2k−1)2

144 term in this expression is strictly decreasing in k

since d
dk

[k− √
2k− 1] = 1 − 1√

2k−1
> 0 for all k > 1. And the σ4

μ2
α
12 term in this

expression is independent of k. Thus, to prove that the above expression is
decreasing in k for values of k where this expression is positive, it suffices to
show that the first integral in this expression is decreasing in k for all k> 1.

To prove this, we first illustrate that the expression k2−1
(k−√

2k−1)2
is decreasing

in k for all k > 1. To see this, note that d
dk

[ k2−1
(k−√

2k−1)2
] = (2k(k− √

2k− 1)2 −
2(k2 − 1)(k − √

2k− 1)(1 − 1√
2k−1

))/(k − √
2k− 1)4. Thus, d

dk
[ k2−1
(k−√

2k−1)2
] <

0 if and only if 2k(k − √
2k− 1)2 − 2(k2 − 1)(k − √

2k− 1)(1 − 1√
2k−1

) < 0.
But this last expression holds if and only if k(k − √

2k− 1) − (k2 − 1)(1 −
1√

2k−1
) < 0, which holds if and only if k2−1√

2k−1
< k

√
2k− 1 − 1 ⇔ k2 − 1< 2k2 −

k − √
2k− 1 ⇔ 0 < (k − 1)2 + k − √

2k− 1, which holds for all k > 1 since
(k− 1)2 > 0 for all k > 1 and the fact that k− √

2k− 1 = 0 when k = 1 and
d
dk

[k− √
2k− 1] > 0 for all k > 1 implies that k− √

2k− 1 > 0 when k > 1.
From this it follows that k2−1

(k−√
2k−1)2

is decreasing in k for all k> 1.
Thus when k becomes larger, it is necessarily the case that there is a larger

range of values of ε > 0 for which the 1
4 [ k2−1
(k−√

2k−1)2
− (1 + ε

√
α√
3
)2] 1√

2π
expression

in the above integral is negative. And the values of ε > 0 for which this expres-
sion is negative are relatively more heavily weighted when weights are taken ac-
cording to e−(√α/(2√

3)+√
3/(

√
α(k−√

2k−1))+ε/(k−√
2k−1))2/2. Furthermore, in the smaller

range of values of ε > 0 for which the 1
4 [ k2−1
(k−√

2k−1)2
− (1 + ε

√
α√
3
)2] 1√

2π
expression

in the above integral is positive, it is necessarily the case that this expression

becomes smaller as k becomes larger since we have seen that
√
k2−1

(k−√
2k−1)2

is de-
creasing in k for all k > 1. By combining all these facts, it follows that the
integral

∫ ∞

0

1
4

[
k2 − 1

(k− √
2k− 1)2

−
(

1 + ε
√
α√
3

)2]

× 1√
2π
e−(√α/(2√

3)+√
3/(

√
α(k−√

2k−1))+ε/(k−√
2k−1))2/2 dε
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is decreasing in k for values of k > 1 when restricting attention to the values
of k for which this integral is positive.

Now the first integral that appeared in the expression for E[uD|p1]−E[uD|p1=0]
(k−√

2k−1)2

differs from the integral in the above expression only by a factor of (k −√
2k− 1)2 in the exponential. And as k becomes larger, the value of (k −√
2k− 1)2 becomes larger and the entire exponential becomes smaller. From

this it follows that since the above expression is decreasing in k for values of
k> 1 where this expression is positive, it is also the case that the first integral in
the expression for E[uD|p1]−E[uD|p1=0]

(k−√
2k−1)2

is decreasing in k for values of k> 1 where
this expression is positive.

Putting all this together shows that the expression for E[uD|p1]−E[uD|p1=0]
(k−√

2k−1)2
that

was derived earlier is necessarily decreasing in k for values of k> 1 where this
expression is positive. From this it follows that if D prefers the optimal value
of p1 < 0 over p1 = 0 for some γ > σ2

4μ , then it must be the case that D prefers
the optimal value of p1 < 0 over p1 = 0 for all smaller values of γ that are still
greater than σ2

4μ .

STEP 10: From the results in Steps 5, 6, and 9, it follows that if D were re-
stricted to only choosing policies of the form p1 ≤ 0, then when γ > σ2

4μ , D
would use a cutoff strategy characterized by a cutoff γ̃ such that D would
choose the policy p1 = 0 if γ > γ̃ and choose a policy p1 < 0 if γ ∈ (σ2

4μ � γ̃).
SinceD’s maximal utility from choosing some particular p1 < 0 must vary con-
tinuously with γ, it then follows that D would be indifferent between the opti-
mal policy p1 < 0 and p1 = 0 if γ = γ̃. And we have seen that D chooses the
policy p1 = 0 when γ ≤ σ2

4μ . Thus, if D were restricted to only choosing policies
of the form p1 ≤ 0, thenD would use a cutoff strategy characterized by a cutoff
γ̃ such that D would choose the policy p1 = 0 if γ ≤ σ2

4μ or γ > γ̃, choose a pol-

icy p1 < 0 if γ ∈ (σ2

4μ � γ̃), and would be indifferent between the optimal policy
p1 < 0 and p1 = 0 if γ = γ̃.

STEP 11: In this step we wish to show that the optimal p1 > 0 will afford D
a greater utility than the optimal p1 < 0 for values of γ that are only slightly
greater than σ2

4μ . To prove this, it suffices to show that for values of k that are
slightly greater than 1, the maximal utility that D can obtain by choosing a
policy p1 > 0 is necessarily greater than the maximal utility D can obtain by
choosing a policy p1 < 0.

To prove this, first note that if k is only slightly greater than 1, then D can
ensure that the expression for D’s utility difference E[uD|p1] − E[uD|p1 = 0]
given in the final equation in Step 3 is at least σ4

μ2
k(k−1)

4 by choosing some value
of β > 0. Specifically, suppose that D chooses a value of β = β(k), where
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β(k) ≡ 16
(k−1)3/2 is a function that depends only on k. In this case, the final ex-

pression at the end of Step 3 reduces to

E[uD|p1] −E[uD|p1 = 0]

= σ4

μ2

∫ ∞

0

[
k(k− 1)

2
+ ε(k− 1)5/4

√
3

]

× 1√
2π
e−((k−1)5/4/

√
3+√

3(k−1)3/4/4+ε)2/2 dε

− σ4

μ2

∫ ∞

0

ε(k− 1)5/4

√
3

(
k+ ε(k− 1)5/4

√
3

)

× 1√
2π
e−(√3/(2(k−1)1/4)−(k−1)5/4/

√
3+ε)2/2 dε− σ4

μ2

(k− 1)5

9

+O
(∫ ∞

0

1√
2π

exp
(

−
(
ε+

√
3k

4(k− 1)5/4
+

√
3k2 + 16(k− 1)5/2

4(k− 1)5/4

+ (k− 1)5/4

√
3

)2/
2
)
dε

)
�

Now note that the integral

∫ ∞

0

[
k(k− 1)

2
+ ε(k− 1)5/4

√
3

]
1√
2π
e−((k−1)5/4/

√
3+√

3(k−1)3/4/4+ε)2/2 dε

= (k− 1)
∫ ∞

0

[
k

2
+ ε(k− 1)1/4

√
3

]

× 1√
2π
e−((k−1)5/4/

√
3+√

3(k−1)3/4/4+ε)2/2 dε�

Further note that k
2 + ε(k−1)1/4√

3
exceeds k

2 by an amount Θ((k − 1)1/4) and

e−((k−1)5/4/
√

3+√
3(k−1)3/4/4+ε)2/2 differs from e−ε2/2 by an amount O((k − 1)3/4).

From this it follows that the integral
∫ ∞

0 [ k2 + ε(k−1)1/4√
3

] 1√
2π

exp(−( (k−1)5/4√
3

+
√

3(k−1)3/4

4 + ε)2/2)dε= ∫ ∞
0

k
2

1√
2π
e−ε2/2 dε+ h(k), where h(k) is a strictly posi-

tive function satisfying h(k) = Θ((k− 1)1/4) for values of k close to 1. Since∫ ∞
0

k
2

1√
2π
e−ε2/2 dε= k

4 , it then follows that
∫ ∞

0 [ k2 + ε(k−1)1/4√
3

] 1√
2π

exp(−( (k−1)5/4√
3

+
√

3(k−1)3/4

4 + ε)2/2)dε= k
4 + h(k), where h(k) is a strictly positive function sat-

isfying h(k)=Θ((k− 1)1/4) for values of k close to 1. From this it follows that∫ ∞
0 [ k(k−1)

2 + ε(k−1)5/4√
3

] 1√
2π
e−((k−1)5/4/

√
3+√

3(k−1)3/4/4+ε)2/2 dε = k(k−1)
4 + h̃(k), where



28 S. CALLANDER AND P. HUMMEL

h̃(k) is a strictly positive function satisfying h̃(k) = Θ((k − 1)5/4) for values
of k close to 1.

Now for values of k close to 1, it is also the case that the second and third in-
tegrals in the expression given for E[uD|p1] −E[uD|p1 = 0] when D chooses a
value of β= 16

(k−1)3/2 are O(e−3/(8
√
k−1)) and O(e−3/(8(k−1)5/2)), respectively. To see

this, note that e−(√3/(2(k−1)1/4)−(k−1)5/4/
√

3+ε)2/2 ≤ e−(√3/(2(k−1)1/4)−(k−1)5/4/
√

3)2/2e−ε2/2

and e−(√3/(2(k−1)1/4)−(k−1)5/4/
√

3)2/2 = O(e−3/(8
√
k−1)) for values of k close to 1, so

the second integral is O(e−3/(8
√
k−1)) for values of k close to 1. And exp(−(ε+

√
3k

4(k−1)5/4 +
√

3k2+(k−1)5/2

4(k−1)5/4 + (k−1)5/4√
3
)2/2) ≤ e−ε2/2 exp(−(

√
3k

4(k−1)5/4 +
√

3k2+(k−1)5/2

4(k−1)5/4 +
(k−1)5/4√

3
)2/2) ≤ e−ε2/2 exp(−(

√
3

2(k−1)5/4 + (k−1)5/4√
3
)2/2) and exp(−(

√
3

2(k−1)5/4 +
(k−1)5/4√

3
)2/2) is O(e−3/(8(k−1)5/2)) for values of k close to 1, so the third integral

is O(e−3/(8(k−1)5/2)) for values of k close to 1. Also note that σ4

μ2
(k−1)5

9 is clearly
Θ((k− 1)5) for values of k close to 1.

By combining all the results in the previous two paragraphs, it follows that
the expression given for the utility difference E[uD|p1]−E[uD|p1 = 0] whenD
chooses a value of β= 16

(k−1)3/2 is σ4

μ2 [ k(k−1)
4 + h̃(k)+o((k−1)5/4)], where h̃(k) is

a strictly positive function satisfying h̃(k)=Θ((k− 1)5/4) for values of k close
to 1. From this it follows that if k is only slightly greater than 1, then D can
ensure that the expression for D’s utility difference E[uD|p1] − E[uD|p1 = 0]
given in the final equation in Step 3 is at least k(k−1)

4 by choosing some value of
β> 0.

Now note that the expression forD’s utility differenceE[uD|p1]−E[uD|p1 =
0] given in the final equation in Step 4 is necessarily less than σ4

μ2
k(k−1)

4 for any

value of α > 0. To see this, first note that
√

2k− 1 = √
k2 − (k− 1)2 = k −

ĥ(k), where ĥ(k) is a nonnegative function that satisfies ĥ(k) = Θ(k − 1)2.
From this it follows that k2 − 1 − (k−√

2k− 1)2 = 2k(
√

2k− 1 − 1)= 2k(k−
1)− ĥ(k), where ĥ(k) is a nonnegative function that satisfies ĥ(k)=Θ(k−1)2.

From this it follows that k2 − 1 − (k− √
2k− 1)2 < 2k(k− 1) for values of

k close to 1. Thus, 1
4 [k2 − 1 − (k − √

2k− 1)2] < k(k−1)
2 and 1

4 [k2 − 1 − (k −√
2k− 1)2(1 + ε

√
α√
3
)2]< k(k−1)

2 for all α> 0 and ε > 0 as well. Further note that

e−(√α(k−√
2k−1)/(2

√
3)+√

3/
√
α+ε)2/2 ≤ e−ε2/2 for all α > 0. By combining these results,

it follows that∫ ∞

0

1
4

[
k2 − 1 − (k−

√
2k− 1)2

(
1 + ε

√
α√
3

)2]

× 1√
2π
e−(√α(k−√

2k−1)/(2
√

3)+√
3/

√
α+ε)2/2 dε

<

∫ ∞

0

k(k− 1)
2

1√
2π
e−ε2/2 dε= k(k− 1)

4
�
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Now since
√

2k− 1 = k − ĥ(k) for some nonnegative function ĥ(k) satis-
fying ĥ(k) = Θ(k − 1)2, it follows that k − √

2k− 1 = ĥ(k) for some func-
tion ĥ(k) satisfying ĥ(k) = Θ(k − 1)2, and the terms −σ4

μ2
α2(k−√

2k−1)4

144 and
σ4

μ2
α(k−√

2k−1)2

12 in the final equation in Step 4 are negative terms that are
Θ(α2(k − 1)8) and Θ(α(k − 1)4), respectively. Furthermore, the second in-
tegral in the final equation in Step 4 is O(e−3/(2α(k−1)4)) since exp(−(ε +
√
α(k−√

2k−1)
2
√

3
+

√
3(k+

√
k2+2α(k−√

2k−1)2/3)

2
√
α(k−√

2k−1)
)2/2)≤ e−ε2/2e−(√3/(

√
α(k−√

2k−1)))2/2 = e−ε2/2 ×
e−3/(2α(k−√

2k−1)2) =O(e−3/(2α(k−1)4)).
Combining all these results shows that the final equation in Step 4 equals

σ4

μ2 [ k(k−1)
4 − h(k)] for some nonnegative function h(k) that satisfies h(k) =

ω(α(k − 1)4). From this it follows that regardless of the value of α that D
chooses, the expression for D’s utility difference E[uD|p1] − E[uD|p1 = 0]
given in the final equation in Step 4 is necessarily less than σ4

μ2
k(k−1)

4 for val-
ues of k close to 1.

By combining the results for the cases where D chooses a policy p1 > 0
with the results for the cases where D chooses a policy p1 < 0, we see
that D can ensure that he obtains an expected utility E[uD|p1] satisfying
E[uD|p1] − E[uD|p1 = 0] > σ4

μ2
k(k−1)

4 if D chooses a policy p1 > 0 for values
of k close to 1, but D cannot obtain an expected utility E[uD|p1] satisfying
E[uD|p1] − E[uD|p1 = 0]> σ4

μ2
k(k−1)

4 if D chooses a policy p1 < 0 for values of
k close to 1. From this it follows that the optimal p1 > 0 will affordD a greater
utility than the optimal p1 < 0 for values of k that are only slightly greater than
1, and the optimal p1 > 0 will affordD a greater utility than the optimal p1 < 0
for values of γ that are only slightly greater than σ2

4μ . Moreover, similar reason-
ing indicates that D will prefer the optimal p1 > 0 over the optimal p1 < 0 for
all values of k ∈ (1�1�1), so the optimal p1 > 0 will afford D a greater utility
than the optimal p1 < 0 for values of γ ∈ (σ2

4μ �1�1σ
2

4μ).

STEP 12: Note that if we differentiate the expression for D’s expected util-
ity difference E[uD|p1] − E[uD|p1 = 0] in the final equation in Step 3 with
respect to β, then we find that (if we temporarily neglect the final integral,
which will turn out to be insignificant in magnitude compared to the other
terms)

∂

∂β

{
E[uD|p1] −E[uD|p1 = 0]}

= σ4

μ2

∫ ∞

0

1√
2π
h(ε�β�k)e−(√β(k−1)2/(4

√
3)+√

3/
√
β+ε)2/2 dε
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− σ4

μ2

∫ ∞

0

1√
2π
y(ε�β�k)e−(2√

3/(
√
β(k−1))−√

β(k−1)2/(4
√

3)+ε)2/2 dε

− σ4

μ2

β(k− 1)8

1152
�

where h(ε�β�k) satisfies

h(ε�β�k)= ε(k− 1)2

8
√

3β
+

(
k(k− 1)

2
+ ε

√
β(k− 1)2

4
√

3

)

×
(

3
2β2

+
√

3ε
2β3/2

− (k− 1)2ε

8
√

3β
− (k− 1)4

96

)

and y(ε�β�k) satisfies

y(ε�β�k)

= ε(k− 1)2

4
√

3

×
[
k

2
√
β

+ ε(k− 1)2

4
√

3
+

(
k
√
β+ εβ(k− 1)2

4
√

3

)

×
(

6
β2(k− 1)2

− (k− 1)4

96
+

√
3ε

β3/2(k− 1)
+ (k− 1)2ε

8
√

3β

)]
�

Also note that if we differentiate the expression for D’s expected utility
difference E[uD|p1] − E[uD|p1 = 0] in the final equation in Step 4 with re-
spect to α, then we find that (if we temporarily neglect the final integral,
which will turn out to be insignificant in magnitude compared to the other
terms)

∂

∂α

{
E[uD|p1] −E[uD|p1 = 0]}

= −σ
4

μ2

α(k− √
2k− 1)4

72
− σ4

μ2

(k− √
2k− 1)2

12

+ σ4

μ2

∫ ∞

0

1

4
√

2π
w(ε�α�k)e−(√α(k−√

2k−1)/(2
√

3)+√
3/

√
α+ε)2/2 dε�

where w(ε�α�k) satisfies

w(ε�α�k)

= −
(

ε√
3α

+ ε2

3

)
(k−

√
2k− 1)2
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+
[
k2 − 1 − (k−

√
2k− 1)2

(
1 + ε

√
α√
3

)2]

×
(

3
2α2

+
√

3ε
2α3/2

− ε(k− √
2k− 1)2

4
√

3α
− (k− √

2k− 1)2

24

)
�

Now for the expression ∂
∂β

{E[uD|p1] − E[uD|p1 = 0]}, it is necessarily
the case that this partial derivative is either never positive for any val-
ues of β > 0 or the partial derivative is initially negative for small val-
ues of β > 0, then becomes positive for larger values of β > 0, and then
becomes negative once again for even larger values of β > 0. From this
it follows that if D prefers to choose some value of p1 > 0 over p1 = 0,
then it is necessarily the case that the optimal p1 > 0 for D corresponds
to the larger of the two values of β > 0 for which the partial derivative
∂
∂β

{E[uD|p1] − E[uD|p1 = 0]} is equal to 0. Similarly, if D prefers to choose
some value of p1 < 0 over p1 = 0, then it is necessarily the case that
the optimal p1 < 0 for D corresponds to the larger of the two values of
α > 0 for which the partial derivative ∂

∂α
{E[uD|p1] − E[uD|p1 = 0]} is equal

to 0.
Thus to determine whetherD prefers the optimal value ofp1 > 0 overp1 = 0

for some particular value of γ = kσ2

4μ , it suffices to evaluate the expression
for E[uD|p1] − E[uD|p1 = 0] in the final equation in Step 3 at the larger of
the two values of β where the partial derivative ∂

∂β
{E[uD|p1] − E[uD|p1 = 0]}

is equal to 0. If the expression E[uD|p1] − E[uD|p1 = 0] is greater (less)
than 0 for this particular value of β, then D prefers the optimal value of
p1 > 0 over p1 = 0 (p1 = 0 to the optimal value of p1 > 0) for this value
of γ.

Similarly, to determine whether D prefers the optimal value of p1 < 0 over
p1 = 0 for some particular value of γ = kσ2

4μ , it suffices to evaluate the expres-
sion for E[uD|p1]−E[uD|p1 = 0] in the final equation in Step 4 at the larger of
the two values of α where the partial derivative ∂

∂α
{E[uD|p1] − E[uD|p1 = 0]}

is equal to 0. If the expression E[uD|p1] − E[uD|p1 = 0] is greater (less) than
0 for this particular value of α, then D prefers the optimal value of p1 > 0
over p1 = 0 (prefers p1 = 0 over the optimal value of p1 > 0) for this value
of γ.

Thus the smallest value of γ > σ2

4μ for which p1 = 0 is (weakly) preferred to

the optimal value of p1 > 0 is smaller than the smallest value of γ > σ2

4μ for
which p1 = 0 is (weakly) preferred to the optimal value of p1 < 0 if and only if
the smallest value of k for which the expression for E[uD|p1] − E[uD|p1 = 0]
in the final equation in Step 3 is equal to 0 at the larger of the two values
of β where the partial derivative ∂

∂β
{E[uD|p1] − E[uD|p1 = 0]} is equal to 0 is

smaller than the smallest value of k for which the expression for E[uD|p1] −
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E[uD|p1 = 0] in the final equation in Step 4 is equal to 0 at the larger of the two
values of α where the partial derivative ∂

∂α
{E[uD|p1] − E[uD|p1 = 0]} is equal

to 0.
Computationally, it follows that the smallest value of k for which the ex-

pression for E[uD|p1] − E[uD|p1 = 0] in the final equation in Step 3 is
equal to 0 at the larger of the two values of β where the partial deriva-
tive ∂

∂β
{E[uD|p1] − E[uD|p1 = 0]} is equal to 0 is between 2�592 and 2�593.

By contrast, the smallest value of k for which the expression for E[uD|p1] −
E[uD|p1 = 0] in the final equation in Step 4 is equal to 0 at the larger of
the two values of α where the partial derivative ∂

∂α
{E[uD|p1] − E[uD|p1 = 0]}

is equal to 0 is necessarily greater than 2�6. When k = 2�6, one can ver-
ify computationally that the larger of the two values of α where the par-
tial derivative ∂

∂α
{E[uD|p1] − E[uD|p1 = 0]} is equal to 0 is α = 2�6987, and

E[uD|p1] − E[uD|p1 = 0] is equal to 0�046845σ
4

μ2 at these values of k and
α. Moreover, the magnitudes of the final integrals in the final equations in
Steps 3 and 4 are insignificant for values of k in this range compared to
the magnitudes of the other terms and can be safely neglected. From this,
it follows that the smallest value of γ > σ2

4μ for which p1 = 0 is (weakly)
preferred to the optimal value of p1 > 0 is smaller than the smallest value
of γ > σ2

4μ for which p1 = 0 is (weakly) preferred to the optimal value of
p1 < 0.

STEP 13: To calculate D’s utility difference between choosing the optimal
policy p1 > 0 and choosing the optimal policy p1 < 0 for values of γ = kσ2

4μ
where both the optimal policy p1 > 0 and the optimal policy p1 < 0 are pre-
ferred to p1 = 0, it suffices to calculate the difference between the value of
E[uD|p1] − E[uD|p1 = 0] in the final equation in Step 3 at the larger of the
two values of β where the partial derivative ∂

∂β
{E[uD|p1] − E[uD|p1 = 0]} is

equal to 0 and the value of E[uD|p1] − E[uD|p1 = 0] in the final equation
in Step 4 at the larger of the two values of α where the partial derivative
∂
∂α

{E[uD|p1] −E[uD|p1 = 0]} is equal to 0.
Let V (k) denote the value of this utility difference for any particular k. We

already know from earlier analysis that V (k) is necessarily positive for values
of k that are only slightly greater than 1 (and, in particular, that V (k) is positive
for values of k ∈ (1�1�1)). We also know from the analysis in the previous step
that D prefers to choose p1 = 0 over the optimal value of p1 > 0 for values of
k≥ 2�593. Thus, to determine the sign of V (k) for values of k whereD prefers
both the optimal policy p1 > 0 and the optimal policy p1 < 0 to p1 = 0, we can
restrict attention to values of k ∈ [1�1�2�593].

Computationally, one can calculate the value of V (k) for any k ∈ [1�1�2�593]
by calculating the difference between the value of E[uD|p1] −E[uD|p1 = 0] in
the final equation in Step 3 at the larger of the two values of β where the
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partial derivative ∂
∂β

{E[uD|p1] − E[uD|p1 = 0]} is equal to 0 and the value of
E[uD|p1]−E[uD|p1 = 0] in the final equation in Step 4 at the larger of the two
values of α where the partial derivative ∂

∂α
{E[uD|p1] − E[uD|p1 = 0]} is equal

to 0. By doing this for all values of k ∈ [1�1�2�593] that are integral multiples
of 0�001, it is apparent that V (k) is positive and increasing in k for values of
k ≤ 1�381, that V (k) is decreasing in k for values of k ∈ (1�381�2�469), and
that V (k) is significantly lower than 0 for values of k ≥ 2�469. Moreover, the
function V (k) only crosses 0 at one value of k ∈ (1�381�2�469) (when k ≈
1�709), and the slope of V (k) is significantly negative and steady for a range of
values around k≈ 1�709, precluding any possibility that the sign of V (k) flips
several times for values of k near 1�709.

Thus, V (k) > 0 for values of k < 1�709, V (k) < 0 for values of k > 1�709,
and the only value of k ∈ (1�2�593) for which V (k) = 0 is k ≈ 1�709. From
this, it follows that for values of γ such that both the optimal policy p1 > 0
and the optimal policy p1 < 0 are preferred to p1 = 0, it must be the case that
there is some intermediate value of γ, say γ′, such that D prefers the optimal
policy p1 > 0 over the optimal policy p1 < 0 for values of γ < γ′, prefers the
optimal policy p1 < 0 over the optimal policy p1 > 0 for values of γ > γ′, and
is indifferent between the optimal policy p1 > 0 and the optimal policy p1 < 0
for values of γ = γ′.

STEP 14: To see that the optimal policy must vary continuously with γ for
ranges of γ where D always chooses a policy p1 > 0, recall that for ranges of
γ = kσ2

4μ where D always chooses a policy p1 > 0, D will necessarily choose the

policy p1 = βσ2(k−1)4

48μ2 , where β is the larger of the two values of β where the
partial derivative ∂

∂β
{E[uD|p1] − E[uD|p1 = 0]} is equal to 0. Let β(k) denote

this value of β. Since the partial derivative ∂
∂β

{E[uD|p1] −E[uD|p1 = 0]} varies
continuously with k and β, it follows that β(k) must vary continuously with k
as well. This in turn implies that the optimal policy p1 > 0 necessarily varies
continuously with k (and γ) for ranges of γ = kσ2

4μ where D always chooses a
policy p1 > 0.

A similar argument shows that the optimal policy for D must vary contin-
uously with γ for ranges of γ where D always chooses a policy p1 < 0. Thus
the optimal policy p1 for D must vary continuously with γ in regions where D
always chooses p1 > 0 or where D always chooses p1 < 0.

STEP 15: By combining all the intermediate results in the previous steps, it
follows that the equilibrium is necessarily of the form given in the proposition.
We have seen that D chooses the policy p1 = 0 both when γ is sufficiently
large and when γ ≤ σ2

4μ . We also know from the results in Steps 8, 12, and 13

that there is some γ̂ > σ2

4μ such that D prefers the optimal policy p1 > 0 over

both the policy p1 = 0 and the optimal policy p1 < 0 for all γ ∈ (σ2

4μ � γ̂). We then
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know from the results in Steps 10, 12, and 13 that there is some γ̃ > γ̂ such that
D prefers the optimal policy p1 < 0 over both the policy p1 = 0 and the optimal
policy p1 > 0 for all γ ∈ (γ̂� γ̃), and that D then prefers the policy p1 = 0 over
all policies p1 �= 0 for γ > γ̃. Finally, we know from the result in Step 13 thatD
is indifferent between the optimal p1 > 0 and the optimal p1 < 0 when γ = γ̂,
and from the result in Step 10, we know that D is indifferent between p1 = 0
and the optimal p1 < 0 when γ = γ̃.

The results in the above paragraphs thus indicate that in equilibrium, D
indeed follows a strategy characterized by two cutoffs, γ∗ and γ∗∗ satisfying
σ2

4μ < γ
∗ < γ∗∗ such that the following properties are satisfied:

(i) D chooses the policy p1 = 0 if γ ≤ σ2

4μ or γ > γ∗∗.
(ii) D chooses a policy p1 > 0 that varies continuously with γ for values of

γ ∈ (σ2

4μ �γ
∗).

(iii) D chooses a policy p1 < 0 that varies continuously with γ for values of
γ ∈ (γ∗�γ∗∗).

(iv) D either chooses a policy p1 > 0 or a policy p1 < 0 when γ = γ∗.
(v) D either chooses a policy p1 < 0 or the policy p1 = 0 when γ = γ∗∗.

Q.E.D.

For the next result that we prove in this appendix, we denote per-period
utility by lower-case utD, where the subscript is the player and the superscript is
the period, and include arguments only when confusion would otherwise occur.
We say that a policy dominates another for a player if it delivers lower variance
and a better expected outcome.

PROOF OF THEOREM 2: By Lemma 1, p1 = 0 induces p2 = 0 for γ < σ2

4μ . As
this gives UD = 0 and UD < 0 for any p1 �= 0, the result holds.

Hereafter suppose γ > σ2

4μ and consider four cases.

(i) p1 = 0. R experiments as in Lemma 1. Define z = 2γ − σ2

2μ . Then p2 = z
μ

and EUD = 0 − z2 − z
μ
σ2.

(ii) p1 < 0. This gives Eu1
D < 0 and, by the dictates of the No Stuck game, R

chooses p2 = z
μ

. Thus, p1 < 0 is dominated by p1 = 0.
(iii) p1 >

z
μ

. This is dominated by p1 = 0, as D obtains a higher expected
utility by choosing p1 = 0 than he would by choosing p1 >

z
μ

even if D always
obtained his ideal policy in the second period after choosing p1 >

z
μ

.
(iv) p1 ∈ (0� z

μ
). Suppose Eψ(p1)= −γ+λ such that Eu1

D = −λ2 − λ
μ
σ2. The

strategy of proof is to show that Eu2
D < −z2 − z−λ

μ
σ2, which implies EUD <

(−λ2 − λ
μ
σ2)+ (−z2 − z−λ

μ
σ2)= −λ2 − z2 − z

μ
σ2. As this is strictly less thanD’s

total utility from p1 = 0, p1 = 0 is optimal and the result follows.
The possible outcomes of experiment p1 are distributed normally around

−γ + λ, and Eu2
D is the integral over these outcomes factoring in R’s optimal
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p2. To circumvent the need for this calculation, we bound the value of this inte-
gral by considering matched pairs of outcomes that are arrayed symmetrically
around the expected value; that is, are of the form −γ + λ±ω for all ω ≥ 0.
Four cases need to be considered:
Case 0:ω= 0. R experiments according to Lemma S1 and Eu2

D = −z2 − z−λ
μ
σ2.

Case I: ω ∈ (0� z− λ). By the dictates of the No Stuck game, p2 >p1 for both
±ω and R experiments according to Lemma S1. D’s average second period
utility across this pair is

AverageEu2
D = 1

2

(
−z2 − z− λ−ω

μ
σ2

)
+ 1

2

(
−z2 − z− λ+ω

μ
σ2

)

= −z2 − 1
2

(
−z− λ−ω

μ
− z− λ+ω

μ

)
σ2

= −z2 − z− λ
μ

σ2�

Case II: ω ∈ [z − λ� α̃], where α̃ is defined such that p2 = p1 if and only if
ψ(p1) ∈ [γ − σ2

2μ �γ + α̃]. (Callander (2011) shows that behavior obeys such a
cut point.) Following ψ(p1) = −γ + λ − ω, R experiments as in Lemma S1
and the variance of ψ(p2) is z−λ+ω

μ
σ2 > 2 z−λ

μ
σ2, which implies that the average

variance across this pair exceeds z−λ
μ
σ2. As the average expected outcome is

more distant than z from D’s ideal, the average Eu2
D is strictly less than −z2 −

z−λ
μ
σ2.

Case III:ω> α̃, such that p2 ∈ (0�p1) andR experiments on the bridge formed
by outcome −γ+ λ+ω. This case proceeds analogously to Case II.

As the average Eu2
D ≤ −z2 − z−λ

μ
σ2 in all cases, the integral over all possible

outcomes, by the symmetry of the normal distribution, is less than this value,
and the required property on Eu2

D is established. Q.E.D.

PROOF OF THEOREM 3: From the proof of Lemma S1, for p< 0,

Eu1
D(p)= −

(
γ− σ2

2μ
+μp+ γ

)2

+pσ2�

dEu1
D(p)

dp
= −2

(
γ− σ2

2μ
+μp+ γ

)
μ+ σ2�

With a one-period horizon, the first order condition is (γ− σ2

2μ +μp∗)= −γ+
σ2

2μ , where the left-hand side is Eψ(p∗) and the right-hand side is σ2

2μ above D’s
ideal.
D’s second period utility is a truncated draw from the outcome of his first

period experiment. If ψ(p1) ≤ γ − σ2

2μ it is ignored by R and, by Lemma S1,
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p2 = 0 and the outcome is γ − σ2

2μ . On the other hand, if ψ(p1) > γ − σ2

2μ , then

R uses the experiment and p2 ∈ [p1�0) with Eψ(p2) > γ − σ2

2μ (and possibly
positive variance).
D’s total utility is then

EUD = −
(
γ− σ2

2μ
+μp+ γ

)2

+pσ2 +
∫ μp

−∞
f
(
x;0� |p|σ2

)
Φ(x)dx

− F(
μp;0� |p|σ2

)(
γ− σ2

2μ
+ γ

)2

�

where f (·) is the Normal probability density function of mean 0 and variance
|p|σ2, and Φ(x) measures D’s utility from R’s second period choice following
ψ(p)= γ− σ2

2μ +μp−x, such thatΦ(x) <−(γ− σ2

2μ +γ)2 for all x < μp. As the

integral has strictly positive mass for p< 0 and dEu1
D(p)

dp
= 0 for p= 0 at γ = σ2

2μ ,
the first part of the theorem holds. As γ → ∞, F(μp;0� |p|σ2) → 1 for the
one-period optimal policy choice (given in Lemma S1), and Eu1

D dominates
EUD, establishing the second part of the theorem. Q.E.D.
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