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BY GUIDO KUERSTEINER AND RYO OKUI

This appendix contains detailed proofs for the results given in the main paper. For
ease of reference, we repeat formal assumptions, some key definitions, and statements
of propositions and theorems.

1. DEFINITIONS

FOR EASE OF REFERENCE, we repeat the definitions and formulas that appear
in the main text. Enumerations that appear only in this document are refer-
enced by numbers preceded by “A.” The definitions of the estimators are re-
peated first. The model averaging two-stage least squares (MA2SLS) estimator
is

β̂= (X ′P(W )X)−1X ′P(W )y�(2.2)

The definition of (2.2) can be extended to the LIML estimator. Let

Λ̂m = min
β

(y −Xβ)′Pm(y −Xβ)

(y −Xβ)′(y −Xβ)

and define Λ̂(W ) =∑M

m=1 wmΛ̂m. The MALIML estimator, β̂, of β then is de-
fined as

β̂= (X ′P(W )X − Λ̂(W )X ′X)−1(X ′P(W )y − Λ̂(W )X ′y)�(2.3)

Similarly we consider a modification to Fuller’s (1977) estimator. Let

Λ̌m =
⎛
⎜⎝ Λ̂m − α

N −m
(1 − Λ̂m)

1 − α

N −m
(1 − Λ̂m)

⎞
⎟⎠ �

where α is a constant. The model averaging Fuller estimator (MAFuller) then
is defined as

β̂= (X ′P(W )X − Λ̌(W )X ′X)−1(X ′P(W )y − Λ̌(W )X ′y)�(2.4)

The choice of model weights W is based on an approximation to the higher
order MSE of β̂. Following Donald and Newey (2001) (see also Nagar (1959)),
we approximate the MSE conditional on the exogenous variable z, E[(β̂ −
© 2010 The Econometric Society DOI: 10.3982/ECTA7444
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β0)(β̂−β0)
′|z], by σ2

εH
−1 + S(W ), where

N(β̂−β0)(β̂−β0)
′ = Q̂(W )+ r̂(W )�(4.1)

E[Q̂(W )|z] = σ2
εH

−1 + S(W )+ T(W )�

H = f ′f/N , and (r̂(W )+T(W ))/ tr(S(W ))= op(1) as N → ∞. However, be-
cause of the possibility of bias elimination by setting K′W = 0, we need to con-
sider an expansion that contains additional higher order terms for the MA2SLS
case. We show the asymptotic properties of the MA2SLS, MALIML, and MA-
Fuller estimators under the assumptions in Section A.

Next we discuss the estimation of S(W ). Let β̃ denote some preliminary
estimator of β and define the residuals ε̃ = y −Xβ̃. As pointed out in Donald
and Newey (2001), it is important that β̃ does not depend on the weighting
vector, W . We use the 2SLS estimator with the number of instruments selected
by the first-stage Mallows criterion in simulations for MA2SLS, and use the
corresponding LIML and Fuller estimator for MALIML and MAFuller. Let Ĥ
be some estimator of H = f ′f/n. Let ũ be some preliminary residual vector of
the first-stage regression. Let ũλ = ũĤ−1λ. Define

σ̂2
ε = ε̃′ε̃/N� σ̂2

λ = ũ′
λũλ/N� σ̂λε = ũ′

λε̃/N�

Let ûm
λ = (PM −Pm)XĤ−1λ and Û = (û1

λ� � � � � û
M
λ )

′(û1
λ� � � � � û

M
λ ).

1 Let Γ be the
M ×M matrix whose (i� j) element is min(i� j) and let K = (1�2� � � � �M)′. The
criterion Ŝλ(W ) for choosing the weights for MA2SLS is

Ŝλ(W ) = âλ

(K′W )2

N
+ b̂λ

(W ′Γ W )

N
− K′W

N
B̂λ�N(2.5)

+ σ̂2
ε

(
W ′ÛW − σ̂2

λ(M − 2K′W +W ′Γ W )

N

)

with âλ = σ̂2
λε, b̂λ = σ̂2

ε σ̂
2
λ + σ̂2

λε, and B̂λ�N = λ′Ĥ−1B̂NĤ
−1λ, where B̂N can be

estimated by

B̂N = 2

(
σ̂2

ε Σ̂u + dσ̂uεσ̂
′
uε + 1

N

N∑
i=1

f̂iσ̂
′
uεĤ

−1σ̂uεf̂
′
i

+ 1
N

N∑
i=1

(f̂iσ̂
′
uεĤ

−1f̂iσ̂
′
uε + σ̂uεf̂

′
i Ĥ

−1σ̂uεf̂
′
i )

)

1Note that ũ is the preliminary residual vector, but ûm
λ s are the vectors of the differences of

the residuals.
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in which f̂ = PmX with m → ∞ (m may be chosen by the first-stage Mallows
criterion) and σ̂uε = ũ′ε̃/N . When the weights are only allowed to be positive,
we can use the simpler criterion

Ŝλ(W )= âλ

(K′W )2

N
+ σ̂2

ε

(
W ′ÛW − σ̂2

λ(M − 2K′W +W ′Γ W )

N

)
(2.6)

that does not account for the smaller orders terms involving b̂λ and B̂λ�N . For
MALIML and MAFuller, we choose W based on the criterion

Ŝλ(W ) = (σ̂2
ε σ̂

2
λ − σ̂2

λε)
W ′Γ W

N
(2.7)

+ σ̂2
ε

(
W ′ÛW − σ̂2

λ(M − 2K′W +W ′Γ W )

N

)
�

A. REGULARITY CONDITIONS AND FORMAL RESULTS

ASSUMPTION 1: {yi�Xi� zi} are i.i.d., E[ε2
i |zi] = σ2

ε > 0, and E[‖ηi‖4|zi] and
E[|εi|4|zi] are bounded.

ASSUMPTION 2: (i) H̄ ≡ E[fif ′
i ] exists and is nonsingular. (ii) for some α >

1/2,

sup
m≤M

m2α
(

sup
λ′λ=1

λ′f ′(I − Pm)fλ/N
)

=Op(1)�

(iii) Let N+ be the set of positive integers. There exists a subset J̄ ⊂N+ with a finite
number of elements such that supm∈J̄ supλ′λ λ

′f ′(Pm − Pm+1)fλ/N = 0 wpa1 and
for all m /∈ J̄, it follows that

inf
m/∈J̄�m≤M

m2α+1
(

sup
λ′λ=1

λ′f ′(Pm − Pm+1)fλ/N
)
> 0 wpa1�

ASSUMPTION 3: (i) Let uia be the ath element of ui� Then E[εrius
ia|zi] are con-

stant and bounded for all a and r� s ≥ 0 and r + s ≤ 5. Let σuε = E[uiεi|zi] and
Σu =E[uiu

′
i|zi]. (ii) Z′

MZM are nonsingular wpa1. (iii) maxi≤N PM�ii →p 0, where
PM�ii signifies the (i� i)th element of PM . (iv) fi is bounded.

ASSUMPTION 4: Let W + = (|w1�N |� � � � � |wM�N |)′. The following conditions
hold: 1′

MW = 1; W ∈ l1 for all N where l1 = {x = (x1� � � �)|∑∞
i=1 |xi| ≤ Cl1 < ∞}

for some constant Cl1, M ≤ N ; and, as N → ∞ and M → ∞,
K′W + = ∑M

m=1 |wm|m → ∞. For some sequence L ≤ M such that L → ∞
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as N → ∞ and L /∈ J̄, where J̄ is defined in Assumption 2(iii) it follows that
supj /∈J̄�j≤L |∑j

m=1 wm| =O(1/
√
N) as N → ∞�

ASSUMPTION 5: It holds either that (i) K′W +/
√
N =∑M

m=1 |wm|m/
√
N → 0

or (ii) K′W +/N =∑M

m=1 |wm|m/N → 0 and M/N → 0�

ASSUMPTION 6: The eigenvalues of E[Zk�iZ
′
k�i] are bounded away from zero

uniformly in k. Let H̄k = E[fiZk�i](E[Zk�iZ
′
k�i])−1E[fiZ′

k�i]′ and H̄ = E[fif ′
i ].

Then ‖H̄k − H̄‖ = O(k−2α) for k → ∞. E[|εi|8|z] and E[|uia|8|z] are uniformly
bounded in z for all a.

ASSUMPTION 7: β ∈Θ, where Θ is a compact subset of Rd�

ASSUMPTION 8: For some α, supm≤M m2α+1(supλ′λ=1 λ
′f ′(Pm −Pm+1)fλ/N) =

Op(1).

ASSUMPTION 9: Ĥ − H = op(1), σ̂2
ε − σ2

ε = op(1), σ̂2
λ − σ2

λ = op(1), σ̂λε −
σλε = op(1), and B̂N −BN = op(1).

ASSUMPTION 10: Let α be as defined in Assumption 8. For some 0 < ε <
min(1/(2α)�1) and δ such that 2αε > δ > 0, it holds that M = O(N(1+δ)/(2α+1)).
For some ϑ > (1 + δ)/(1 − 2αε), it holds that E(|ui|2ϑ) < ∞. Further assume
that σ̂2

λ − σ2
λ = op(N

−δ/(2α+1)).

THEOREM A.1: Suppose that Assumptions 1–3 are satisfied. Define μi(W ) =
E[ε2

i ui]Pii(W ) and μ(W )= (μ1(W )� � � � �μN(W ))′. If W satisfies Assumptions 4
and 5(i), then, for β̂ defined in (2.2) (MA2SLS), the decomposition given by (A.8)
holds with

S(W ) = H−1

(
Cum[εi� εi� ui�u

′
i]

N∑
i=1

(Pii(W ))2

N
+ σuεσ

′
uε

(K′W )2

N

+ (σ2
εΣu + σuεσ

′
uε)

(W ′Γ W )

N

− K′W
N

BN +E[ε2
1u1]

N∑
i=1

f ′
i Pii(W )

N
+

N∑
i=1

fiPii(W )

N
E[ε2

1u
′
1]

+ f ′(I − P(W ))μ(W )

N
+ μ(W )′(I − P(W ))f

N

+ σ2
ε

f ′(I − P(W ))(I − P(W ))f

N

)
H−1�
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where d = dim(β) and

BN = 2

(
σ2

εΣu + dσuεσ
′
uε + 1

N

N∑
i=1

fiσ
′
uεH

−1σuεf
′
i(A.1)

+ 1
N

N∑
i=1

(fiσ
′
uεH

−1fiσ
′
uε + σuεf

′
iH

−1σuεf
′
i )

)
�

A number of special cases lead to simplifications of the above result. If
Cum[εi� εi� ui�u

′
i] = 0 and E[ε2

i ui] = 0, as would be the case if εi and ui were
jointly Gaussian, the following result is obtained.

COROLLARY A.1: Suppose that the same conditions as in Theorem A.1 hold,
and that in addition Cum[εi� εi� ui�u

′
i] = 0 and E[ε2

i ui] = 0. Then, for β̂ defined
in (2.2) (MA2SLS), the decomposition given by (A.8) holds with

S(W ) = H−1

(
σuεσ

′
uε

(K′W )2

N
+ (σ2

εΣu + σuεσ
′
uε)

(W ′Γ W )

N
− K′W

N
BN(A.2)

+ σ2
ε

f ′(I − P(W ))(I − P(W ))f

N

)
H−1�

where BN is as defined before.

Another interesting case arises when W is constrained such that wm ∈ [0�1].
We have the following result.

COROLLARY A.2: Suppose that the same conditions as in Theorem A.1 hold
and that in addition wm ∈ [0�1] for all m. Then, for β̂ defined in (2.2) (MA2SLS),
the decomposition given by (A.8) holds with

S(W ) = H−1

(
σuεσ

′
uε

(K′W )2

N
+ (σ2

εΣu + σuεσ
′
uε)

(W ′Γ W )

N
(A.3)

− K′W
N

BN +E[ε2
1u1]

N∑
i=1

f ′
i Pii(W )

N
+

N∑
i=1

fiPii(W )

N
E[ε2

1u
′
1]

+ σ2
ε

f ′(I − P(W ))(I − P(W ))f

N

)
H−1�
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where BN is as defined before. Moreover, ignoring terms of order Op(K
′W )

(= op((K
′W )2)), to first order

S(W )=H−1

(
σuεσ

′
uε

(K′W )2

N
+ σ2

ε

f ′(I − P(W ))(I − P(W ))f

N

)
H−1�(A.4)

A last special case arises when the constraint K′W = 0 is imposed on the
weights.

COROLLARY A.3: Suppose that the same conditions as in Theorem A.1 hold
and that in addition Cum[εi� εi� ui�u

′
i] = 0 and E[ε2

i ui] = 0� Furthermore, im-
pose K′W = 0� Then, for β̂ defined in (2.2) (MA2SLS), the decomposition given
by (A.8) holds with

S(W ) = H−1

(
(σ2

εΣu + σuεσ
′
uε)

(W ′Γ W )

N
(A.5)

+ σ2
ε

f ′(I − P(W ))(I − P(W ))f

N

)
H−1�

REMARK A.1: We note that this result covers the Nagar (1959) estima-
tor, where M = N� wm = N/(N − k) for k = m, wN = −k/(N − k), and
wm = 0 otherwise for some k such that k→ ∞ and k/

√
N → 0. First, we verify

that all the conditions of the corollary are satisfied, where
∑M

m=1 |wm| = (N +
k)/(N − k), which is uniformly bounded if k = o(N), K′W = 1� 1′

MW = 1�∑M

m=1 |wm|m = 2Nk/(N − k) → ∞� and
∑M

m=1 |wm|m/
√
N = 2

√
Nk/(N −

k) → 0� Further, supj /∈J̄�j≤L |∑j

m=1 wm| = 0 by taking L ≤ k. Next, note that
W ′Γ W = k/(1 − k/N)2 − k2/N(1 − k/N)2 and f ′(I − P(W ))(I − P(W ))f =
f ′(I −Pk)f/(1 −k/N)2, noting that PN = I� If we use WN to denote the Nagar
weights, then S(WN) = H−1((σ2

εΣu + σuεσ
′
uε)k/N + σ2

ε f
′(I − Pk)f/N)H−1 +

o(S(WN)). The lead term is the same as the result in Proposition 3 of Donald
and Newey (2001).

The next theorem gives the approximate MSE of the MALIML and MA-
Fuller estimators.

THEOREM A.2: Suppose that Assumptions 1–4, 5(ii), 6, and 7 are satisfied.
Let vi = ui − (σuε/σ

2
ε )εi. Define Σv = Σu − σuεσ

′
uε, μv(W ) = (μv�1(W )� � � � �

μv�N(W ))′, and μv�i(W ) = E[ε2
i vi]Pii(W ). If W satisfies Assumption 4, then,

for β̂ defined in (2.3) (MALIML) and β̂ defined in (2.4) (MAFuller), the de-
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composition given by (A.8) holds with

S(W ) = H−1

(
σ2

εΣv

W ′Γ W

N
+ σ2

ε

f ′(I − P(W ))(I − P(W ))f

N

+ Cum[εi� εi� vi� v′
i]

N∑
i=1

(Pii(W ))2

N

+ ζ̂ + ζ̂ ′ − f ′(I − P(W ))μv(W )

N

− μv(W )′(I − P(W ))f

N

)
H−1�

where

ζ̂ =
N∑
i=1

fiPii(W )E[ε2
i v

′
i]/N − K′W

N

N∑
i=1

fiE[ε2
i v

′
i]/N�

When Cum[εi� εi� vi� v′
i] = 0 and E[ε2

i vi] = 0, we have

S(W )= H−1

(
σ2

εΣv

W ′Γ W

N
+ σ2

ε

f ′(I − P(W ))(I − P(W ))f

N

)
H−1�(A.6)

The following theorem demonstrates that model averaging can achieve a
smaller MSE than that achieved by sequential instrument selection. Define
the sets ΩU = {W ∈ l1|W ′1M = 1}, ΩC = {W ∈ l1|W ′1M = 1;wm ∈ [−1�1]�∀m≤
M}, ΩP = {W ∈ l1|W ′1M = 1;wm ∈ [0�1]�∀m ≤ M}, and ΩB = {W ∈ l1|W ′1M =
1�K′W = 0}.

THEOREM A.3: Assume that Assumptions 1–5 hold. Let γm = λ′H−1 ×
f ′(I − Pm)fH

−1λ/N . Assume that there exists a nonstochastic function C(a)
such that supa∈[−ε�ε] γm(1+a)/γm = C(a) wpa1 as N�m → ∞ for some ε > 0. As-
sume that C(a)= (1 + a)−2α + o(|a|2α).

(i) For Sλ(W ) given by (A.2), it follows that

min
W ∈ΩP

Sλ(W )

min
W ∈Ωsq

Sλ(W )
< 1 wpa1�
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Letting WN be the weights with wm = N/(N − m)� wN = −m/(N − m), and
wj = 0 for j =m, where m is chosen to minimize Sλ(W ), it follows that

min
W ∈ΩB

Sλ(W )

Sλ(WN)
< 1 wpa1.

(ii) For Sλ(W ) given by (A.6), it follows that

min
W ∈ΩP

Sλ(W )

min
W ∈Ωsq

Sλ(W )
< 1 wpa1.

The next theorem is about the optimality of the estimated criterion function.
It is a generalization of the result established by Li (1987).

THEOREM A.4: Let Assumptions 1–10 hold. For Ω = ΩU , ΩB, ΩC , or ΩP and
Ŵ = arg minW ∈Ω Ŝλ(W ), where Ŝλ(W ) is defined in either (2.5) or (2.7), it follows
that

Ŝλ(Ŵ )

inf
W ∈Ω

Sλ(W )
→p 1�(A.7)

Last, we present the theorem that shows that the pseudo R2 converges in
probability to the population R2.

THEOREM A.5: Assume that Assumptions 1–5 hold. Suppose that
dim(β) = 1. Let

R̃2 = (X ′P(W )X)2

X ′P(W )P(W )X ·X ′X
�

If
∑L

j=1 |wj| = o(1) and E(Xi)= 0, then

R̃2 →p

E(f 2
i )

E(f 2
i )+ σ2

u

�

A.1. Lemmas

The MA2SLS estimator has the form of
√
N(β̂ − β) = Ĥ−1ĥ. We de-

fine h = f ′ε/
√
N and H = f ′f/N . The following Lemma A.1 is the key de-

vice to compute the Nagar-type MSE of MA2SLS. This lemma is similar to
Lemma A.1 in Donald and Newey (2001), but with the important difference
that the expansion is valid to higher order and covers the case of higher order
unbiased estimators.
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LEMMA A.1: If there is a decomposition ĥ = h+ Th +Zh, h̃ = h+ Th� Ĥ =
H + TH +ZH , and

h̃h̃′ − h̃h̃′H−1TH′ − THH−1h̃h̃′ = Â(W )+ZA(W )�

such that Th = op(1), h = Op(1), and H = Op(1), the determinant of H is
bounded away from zero with probability 1, ρW�N = tr(S(W )), and ρW�N = op(1),

‖TH‖2 = op(ρW�N)� ‖Zh‖ = op(ρW�N)� ‖ZH‖ = op(ρW�N)�

ZA(W )= op(ρW�N)� E[Â(W )|z] = σ2H +HS(W )H + op(ρW�N)�

then

N(β̂−β0)(β̂−β0)
′ = Q̂(W )+ r̂(W )�(A.8)

E[Q̂(W )|z] = σ2
εH

−1 + S(W )+ T(W )�

(r̂(W )+ T(W ))/ tr(S(W ))= op(1)� as K′W + → ∞�N → ∞�

REMARK A.2: The technical difference between our lemma and that of
Donald and Newey is that we consider the interaction between Th and TH

in the expansion and we do not require that ‖Th‖ · ‖TH‖ is small.

PROOF OF LEMMA A.1: The proof follows steps taken by Donald and Newey
(2001). We observe that

Ĥ−1ĥ =H−1ĥ−H−1(Ĥ −H)H−1ĥ+H−1(Ĥ −H)H−1(Ĥ −H)Ĥĥ�

Noting that Ĥ − H = TH + ZH , ‖TH‖2 = op(ρW�N), ‖ZH‖ = op(ρW�N), and
ĥ = h̃+Zh = h̃+ op(ρW�N), we have

Ĥ−1ĥ =H−1h̃−H−1THH−1h̃+ op(ρW�N)�

Let τ̃ = h̃− THH−1h̃. Then

τ̃τ̃′ = Â(W )+ZA(W )+ THH−1h̃h̃′H−1TH

= Â(W )+ op(ρW�N)

by ZA(W )= op(ρW�N) and ‖TH‖ = op(ρW�N). It follows that

N(β̂−β)(β̂−β)′ = H−1(Â(W )+ op(ρW�N))H
−1 + op(ρW�N)

= H−1Â(W )H−1 + op(ρW�N)�

Therefore, we get the desired result. Q.E.D.
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LEMMA A.2: Let Γ be the N × N matrix where Γij = min(i� j). Then Γ is
positive definite.

PROOF: Define the vectors bj�N = (0′
j�1′

N−j)
′, where 1j is the j × 1 vector

of 1s and 0j is defined similarly. Then

Γ =
N−1∑
j=0

bj�Nb
′
j�N�

and for any y ∈ R
N it follows that y ′Γ y =∑N−1

j=0 (y
′bj�N)

2 ≥ 0 and the equality
holds if and only if y = 0. This shows that Γ is positive definite. Q.E.D.

LEMMA A.3: Let Γ be defined as in Lemma A.2. If, for some sequence L ≤
M , L → ∞, L /∈ J̄ for J̄ defined in Assumption 2(iii), supj /∈J̄�j≤L |∑j

m=1 wm| =
Op(1/

√
N) as M → ∞, and W ′1M = 1 for any M , then it follows that W ′Γ W →

∞ as M → ∞�

PROOF: For L≤M and L → ∞ it follows by the assumption that

1 =
∣∣∣∣∣

M∑
m=1

wm

∣∣∣∣∣≤ inf
j /∈J̄�j≤L

(∣∣∣∣∣
M∑

m=j+1

wm

∣∣∣∣∣+
∣∣∣∣∣

j∑
m=1

wm

∣∣∣∣∣
)

≤ inf
j /∈J̄�j≤L

∣∣∣∣∣
M∑

m=j+1

wm

∣∣∣∣∣+ sup
j /∈J̄�j≤L

∣∣∣∣∣
j∑

m=1

wm

∣∣∣∣∣
such that infj /∈J̄�j≤L |∑M

m=j+1 wm| ≥ 1 − Op(1/
√
N). Now let CJ̄ be the number

of elements in J̄ such that

W ′Γ W =
M−1∑
j=0

(
M∑

m=j+1

wm

)2

≥
∑

j /∈J̄�j≤L

(
M∑

m=j+1

wm

)2

≥ (L−CJ̄)(1 −Op(1/
√
N))2�

Since L → ∞ and CJ̄ is bounded and does not depend on L or N , the result
follows. Q.E.D.

LEMMA A.4: If, for some sequence L ≤ M , L → ∞, for J̄ defined in As-
sumption 2(iii), L /∈ J̄, and supj /∈J̄�j≤L |∑j

m=1 wm| = O(1/
√
N) as M → ∞, then∑M

m=1�m/∈J̄ (
∑m

s=1 wm)
2m−2α → 0.
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PROOF: Note that

M∑
m=1�m/∈J̄

(
m∑
s=1

wm

)2

m−2α

=
L∑

m=1�m/∈J̄

(
m∑
s=1

wm

)2

m−2α +
M∑

m=L+1�m/∈J̄

(
m∑
s=1

wm

)2

m−2α

≤
(

sup
j /∈J̄�j≤L

∣∣∣∣∣
j∑

s=1

wm

∣∣∣∣∣
)2 L∑

m=1

m−2α +
M∑

m=L+1�m/∈J̄

(
m∑
s=1

|wm|
)2

m−2α

≤O(1/N)

L∑
m=1

m−2α +Cl1

M∑
m=L+1

m−2α → 0�

where the last inequality follows from the fact that
∑m

s=1 |wm| ≤ Cl1 < ∞ uni-
formly in N by Assumption 4. Then

∑M

m=L+1 m
−2α → 0 because L → ∞ and∑M

m=1 m
−2α < ∞ uniformly in M . Q.E.D.

In what follows,
∑

i and
∑

i =j signify
∑N

i=1 and
∑N

i=1

∑N

j=1�j =i, respectively.

LEMMA A.5: Suppose that Assumptions 1–3 are satisfied. Then we have the
following equalities:

(i) tr(P(W ))=∑M

m=1 wmm =K′W (Hansen (2007, Lemma 1.1)).
(ii)

∑
i(Pii(W ))2 = op(K

′W +).
(iii)

∑
i =j Pii(W )Pjj(W )= (K′W )2 + op(K

′W +).
(iv)

∑
i =j Pij(W )Pij(W ) = ∑M

m=1

∑M

l=1 wmwl min(l�m) + op(K
′W ) =

W ′Γ W + op(K
′W ).

(v)
∑

i =j Pij(W ) =Op(N −K′W ).
(vi) h = f ′ε/

√
N = Op(1) and H = f ′f/N = Op(1) (Donald and Newey

(2001, Lemma A.2 (v))).

PROOF: We do not provide the proofs of parts (i) and (vi), as the proofs are
available in Hansen (2007) and Donald and Newey (2001). For part (ii), first
we note that Aii ≤ Bii if A ≤ B, which implies that Pl�ii ≤ PM�ii for l ≤M . Then
Assumption 3 and Lemma A.5(i) imply

∑
i

(Pii(W ))2 =
N∑
i=1

M∑
m�l=1

wmwlPl�iiPm�ii

≤
N∑
i=1

M∑
m�l=1

|wm||wl|Pl�iiPm�ii
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≤ max
i
(PM�ii)

(
M∑

m=1

|wl|
)

N∑
i=1

M∑
m=1

|wm|Pm�ii

≤ C max
i
(PM�ii) trP(W +)

= op(1)(K′W +)= op(K
′W +)�

where
∑M

m=1 |wl| ≤ Cl1 for some Cl1 < ∞ was used and the bound holds uni-
formly for all N by Assumption 4. Also these results imply

∑
i =j

Pii(W )Pjj(W ) =
∑
i

Pii(W )
∑
j

Pjj(W )−
∑
i

(Pii(W ))2

= (K′W )2 + op(K
′W +)�

which shows part (iii).
To show part (iv), first we observe that

∑
i =j

Pij(W )Pij(W )= tr(P(W )P(W ))−
∑
i

(Pii(W ))2�

Now tr(P(W )P(W )) =∑M

m=1

∑M

l=1 wmwl min(l�m) by Lemma 1.2 of Hansen
(2007). Thus, by combining this result with part (ii) of this lemma, we get

∑
i =j

Pij(W )Pij(W )=
M∑

m=1

M∑
l=1

wmwl min(l�m)+ op(K
′W +)�

For part (v), note that

∑
i =j

Pij(W )= 1′
NP(W )1N − tr(P(W ))�

where 1′
NPm1N ≤ 1′

N1N = N by the fact that Pm is an idempotent matrix. Then
note that

1′
NP(W )1N − tr(P(W )) = |1′

NP(W )1N | − tr(P(W ))

≤
M∑

m=1

|wm||1′
NPm1N | − tr(P(W ))

≤ CN −K′W

such that
∑

i =j Pij(W )=Op(N −K′W )=Op(N). Q.E.D.
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Let ef (W ) = f ′(I − P(W ))(I − P(W ))f/N and Δ(W )= tr(ef (W )).

LEMMA A.6: Suppose that Assumptions 1–3, 4, and 5(i) are satisfied. Then the
following statements hold:

(i) Δ(W )= op(1).
(ii) f ′(I − P(W ))ε/

√
N =Op(Δ(W )1/2).

(iii) E[u′P(W )ε|z] = σuεK
′W .

(iv) E[u′P(W )εε′P(W )u|z] = σuεσ
′
uε(K

′W )2 + (σ2
εΣu +σuεσ

′
uε)(W

′Γ W )+
Cum[εi� εi� ui�u

′
i]
∑

i(Pii(W ))2.
(v) E[f ′εε′P(W )u|z] =∑i fiPii(W )E[ε2

i u
′
i] =Op(K

′W +).
(vi) Let g(W ) :W → R with g(W ) > 0 be a function of W such that g(W )→

∞ as N → ∞� Then
√
g(W )Δ(W )/

√
N =Op(g(W )/N +Δ(W )).

(vii) E[hh′H−1u′f/N|z] = ∑
i fif

′
iH

−1E[ε2
i ui]f ′

i /N
2 = Op(1/N) (Donald

and Newey (2001, Lemma A.3 (vii))).
(viii) E[f ′(I − P(W ))εε′P(W )u/N|z] = f ′(I − P(W ))μ(W )/N =

op((K
′W +)/N +Δ(W )).

(ix) E[f ′εε′fH−1u′P(W )u|z]/N2 =Op(1/N)+ σ2
εΣuK

′W/N .
(x) E[f ′εε′P(W )uH−1(u′f + f ′u)|z]/N2 = Op(1/N)+ (K′W/N)(

∑
i fi ×

σ ′
uεH

−1σuεfi/N +∑i fiσ
′
uεH

−1fiσ
′
uε/N).

(xi) E[u′P(W )εε′fH−1(u′f + f ′u)|z]/N2 = Op(1/N) + (K′W/N) ×
(dσuεσ

′
uε + σuε

∑
i f

′
iH

−1σuεf
′
i /N).

(xii) W ′Γ W ≤ CK′W +.

PROOF: Let γ̃m = tr(f ′(I − Pm)f )/N . By construction γ̃m ≥ 0. Write

tr
(
f ′(I − P(W ))(I − P(W ))f

)
/N =W ′AW�

where

A=
⎛
⎝ γ̃1 γ̃2 · · ·
γ̃2 γ̃2
���

� � �

⎞
⎠ �

It follows that

W ′AW =
(

M−1∑
m=1

(
m∑
s=1

ws

)2

(γ̃m − γ̃m+1)

)
+ γ̃M(A.9)

=
(

M−1∑
m=1�m/∈J̄

(
m∑
s=1

ws

)2

(γ̃m − γ̃m+1)

)
+ γ̃M + op(1)�
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where the second equality holds by Assumption 2(iii) such that

W ′AW ≤
M−1∑

m=1�m/∈J̄

(
m∑
s=1

ws

)2

γ̃m + op(1)=
M−1∑

m=1�m/∈J̄

(
m∑
s=1

ws

)2
γ̃m

m−2α
m−2α

≤ sup
m≤M

(m2αγ̃m)

M−1∑
m=1�m/∈J̄

(
m∑
s=1

ws

)2

m−2α�

where supm≤M(m
2αγ̃m) = Op(1) by Assumption 2(ii). For a sequence L ≤ M�

L → ∞, and L/N ≤ M/N → 0 satisfying Assumption 4(ii) it follows that∑M

m=1�m/∈J̄(
∑m

s=1 ws)
2m−2α = o(1) by Lemma A.4. This implies that tr(f ′(I −

P(W ))(I − P(W ))f )/N = Δ(W )= op(1).
Next, we observe that E[f ′(I − P(W ))ε/

√
N] = 0 and

E

[
f ′(I − P(W ))ε√

N

ε′(I − P(W ))f√
N

∣∣∣z]

= σ2
ε

f ′(I − P(W ))(I − P(W ))f

N
= σ2

ε ef (W )�

Therefore, f ′(I − P(W ))ε/
√
N = Op(Δ(W )1/2) by the Chebyshev inequality.

This shows part (ii).
For part (iii),

E[u′P(W )ε|z] =
N∑
i=1

Pii(W )E[uiεi]

= σuε tr(P(W ))= σuεK
′W �

To give part (iv), observe that E[uiPij(W )εjεkPkl(W )u′
l] = 0 if one of

(i� j�k� l) is different from all the rest. Also E[ε2
i uiu

′
i] is bounded by Assump-

tion 1. Therefore, we have

E[u′P(W )εε′P(W )u|z]
=
∑
i

(Pii(W ))2E[ε2
i uiu

′
i] +

∑
i =j

E[uiPii(W )εiεjPjj(W )u′
j|z]

+
∑
i =j

E[uiPij(W )εjεiPij(W )u′
j|z]

+
∑
i =j

E[uiPij(W )ε2
j Pji(W )u′

i|z]
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=E[ε2
i uiu

′
i]
∑
i

(Pii(W ))2 + σuεσ
′
uε

∑
i =j

Pii(W )Pjj(W )

+ (σεΣu + σuεσ
′
uε)
∑
i =j

Pij(W )Pij(W )

= Cum[εi� εi� ui�u
′
i]
∑
i

(Pii(W ))2 + σuεσ
′
uε(K

′W )2

+ (σ2
εΣu + σuεσ

′
uε)(W

′Γ W )

by Lemma A.5(iii) and (iv) and noting that Cum[εi� εi� ui�u
′
i] = E[ε2

i uiu
′
i] −

σ2
εΣu − 2σuεσ

′
uε.

Assumption 1 also implies

E[f ′εε′P(W )u|z] =
∑
i�j�k

fiPjk(W )E[εiεju′
k] =

∑
i

fiPii(W )E[ε2
i u

′
i]

and, furthermore, together with Assumption 3,∥∥∥∥∑
i

fiPii(W )E[ε2
i u

′
i]
∥∥∥∥≤

∑
i

|Pii(W )| · ‖fi‖ · ‖E[ε2
i u

′
i]‖ =Op(K

′W +)�

which gives part (v).
To prove part (vi), first we consider the function of a: g(W )/a+ a for a ∈ R,

which is convex and the minimum value of which is 2
√
g(W ) with the mini-

mizer a = √g(W ). If Δ(W ) = 0, then (
√
Δ(W )/N)/(g(W )/N + Δ(W )) = 0

and for Δ(W ) = 0,√
Δ(W )/N

g(W )/N +Δ(W )
=
(

g(W )√
Δ(W )N

+
√
Δ(W )N

)−1

≤ 1

2
√
g(W )

→ 0(A.10)

as g(W )→ ∞.
For part (viii), let Q(W )= I−P(W ) with (i� j)th element denoted by Qij(W )

and, for some a and b, let fi�a = fa(zi) and μi�b(W ) = E[ε2
i uib]Pii(W ). Now the

(a�b)th element of E[f ′(I − P(W ))εε′P(W )u|z] satisfies∣∣∣∣E
[∑
i�j�k�l

fi�aQij(W )εjεkPkl(W )ulb

∣∣∣z]∣∣∣∣
=
∣∣∣∣∑

i�j

fi�aQij(W )E[ε2
j ujb]Pjj(W )

∣∣∣∣
= |f ′

aQ(W )μb(W )| ≤ |f ′
aQ(W )Q(W )fa|1/2|μ′

b(W )μb(W )|1/2�
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where the inequality is the Cauchy–Schwarz inequality. Now |f ′
aQ(W )Q(W )fa|1/2 =

Op((NΔ(W ))1/2) by the definition of Δ(W ). For some constant C , |μ′
b(W )

μb(W )| ≤ C
∑

i(Pii(W ))2 by Assumption 1 and applying Lemma A.5(ii), we
have |μ′

b(W )μb(W )| = op(K
′W +). Therefore, we have

E
[
f ′(I − P(W ))εε′P(W )u/N|z]
=Op

(
(NΔ(W ))1/2

)
op(

√
K′W +)Op(1/N)

= op

(
Δ(W )1/2

√
K′W +/

√
N
)

= op((K
′W +)/N +Δ(W ))�

where the last equality follows from the fact that

Δ(W )1/2
√
K′W +/

√
N ≤ ((K′W +)/N +Δ(W ))/2

by (A.10). In addition if we define μi(W ) = E[ε2
i ui]Pii(W ) and μ(W ) =

(μ1(W )′� � � � �μn(W )′)′, then

E
[
f ′(I − P(W ))εε′P(W )u/N|z]= f ′(I − P(W ))μ(W )/N�

For part (ix), we have the decomposition

E[f ′εε′fH−1u′P(W )u|Z]/N2

=
∑
i

fif
′
iH

−1E[ε2
i uiu

′
i]Pii(W )/N2

+ 2
∑
i =j

fif
′
jH

−1E[εiui]E[εju′
j]Pij(W )/N2

+
∑
i =j

fif
′
iH

−1E[ε2
i ]E[uju

′
j]Pjj(W )/N2�

The boundedness of fif ′
iH

−1Pii(W ) implies that∑
i

fif
′
iH

−1E[ε2
i uiu

′
i]Pii(W )/N2 =Op(1/N)�

Let fa�i be the ath element of fi. Then we have∣∣∣∣∑
i�j

fa�ifa�jPij(W )/N2

∣∣∣∣ ≤∑
m=1

|wm|(f ′
aPmfa)/N

2

≤
∑
m=1

|wm|(f ′
afa)/N

2 =Op(1/N)�
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This implies that∑
i =j

fif
′
jH

−1E[εiui]E[εju′
j]Pij(W )/N2

=
∑
i�j

fif
′
jH

−1E[εiui]E[εju′
j]Pij(W )/N2

−
∑
i

fif
′
iH

−1E[εiui]E[εiu′
i]Pii(W )/N2

=Op(1/N)�

Last, we have∑
i =j

fif
′
iH

−1E[ε2
i ]E[uju

′
j]Pjj(W )/N2

=
(∑

i

fif
′
i

)
H−1σ2

εΣu

(∑
j

Pjj(W )

)/
N2

−
∑
i

fif
′
iH

−1σ2
εΣuPii(W )/N2

= σ2
εΣuK

′W/N +Op(1/N)�

Therefore, we have

E[f ′εε′fH−1u′P(W )u|Z]/N2 = σ2
εΣuK

′W/N +Op(1/N)�

For part (x), using again Lemma A.5(v) as before,

E[f ′εε′P(W )uH−1u′f |z]/N2

=
∑
i

fiPii(W )E[ε2
i u

′
iH

−1ui|z]f ′
i /N

2

+
∑
i =j

fiPjj(W )E[εju′
j]H−1E[uiεi]f ′

i /N
2

+ σ2
ε

∑
i =j

fiPij(W )E[u′
jH

−1uj|z]f ′
j /N

2

+ σ2
ε

∑
i =j

fjPji(W )E[u′
jH

−1uj]f ′
i /N

2

=Op(1/N)+
∑
i =j

fiPjj(W )E[εju′
j]H−1E[uiεi]f ′

i /N
2

=Op(1/N)+ (K′W/N)
∑
i

fiσ
′
uεH

−1σuεfi/N
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and

E[f ′εε′P(W )uH−1f ′u|z]/N2

=
∑
i

fiPii(W )E[ε2
i u

′
iH

−1fiu
′
i|z]/N2

+
∑
i =j

fiPjj(W )E[εju′
j]H−1fiE[u′

iεi]/N2

+ σ2
ε

∑
i =j

fiPij(W )E[ujH
−1fju

′
j|z]/N2

+ σ2
ε

∑
i =j

fjPji(W )E[ujH
−1fiu

′
j|z]/N2

=Op(1/N)+
∑
i =j

fiPjj(W )E[εju′
j]H−1fiE[u′

iεi]/N2

=Op(1/N)+ (K′W )/N
∑
i

fiσ
′
uεH

−1fiσ
′
uε/N�

For part (xi), with the same arguments, it holds that

E[u′P(W )εε′fH−1f ′u|z]/N2

=
∑
i

Pii(W )E[ε2
i uifiH

−1uif
′
i |z]/N2

+
∑
i =j

Pjj(W )E[εjuj]f ′
iH

−1fiE[u′
iεi]/N2

+ σ2
ε

∑
i =j

Pij(W )E[ujf
′
iH

−1fiu
′
i|z]/N2

+
∑
i =j

Pij(W )E[ujεj]f ′
jH

−1fiE[u′
iεi]/N2

=Op

(
1
N

)
+ K′W

N
σuεσ

′
uε

1
N

n∑
i=1

f ′
iH

−1fi

=Op

(
1
N

)
+ K′W

N
σuεσ

′
uε tr
(
H−1 1

N

∑
i

fif
′
i

)

=Op

(
1
N

)
+ d

K′W
N

σuεσ
′
uε
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and arguments similar to before give

E[u′P(W )εε′fH−1u′f |z]/N2

=Op(1/N)+
∑
i =j

Pjj(W )E[εjuj]f ′
iH

−1E[uiεi]f ′
i /N

2

=Op

(
1
N

)
+ K′W

N
σuε

1
N

∑
i

f ′
iH

−1σuεf
′
i �

For part (xii), note that

W ′Γ W =
M∑

m=1

(
M∑

j=m

wj

)2

≤
M∑

m=1

M∑
j=m

|wj|
∣∣∣∣∣

M∑
j=m

wj

∣∣∣∣∣
≤ C

M∑
m=1

|wm|m = CK′W +�

where the second inequality follows from the condition supk≤M |∑M

m=k wm| ≤
Cl1 <∞, which holds uniformly in M� Q.E.D.

LEMMA A.7: Assume that Assumptions 1, 2, 3, and 4 hold. Let

Ξ(W )= tr
(
f ′(I − P(W ))f/N

)
�(A.11)

Let ρW�N = tr(S(W )), where S(W ) is defined in (A.6). Then we have

(Ξ(W ))2 = op(ρW�N)�

We note that the result holds when S(W ) is defined in (A.2).

REMARK A.3: Considering the set J̄ in Assumption 2 is important because
the optimal weighting vector has a structure such that wj does not converge to 0
if f ′(Pm − Pm+1)f/N = 0. Thus, the optimal weighting vector does not satisfy
supj≤L |∑j

s=1 ws| =O(1/
√
N) in general.

PROOF OF LEMMA A.7: Let γ̃m = tr(f ′(I−Pm)f/N) and let A be the M×M
matrix whose (i� j)th element is min(γ̃i� γ̃j) = γ̃max(i�j). Let e1 be the first unit
vector. We write

Ξ(W )=W ′Ae1� Δ(W )= W ′AW �
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Let W1 = (w1� � � � �wL�0 � � � �0) and W2 = (0� � � � �0�wL+1� � � � �wM). We have the
decomposition

(Ξ(W ))2 =W ′
1Ae1e

′
1AW1 + 2W ′

1Ae1e
′
1AW2 +W ′

2Ae1e
′
1AW2�

Δ(W )=W ′
1AW1 + 2W ′

1AW2 +W ′
2AW2�

First, we consider

W ′
1AW1 =

L−1∑
j=1

(
j∑

s=1

ws

)2

(γ̃j − γ̃j+1)+
(

L∑
s=1

ws

)2

γ̃L

=
∑

j /∈J̄�j≤L

(
j∑

s=1

ws

)2

(γ̃j − γ̃j+1)+
(

L∑
s=1

ws

)2

γ̃L wpa1

≤ sup
j /∈J̄�j≤L

(
j∑

s=1

ws

)2( ∑
j /∈J̄�j≤L−1

(γ̃j − γ̃j+1)+ γ̃L

)
wpa1

= sup
j /∈J̄�j≤L

(
j∑

s=1

ws

)2

γ̃1 wpa1

= Op(1/N)�

By Lemma A.3, W ′Γ W → ∞ so that

W ′
1AW1 =Op(1/N) = o(W ′Γ W /N) = o(ρW�N)�

Since |W ′
1AW2| ≤ (W ′

1AW1)
1/2(W ′

2AW2)
1/2 by the Cauchy–Schwarz inequality,

we have Δ(W )=W ′
2AW2 + op(ρW�N). Next, we consider

W ′
1Ae1e

′
1AW1 = (W ′

1Ae1)
2

≤ (W ′
1AW1)(e

′
1Ae1)

= (W ′
1AW1)γ̃1 = Op(W

′
1AW1)= op(ρW�N)�

where the inequality is that of Cauchy–Schwarz. We examine the order of
W ′

2Ae1e
′
1AW2. We observe that

W ′
2Ae1 =

M∑
j=L+1

(
j∑

s=L+1

ws

)
(γ̃j − γ̃j+1)+

(
M∑

s=L+1

ws

)
γ̃M
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and

W ′
2AW2 =

M∑
j=L+1

(
j∑

s=L+1

ws

)2

(γ̃j − γ̃j+1)+
(

M∑
s=L+1

ws

)2

γ̃M�

These formulas imply that

W ′
2Ae1 −W ′

2AW2

=
M∑

j=L+1

(
j∑

s=L+1

ws

)(
1 −

(
j∑

s=L+1

ws

))
(γ̃j − γ̃j+1)

+
(

M∑
s=L+1

ws

)(
1 −

(
M∑

s=L+1

ws

))
γ̃M

=
M∑

j=L+1

(
j∑

s=L+1

ws

)(
1 −

(
j∑

s=L+1

ws

))
(γ̃j − γ̃j+1)

+ op(ρW�N)�

where ∣∣∣∣∣
(

M∑
s=L+1

ws

)(
1 −

(
M∑

s=L+1

ws

))∣∣∣∣∣γ̃M ≤ Cγ̃M = op(ρW�N)�

We observe that, by the Cauchy–Schwarz inequality,

(
M∑

j=L+1

(
j∑

s=L+1

ws

)(
1 −

(
j∑

s=L+1

ws

))
(γ̃j − γ̃j+1)

)2

≤
(

M∑
j=L+1

(
j∑

s=L+1

ws

)2

(γ̃j − γ̃j+1)

)

×
(

M∑
j=L+1

(
1 −

(
j∑

s=L+1

ws

))2

(γ̃j − γ̃j+1)

)

≤W ′
2AW2 ·C(γ̃L − γ̃M)+ op(ρW�N) = op(ρW�N)

since W2AW2 = O(ρW�N) and γ̃L − γ̃M = op(1). It therefore follows that

(W ′
2Ae1 −W ′

2AW2)
2 = op(ρW�N)�
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Therefore,

W ′
2Ae1e1A

′W2 = (W ′
2AW2 +W ′

2Ae1 −W ′
2AW2)

2

≤ 2(W2AW2)
2 + 2(W ′

2Ae1 −W ′
2AW2)

2 = op(ρW�N)�

Last, by the Cauchy–Schwarz inequality, we have

W ′
1Ae1e

′
1AW2 = op(ρW�N)�

To sum up, we have

(Ξ(W ))2 = W ′
1Ae1e

′
1AW1 + 2W ′

1Ae1e
′
1AW2 +W ′

2Ae1e
′
1AW2

= op(ρW�N)� Q.E.D.

LEMMA A.8: If Assumptions 1–8 hold and Ω = ΩU = {W ∈ l1|W ′1M = 1},
where M satisfies the constraints in Assumption 10 and W = (w1� � � � �wM)� it
follows that

inf
W ∈Ω

Sλ(W )= Op

(
N−2α/(2α+1)

)
�

where Sλ(W ) = λ′S(W )λ and S(W ) is defined in (A.2).

PROOF: Consider a sequence W̃ , where wM = 2� w2M = −1, and wj = 0 for
j = M�2M and M = �N1/(2α+1)�� Clearly, 1′W̃ = 1 and W̃ ∈ l1 for all N such
that W̃ ∈ Ω� We note that K′W̃ = 0. It follows that

Sλ(W̃ ) = λ′H−1

(
bσ

(W̃ ′Γ W̃ )

N

+ σ2
ε

f ′(I − P(W̃ ))(I − P(W̃ ))f

N

)
H−1λ�

where

(W̃ ′Γ W̃ )

N
= 2M

N
=O

(
N−2α/(2α+1)

)
and

tr(f ′(I − P(W̃ ))(I − P(W̃ ))f )

N
= 4γ̃M − 3γ̃2M

= Op(M
−2α)=Op

(
N−2α/(2α+1)

)
�

where γ̃m = tr(f ′(I − Pm)f/N). This argument shows that infW ∈Ω Sλ(W ) ≤
CN−2α/(2α+1).
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To show that the rate is sharp, suppose that there is an ε > 0 such that

inf
W ∈Ω

Sλ(W )=Op

(
N(−2α(1+ε))/(2α+1)

)
�

Take any W such that, for M = �N(1+δ)/(2α+1)�, where 0 < δ< ε/2,

tr
(
f ′(I − P(W̃ ))(I − P(W̃ ))f

N

)
=

M∑
j=1

(
j∑

i=1

wi

)2

(γ̃j − γ̃j+1)+ γ̃M(A.12)

= Op

(
N(−2α(1+ε))/(2α+1)

)
�

where we use formula (A.9). Let JM be the set of integers j such that 1 ≤ j ≤M
for which j2α+1(γ̃j − γ̃j+1) > 0� By the assumptions of the lemma, wpa1, �JM =
O(M) as M → ∞, where �JM is the cardinality of JM . It follows that

∑
j∈JM

(
j∑

i=1

wi

)2

(γ̃j − γ̃j+1) ≥
∑
j∈JM

(
j∑

i=1

wi

)2

M−(2α+1)

≥ O
(
N(−(2α+1)(1+δ))/(2α+1)

)∑
j∈JM

(
j∑

i=1

wi

)2

�

which together with (A.12) implies that

∑
j∈JM

(
j∑

i=1

wi

)2

=O
(
N(−2α(ε−δ)+1+δ)/(2α+1)

)= o(M)�

Now, since

O(M) =
∑
j∈JM

12(A.13)

=
∑
j∈JM

((
j∑

i=1

wi

)2

+ 2

(
j∑

i=1

wi

)(
M∑

i=j+1

wi

)
+
(

M∑
i=j+1

wi

)2)

and by the Cauchy–Schwarz inequality,∣∣∣∣∣
∑
j∈JM

(
j∑

i=1

wi

)(
M∑

i=j+1

wi

)∣∣∣∣∣ ≤
(∑

j∈JM

(
j∑

i=1

wi

)2)1/2(∑
j∈JM

(
M∑

i=j+1

wi

)2)1/2

= o(
√
M)

(∑
j∈JM

(
M∑

i=j+1

wi

))1/2

�
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it follows that (A.13) can only hold if lim infN
∑

j∈JM (
∑M

i=j+1 wi)
2/M > 0� Then,

for some η> 0 and N large enough, it follows that

W ′Γ W =
M∑
j=0

(
M∑

m=j+1

wm

)2

≥Mη =O
(
N(1+δ)/(2α+1)

)

such that W ′Γ W /N = O(N(−2α+δ)/(2α+1)), which implies that Sλ(W ) =
O(N(−2α+δ)/(2α+1))� a contradiction to the assumption that infW ∈Ω Sλ(W ) =
Op(N

(−2α(1+ε))/(2α+1))� This argument establishes that infW ∈Ω Sλ(W ) =
Op(N

(−2α)/(2α+1)) is a sharp bound. Q.E.D.

LEMMA A.9: Let

S̃λ(W ) = λ′Ĥ−1

(
âσ

(K′W )2

N
+ b̂σ

(W ′Γ W )

N
− K′W

N
B̂N

+ σ̂2
ε

f ′(I − P(W ))(I − P(W ))f

N

)
Ĥ−1λ�

If Assumptions 1–9 hold, then for Ω as defined in Lemma A.8, it follows that

sup
W ∈Ω

S̃λ(W )

Sλ(W )
− 1 = op(1)�

where Sλ(W ) = λ′S(W )λ and S(W ) is defined in (A.2).

PROOF: We define the subset Ω2 = {W ∈ l1| − ∞ < lim infN K′W ≤
lim supN K′W < ∞}. Note that

sup
W ∈Ω∩Ω2

K′W/N

Sλ(W )
→ 0 and sup

W ∈Ω∩Ω2

(K′W )2/N

Sλ(W )
→ 0(A.14)

by Lemma A.8 and the fact that {W ∈ l1|K′W = 0} ∈ Ω2. It now follows imme-
diately that

λ′(Ĥ−1âσĤ
−1 −H−1aσH

−1)λ sup
W ∈Ω∩Ω2

(K′W )2/N

Sλ(W )
= op(1)

with the same argument holding for the term B̂NK
′W/N� Define

Sλ�Ω2(W ) = λ′H−1

(
bσ

(W ′Γ W )

N

+ σ2
ε

f ′(I − P(W ))(I − P(W ))f

N

)
H−1λ
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and note that Sλ�Ω2(W ) ≥ λ′H−1bσH
−1λ(W ′Γ W )/N as well as Sλ�Ω2(WN) ≥

σ2
ε λ

′H−1f ′(I − P(W ))(I − P(W ))fH−1λ/N� Thus, we have

sup
W ∈Ω∩Ω2

(W ′Γ W )/N

Sλ(W )

≤ sup
W ∈Ω∩Ω2

(W ′Γ W )/N

Sλ�Ω2(W )
sup

W ∈Ω∩Ω2

Sλ�Ω2(W )

Sλ(W )

≤ 1
λ′H−1bσH−1λ

sup
W ∈Ω∩Ω2

Sλ�Ω2(W )

Sλ(W )
�

where supW ∈Ω∩Ω2
Sλ�Ω2(WN)/Sλ(WN)→ 1 by (A.14). This implies that

λ′(Ĥ−1b̂σĤ
−1 −H−1bσH

−1)λ sup
W ∈Ω∩Ω2

(W ′Γ W )/N

Sλ(W )
= op(1)�

Now consider

λ′(Ĥ−1σ̂2
ε −H−1σ2

ε )
f ′(I − P(W ))(I − P(W ))f

N
Ĥ−1λ

+ λ′H−1σ2
ε

f ′(I − P(W ))(I − P(W ))f

N
(Ĥ−1 −H−1)λ�

where

sup
W ∈Ω∩Ω2

|λ′(Ĥ−1σ̂2
ε −H−1σ2

ε )f
′(I − P(W ))(I − P(W ))f Ĥ−1λ/N|

Sλ(W )

≤ ‖Ĥ−1λ‖|λ′(Ĥ−1σ̂2
ε −H−1σ2

ε )| sup
W ∈Ω

‖(I − P(W ))f/
√
N‖2

‖(I − P(W ))fH−1λ/
√
N‖2

= op(1)�

where

sup
W ∈Ω

‖(I − P(W ))f/
√
N‖2

‖(I − P(W ))fH−1λ/
√
N‖2

=Op(1)

by Assumption 2. Together, these arguments show that

sup
W ∈Ω∩Ω2

S̃λ(W )

Sλ(W )
− 1 = op(1)�
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For W ∈ Ω∩ΩC
2 , where ΩC

2 = {W ∈ l1| lim infN |K′W | = ∞}, it follows that

sup
W ∈Ω∩ΩC

2

|K′W |/N
(K′W )2/N

→ 0

such that for

Sλ�ΩC
2
(WN) = λ′H−1

[
aσ

(K′W )2

N
+ bσ

(W ′Γ W )

N

+ σ2
ε

f ′(I − P(W ))(I − P(W ))f

N

]
H−1λ�

it follows that

sup
W ∈Ω∩ΩC

2

Sλ�ΩC
2
(W )

Sλ(W )
→ 1 as N → ∞�

Then similar arguments as before can be used to show that

sup
W ∈Ω∩Ω2

S̃λ(W )

Sλ(W )
− 1 = op(1)�

Since (Ω2 ∪ΩC
2 )∩Ω= Ω, this establishes the claimed result. Q.E.D.

LEMMA A.10: Let Assumptions 1–10 hold. Then it follows that

sup
W ∈Ω

Ŝλ(W )

Sλ(W )
− 1 →p 0�

where Sλ(W ) = λ′S(W )λ and S(W ) is defined in (A.2).

PROOF: Without loss of generality assume that fi is a scalar and λ′H−1 = 1
so that σ2

λ = σ2
u . First consider

∥∥(I − P(W ))f/
√
N
∥∥2 − f ′(I − PM)f/N

= ∥∥(PM − P(W ))f/
√
N
∥∥2

and note that

f ′(I − PM)f/N =Op(M
−2α)
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by Assumption 2. Together with Lemma A.8, this implies that

sup
W ∈Ω

‖(PM − P(W ))f/
√
N‖2 − ‖(I − P(W ))f/

√
N‖2

Sλ(W )

≤
sup
W ∈Ω

f ′(I − PM)f/N

inf
W ∈Ω

Sλ(W )

=Op

(
M−2αN2α/(2α+1)

)= Op

(
N−2αδ/(2α+1)

)= op(1)�

Combining these results with Lemma A.9, it is then sufficient to show that

sup
W ∈Ω

∣∣∥∥(PM − P(W ))X/
√
N
∥∥2 − ∥∥(PM − P(W ))f/

√
N
∥∥2

− σ2
u(M − 2K′W +W ′Γ W )/N

∣∣/Sλ(W )= op(1)�

We note that in this expression we replace σ̂2
u by σ2

u , which is justified by
the same arguments as in the proof of Lemma A.9 as long as σ̂2

u − σ2
u =

op(N
−δ/(2α+1)) because, under the assumptions of the lemma, it then follows

that (σ̂2
u − σ2

u)M/N = op(N
−2α/(2α+1)) = op(infW ∈Ω Sλ(W )) and the remain-

ing terms involving σ2
u can be handled in the same way as in the proof of

Lemma A.9. Now note that∥∥(PM − P(W ))X/
√
N
∥∥2 − ∥∥(PM − P(W ))f/

√
N
∥∥2

= ∥∥(PM − P(W ))u/
√
N
∥∥2 + 2u′(PM − P(W ))(PM − P(W ))f/N�

It follows that

E
[
u′(PM − P(W ))(PM − P(W ))u/N|z]
= σ2

u

(
tr(PM)− 2 tr(P(W ))+ tr(P(W )P(W ))

)
/N

= σ2
u(M − 2K′W +W ′Γ W )/N

and

E
[
u′(PM − P(W ))(PM − P(W ))f/N|z]= 0�

Moreover, we have the bound∣∣∥∥(PM − P(W ))u
∥∥2 − σ2

u(M − 2K′W +W ′Γ W )
∣∣

≤ |u′PMu− σ2
uM|

+ sup
j≤M

|u′Pju− σ2
uj|
(

2
M∑
j=1

|wj| +
M∑
j=1

M∑
l=1

|wj||wl|
)
�
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where
∑M

j=1 |wj| ≤ Cl1 uniformly in M is used. It follows for some ϑ> 1 from
Whittle (1960, Theorem 2) that for some constant C ,

E[|u′Pju− σ2
uj|2ϑ|z] ≤ CE[|ui|2ϑ]2(tr(PjP

′
j))

ϑ = CE[|ui|2ϑ]2jϑ

and thus for any η> 0 and some constant C , not necessarily the same as above,

Pr

[ sup
W ∈Ω

|‖(PM − P(W ))u‖2 − σ2
u(M − 2K′W +W ′Γ W )|/N

inf
W ∈Ω

Sλ(W )
> η

]

≤ C
E[|u′PMu− σ2

uM|2ϑ|z]
ηϑN2ϑN−4αϑ/(2α+1)

+ 3C
M∑
j=1

E[|u′Pju− σ2
uj|2ϑ|z]

ηϑN2ϑN−4αϑ/(2α+1)

≤ C
E[|ui|2ϑ]2(Mϑ +Mϑ+1)

ηϑN2ϑN−4αϑ/(2α+1)

=O
(
N(1+δ−ϑ(1−δ))/2α+1

)= o(1)�

Next, consider

∣∣u′(PM − P(W ))(I − P(W ))f/N
∣∣=
∣∣∣∣∣

M∑
i�j=1

wiwju
′(PM − Pmax(i�j)

)
f/N

∣∣∣∣∣�
where

∣∣∣∣∣
M∑

i�j=1

wiwju
′(PM − Pmax(i�j)

)
f/N

∣∣∣∣∣≤
M−1∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|�

Let Kn = N�(1−ε)/(2α+1)�. Then

sup
W ∈Ω

M−1∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )
(A.15)

= sup
W ∈Ω

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )
+ op(1)
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because

Pr

(
sup
W ∈Ω

M−1∑
i=Kn+1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )
> η

∣∣∣∣z
)

≤ Pr

( sup
W ∈Ω

M−1∑
i=Kn+1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

inf
W ∈Ω

Sλ(W )
> η

∣∣∣∣z
)

≤
CE[|ui|2ϑ]

M∑
j=Kn+1

(f ′(Pj+1 − Pj)f/N)ϑ

ηϑNϑN−4αϑ/(2α+1)
�

where the inequality follows from Markov’s inequality, Lemma A.8, the fact
that |∑i

j=1 wj| is uniformly bounded on Ω, and Theorem 1 of Whittle (1960),
which implies that

E
[|u′(Pi+1 − Pi)f/N|2ϑ|z]≤ CE[|ui|2ϑ]N−ϑ(f ′(Pi+1 − Pi)f/N)ϑ�(A.16)

Now note that

CE[|ui|2ϑ]
M∑

j=Kn+1

(f ′(Pj+1 − Pj)f/N)ϑ

ηϑNϑN−4αϑ/(2α+1)

≤ CE[|ui|2ϑ](f ′(I − PKN
)f/N)ϑM

ηϑNϑN−4αϑ/(2α+1)

=Op

(
K−2αϑ

n M/NϑN4αϑ/(2α+1)
)

=Op

(
N−(2(1−ε)αϑ)/(2α+1)−ϑ+(1+δ)/(2α+1)+4αϑ/(2α+1)

)
= op(1)�

which establishes (A.15). We thus turn to the lead term on the right hand side
of (A.15). By the Cauchy–Schwarz inequality, we have

|u′(Pi+1 − Pi)f/N| ≤ (f ′(Pi+1 − Pi)f/N)1/2(u′(Pi+1 − Pi)u/N)1/2�
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It now follows that

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|(A.17)

≤
(

Kn∑
i=1

(
i∑

j=1

wj

)4

f ′(Pi+1 − Pi)f/N

)1/2

×
(

Kn∑
i=1

(
i∑

j=1

wj

)4

u′(Pi+1 − Pi)u/N

)1/2

≤ sup
i≤M

(
i∑

j=1

wj

)2( Kn∑
i=1

(
i∑

j=1

wj

)2

f ′(Pi+1 − Pi)f/N

)1/2

×
(

Kn∑
i=1

(
i∑

j=1

wj

)2

u′(Pi+1 − Pi)u/N

)1/2

�

where supi≤M(
∑i

j=1 wj)
2 ≤ C2

l1 <∞ uniformly in M such that

(
Kn∑
i=1

(
i∑

j=1

wj

)2

u′(Pi+1 − Pi)u/N

)1/2

(A.18)

≤ sup
W

(
i∑

j=1

|wj|
)2( Kn∑

i=1

u′(Pi+1 − Pi)u/N

)1/2

≤ C
(
u′(PKn+1 − P1

)
u/N

)1/2
�

where W ∈ l1 was used to bound supW (
∑i

j=1 |wj|)2. Let ΩN ⊂ Ω be the se-
quence of subsets of sequences in Ω for which wi = 0 for all i > N . Clearly,

sup
W ∈Ω

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )
(A.19)

= sup
W ∈ΩN

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )
�
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Now fix an arbitrary ω> 0 and define the sequence of sets

Ω1�N =
{
W ∈ ΩN

∣∣∣∣
Kn∑
i=1

(
i∑

j=1

wj

)2

f ′(Pi+1 − Pi)f/N

N(−2α+ε/2)/(2α+1)
≤ω

}

and let ΩC
1�N be the complement of Ω1�N in ΩN such that ΩN = (ΩN ∩ Ω1�N) ∪

(ΩN ∩ Ωc
1�N). We note that Ω1�N depends on the realizations for the instru-

ments z.
As was demonstrated in the proof of Lemma A.9, as N tends to infinity,

Sλ(W )≥ σ2
ε λ

′H−1f ′(I − P(W ))(I − P(W ))fH−1λ/N� Also note that

f ′(I − P(W ))(I − P(W ))f/N ≥
Kn∑
i=1

(
i∑

j=1

wj

)2

f ′(Pi+1 − Pi)f/N�

Therefore, for N sufficiently large,

sup
W ∈ΩN∩ΩC

1�N

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )

≤ sup
W ∈ΩN∩ΩC

1�N

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Kn∑
i=1

(
i∑

j=1

wj

)2

f ′(Pi+1 − Pi)f/N

≤ C(u′(PKn+1 − P1)u/N)1/2

inf
W ∈ΩN∩ΩC

1�N

(
Kn∑
i=1

(
i∑

j=1

wj

)2

f ′(Pi+1 − Pi)f/N

)1/2 �

where

inf
W ∈ΩN∩ΩC

1�N

(∑
i∈JKn

(
i∑

j=1

wj

)2

f ′(Pi+1 − Pi)f/N

)1/2

N(−α+ε/4)/(2α+1)
≥ √

ω
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by the construction of Ω1�N . It then follows that

sup
W ∈ΩN∩ΩC

1�N

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )
(A.20)

≤ C(u′(PKn+1 − P1)u/N)1/2

√
ωN(−α+ε/4)/(2α+1)

�

Second,

sup
W ∈ΩN∩Ω1�N

Kn∑
i=1

(
i∑

j=1

wj

)2

f ′(Pi+1 − Pi)f/N ≤ωN(−2α+ε/2)/(2α+1)(A.21)

by the definition of Ω1�N such that

sup
W ∈ΩN∩Ω1�N

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )
(A.22)

≤
sup

W ∈ΩN∩Ω1�N

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

inf
W ∈Ω

Sλ(W )

≤ √
ωN(−α+ε/4)/(2α+1) C(u′(PKn+1 − P1)u/N)1/2

inf
W ∈Ω

Sλ(W )
�

It now follows for any random function gN(W ) that

sup
W ∈ΩN

gN(W ) = max
(

sup
W ∈ΩN∩Ω1�N

gN(W )� sup
W ∈ΩN∩ΩC

1�N

gN(W )
)

≤ sup
W ∈ΩN∩Ω1�N

gN(W )+ sup
W ∈ΩN∩ΩC

1�N

gN(W )�
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Thus, setting gN(W ) = ∑Kn

i=1(
∑i

j=1 wj)
2|u′(Pi+1 − Pi)f/N|/Sλ(W ) and us-

ing (A.19), (A.20), and (A.22), one obtains the bound

sup
W ∈Ω

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )
(A.23)

≤ C(u′(PKn+1 − P1)u/N)1/2

√
ωN(−α+ε/4)/(2α+1)

+ √
ωN(−α+ε/4)/(2α+1) C(u′(PKn+1 − P1)u/N)1/2

inf
W ∈Ω

Sλ(W )
�

It then follows that for any η1 > 0 that

Pr

[∣∣∣∣∣sup
W ∈Ω

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )

∣∣∣∣∣>η1

∣∣∣∣z
]

≤ 1√
ω

C(E[u′(PKn+1 − P1)u/N|z])1/2

N(−α+ε/2)/(2α+1)

+ (E[u′(PKn+1 − P1)u/N|z])1/2

N−2α/(2α+1)
Op

(
N(−α+ε/4)/(2α+1)

)
�

where the inequality uses Markov’s inequality, (A.23), and Lemma A.8. Next,
note that

C(E[u′(PKn+1 − P1)u/N|z])1/2

N(−α+ε/2)/(2α+1)
(A.24)

= 1√
ω

C
√
(Kn+1 − 1)/N

N(−α+ε/2)/(2α+1)

= o
(
N(−ε/2−ε/2)/(2α+1)

)= o(1)

and

E
[
u′PKn+1u/N|z]1/2

Op

(
N(−α+ε/4)/(2α+1)

)
=Op

(
K1/2

n N(−α+ε/4)/(2α+1)−1/2
)

=Op

(
N(−2α−ε/4)/(2α+1)

)= op

(
N−2α/(2α+1)

)
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such that

(E[u′(PKn+1 − P1)u/N|z])1/2

N−2α/(2α+1)
Op

(
N(−α+ε/4)/(2α+1)

)= op(1)�(A.25)

Using (A.24) and (A.25) then establishes that

Pr

[∣∣∣∣∣sup
W ∈Ω

Kn∑
i=1

(
i∑

j=1

wj

)2

|u′(Pi+1 − Pi)f/N|

Sλ(W )

∣∣∣∣∣>η1

∣∣∣∣z
]

= o(1)+ op(1)�

This completes the proof of the lemma. Q.E.D.

A.2. Proofs of Theorems and Corollaries

PROOF OF THEOREM A.1: The MA2SLS estimator has the form
√
N(β̂−β0)= Ĥ−1ĥ� Ĥ =X ′P(W )X/N�

ĥ =X ′P(W )ε/
√
N�

Also Ĥ and ĥ are decomposed as

ĥ = h+ Th
1 + Th

2 �

T h
1 = −f ′(I − P(W ))ε/

√
N� Th

2 = u′P(W )ε/
√
N�

Ĥ =H + TH
1 + TH

2 + TH
3 +ZH�

TH
1 = −f ′(I − P(W ))f/N� TH

2 = (u′f + f ′u)/N�

TH
3 = u′P(W )u/N�

ZH = (u′(I − P(W ))f + f ′(I − P(W ))u
)
/N�

We show that the conditions of Lemma A.1 are satisfied and S(W ) has the
form given in the theorem. Let ρW�N = tr(S(W )). Differently from Donald
and Newey (2001), we extend the MA2SLS to order K′W/N� It is impor-
tant to point out that since W can contain negative weights, it is possible that
(K′W )2/N is not the dominating term in S(W ). For example, K′W = 0 is al-
lowed. However, K′W/N = O(S(W )) by construction.

Now h =Op(1) and H =Op(1) by Lemma A.5(vi). As

Th = Th
1 + Th

2 = −f ′(I − P(W ))ε/
√
N + u′P(W )ε/

√
N�

Lemma A.6(ii) and (iii) implies that

Th
1 = Op

(
Δ(W )1/2

)
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and

Th
2 =Op

(
max

(
|K′W |�

√
(W ′Γ W )+

∑
i

(Pii(W ))2

)/√
N

)
�(A.26)

so

Th = Op

(
Δ(W )1/2

)
+Op

(
max

(
|K′W |�

√
(W ′Γ W )+

∑
i

(Pii(W ))2

)/√
N

)
�

where Δ(W ) = op(1) by Lemma A.6(i), K′W/
√
N = o(1) by |K′W |/√N ≤

K′W +/
√
N = o(1),

∑
i(Pii(W ))2 = op(K

′W +) by Lemma A.5(ii), and
W ′Γ W = O(K′W +) by Lemma A.6(xii). Therefore Th = op(1). Next, we ob-
serve TH

1 = O(Ξ(W )) by the definition. Lemmas A.6(i) and A.7 imply that
TH

1 = op(1); TH
2 = Op(1/

√
N) by the central limit theorem (CLT). A similar

argument for Th
2 implies

TH
3 =Op

(
max

(
|K′W |�

√
(W ′Γ W )+

∑
i

(Pii(W ))2

)/
N

)
�(A.27)

Now we analyze

‖Th
1 ‖ · ‖TH

1 ‖ =Op

(
Δ(W )1/2Ξ(W )

)= op(ρW�N)

by Lemma A.7. It holds that

‖Th
1 ‖ · ‖TH

2 ‖ =Op

(
Δ(W )1/2/

√
N
)= op(ρW�N)

because, by Lemma A.6(vi), one can take g(W )=N(tr(S(W ))−Δ(W )). From
Lemma A.3, it follows that W ′Γ W → ∞ as N → ∞. This implies that g(W )→
∞� Then, by Lemma A.6(vi), it follows that

Δ(W )1/2/
√
N = op

(
g(W )

N
+Δ(W )

)
= op

(
tr(S(W ))

)= op(ρW�N)�

Next,

‖Th
1 ‖ · ‖TH

3 ‖

=Op

(
Δ(W )1/2 max

(
|K′W |�

√
(W ′Γ W )+

∑
i

(Pii(W ))2

)/
N

)
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= op

(
max

(
|K′W |�

√
(W ′Γ W )+

∑
i

(Pii(W ))2

)/
N

)

= op(ρW�N)

by Lemma A.6(i), (A.27), and the fact (as noted before) that TH
3 =

O(tr(S(W ))). Next, (A.26) and the definition of TH
1 imply that

‖Th
2 ‖ · ‖TH

1 ‖

=Op

(
Ξ(W )max

(
|K′W |�

√
(W ′Γ W )+

∑
i

(Pii(W ))2

)/√
N

)

= op

(
Δ(W )1/2 max

(
|K′W |�

√
(W ′Γ W )+

∑
i

(Pii(W ))2

)/√
N

)

by Lemma A.7. By similar arguments as before, it follows from Lemma A.6(vi)
that

Δ(W )1/2|K′W |/√N ≤ (K′W )2/N +Δ(W )=O(ρW�N)

and Δ(W )1/2 = op(1) such that op(Δ(W )1/2K′W/
√
N)= op(ρW�N) as required.

Lemma A.6(vi) gives

Δ(W )1/2

√
(W ′Γ W )+

∑
i

(Pii(W ))2
/√

N

=Op

((W ′Γ W )+
∑
i

(Pii(W ))2

N
+Δ(W )

)
= Op(ρW�N)�

Thus, we have ‖Th
2 ‖ · ‖TH

1 ‖ = op(ρW�N). From (A.26) it follows that

‖Th
2 ‖ · ‖TH

2 ‖ = Op

(
max

(
|K′W |�

√
(W ′Γ W )+

∑
i

(Pii(W ))2

)/
N

)
�

where K′W/N = O(tr(S(W ))) and
√
(W ′Γ W )+∑i(Pii(W ))2/N =

op(tr(S(W ))). By (A.26) and (A.27), it follows that

‖Th
2 ‖ · ‖TH

3 ‖

=Op

(
max

(
|K′W |2�

(
(W ′Γ W )+

∑
i

(Pii(W ))2

))/
N3/2

)

= op(ρW�N)
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because (|K′W |/N)3/2 = o(ρW�N) and ((W ′Γ W ) + ∑
i(Pii(W ))2)/N =

Op(ρW�N). Similarly, ‖Th
2 ‖2‖TH

1 ‖ = op(ρW�N)� ‖Th
2 ‖2‖TH

2 ‖ = op(ρW�N), and
‖Th

2 ‖2‖TH
3 ‖ = op(ρW�N). For ‖TH‖2, we have

‖TH
1 ‖2 =Op(Ξ(W )2)= op(ρW�N) by Lemma A.7,

‖TH
2 ‖2 =Op(1/N)= op(ρW�N)�

‖TH
3 ‖2 =Op

((
max

(
|K′W |�

√
(W ′Γ W )+

∑
i

(Pii(W ))2

)/
N

)2)

= op(ρW�N)�

so that by the Cauchy–Schwarz inequality, ‖TH‖2 = op(ρW�N).
As ‖Zh‖ = 0 in our case, ‖Zh‖ = op(ρW�N). The last part, which we need to

show being equal to op(ρW�N), is ‖ZH‖. Now ZH = u′(I −P(W ))f/N + f ′(I −
P(W ))u/N and both terms are Op(Δ(W )1/2/

√
N) = op(g(W )/N + Δ(W )) =

op(ρW�N) for g(W )=N(tr(S(W ))−Δ(W )) by Lemma A.6(vi). Therefore, we
have ‖ZH‖ = op(ρW�N).

Note that we have shown Ĥ = H + op(1) and ĥ = h + op(1). Lemma A.1
can now be applied, where the discussion above indicates

ZA(W ) = −hTh′
1 H−1

(
3∑

j=1

TH
j

)′

−
(

3∑
j=1

TH
j

)
H−1Th

1 h
′

− Th
1 h

′H−1

(
3∑

j=1

TH
j

)′

−
(

3∑
j=1

TH
j

)
H−1hTh′

1

− hTh′
2 H−1TH′

3 − TH
3 H−1Th

2 h
′

− Th
2 h

′H−1TH′
3 − TH

3 H−1hTh′
2

− (T h
1 + Th

2 )(T
h
1 + Th

2 )
′H−1

(
3∑

j=1

TH
j

)′

−
(

3∑
j=1

TH
j

)
H−1(T h

1 + Th
2 )(T

h
1 + Th

2 )
′

= op(ρW�N)
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and

Â(W ) = (h+ Th
1 + Th

2 )(h+ Th
1 + Th

2 )
′

− hh′H−1

(
3∑

j=1

TH
j

)′

−
(

3∑
j=1

TH
j

)
H−1hh′

− hTh′
2 H−1(TH

1 + TH
2 )′ − (TH

1 + TH
2 )H−1Th

2 h
′

− Th
2 h

′H−1(TH
1 + TH

2 )′ − (TH
1 + TH

2 )H−1hTh′
2 �

Now we calculate the expectation of each term in Â(W ). First of all,
E[hh′|z] = E[f ′εε′f |z] = σ2

εH. Second, E[hTh′
1 |z] = E[−f ′εε′(I − P(W ))f/

N|z] = −σ2
ε f

′(I − P(W ))f/N . Similarly, E[Th
1 h

′|z] = −σ2
ε f

′(I − P(W ))f/N .
Third,

E[hTh′
2 |z] = E[f ′εε′P(W )u/N|z]

= E[ε2
1u1]

∑
i

f ′
i Pii(W )/N =Op(K

′W +/N)

by Lemma A.6(v). This implies that E[Th
2 h

′|Z] =Op(K
′W/N) too. Fourth,

E[Th
1 T

h′
1 |z]

=E

[
f ′(I − P(W ))εε′(I − P(W ))f

N

∣∣∣z]

= σ2
ε

f ′(I − P(W ))(I − P(W ))f

N
�

Fifth,

E[Th
1 T

h′
2 |z]

= −E
[
f ′(I − P(W ))εε′P(W )u/N|z]

= −f ′(I − P(W ))μ(W )/N

by Lemma A.6(viii). Again, we have E[Th
2 T

h′
1 |z] = −μ(W )′(I − P(W ))f/N .

Sixth,

E[Th
2 T

h′
2 |z] = E

[
u′P(W )εε′P(W )u

N

∣∣∣z]

= σuεσ
′
uε

(K′W )2

N
+ (σ2

εΣu + σuεσ
′
uε)

(W ′Γ W )

N

+ Cum[εi� εi� ui�u
′
i]
∑
i

(Pii(W ))2
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by Lemma A.6(iv). Seventh,

E[hh′H−1TH
1 |z] = −E

[
f ′εε′fH−1f ′(I − P(W ))f

N2

∣∣∣z]

= −σ2
ε

f ′(I − P(W ))f

N
�

Also, we have E[TH
1 H−1hh′|Z] = −σ2

ε f
′(I − P(W ))f/N . Lemma A.6(vii) im-

plies

E[hh′H−1TH
2 |z] = E

[
hh′H−1(u′f + f ′u)

N

∣∣∣z]

= Op

(
1
N

)

and E[TH
2 H−1hh′|z] =OP(1/N). Also,

E[hh′H−1TH
3 |z] = E

[
f ′εε′fH−1u′P(W )u

N2

∣∣∣z]

= σ2
εΣu

K′W
N

+Op

(
1
N

)

by Lemma A.6(ix). Next,

E[hTh′
2 H−1TH

1 |z]

= −E

[
f ′εε′P(W )uH−1f ′(I − P(W ))f

N2

∣∣∣z]

= 1
N

∑
i

fiPii(W )E[ε2
i u

′
i]H−1 f

′(I − P(W ))f

N

=Op((K
′W +/N)Ξ(W ))

= op(ρW�N)

by Lemma A.6(v) and

E[hTh′
2 H−1TH

2 |z]

=E

[
f ′εε′P(W )uH−1(u′f + f ′u)

N2

∣∣∣z]

=Op

(
1
N

)
+ K′W

N

(
1
N

∑
i

fiσ
′
uεH

−1σuεf
′
i + 1

N

∑
i

fiσ
′
uεH

−1fiσ
′
uε

)
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by Lemma A.6(x). Similarly, it follows that

E[Th
2 h

′H−1TH
2 |z]

=E

[
u′P(W )εε′fH−1(u′f + f ′u)

N2

∣∣∣z]

=Op

(
1
N

)
+ K′W

N

(
dσuεσ

′
uε + σuε

1
N

∑
i

f ′
iH

−1σuεf
′
i

)
�

Therefore, we have

E[Â(K)|z]
= σ2

εH − 2σ2
ε

f ′(I − P(W ))f

N
+ σ2

ε

f ′(I − P(W ))(I − P(W ))f

N

+E[ε2
1u1]

∑
i

f ′
i Pii(W )/N +

∑
i

fiPii(W )E[ε2
1u

′
1]/N

+ f ′(I − P(W ))μ(W )

N
+ μ(W )′(I − P(W ))f

N
+ σuεσ

′
uε

(K′W )2

N

+ (σ2
εΣu + σuεσ

′
uε)

(W ′Γ W )

N
+ op

(
K′W
N

)

+ 2σ2
ε

f ′(I − P(W ))f

N
+Op

(
1
N

)
− 2σ2

εΣu

K′W
N

− K′W
N

2

(
dσuεσ

′
uε + 1

N

∑
i

fiσ
′
uεH

−1σuεf
′
i

+ 1
N

∑
i

(fiσ
′
uεH

−1fiσ
′
uε + σuεf

′
iH

−1σuεf
′
i )

)

+ op(ρW�N)

= σ2
εH + σ2

ε

f ′(I − P(W ))(I − P(W ))f

N

+E[ε2
1u1]

∑
i

f ′
i Pii(W )/N +

∑
i

fiPii(W )E[ε2
1u

′
1]/N

+ f ′(I − P(W ))μ(W )

N
+ μ(W )′(I − P(W ))f

N

+ σuεσ
′
uε

(K′W )2

N
+ (σ2

εΣu + σuεσ
′
uε)

(W ′Γ W )

N



CONSTRUCTING OPTIMAL INSTRUMENTS 41

− 2
K′W
N

(
σ2

εΣu + dσuεσ
′
uε + 1

N

∑
i

fiσ
′
uεH

−1σuεf
′
i

+ 1
N

∑
i

(fiσ
′
uεH

−1fiσ
′
uε + σuεf

′
iH

−1σuεf
′
i )

)

+ op(ρW�N)�

where the last equality holds because 1/N = op(ρW�N) and op((Δ(W ) ×
K′W/N)1/2) = op(ρW�N) by the fact that (Δ(W )K′W/N)1/2 ≤ K′W/N +
Δ(W ). Q.E.D.

We omit the proofs of Corollaries A.1 and A.3 because they are trivial given
Theorem A.1.

PROOF OF COROLLARY A.2: We note that in this case K′W = K′W +.
Thus,

∑
i(Pii(W ))2 = op(K

′W ) by Lemma A.5(ii) and f ′Q(W )μ(W )/N =
op(K

′W/N +Δ(W )) by Lemma A.6 (viii). Therefore, we have equation (A.3).
To derive equation (A.4), we note that

W ′Γ W =
M∑
i=1

M∑
j=1

wiwj min(i� j)≤
M∑
i=1

M∑
j=1

wiwjj =
M∑
i=1

wi

M∑
j=1

wjj

= W ′1MK
′W =K′W�

which means W ′Γ W = O(K′W ). Moreover,
∑N

i=1 fiPii(W ) = Op(K
′W ) by

Lemma A.6(v). Therefore, we have equation (A.4). Q.E.D.

PROOF OF THEOREM A.3: The result is established by constructing a se-
quence in ΩP that dominates the optimal choice in Ωsq. By Corollary A.2, the
formula of Sλ(W ) for MA2SLS when W ∈ ΩP is

A
(K′W )2

N
+ σ2

ε

∞∑
j=1

∞∑
i=1

wjwiγmax(i�j)

with A = ‖λ′H−1σuε‖2 (the other two terms in (A.2) can be ignored). Let
Msq be the optimal number of instruments picked by the Donald and Newey
(2001) algorithm. For a ∈ (0�1), let M1 = (1−a)Msq and M2 = (1+a)Msq, and
choose W ∗ such that it has only two nonzero elements wM1 = wM2 = 0�5. Then
K′W ∗ =Msq and

∞∑
j=1

∞∑
i=1

wjwiγmax(i�j) = 0�25γM1 + 0�75γM2 �
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Then

min
W ∈ΩP

Sλ(W )

min
W ∈Ωsq

Sλ(W )

≤ Sλ(W
∗)

Ssq(Msq)

= A(K′W ∗)2/N + σ2
ε 0�25γM1 + σ2

ε 0�75γM2

A(Msq)2/N + σ2
ε γMsq

= A(Msq)
2/(Nσ2

ε γMsq)+ 0�25(γM1/γMsq)+ 0�75(γM2/γMsq)

A(Msq)2/(Nσ2
ε γMsq)+ 1

�

where γ = lim supN→∞ A(Msq)
2/(NγMsq) <∞ because Msq sets the rates of the

bias and the variance to be equal. The above expression is bounded by 1 if

0�25
(
γM1/γMsq

)+ 0�75
(
γM2/γMsq

)
< 1�

By assumption, for N large enough, it follows that, with probability close to 1,

0�25
(
γM1/γMsq

)+ 0�75
(
γM2/γMsq

)
= 0�25(1 − a)−2α + 0�75(1 + a)−2α + o(|a|2α)�

Consider the function

h(a)= 0�25(1 − a)−2α + 0�75(1 + a)−2α�

where h(0) = 1� ∂h(a)/∂a = 0�5α(1 − a)−2α−1 − 1�5α(1 + a)−2α−1 such that
∂h(0)/∂a= −1α� This implies that for some a� possibly close to zero, h(a) < 1
and thus 0�25(γM1/γMsq)+ 0�75(γM2/γMsq) < 1.

When W ∈ ΩB, the formula of Sλ(W ) for MA2SLS is

Sλ(W )= A
(W ′Γ W )

N
+ σ2

ε

∞∑
j=1

∞∑
i=1

wjwiγmax(i�j)�

where A= λ′H−1(σ2
εΣu +σuεσ

′
uε)H

−1λ while the MSE for the Nagar estimator
with M instruments is AM/(N −M)+σ2

ε γM� Let MN be the choice of M that
minimizes Sλ(W ) when W = WN as defined in Remark A.1. For a ∈ (0�1),
let M1 = (1 − a)MN and M2 = (1 + a)MN . Define w∗ = N/(N − MN) and
choose W ∗ such that W ∗ has only three nonzero elements wM1 = wM2 = 1/2w∗

and wN = −MN/(N − MN). For brevity write w1 and w2 instead of wM1

and wM2 . Then w1 + w2 + wN = 1 and K′W ∗ = 0 such that W ∗ ∈ ΩB� Note
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that W ′
NΓ WN = ((w∗)2 + 2w∗wN)MN +w2

NN =MNN/(N −MN) and

W ∗′Γ W ∗ = w2
1M1 +w2

2M2 + 2w1w2M1

+w2
NN + 2wN(w1M1 +w2M2)

= w2
1M1 +w2

2M2 + 2w1w2M1 +w2
NN + 2wNw

∗MN

= ((w∗)2 + 2wNw
∗)MN +w2

NN − (1/2)(w∗)2aMN

such that W ∗′Γ W ∗ <W ′
NΓ WN� In the same way it follows that, for W ∗,

∞∑
j=1

∞∑
i=1

wjwiγmax(i�j) = w2
1γM1 + (w2

2 + 2w1w2)γM2

+ (w2
N + 2wN(w1 +w2))γN

= (w∗)2(γM1/4 + 3γM2/4)+ (w2
N + 2wNw

∗)γN�

Since the term (w2
N + 2wNw

∗)γN is of smaller order than Sλ(WN), the result
now follows if (γM1/4 + 3γM2/4)/γMN

≤ 1 wpa1. But this follows from the same
arguments as for the proof of the first statement of the theorem.

For MALIML, the formula of Sλ(W ) is

Sλ(W )= A
(W ′Γ W )

N
+ σ2

ε

∞∑
j=1

∞∑
i=1

wjwiγmax(i�j)�

where A = λ′H−1(σ2
εΣu − σuεσ

′
uε)H

−1λ. Let Msq be the optimal number of
instruments chosen by the Donald–Newey method. The MSE of the estimator
that uses Msq instruments is AMsq/N + σ2

ε γMsq . For a ∈ (0�1), let M1 = (1 −
a)Msq and M2 = (1 + a)Msq, and choose W ∗ such that it has only two nonzero
elements wM1 = wM2 = 0�5. The MSE of the estimator with W ∗ is

A

N
(0�75M1 + 0�25M2)+ σ2

ε (0�25γM1 + 0�75γM2)�

We note that 0�75M1 + 0�25M2 = Msq − 0�5aMsq < Msq. Moreover, we have
0�25γM1 + 0�75γM2 < γMsq by the same arguments as for the proof of the first
statement of the theorem. Therefore, the desired result is shown. Q.E.D.

PROOF OF THEOREM A.4: We follow the proof of Donald and Newey (2001,
Lemma A9). We first consider the case for S(W ) defined in (A.2) and Ŝλ(W )
defined in (2.5). Note that when Ω =ΩU and Ω =ΩB, the optimal weight, W ∗,
is well defined and has a closed form (see the discussion in Section A.5). When
Ω= ΩC or ΩP , we note that Sλ(W ) is continuous in W and Ω is a compact set,
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which implies that the optimal weight, W ∗, is well defined in this case too. Thus
infW ∈Ω Sλ(W )= Sλ(W

∗) for some W ∗ ∈Ω holds. It then follows that

0 ≤ 1 −
inf
W ∈Ω

Sλ(W )

Sλ(Ŵ )
≤ 4 sup

W ∈Ω

∣∣∣∣ Ŝλ(W )

Sλ(W )
− 1
∣∣∣∣�

The result now follows from Lemma A.10.
Next, we consider the case for S(W ) defined in (A.6) and Ŝλ(W ) defined

in (2.7) (the case for MALIML). We follow the steps taken in the above ar-
gument. First, we show that infW ∈Ω Sλ(W ) = Op(N

−2α/(2α+1)). The weighting
vector, W̃ , where wM = 1 and wj = 0 for j = M for M = O(N1/(2α+1)), gives
Sλ(W̃ ) = Op(N

−2α/(2α+1)). The proof that this rate is sharp is exactly equiva-
lent to the corresponding part of the proof of Lemma A.8. We then show that
supW ∈Ω(S̃λ(W )/Sλ(W ))− 1 = op(1), where

S̃λ(W ) = λ′Ĥ−1

(
(σ̂2

ε σ̂
2
λ − σ̂2

λε)
W ′Γ W

N

+ σ̂2
ε

f ′(I − P(W ))(I − P(W ))f

N

)
Ĥ−1λ�

This can be shown by following the same argument as that for the Ω2 part of the
proof of Lemma A.9. Last, we show that supW ∈Ω(Ŝλ(W )/Sλ(W ))− 1 = op(1).
The proof of this statement is the same as that of Lemma A.10. We then obtain
the desired result. Q.E.D.

PROOF OF THEOREM A.5: Since it is easy to see that X ′X/N →p (E(f
2
i )+

σ2
u), we need to show

1
N
X ′P(W )X →p E(f

2
i )(A.28)

and

1
N
X ′P(W )P(W )X →p E(f

2
i )(A.29)

to obtain the desired result.
We have the decomposition

1
N
X ′P(W )X = 1

N
f ′f − 1

N
f ′(I − P(W ))f

+ 1
N
f ′P(W )u+ 1

N
u′P(W )f + 1

N
u′P(W )u�
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By Lemmas A.6(i) and A.7, it holds that

1
N
f ′(I − P(W ))f = op(1)�

Since

1
N
f ′P(W )u= 1

N
f ′u− 1

N
f ′(I − P(W ))u�

Lemmas A.5(vi) and A.6(ii) (by replacing ε by u) imply that

1
N
f ′P(W )u= op(1)�

Similarly, it follows that u′P(W )f/N = op(1). Last, Lemma A.6(iii) and As-
sumption 4 imply that

1
N
u′P(W )u= op(1)�

Thus, we have shown (A.28).
We now consider (A.29). We have the decomposition

1
N
X ′P(W )P(W )X

= 1
N
f ′f − 1

N
f ′(I − P(W )P(W ))f

+ 1
N
f ′P(W )P(W )u+ 1

N
u′P(W )P(W )f + 1

N
u′P(W )P(W )u�

We have that

1
N
f ′(I − P(W )P(W ))f =

M∑
s1=1

M∑
s2=1

ws1ws2f
′(I − Pmin(s1�s2)

)
f

=
M∑
j=1

(
2wj

(
M∑

s=j+1

ws

)
+w2

j

)
γ̃j�

where γ̃j = f ′(I − Pj)f/N . It follows that

M∑
j=1

(
2wj

(
M∑

s=j+1

ws

)
+w2

j

)
γ̃j =

M∑
j=1

wj

(
2 − 2

j∑
s=1

ws +wj

)
γ̃j�
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Take L such that L→ ∞. We have that∣∣∣∣∣
M∑
j=1

wj

(
2 − 2

j∑
s=1

ws +wj

)
γ̃j

∣∣∣∣∣
≤
∣∣∣∣

L∑
j=1

wj

(
2 − 2

j∑
s=1

ws +wj

)
γ̃j

∣∣∣∣+
∣∣∣∣∣

M∑
j=L+1

wj

(
2 − 2

j∑
s=1

ws +wj

)∣∣∣∣∣γ̃L

=
∣∣∣∣∣

L∑
j=1

wj

(
2 − 2

j∑
s=1

ws +wj

)
γ̃j

∣∣∣∣∣+ op(1)

since γ̃L = op(1) and W ∈ l1 implies that |∑M

j=L+1 wj(2 − 2
∑j

s=1 ws + wj)| is
bounded. Then, since

∑L

j=1 |wj| = o(1) by assumption, we have

∣∣∣∣∣
L∑
j=1

wj

(
2 − 2

j∑
s=1

ws +wj

)
γ̃j

∣∣∣∣∣= op(1)�

It follows that

1
N
f ′(I − P(W )P(W ))f = op(1)�

We have that

E

(
1
N
f ′P(W )P(W )u

)
= 0

and

E

((
1
N
f ′P(W )P(W )u

)2)

=E

(
1
N2

f ′P(W )P(W )uu′P(W )P(W )f

)

= 1
N2

σ2
uf

′P(W )P(W )P(W )P(W )f

= 1
N2

σ2
u

M∑
s1�s2�s3�s4=1

ws1ws2ws3ws4f
′Pmin(s1�s2�s3�s4)f

≤ 1
N2

σ2
u

M∑
s1�s2�s3�s4=1

∣∣ws1ws2ws3ws4

∣∣f ′f = op(1)
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because f ′f/N = Op(1) by Lemma A.5(vi) and W ∈ l1 by Assumption 4. It
therefore follows that

1
N
f ′P(W )P(W )u= op(1)�

Similarly, we have that u′P(W )P(W )f/N = op(1). Last, we observe that

E

(
1
N
u′P(W )P(W )u

)
= σ2

u

W ′Γ W

N

by Lemma 1.2 of Hansen (2007). Assumption 4 and the Markov inequality
imply that

1
N
u′P(W )P(W )u= op(1)�

Therefore, (A.29) is shown and we have obtained the desired result. Q.E.D.

A.3. Lemmas for MALIML

As the first step, we show the consistency of MALIML and derive its asymp-
totic distribution. Define the LIML estimator based on the first m instruments
as

β̂L�m = arg min
β

(y −Xβ)′Pm(y −Xβ)/((y −Xβ)′(y −Xβ))�

We first establish uniform consistency supm≤M |β̂L�m −β0| →p 0 for M/N → 0.
This result is then used to establish the uniform convergence of Λ̂(W ) over M
and W satisfying Assumption 5(ii).

LEMMA A.11: If Assumptions 1–4, 5(ii), 6, and 7 are satisfied, then the follow-
ing equalities hold:

(i) supm≤M ε′Pmε/N = op(1)�
(ii) supm≤M f ′(I − Pm)ε/N =Op(1/

√
N)�

(iii) supm≤M u′Pmε/N = op(1).

PROOF: For (i), we observe that

sup
k≤M

ε′Pkε/N ≤ ε′PMε/N

and

E[ε′PMε|z] = σ2
ε tr(PM)= σ2

εM
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such that

Pr
(

sup
m≤M

|ε′Pmε/N| >η
∣∣z) ≤ Pr(|ε′PMε/N| >η|z)

≤ 1
ηN

E[ε′PMε|z] → 0�

For part (ii), note that E[f ′(I − Pm)ε|z] = 0 such that

M∑
m=1

trE[f ′(I − Pm)εε(I − Pm)f/N|z]

≤ sup
m≤M

(
m2α tr(f ′(I − Pm)f )/N

)
σ2

ε

M∑
m=1

m−2α

=Op(1)�

which shows that supm≤M f ′(I − Pm)ε/N = Op(1/
√
N).

For part (iii), note that E[u′Pmε/N|z] = E[v′Pmε/N|z] + σuε/σ
2
εE[ε′Pmε/

N|z] = 0 + σuεm/N and

E[‖u′Pmε/N − σuεm/N‖2|z](A.30)

≤M max
m≤M

E[tr(u′Pmεε
′Pmu− σuεσ

′
uεm

2)|z]
N2

=M max
m≤M

(
trΣu trPm

N2
+

N∑
i1�����i4=1

tr(E[ui1εi3]E[u′
i4
εi2])Pm�i1i2Pm�i3i4

N2

)

+M max
m≤M

(
N∑
i=1

tr(Cum(ui�ui� εi� εi))P
2
m�ii

N2

)

≤ (trΣu + tr(Cum(ui�ui� εi� εi))
)(M

N

)2

+M max
m≤M

σ ′
uεσuε

N2

N∑
i1�i2=1

Pm�i1i2Pm�i2i1

= o(1)+M max
m≤M

(
σ ′

uεσuεm

N2

)
= o(1)�
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where we used Pm�i2i1 = Pm�i1i2 and
∑N

i1�i2=1 Pm�i1i2Pm�i2i1 =∑N

i=1 Pm�ii =m. Then

‖u′Pmε/N‖ ≤ ‖u′Pmε/N − σuεm/N‖ + ‖σuε‖m/N

≤ ‖u′Pmε/N − σuεm/N‖ + ‖σuε‖M/N

= ‖u′Pmε/N − σuεm/N‖ + o(1)�

where the o(1) term is uniform in m ≤ M . The result now follows from
(A.30). Q.E.D.

LEMMA A.12: If Assumptions 1–4, 5(ii), 6, and 7 are satisfied, then
supm≤M |β̂L�m −β0| →p 0.

PROOF: Define X̄ ≡ (y�X) and D0 ≡ (β0� I). X̄ can be written as X̄ =
XD0 + εe′

1, where e1 is the first unit (column) vector. Let Âm = X̄ ′PmX̄/N

and Am =D′
0H̄mD0. Let B̂ = X̄ ′X̄/N and B = E[X̄iX̄

′
i] with X̄i = (yi�Xi).

Let τ = (1�−β′)′ and define the augmented parameter space Θ = {1} × Θ

such that τ ∈ Θ. Then (1�−β̂′
L�m)

′ = arg minτ τ
′Âmτ/(τ

′B̂τ). Essentially the
same argument as that in the beginning of the proof of Lemma A.5 in Donald
and Newey (2001) shows that (1�−β′

0)
′ = arg minτ τ

′Amτ/(τ
′Bτ). Then, letting

Ln�m(τ)= τ′Âmτ/(τ
′B̂τ) and Lm(τ)= τ′Amτ/(τ

′Bτ), and noting that

sup
τ∈Θ�m≤M

|Ln�m(τ)−Lm(τ)| ≤ sup
τ∈Θ�m≤M

∣∣∣∣τ′(Âm −Am)τ

τ′Bτ

∣∣∣∣ sup
τ∈Θ

∣∣∣∣τ′Bτ

τ′B̂τ

∣∣∣∣(A.31)

+ sup
τ∈Θ�m≤M

∣∣∣∣τ′Amτ

τ′Bτ

∣∣∣∣ sup
τ∈Θ

∣∣∣∣τ′Bτ

τ′B̂τ
− 1
∣∣∣∣�

we note that τ′Âmτ/(τ
′B̂τ)≤ 1 uniformly in n, m, and τ. It follows that

sup
τ∈Θ�m≤M

∣∣∣∣τ′Amτ

τ′Bτ

∣∣∣∣≤ 1 a�s�

By a law of large numbers (LLN), B̂ − B = op(1), which implies that
supτ∈Θ | τ′Bτ

τ′B̂τ − 1| = op(1). From Donald and Newey (2001, p. 1185) it follows
that B is positive definite such that infτ τ′Bτ > ε > 0 for some ε and

sup
τ∈Θ�m≤M

∣∣∣∣τ′(Âm −Am)τ

τ′Bτ

∣∣∣∣≤
sup

τ∈Θ�m≤M

|τ′(Âm −Am)τ|

ε
�(A.32)
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We now show that supτ∈Θ�m≤M |τ′(Âm − Am)τ| = op(1). For this purpose, we
observe that

sup
m≤M

σ2
εm

N
≤ σ2

εM

N
= o(1)�(A.33)

sup
τ∈Θ�m≤M

τ′D′
0E[u′Pmu|z]D0τ

N
(A.34)

= sup
τ∈Θ�m≤M

tr(PmE[uD0ττ
′D′

0u
′])

N

= sup
τ∈Θ�m≤M

tr(Pm)τ
′D′

0ΣuD0τ

N

≤ M

N
sup
τ∈Θ

τ′D′
0ΣuD0τ = o(1)�

where supτ∈Θ τ
′D′

0ΣuD0τ is bounded by Assumption 7, and

sup
τ∈Θ�m≤M

∣∣∣∣τ′D′
0E[u′Pmε|z]e′

1τ

N

∣∣∣∣(A.35)

= sup
τ∈Θ�m≤M

∣∣∣∣ tr(PmE[ετ′D′
0u

′])
N

∣∣∣∣
= sup

τ∈Θ�m≤M

∣∣∣∣ tr(Pm)τ
′D′

0σuε

N

∣∣∣∣
≤ M

N
sup
τ∈Θ

|τ′D′
0σuε| = o(1)�

where supτ∈Θ τ
′D′

0σuε is bounded by Assumption 7. The term Âm has the de-
composition Âm −Am = Âm�1 + Âm�2 + · · ·+ Âm�9 +o(1), where the o(1) term
is uniform in m ≤M and consists of (A.33), (A.34), and (A.35), and

Âm�1 =D′
0

(
f ′Pmf

N
−Am

)
D0�

Am�2 =D′
0

u′Pmf

N
D0�

Âm�3 =D′
0

f ′Pmu

N
D0�

Âm�4 =D′
0

u′Pmu−E(u′Pmu|z)
N

D0�
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Âm�5 = e1
ε′Pmu−mσ ′

uε

N
D0�

Âm�6 = D′
0

u′Pmε−mσuε

N
e′

1�

Âm�7 = e1
ε′Pmf

N
D0�

Âm�8 = D′
0

f ′Pmε

N
e′

1�

Âm�9 = ε′Pmε− σ2
εm

N
e1e

′
1�

For Âm�1, define Γ̂zz�m = Z′
mZm/N , Γ̂fz�m = f ′Zm/N , Γzz�k = E[Zk�iZ

′
k�i], and

Γfz�k = E[fiZ′
k�i], and choose a sequence M1, where M1 → ∞ such that

M3
1/N → 0. It then follows for m ≤M1 that

E[‖Γ̂fz�m − Γfz�m‖2]

=N−2
N∑

i�j=1

trE[(fiZ′
m�i − Γfz�m)(fjZ

′
m�j − Γfz�m)

′]

=N−2
N∑
i=1

trE[(fiZ′
m�i − Γfz�m)(fiZ

′
m�i − Γfz�m)

′]

=O

(
m

N

)
= o(1)

and

E[‖Γ̂zz�m − Γzz�m‖2]

=N−2
N∑
i=1

trE[(Zm�iZ
′
m�i − Γzz�m)(Zm�iZ

′
m�i − Γzz�m)

′] =O

(
m2

N

)
�

Using the Markov inequality, one obtains

Pr
(

sup
m≤M1

‖Γ̂fz�m − Γfz�m‖ ≥ ε
)

≤ M1

ε2
sup
m≤M1

E[‖Γ̂fz�m − Γfz�m‖2]

= O(M2
1/N) = o(1)

as well as

Pr
(

sup
m≤M1

‖Γ̂zz�m − Γzz�m‖ ≥ ε
)

≤ M1

ε2
sup
m≤M1

E[‖Γ̂zz�m − Γzz�m‖2](A.36)

= O(M3
1/N) = o(1)�
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Let ‖C‖2
2 = sup�′C ′C�/�′� for any matrix C , and note that ‖C1C2‖ ≤ ‖C1‖‖C2‖2

and ‖C1C2‖ ≤ ‖C2‖‖C1‖2 for any conforming matrices C1 and C2. Now,

‖Γ̂fz�mΓ̂
−1
zz�mΓ̂

′
fz�m −Am‖ ≤ ‖Γ̂fz�m − Γfz�m‖‖Γ̂ −1

zz�mΓ̂
′
fz�m‖2

+ ‖Γfz�m‖2‖Γ̂ −1
zz�m − Γ −1

zz�m‖‖Γ̂fz�m‖2

+ ‖Γfz�mΓ
−1
zz�m‖2‖Γ̂fz�m − Γfz�m‖�

‖Γ̂ −1
zz�mΓ̂

′
fz�m‖2 ≤ ‖Γ̂ −1

zz�mΓ̂
′
fz�m − Γ −1

zz�mΓ
′
fz�m‖ + ‖Γ −1

zz�mΓ
′
fz�m‖2

≤ ‖Γ̂fz�m − Γfz�m‖‖Γ̂ −1
zz�m‖2 + ‖Γfz�m‖2‖Γ̂ −1

zz�m − Γ −1
zz�m‖

+ ‖Γ −1
zz�mΓ

′
fz�m‖2�

and

‖Γ̂ −1
zz�m − Γ −1

zz�m‖ ≤ ‖Γ̂ −1
zz�m‖2‖Γ̂zz�m − Γzz�m‖‖Γ −1

zz�m‖2�

Define F such that ‖Γ −1
zz�m‖2 ≤ F , where F is finite by Assumption 6, and let

ζm�N := ‖Γ̂ −1
zz�m − Γ −1

zz�m‖2/(F‖Γ̂ −1
zz�m − Γ −1

zz�m‖2 + F 2)≤ ‖Γ̂zz�m − Γzz�m‖

such that supm≤M1
ζm�N ≤ supm≤M1

‖Γ̂zz�m − Γzz�m‖ = op(1) by (A.36). Following
Lewis and Reinsel (1985, p. 397),

‖Γ̂ −1
zz�m‖2 ≤ ‖Γ −1

zz�m‖2 + ‖Γ̂ −1
zz�m − Γ −1

zz�m‖2

≤ F + F 2ζm�N/(1 − Fζm�N)

≤ F + F 2
(

sup
m≤M1

ζm�N

)/(
1 − F sup

m≤M1

ζm�N

)
=Op(1)�

It now follows that

sup
m≤M1

∥∥∥∥∥f
′Pmf

N
−Am

∥∥∥∥∥= sup
m≤M1

‖Γ̂fz�mΓ̂
−1
zz�mΓ̂

′
fz�m −Am‖(A.37)

= op(1)�

For M1 ≤m ≤M , it follows that Am → H̄ = E[fif ′
i ]. Then

f ′Pmf

N
−Am = −f ′(I − Pm)

′f/N + f ′f/N − H̄ + H̄ −Am(A.38)

= op(1)�
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where the op(1) term is uniform in M1 ≤m ≤M because

sup
τ∈Θ�M1≤m≤M

τ′f ′(I − Pm)fτ/N

≤ sup
M1≤m≤M

m2α

Mα
1

(
sup
τ

τ′f ′(I − Pm)fτ/N
)

=M−α
1 Op(1)= op(1)

by Assumption 2. By Assumption 6 and for M1 ≤m ≤M , H̄−Am =O(m−2α)≤
O(M−2α

1 )= o(1). By a law of large numbers,

f ′f/N − H̄ =Op(1/
√
N) = op(1)�

Together, (A.37) and (A.38) imply that

sup
τ∈Θ�m≤M

‖Â1�m‖ = op(1)�

Now consider, for some ε > 0 not necessarily the same as in (A.32),

Pr
(

sup
τ∈Θ�m≤M

|τ′(Âm�2 + · · · + Âm�9)τ|> ε
∣∣z)(A.39)

≤
9∑

j=2

Pr

(
sup
τ∈Θ

‖τ‖
M∑

m=1

‖Âm�j‖ > ε
∣∣∣z
)

≤ M supτ ‖τ‖
ε

max
m≤M

9∑
j=2

√
E[‖Âm�j‖2|z]�

To show that M maxm≤M E[(ε′Pmε− σ2
εm)2/N2|z] →p 0, we observe that

E[(ε′Pmε− σ2
εm)2|z] = σ4

ε (trPm)
2 + 2σ4

ε (trPm)− σ4
εm

2

+ Cum[εi� εi� εi� εi]
N∑
i=1

(Pm�ii)
2

= 2σ4
εm+ Cum[εi� εi� εi� εi]

N∑
i=1

(Pm�ii)
2

= O(m)+ op(m)
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because
∑N

i=1(Pm�ii)
2 ≤ (maxi Pm�ii)

∑N

i=1 Pm�ii = op(m) by the same calculation
as the proofs of Lemmas A.5(ii) and A.6(iv). Therefore,

M max
m≤M

E[(ε′Pmε− σ2
εm)2/N2|z](A.40)

≤M max
m≤M

2σ4
εm+ Cum[εi� εi� εi� εi]

N∑
i=1

(Pm�ii)
2

N2

≤
M max

m≤M
(max

i
Pm�ii)m

N2
+ 2σ4

εM
2

N2

=Op

(
M2

N2

)
+ 2σ4

εM
2

N2
→p 0�

Similarly, we can show that M maxm≤M E[‖Âm�4‖2|z] →p 0,
M maxm≤M E[‖Âm�5‖2|z] →p 0, and M maxm≤M E[‖Âm�6‖2|z] →p 0. Next,

M max
m≤M

E[‖D′
0f

′PmuD0/N‖2|z]

≤ ‖D0‖4M max
m≤M

E[‖f ′Pmu/N‖2|z]

= ‖D0‖4M max
m≤M

tr(f ′PmE[uu′|z]Pmf)

N2

= ‖D0‖4 tr(Σu)M max
m≤M

tr(f ′Pmf)

N2

≤ ‖D0‖4 tr(Σu)M
tr(f ′f )
N2

=Op

(
M

N

)
= op(1)�

Analogous calculations show that M maxm≤M E[‖Âm�7‖2|z] = o(1) and M ×
maxm≤M E[‖Âm�8‖2|z] = o(1). Summing up, we have M

ε
supτ∈Θ ‖τ‖ ×∑9

j=1 maxm≤M E[‖Âm�j‖2|z] →p 0. Combining (A.31), (A.32), (A.33), (A.34),
(A.35), and (A.39) establishes that

sup
τ∈Θ�m≤M

|Ln�m(τ)−Lm(τ)| = op(1)�(A.41)
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From (A.32) and the fact that if ‖τ − τ0‖ ≥ ε for some ε > 0, there exists an
η> 0 such that supm≤M |Lm(τ)−Lm(τ0)| ≥ η, it follows that

Pr
(

sup
m≤M

|β̂L�m −β0| ≥ ε
∣∣z)≤ Pr

(
sup
m≤M

|Lm(τ̂m)−Lm(τ0)| ≥ η
∣∣z)

with τ̂m = (1�−β̂′
L�m)

′ and by standard arguments,

|Lm(τ̂m)−Lm(τ0)| ≤ |Ln�m(τ̂m)−Lm(τ̂m)| + |Ln�m(τ0)−Lm(τ0)|
+ |Ln�m(τ̂m)−Ln�m(τ0)|�

where 0 ≤ Ln�m(τ̂m) ≤ Ln�m(τ0) + op(1) = op(1) uniformly in m ≤ M by the
definition of τ̂m and Lemma A.11 such that

sup
m≤M

|Ln�m(τ̂m)−Ln�m(τ0)| ≤ 2 sup
m≤M

|Ln�m(τ0)| + op(1)

= op(1)

and

sup
m≤M

|Lm(τ̂m)−Lm(τ0)|(A.42)

≤ 2 sup
τ∈Θ�m≤M

|Ln�m(τ)−Lm(τ)| + op(1)

= op(1)

by (A.41). Q.E.D.

LEMMA A.13: If Assumptions 1–4, 5(ii), 6, and 7 are satisfied, it follows that
for β̂ defined in (2.3) (MALIML), |β̂−β0| →p 0.

PROOF: Let Am(β) ≡ (y −Xβ)′Pm(y −Xβ)/N and B(β) ≡ (y −Xβ)′(y −
Xβ)/N . Define Λm(β) ≡Am(β)/B(β).

As supm≤M ‖β̂L�m − β0‖ →p 0 by Lemma A.12, it follows that
supm≤M |B(β̂L�m)− σ2

ε | →p 0. Moreover,

Am(β0) = ε′Pmε/N →p 0(A.43)

uniformly in m ≤ M by Lemma A.11(i), which implies that
supm≤M |Am(β̂L�m)| →p 0 and, therefore, supm≤M |Λm(β̂L�m)| →p 0. We also
note that Λm(β)= Ln�m(τ)≤ 1 uniformly in m≤N and β.
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It now follows that for Λ(W ) =∑M

m=1 wmΛm(β0) that

|Λ̂(W )−Λ(W )| ≤
M∑

m=1

|wm||Ln�m(τ̂m)−Ln�m(τ0)|

≤ 2 sup
m�τ

|Ln�m(τ)−Lm(τ)|
M∑

m=1

|wm|

+ sup
m≤M

|Lm(τ̂m)−Lm(τ0)|
M∑

m=1

|wm|�

where 2 supm�τ |Ln�m(τ) − Lm(τ)| = op(1) by Lemma A.12, supm≤M |Lm(τ̂m) −
Lm(τ0)| = op(1) by (A.42), and

∑M

m=1 |wm| =O(1). It now follows that

β̂−β0 = (X ′P(W )X − Λ̂(W )X ′X)−1(X ′P(W )ε− Λ̂(W )X ′ε)�(A.44)

We have (Λ̂(W )−Λ(W ))X ′X/N = op(1) and |Λ(W )| ≤∑M

m=1 |wm||Λm(β0)| =
op(1) such that

N−1(X ′P(W )X − Λ̂(W )X ′X)=N−1X ′P(W )X + op(1)(A.45)

and, similarly, Λ̂(W )X ′ε/N = op(1) such that

β̂−β0 = (X ′P(W )X)−1X ′P(W )ε+ op(1)�

and the result follows from Theorem A.1. Q.E.D.

LEMMA A.14: Suppose that Assumptions 1–4, 5(ii), 6, and 7 are satisfied.
Then, for β̂ defined in (2.3) (MALIML),

√
N(β̂−β0)→d N(0�σ2

ε H̄
−1).

PROOF: The result follows from (A.44), (A.45), and the fact that X ′ε/
√
N =

Op(1) together with Λ̂(W )= op(1). We then have

√
N(β̂−β0)=

(
X ′P(W )X

N

)−1
X ′P(W )ε√

N
+ op(1)

such that the result again follows from Theorem A.1. Q.E.D.

LEMMA A.15: Suppose that Assumptions 1–4, 5(ii), 6, and 7 are satisfied. Let
Λββ�m(β) be the Hessian of Λm(β). If supm≤M ‖β̃m −β0‖ →p 0, then

sup
m≤M

‖Λββ�m(β0)−Λββ�m(β̃m)‖ = op(1)
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and

sup
m≤M

∥∥∥∥Λββ�m(β0)− 2
σ2

ε

H̄m

∥∥∥∥= op(1)�

PROOF: Let Λβ�m(β) and Λββ�m(β) be the gradient and the Hessian of
Λm(β). Let Am(β) ≡ (y − Xβ)′Pm(y − Xβ)/N and B(β) = (y − Xβ)′(y −
Xβ)/N . Let Aβ�m(β) and Bβ(β) be the gradients of Am(β) and B(β), respec-
tively, and let Aββ�m(β) and Bββ(β) be the Hessians of Am(β) and B(β), re-
spectively. We have

Λβ�m(β)= B(β)−1(Aβ�m(β)−Λm(β)Bβ(β))�

Λββ�m(β)= B(β)−1(Aββ�m(β)−Λm(β)Bββ(β))

−B(β)−1(Bβ(β)Λβ�m(β)
′ +Λβ�m(β)Bβ(β)

′)�

By assumption, supm≤M ‖β̃m − β0‖ →p 0, which implies that supm≤M |B(β̃m) −
σ2

ε | →p 0 and supm≤M |Bβ(β̃m)− (−2σuε)| →p 0. Moreover,

max
m≤M

|Am(β0)| = max
m≤M

|ε′Pmε/N| →p 0

by Lemma A.11(i) and

max
m≤M

‖Aβ�m(β0)‖ = max
m≤M

‖X ′Pmε/N‖(A.46)

≤ max
m≤M

‖f ′Pmε/N‖ + max
m≤M

‖u′Pmε/N‖ = op(1)�

where maxm≤M ‖f ′Pmε/N‖ = op(1) by Lemma A.11(ii) and maxm≤M ‖u′Pmε/
N‖ = op(1) by Lemma A.11(iii).

From the proof of Lemma A.12 and (A.41), it follows that
supm≤M Λm(β̃m) →p 0. Similarly, we note that

Aβ�m(β̃m) = X ′Pm(y −Xβ̃m)/N

= X ′Pmε/N +X ′PmX(β̃m −β0)/N�

where ε′PmX/N = op(1) uniformly in m ≤ M by (A.46) and X ′PmX/N is uni-
formly bounded by the same arguments as in the proof of Lemma A.12. This
shows that Aβ�m(β̃m)→p 0 and, therefore, Λβ�m(β̃m)→p 0. Now, consider

Λββ�m(β̃m)−Λββ�m(β0)

=
(

1
ε′ε/N

−B(β̃m)
−1

)
2
(
X ′PmX

N
−Λm(β0)

X ′X
N

)
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−
(

1
ε′ε/N

−B(β̃m)
−1

)(
ε′X
N

Λβ�m(β0)
′ +Λβ�m(β0)

X ′ε
N

)

+B(β̃m)
−1(Λm(β0)−Λm(β̃m))X

′X/N

−B(β̃)−1(Bβ(β̃m)Λβ�m(β̃m)
′ −Bβ(β0)Λβ�m(β0)

′)

−B(β̃m)
−1(Λβ�m(β̃m)Bβ(β̃m)

′ −Λβ�m(β0)Bβ(β0)
′)�

where (
1

ε′ε/N
−B(β̃m)

−1

)

= B(β̃m)− ε′ε/N

B(β̃m)ε′ε/N

= 2ε′X/N(β̃m −β0)+ (β̃−β0)
′X ′X(β̃m −β0)/N

B(β̃m)ε′ε/N

= op(1)

uniformly in m ≤ M . Since X ′PmX/N −Λm(β0)X
′X/N = Op(1) uniformly in

m ≤ M and all other terms are of smaller order, it follows that
supm≤M ‖Λββ�m(β0)−Λββ�m(β̃m)‖ = op(1). Next consider

Λββ�m(β0)− 2
σ2

ε

H̄m

=
(

1
ε′ε/N

− 1
σ2

ε

)
2X ′PmX

N
+ 2

σ2
ε

(
X ′PmX

N
− H̄m

)

− 1
ε′ε/N

(
Λm(β0)

X ′X
N

+ 2
ε′X
N

Λβ�m(β0)
′ + 2Λβ�m(β0)

X ′ε
N

)
�

Note that 2X ′PmX/N − 2H̄m →p 0, where the convergence is uniform
in m ≤ M by the same arguments as in the proof of Lemma A.12. Also
note that Bββ(β) = 2X ′X/N →p 2E(XiX

′
i). It therefore follows that

supm≤M ‖Λββ�m(β0)− 2
σ2
ε
H̄m‖ = op(1) uniformly in m ≤M . Q.E.D.

LEMMA A.16: Suppose that Assumptions 1–4, 5(ii), 6, and 7 are satisfied. Then

√
N(β̂L�m −β0)= (H̄−1

m + op(1))
(
h− f ′(I − Pm)ε√

N
+ v′Pmε√

N

)
+ op(1)�

where both op(1) terms are uniform in m≤M .
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PROOF: Let Λβ�m(β) and Λββ�m(β) be the gradient and the Hessian of
Λm(β), respectively. A standard Taylor expansion shows that

√
N(β̂L�m −β0) = −Λββ�m(β̃m)

−1
√
NΛβ�m(β0)

=
(
σ̃2

εΛββ�m(β̃m)

2

)−1(
− σ̃2

ε

√
NΛβ�m(β0)

2

)

for some mean value β̃m, where σ̃2
ε = ε′ε/N . As sup‖β̂L�m − β0‖ = op(1) by

Lemma A.12, it follows that supm ‖β̃m −β0‖ →p 0 such that, by Lemma A.15,
it follows that

√
N(β̂L�m −β0)= (H̄−1

m + op(1))
(

− σ̃2
ε

√
NΛβ�m(β0)

2

)
�

where the op(1) term is uniform in m≤M�
Consider the gradient term. Define α̂ = X ′ε/ε′ε, α = σuε/σ

2
ε , and v = u −

εα′� It holds that α̂− α=Op(1/
√
N) by the CLT. We have the decomposition

− σ̃2
ε

√
NΛβ�m(β0)

2
= X ′Pmε√

N
− ε′PmεX

′ε√
Nε′ε

= h− f ′(I − Pm)ε√
N

+ v′Pmε√
N

− √
N(α̂− α)

ε′Pmε

N
�

First, we have h →d N(0�σ2H̄) by the CLT. Lemma A.11(ii) implies that f ′(I−
Pm)ε/

√
N = Op(1) uniformly in m ≤ M . From Lemma A.11(i) supm≤M ε′Pmε/

N = op(1) such that
√
N(α̂−α)ε′Pmε/N = op(1) uniformly in m≤M . In con-

clusion, we have

√
N(β̂L�m −β0)= (H̄−1

m + op(1))
(
h− f ′(I − Pm)ε√

N
+ v′Pmε√

N

)
+ op(1)�

where both op(1) terms are small uniformly in m ≤M . Q.E.D.

LEMMA A.17: Suppose that Assumptions 1–4, 5(ii), 6, and 7 are satisfied. Then

Λ̂(W ) = Λ̃(W )−
(
σ̃2

ε

σ2
ε

− 1
)
Λ̃(W )−Λq(W )+ R̂Λ

= Λ̃(W )+Op

(
1
N

)
+Op

(
K′W
N3/2

)
+ op

(
ρW�N√
N

)
�
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where

Λq(W )= 1
2

M∑
m=1

wm

(
Λβ�m(β0)

′(Λββ�m(β0))
−1Λβ�m(β0)

)

= Op

(
1
N

)
�

Λ̃(W )= ε′P(W )ε

Nσ2
ε

= K′W
N

+Op

(
√
W ′Γ W +

∑
i

(Pii(W ))2

N

)
�

σ̃2
ε = ε′ε/N ,

√
NR̂Λ = Op(1/

√
N), R̂Λ is simply the difference between Λ̂ and the

first three terms in the expression between two equalities, Λβ�m(β) and Λββ�m(β)
are the gradient and the Hessian of Λm(β), and ρW�N = tr(S(W )) for S(W ) de-
fined in (A.6).

PROOF: We note that, in the LIML case, to show op(ρW�N), it is enough to
show op(W

′Γ W /N+K′W/N+∑i(Pii(W ))2/N+Δ(W )). We use the notation
developed in the proof of Lemma A.14. We expand Λ̂m = Λm(β̂L�m) around the
true value β0. By Donald and Newey (2001, p. 1186),

Λm(β0) = Λ̃m −
(
σ̃2

ε

σ2
ε

− 1
)
Λ̃m + (σ̃2

ε − σ2
ε )

2

σ̃2
ε σ

2
ε

Λ̃m�

where Λ̃m = ε′Pmε/(Nσ2
ε ) such that

M∑
m=1

wmΛm(β0) = Λ̃(W )−
(
σ̃2

ε

σ2
ε

− 1
)
Λ̃(W )

+ (σ̃2
ε − σ2

ε )
2

σ̃2
ε σ

2
ε

Λ̃(W )�

By a similar argument as in Lemma A.6(iv), we have

Λ̃(W ) = ε′P(W )ε

Nσ2
ε

(A.47)

= K′W
N

+ ε′P(W )ε− σ2
εK

′W
Nσ2

ε
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= K′W
N

+Op

(
√
W ′Γ W +

∑
i

(Pii(W ))2

N

)
�

Consider

∂ vec[Λββ�m(β)]′
∂β

= −B(β)−2Bβ(β) vec
[
(Aββ�m(β)−Λm(β)Bββ(β))

− (Bβ(β)Λβ�m(β)
′ +Λβ�m(β)Bβ(β)

′)
]′

−B(β)−1Λβ�m(β) vec
[
Bββ(β))

]′
−Bββ(β)

[
(K1�n ⊗ I)(Λβ�m(β)⊗ I)

]′
−Λββ�m(β)

[
(K1�n ⊗ I)(I ⊗Bβ(β))

]′
−Bββ(β)

[
(K1�n ⊗ I)(I ⊗Λβ�m(β))

]′
−Λββ�m(β)

[
(K1�n ⊗ I)(Bβ(β)⊗ I)

]′
�

where the result follows from Magnus and Neudecker (1988, p. 185) and K1�n

is the commutation matrix. Let β̃m be some mean value between β̂L�m and β0.
Then

∂ vec[Λββ�m(β̃m)]′
∂β

− ∂ vec[Λββ�m(β0)]′
∂β

= op(1)

uniformly in m ≤ M and ∂ vec[Λββ�m(β0)]′/∂β is bounded uniformly in proba-
bility over m≤M . A Taylor expansion then leads to

M∑
m=1

wmΛ̂m =
M∑

m=1

wmΛm(β0)

−
M∑

m=1

wm

1
2
(β̂L�m −β0)

′Λββ�m(β0)(β̂L�m −β0)

+
M∑

m=1

wm(β̂L�m −β0)
′ ∂ vec[Λββ�m(β̃m)]′

∂β

× ((β̂L�m −β0)⊗ (β̂L�m −β0)
′)

=
M∑

m=1

wmΛm(β0)
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− 1
2

M∑
m=1

wmΛβ�m(β0)
′(Λββ�m(β0))

−1Λβ�m(β0)

+Op

(
1

N3/2

)
�

where Op(1/N3/2) can be established by considering∥∥∥∥∥
M∑

m=1

wm(β̂L�m −β0)
′ ∂ vec[Λββ�m(β̃m)]′

∂β

× ((β̂L�m −β0)⊗ (β̂L�m −β0)
′)

∥∥∥∥∥
≤ sup

m≤M

∥∥∥∥∂ vec[Λββ�m(β̃m)]′
∂β

∥∥∥∥
M∑

m=1

|wm|‖β̂L�m −β0‖3

with
√
N(β̂L�m −β0)

= (H̄−1
m + op(1))

(
h− f ′(I − Pm)ε√

N
+ v′Pmε√

N

)
+ op(1)

=Op(1)+ (H̄−1
m + op(1))

v′Pmε√
N

�

where the Op(1) and op(1) terms are uniform in m ≤M such that

M∑
m=1

|wm|‖β̂L�m −β0‖3

≤Op

(
N−3/2

)
Op

(
1 +

M∑
m=1

|wm|(‖H̄−1
m ‖3‖v′Pmε/

√
N‖3

+ ‖H̄−1
m ‖2‖v′Pmε/

√
N‖2)

)

+Op

(
N−3/2

)
Op

(
M∑

m=1

|wm|‖H̄−1
m ‖‖v′Pmε/

√
N‖
)

+ op

(
N−3/2

M∑
m=1

|wm|(‖H̄−1
m ‖3‖v′Pmε/

√
N‖3)

)
�
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Consider

M∑
m=1

|wm|‖H̄−1
m ‖3E[‖v′Pmε/

√
N‖3|z]

≤
M∑

m=1

|wm|‖H̄−1
m ‖3

(
E[‖v′Pmε/

√
N‖4|z])3/4

with

E[‖v′Pmε/
√
N‖4|z] = N−2E

[
(tr(v′Pmεε

′Pmv))
2|z]

= N−2
∑
j1�j2

N∑
i1�����i8=1

E
[
vj1�i1vj1�i4vj2�i5vj2�i8εi2εi3εi6εi7 |z

]
× Pm�i1i2Pm�i3i4Pm�i5i6Pm�i7i8

≤ CN−2
∑
j1�j2

∣∣∣∣∣
N∑

i1�����i4=1

(
Pm�i1i2Pm�i2i1Pm�i3i4Pm�i4i3

+ 2Pm�i1i2Pm�i4i1Pm�i3i4Pm�i2i3

)∣∣∣∣∣
+CN−2

∑
j1�j2

∣∣∣∣∣
N∑

i1�����i4=1

(
Pm�i1i2Pm�i2i3Pm�i1i4Pm�i4i3

+ 2Pm�i1i2Pm�i4i3Pm�i1i4Pm�i2i3

)∣∣∣∣∣
+CN−2

∑
j1�j2

∣∣∣∣∣
N∑

i1�����i4=1

(
Pm�i1i2Pm�i2i3Pm�i3i4Pm�i4i1

+ 2Pm�i1i2Pm�i3i2Pm�i3i4Pm�i4i1

)∣∣∣∣∣
+ lower order terms�

where C is a constant such that (E[|εi|8|z])1/2(maxa E[|va�i|8|z])1/2 ≤ C and we
use the fact that Pm is idempotent and symmetric such that Pm�i1i2 = Pm�i2i1 and
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∑N

i2=1 Pm�i1i2Pm�i2i3 = Pm�i1i3 . This implies, for example, that

N∑
i1�����i4=1

Pm�i1i2Pm�i4i1Pm�i3i4Pm�i2i3

=
N∑

i1�����i3=1

Pm�i1i2Pm�i2i3

N∑
i4=1

Pm�i1i4Pm�i4i3

=
N∑

i1�i3=1

Pm�i1i3

N∑
i2=1

Pm�i1i2Pm�i2i3

=
N∑

i1�i3=1

P2
m�i1i3

= tr(PmPm) =m�

∑N

i1�����i4=1 Pm�i1i2Pm�i2i3Pm�i1i4Pm�i4i3 = m, and
∑N

i1�����i4=1 Pm�i1i2Pm�i4i3Pm�i1i4Pm�i2i3 =
m and

∑N

i1�i2=1 P
2
m�i1i2

∑N

i3�i4=1 P
2
m�i3i4

=m2. This implies that

E[‖v′Pmε/
√
N‖4|z] = O(m2/N2)= o(1)

uniformly in m ≤ M and, by the Markov inequality and the fact that ‖H̄−1
m ‖ is

bounded uniformly in m, that

M∑
m=1

|wm|(‖H̄−1
m ‖3‖v′Pmε/

√
N‖3 + ‖H̄−1

m ‖2‖v′Pmε/
√
N‖2

+ ‖H̄−1
m ‖‖v′Pmε/

√
N‖)

= op(1)�

Thus, we have shown that
∑M

m=1 |wm|‖β̂L�m −β0‖3 =Op(N
−3/2). To summarize,

it then follows that

Λ̂(W )=
M∑

m=1

wmΛm(β0)−Λq(W )+Op

(
1

N3/2

)
�

Since Op(N
−3/2) = N−1/2op(W

′Γ W /N), it follows that
√
NR̂Λ = op(ρW�N).

Now turn to Λq(W ), where by Lemma A.15,

Λβ�m(β0)
′(Λββ�m(β0))

−1Λβ�m(β0)

=
(

h√
N

− f ′(I − Pm)ε

N
+ v′Pmε

N

)′
(H̄−1

m + op(1))
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×
(

h√
N

− f ′(I − Pm)ε

N
+ v′Pmε

N

)
+ op(1)

= h′H̄−1
m h

N
−N−3/2h′H̄−1

m f ′(I − Pm)ε+N−3/2h′H̄−1
m v′Pmε

+N−3/2ε′(I − Pm)f H̄
−1
m h

+N−2ε′(I − Pm)f H̄
−1
m f ′(I − Pm)ε+N−2ε′(I − Pm)f H̄

−1
m v′Pmε

+N−3/2ε′PmvH̄
−1
m h+N−2ε′PmvH̄

−1
m f ′(I − Pm)ε

+N−2ε′PmvH̄
−1
m v′Pmε

+ terms of lower order�

Next, consider

N−3/2

∥∥∥∥∥
M∑

m=1

wmh
′H̄−1

m f ′(I − Pm)ε

∥∥∥∥∥
≤ ‖h/N‖

M∑
m=1

|wm|‖H̄−1
m ‖‖f ′(I − Pm)ε/

√
N‖

=Op(N
−1)�

where supm≤M ‖ε′(I − Pm)f/
√
N‖ = Op(1) by Lemma A.11(ii). For N−3/2h′ ×

H̄−1
m v′Pmε, note that

E[‖v′Pmε/
√
N‖2|z] = trE[v′Pmεε

′Pmv/N|z](A.48)

= mσ2
ε

N
trΣv + Cum[vi� vi� εi� εi]

N

n∑
i=1

(Pm�ii)
2

such that, by the Markov inequality,

N−3/2

∥∥∥∥∥
M∑

m=1

wmh
′H̄−1

m v′Pmε

∥∥∥∥∥
≤ ‖h/N‖

M∑
m=1

|wm|‖H̄−1
m ‖‖v′Pmε/

√
N‖

≤Op(N
−1)Op

(
M∑

m=1

|wm|√m/N

)
=Op(N

−1)�
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For N−2ε′(I − Pm)f H̄
−1
m f ′(I − Pm)ε, note that

N−2

∥∥∥∥∥
M∑

m=1

wmε
′(I − Pm)f H̄

−1
m f ′(I − Pm)ε

∥∥∥∥∥
≤N−1

M∑
m=1

|wm|‖H̄−1
m ‖‖f ′(I − Pm)ε/

√
N‖2

=Op(N
−1)�

For N−2ε′(I − Pm)f H̄
−1
m v′Pmε, note that

N−2

∥∥∥∥∥
M∑

m=1

wmε
′(I − Pm)f H̄

−1
m v′Pmε

∥∥∥∥∥
≤N−1 sup

m≤M

‖ε′(I − Pm)f/
√
N‖

M∑
m=1

|wm|‖v′Pmε/
√
N‖

= op(N
−1)

by Lemma A.11 and (A.48). For N−3/2ε′PmvH̄
−1
m h, it follows that

N−3/2

∥∥∥∥∥
M∑

m=1

wmε
′PmvH̄

−1
m h

∥∥∥∥∥ ≤ ‖h/N‖
M∑

m=1

|wm|‖H̄−1
m ‖‖v′Pmε/

√
N‖

= op(N
−1)

by (A.48) and the Markov inequality. For N−2ε′PmvH̄
−1
m v′Pmε, it holds that

N−2

∥∥∥∥∥
M∑

m=1

wmε
′PmvH̄

−1
m v′Pmε

∥∥∥∥∥ ≤ N−1
M∑

m=1

|wm|‖H̄−1
m ‖‖ε′Pmv/

√
N‖2

= op(N
−1)

by (A.48) and the Markov inequality. Together these results imply that

M∑
m=1

wm

(
Λβ�m(β0)

′(Λββ�m(β0))
−1Λβ�m(β0)

)= h′H̄−1(W )h

N
+Op(N

−1)(A.49)

= Op(N
−1)�

where H̄−1(W )=∑M

m=1 wmH̄
−1
m and ‖H̄−1(W )‖ ≤∑M

m=1 |wm|‖H̄−1
m ‖ =O(1)�
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To sum up, we have

Λ̂(W ) =
M∑

m=1

wmΛm(β0)−Λq(W )+Op

(
1

N3/2

)

= Λ̃(W )−
(
σ̃2

ε

σ2
ε

− 1
)
Λ̃(W )+ (σ̃2

ε − σ2
ε )

2

σ̃2
ε σ

2
ε

Λ̃(W )

−Λq(W )+Op

(
1

N3/2

)

= Λ̃(W )−
(
σ̃2

ε

σ2
ε

− 1
)
Λ̃(W )−Λq(W )+Op

(
1

N3/2

)
�

where the last equality follows by (σ̃2
ε − σ2

ε )
2 = Op(1/N). This proves the first

equality in the lemma.
We now consider the second equality in the lemma. We have from (A.47)

that (
σ̃2

ε

σ2
ε

− 1
)
Λ̃(W )

=Op

(
1√
N

)(
K′W
N

+Op

(
√
W ′Γ W +

∑
i

(Pii(W ))2

N

))

=Op

(
K′W
N3/2

)
+ op

(
ρW�N√
N

)
�

We also have that

Λq(W ) =Op

(
1
N

)

from (A.49). It therefore follows that

Λ̂(W )= Λ̃(W )+Op

(
1
N

)
+Op

(
K′W
N3/2

)
+ op

(
ρW�N√
N

)
� Q.E.D.

LEMMA A.18: Suppose that Assumptions 1–4, 5(ii), 6, and 7 are satisfied. Then
the following statements hold:

(i) u′P(W )u/N − Λ̃(W )Σu =Op(
√
W ′Γ W +∑i(Pii(W ))2/N).

(ii) E[hΛ̃(W )ε′v/
√
N|z] = (K′W/N)

∑
i fiE(ε

2
i v

′
i)/N + Op(1/N) +

Op(K
′W +/N2).



68 G. KUERSTEINER AND R. OKUI

(iii) E[hh′H̄−1(W )h/
√
N|z] = Op(1/N).

(iv)
∑M

m=1 wmE[hh′H̄−1
m f ′(I − Pm)ε/N|z] = Op(1/N).

(v)
∑M

m=1 wmE[hh′H̄−1
m v′Pmε/N|z] = op(1/N).

(vi)
∑M

m=1 wmE[hε′(I − Pm)f H̄
−1
m f ′(I − Pm)ε/N

−3/2|z] = Op(1/N).
(vii)

∑M

m=1 wmE[hε′(I − Pm)f H̄
−1
m v′Pmε/N

−3/2|z] = op(1/N).
(viii)

∑M

m=1 wmE[hε′PmvH̄
−1
m v′Pmε/N

−3/2|z] =Op(1/N).

PROOF: We begin with the proof of part (i). It holds that E[Λ̃(W )|z] =
tr(P(W )E[εε′])/(Nσ2

ε )= (K′W )/N . We also have

E

[(
Λ̃(W )− K′W

N

)2∣∣∣z]

= E[ε′P(W )εε′P(W )ε|z]
N2σ4

ε

−
(
K′W
N

)2

=
σ4

ε (K
′W )2 + 2σ4

εW
′Γ W +Op

(∑
i

(Pii(W ))2

)

N2σ4
ε

−
(
K′W
N

)2

=Op

(W ′Γ W +
∑
i

(Pii(W ))2

N2

)

by Lemma A.6(iv), replacing u by ε, and Lemma A.5(ii). This gives

(
Λ̃(W )− K′W

N

)
Σu =Op

(
√
W ′Γ W +

∑
i

(Pii(W ))2

N

)
�

Similarly, we have

u′P(W )u

N
− K′W

N
Σu =Op

(
√
W ′Γ W +

∑
i

(Pii(W ))2

N

)
�

Thus, part (i) is proved.
For part (ii), we observe that

E

[
hΛ̃(W )ε′v√

N

∣∣∣z]=

∑
i�j�k�l

E[fiεiεjPjk(W )εkεlv
′
l|z]

N2σ2
ε
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=

∑
i

fiPii(W )E[ε4
i v

′
i]

N2σ2
ε

+ 2

∑
i =j

fiPij(W )E[ε2
j v

′
j]

N2

+

∑
i =j

fiPjj(W )E[ε2
i v

′
i]

N2

= Op

(
K′W +

N2

)
+ op

(
K′W +

N2

)

+

∑
i�j

fiPjj(W )E[ε2
i v

′
i]

N2

−

∑
i

fiPii(W )E[ε2
i v

′
i]

N2

= K′W
N

∑
i

fiE[ε2
i v

′
i]

N
+Op

(
1
N

)
+Op

(
K′W +

N2

)
�

where Lemma A.6(v) implies that

∑
i

fiPii(W )E[ε4
i v

′
i]

N2σ2
ε

=Op

(
K′W +

N2

)
�

∑
i

fiPii(W )E[ε2
i v

′
i]

N2σ2
ε

=Op

(
K′W +

N2

)
�

and the fact that for fa�i, the ath element of fi,

∣∣∣∣∣
∑
i =j

fa�iPij(W )

N2

∣∣∣∣∣ ≤
M∑

m=1

|wm||(f ′
aPm1N)|

N2
−

∑
i

fa�iPii(W )

N2

≤

M∑
m=1

|wm|(f ′
aPmfa)

1/2(1′
N1N)

1/2

N2
+Op

(
K′W +

N2

)
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≤
(
f ′
afa

N

)1/2

M∑
m=1

|wm|

N
+Op

(
K′W +

N2

)

= Op

(
1
N

)
+Op

(
K′W +

N2

)
�

gives ∑
i =j

fiPij(W )E[ε2
j v

′
j]

N2
= Op

(
1
N

)
+Op

(
K′W +

N2

)
�

Part (iii) follows Lemma A.8(iii) in Donald and Newey (2001). We have

E[hh′H̄−1(W )h/
√
N|z](A.50)

=
M∑

m=1

wm

N∑
i1�����i3=1

E
[
fi1εi1εi2f

′
i2
H̄−1

m fi3εi3 |z
]
/N2

=
M∑

m=1

wm

N∑
i=1

E[ε3
i |z]fif ′

i H̄
−1
m fi/N

2 =Op(1/N)�

For part (iv), let f̃ ′
i�m be the ith row of f ′(I − Pm) such that

E[hh′H̄−1
m f ′(I − Pm)ε/N|z] =

N∑
i1�����i3=1

E
[
fi1εi1εi2f

′
i2
H̄−1

m f̃i3�mεi3 |z
]
/N2

= Op(1/N)

by the same argument as in (A.50).
For part (v), consider

E[hh′H̄−1
m v′Pmε/N|z] =

N∑
i1�����i4=1

E
[
fi1εi1εi2f

′
i2
H̄−1

m vi3Pm�i3i4εi4 |z
]
/N2

=
N∑

i1�����i4=1

fi1f
′
i2
H̄−1

m Pm�i3i4E
[
εi1εi2vi3εi4 |z

]
/N2

=
N∑
i=1

fif
′
i H̄

−1
m Pm�ii Cum[εi� εi� vi� εi|z]/N2

= op(N
−1)�
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For part (vi), let f̃ ′
i�m be the ith row of f ′(I − Pm) such that

E
[
hε′(I − Pm)f H̄

−1
m f ′(I − Pm)ε/N

−3/2|z]
=

N∑
i1�����i3=1

E
[
fi1εi1εi2 f̃

′
i2�m

H̄−1
m f̃i3�mεi3 |z

]
/N2 = Op(1/N)�

For part (vii), consider

E
[
hε′(I − Pm)f H̄

−1
m v′Pmε/N

−3/2|z]
=

N∑
i1�����i4=1

E
[
fi1εi1εi2 f̃

′
i2�m

H̄−1
m vi3Pm�i3i4εi4 |z

]
/N2

=
N∑
i=1

fif̃
′
i H̄

−1
m Pm�ii Cum[εi� εi� vi� εi|z]/N2 = op(N

−1)�

For part (viii), consider

E
[
hε′PmvH̄

−1
m v′Pmε/N

−3/2|z](A.51)

=
N∑

i1�����i5=1

E
[
fi1εi1εi2Pm�i2i3v

′
i3
H̄−1

m vi4Pm�i4i5εi5 |z
]
/N2

=
N∑

i1�i2=1

σ2
ε fi1Pm�i1i2Pm�i2i2 tr

(
H̄−1

m E
[
vi2v

′
i2
εi2 |z

])
/N2

+
N∑

i1�i2=1

σ2
ε fi1Pm�i1i1Pm�i1i2 tr

(
H̄−1

m E
[
vi1v

′
i1
εi1 |z

])
/N2

+
N∑

i1�i2=1

σ2
ε fi1Pm�i2i1Pm�i1i2 tr

(
H̄−1

m E
[
vi1v

′
i1
εi1 |z

])
/N2

+
N∑

i1�i2=1

E
[
ε3
i2
|z]fi1Pm�i2i1Pm�i1i2 tr

(
H̄−1

m E
[
vi1v

′
i1
|z])/N2

+
N∑
i=1

fiP
2
m�ii tr(H̄

−1
m Cum[εi� εi� vi� v′

i� εi|z])/N2�
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where E[viv′
iεi|z] does not depend on z by Assumption 3 and, for the first term

in (A.51), we have

N∑
i1�i2=1

fi1Pm�i1i2Pm�i2i2 =
N∑

i1�i2=1

fi1Pm�i1i2 = f ′Pm1N

≤ (f ′f )1/2(1′
NPm1N)

1/2 ≤ √
N(f ′f )1/2

such that
N∑

i1�i2=1

σ2
ε fi1Pm�i1i2Pm�i2i2 tr

(
H̄−1

m E
[
vi2v

′
i2
εi2 |z

])
/N2 = N−1(f ′f/N)1/2

= Op(N
−1)�

where a similar argument shows that the second term in (A.51) is Op(N
−1).

Next,

N∑
i1�i2=1

fi1Pm�i2i1Pm�i1i2 =
N∑

i1�i2=1

fi1Pm�i1i2Pm�i2i1

=
N∑
i=1

fiPm�ii ≤ sup
i

‖fi‖
N∑
i=1

Pm�ii =Op(m)�

where supi ‖fi‖ = Op(1) by Assumption 3(iv) such that the third term in (A.51)
is Op(m/N2) = op(N

−1) and the same argument also shows that the fourth
term in (A.51) is op(N

−1). Finally,

N∑
i=1

fiP
2
m�ii tr(H̄

−1
m Cum[εi� εi� vi� v′

i� εi|z])/N2

≤ | tr(H̄−1
m Cum[εi� εi� vi� v′

i� εi|z])| sup
i

‖fi‖
N∑
i=1

P2
m�ii/N

2

= op(m/N2)= op(N
−1)�

These results establish that
∑M

m=1 wmE[hε′PmvH̄
−1
m v′Pmε/N

−3/2|z] = Op(N
−1)

as desired. Q.E.D.

A.4. Proof of Theorem A.2

The MALIML estimator, β̂ defined in (2.3), has the form
√
N(β̂−β0)= Ĥ−1ĥ�
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Ĥ =X ′P(W )X/N − Λ̂(W )X ′X/N�

ĥ =X ′P(W )ε/
√
N − Λ̂(W )X ′ε/

√
N�

Also Ĥ and ĥ are decomposed as

ĥ = h+
5∑

j=1

Th
j +Zh�

T h
1 = −f ′(I − P(W ))ε/

√
N� Th

2 = v′P(W )ε/
√
N�

Th
3 = −Λ̃(W )

f ′ε√
N
� Th

4 = −Λ̃(W )
v′ε√
N
� Th

5 = √
NΛq(W )σuε�

Zh = (Λ̃(W )− Λ̂(W )+ R̂Λ)
√
N

(
X ′ε
N

− σuε

)
− R̂Λ

X ′ε√
N

and

Ĥ =H +
3∑

j=1

TH
j +ZH�

TH
1 = −f ′(I − P(W ))f/N� TH

2 = (u′f + f ′u)/N�

TH
3 = −Λ̃(W )f ′f/N�

ZH = u′P(W )u/N − Λ̃(W )Σu − u′(I − P(W ))f/N

− f ′(I − P(W ))u/N + Λ̃(W )(H +Σu)− Λ̂(W )X ′X/N�

Let Th =∑5
j=1 T

h
j and TH =∑3

j=1 T
H
j . We give the order of each term. By

Lemma A.5(vi), we have

h =Op(1) and H = Op(1)�(A.52)

Lemma A.6(ii) gives

Th
1 =Op

(
Δ(W )1/2

)
�(A.53)

By a similar argument to Lemma A.6(iv) (note that E[viεi] = 0), we have

Th
2 =Op

(√√√√√W ′Γ W +
∑
i

(Pii(W ))2

N

)
�(A.54)
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Lemma A.17 and the CLT give

Th
3 =

(
K′W
N

+Op

(
√
W ′Γ W +

∑
i

(Pii(W ))2

N

))
Op(1)(A.55)

= Op

(
K′W
N

+

√
W ′Γ W +

∑
i

(Pii(W ))2

N

)

and

Th
4 = Op

(
K′W
N

+

√
W ′Γ W +

∑
i

(Pii(W ))2

N

)
�(A.56)

By Lemma A.17, we have

Th
5 = Op

(
1√
N

)
�(A.57)

By definition, we have

TH
1 = Op(Ξ(W ))�(A.58)

where Ξ(W ) is defined in (A.11). By a CLT, we have

TH
2 = Op

(
1√
N

)
�(A.59)

By Lemmas A.5(vi) and A.17, it holds that

TH
3 =

(
K′W
N

+Op

(
√
W ′Γ W +

∑
i

(Pii(W ))2

N

))
Op(1)(A.60)

= Op

(
K′W
N

+

√
W ′Γ W +

∑
i

(Pii(W ))2

N

)
�
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By Lemma A.17 together with the CLT, which implies that
√
N(X ′ε

N
− σuε) =

Op(1), as well as

Λ̃(W )− Λ̂(W )+ R̂Λ

=
(
σ̃2

ε

σ2
ε

− 1
)
Λ̃(W )+Λq(W )

=Op

(
N−1/2

)
Op

(
K′W
N

+

√
W ′Γ W +

∑
i

(Pii(W ))2

N

)

+Op(N
−1)�

it follows that

Zh = Op

(
K′W
N

+Op

(
√
W ′Γ W +

∑
i

(Pii(W ))2

N

))
Op

(
1√
N

)
(A.61)

+Op

(
1
N

)
+ op(ρW�N)Op(1)

= Op

(
K′W
N3/2

+

√
W ′Γ W +

∑
i

(Pii(W ))2

N3/2

)

+Op

(
1
N

)
+ op(ρW�N)

= op(ρW�N)�

where 1/N = op(W
′Γ W /N) = op(ρW�N). Last, we have

Λ̃(W )(H +Σu)− Λ̂(W )X ′X/N

= Λ̃(W )(H +Σu −X ′X/N)− (Λ̂(W )− Λ̃(W ))X ′X/N

= op(ρW�N)+Op

(
1
N

)
+Op

(
K′W
N3/2

)
+ op

(
ρW�N√
N

)
= op(ρW�N)�
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where (H + Σu − X ′X/N) = Op(1/
√
N) and Λ̂(W ) − Λ̃(W ) = Op(1/N) +

Op(K
′W /N3/2)+ op(ρW�N/

√
N) from Lemma A.17. It then follows that

ZH = op(ρW�N)+Op

(
√
W ′Γ W +

∑
i

(Pii(W ))2

N

)
+Op

(
Δ(W )1/2

√
N

)
(A.62)

= op(ρW�N)

by Lemmas A.6(ii), A.17, and A.18(i), the CLT, and the LLN.
We show below that the conditions of Lemma A.1 of Donald and

Newey (2001) are satisfied and S(W ) has the form given in the theorem.
We first have h = Op(1) and H = Op(1) by (A.52). Next, we need to show

that Th = op(1). By (A.53)–(A.57), it follows that

Th = Op

(
Δ(W )1/2

)+Op

(√√√√√W ′Γ W +
∑
i

(Pii(W ))2

N

)

+Op

(
K′W
N

+

√
W ′Γ W +

∑
i

(Pii(W ))2

N

)
+Op

(
1√
N

)
�

Now Lemma A.6(i) says that Δ(W )= op(1). We have |K′W/N| ≤K′W +/N →
0 by Assumption 5. By Lemma A.6(xii) and Assumption 5, it holds that
W ′Γ W /N ≤ CK′W +/N → 0, where C is some constant. Lemma A.5(ii)
implies that

∑
i(Pii(W ))2/N = op(K

′W +/N) = op(1). Thus, Th = op(1) is
shown.

The next step is to show that ‖TH‖2 = op(ρW�N). We have, by (A.58)–(A.60),
that

‖TH‖2 = Op

(
Ξ(W )2 + 1

N
+ Ξ(W )√

N
+ (K′W )2

N2

+ |K′W |
N

√
W ′Γ W +

∑
i

(Pii(W ))2

N

+
W ′Γ W +

∑
i

(Pii(W ))2

N2
+Ξ(W )

|K′W |
N
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+Ξ(W )

√
W ′Γ W +

∑
i

(Pii(W ))2

N

+ |K′W |
N3/2

+

√
W ′Γ W +

∑
i

(Pii(W ))2

N3/2

)
�

Since
√
W ′Γ W +∑i(Pii(W ))2/N = Op((W

′Γ W + ∑
i(Pii(W ))2)/N) =

op(ρW�N), |K′W |/N3/2 = o(|K′W |/N) = op(ρW�N), (K′W )2/N2 = o(K′W/

N) = op(ρW�N), 1/N = op(ρW�N), and the observation that Ξ(W )/
√
N =

op(ρW�N) by Lemma A.6(vi) and Ξ(W )=Op(Δ(W )1/2), we have

‖TH‖2 =Op

(
(Ξ(W ))2

)+ op(ρW�N)�

The order of (Ξ(W ))2 is op(ρW�N) by Lemma A.7. Next, we consider ‖Th‖ ·
‖TH‖. We have, by (A.53)–(A.60),

‖Th‖ · ‖TH‖

=Op

(
Δ(W )1/2 +

√√√√√W ′Γ W +
∑
i

(Pii(W ))2

N
+ |K′W |

N

+

√
W ′Γ W +

∑
i

(Pii(W ))2

N
+ 1√

N

)

·Op

(
Ξ(W )+ 1√

N
+ |K′W |

N
+

√
W ′Γ W +

∑
i

(Pii(W ))2

N

)

=Op

(
Δ(W )1/2Ξ(W )+ Δ(W )1/2

√
N

+

√
W ′Γ W +

∑
i

(Pii(W ))2

N

+Ξ(W )

√√√√√W ′Γ W +
∑
i

(Pii(W ))2

N

)

+ op(ρW�N)



78 G. KUERSTEINER AND R. OKUI

=Op

(
Δ(W )1/2Ξ(W )+Ξ(W )

√√√√√W ′Γ W +
∑
i

(Pii(W ))2

N

)

+ op(ρW�N)

= op(ρW�N)�

since op(1)|K′W |/N = op(ρW�N),
√
W ′Γ W +∑i(Pii(W ))2/N = op(ρW�N),

1/N = op(ρW�N), Δ(W )1/2/
√
N = op(ρW�N) by Lemma A.6(vi), and the order

of Ξ(W ) is op(Δ(W )1/2) by Lemma A.7. Last, it holds that Zh = op(ρW�N) and
ZH = op(ρW�N) by (A.61) and (A.62).

We have shown that the conditions of Lemma A.1 of Donald and Newey
(2001)2 are satisfied and we apply the lemma with

Â(W ) = (h+ Th
1 + Th

2 )(h+ Th
1 + Th

2 )
′ + h(Th

3 + Th
4 + Th

5 )
′

+ (T h
3 + Th

4 + Th
5 )h

′ − hh′H−1(TH
1 + TH

2 + TH
3 )

− (TH
1 + TH

2 + TH
3 )H−1hh′

and

ZA(W ) = (T h
3 + Th

4 + Th
5 )(T

h
3 + Th

4 + Th
5 )

′

+ (T h
3 + Th

4 + Th
5 )(T

h
1 + Th

2 )
′ + (T h

1 + Th
2 )(T

h
3 + Th

4 + Th
5 )�

We show that ZA(W ) = op(ρW�N). By (A.55), (A.56), and the fact that√
W ′Γ W +∑i(Pii(W ))2/N = op(ρW�N), it holds that

(T h
3 + Th

4 )(T
h
3 + Th

4 )
′ = Op

((
K′W
N

)2)
+ op(ρW�N)

= op(ρW�N)�

By (A.55), (A.56), (A.57), and the fact that
√
W ′Γ W +∑i(Pii(W ))2/N3/2 =

op(ρW�N), it holds that

Th
5 (T

h
3 + Th

4 )
′ = Op

(
K′W
N3/2

)
+ op(ρW�N) = op(ρW�N)�

2We note that here we do not need to use our Lemma A.1, which is a modified version of
Lemma A.1 of Donald and Newey (2001).
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By (A.57), we have

Th
5 (T

h
5 )

′ = Op

(
1
N

)
= op(ρW�N)�

By (A.53), (A.55), (A.56), and the fact that
√
W ′Γ W +∑i(Pii(W ))2/N =

op(ρW�N), we have

Th
1 (T

h
3 + Th

4 )= Op

(
Δ(W )1/2K

′W
N

)
+ op(ρW�N)= op(ρW�N)�

since Δ(W )1/2 = op(1) by Lemma A.6(i). By (A.54), (A.55), (A.56), and the
fact that

√
W ′Γ W +∑i(Pii(W ))2/N = op(ρW�N), it follows that

Th
2 (T

h
3 + Th

4 ) = Op

(
K′W
N

√√√√√W ′Γ W +
∑
i

(Pii(W ))2

N

)
+ op(ρW�N)

= op(ρW�N)�

Lemma A.6(vi), (A.53), and (A.57) imply that

Th
5 (T

h
1 )

′ = Op

(
Δ(W )1/2

√
N

)
= op(ρW�N)�

Last, we have

Th
5 (T

h
2 )

′ = Op

(
√
W ′Γ W +

∑
i

(Pii(W ))2

N

)
= op(ρW�N)

by (A.54), (A.57), and the fact that
√
W ′Γ W +∑i(Pii(W ))2/N = op(ρW�N).

To sum up, we have ZA(W )= op(ρW�N).
Now, we calculate the expectation of each term in Â(W ). First of all,

E[hh′|z] = E[f ′εε′f/N|z] = σ2
εH. Second, we have

E[hTh′
1 |z] = E

[
−f ′εε′(I − P(W ))f

N

∣∣∣z]= −σ2
ε

f ′(I − P(W ))f

N
�

Similarly, it holds that E[Th
1 h

′|z] = −σ2
ε f

′(I − P(W ))f/N . Third, using
Lemma A.6(v) and replacing u by v gives

E[hTh′
2 |z] =

N∑
i=1

fiPii(W )E[ε2
i v

′
i|z]/N�
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which is Op(K
′W +/N). Fourth,

E[Th
1 T

h′
1 |z] = E

[
f ′(I − P(W ))εε′(I − P(W ))f

N

∣∣∣z]

= σ2
ε

f ′(I − P(W ))(I − P(W ))f

N
�

Fifth, by Lemma A.6(viii), replacing u by v, we obtain

E[Th
1 T

h′
2 |z] = −E

[
f ′(I − P(W ))εε′P(W )v

N

∣∣∣z]

= −f ′(I − P(W ))μv(W )

N
�

where μv(W ) = (μv�1(W )� � � � �μv�N(W )) and μv�i = Pii(W )E[ε2
i vi]. Similarly,

we have E[Th
2 T

h′
1 |z] = −μv(W )(I − P(W ))f/N . Sixth, noting that E[viεi|z] =

0, a similar argument to Lemma A.6(iv) gives

E[Th
2 T

h′
2 |z] = σ2

εΣv(W
′Γ W )/N + Cum[εi� εi� vi� v′

i]
∑
i

(Pii(W ))2/N�

Seventh, we have

E[hh′H−1TH′
1 |z] = −E

[
f ′εε′fH−1f ′(I − P(W ))f

N2

∣∣∣z]

= −σ2
ε

f ′(I − P(W ))f

N
�

Similarly, we have E[TH
1 H−1hh′|z] = −σ2

ε f
′(I − P(W ))f/N . Eighth,

Lemma A.6(vii) implies that

E[hh′H−1TH′
2 |z] = E

[
hh′H−1(u′f + f ′u)

N

∣∣∣z]

= Op

(
1
N

)
= op(ρW�N)

and that E[TH
2 H−1hh′|z] = op(ρW�N). Ninth, we have

h(Th
3 )

′ − hh′H−1(TH
3 )′ = Th

3 h
′ − TH

3 H−1hh′ = 0�
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Tenth, we have

E[h(Th
4 )

′|z] = −K′W
N

N∑
i=1

fiE[ε2
i v

′
i]

N
+Op

(
1
N

)
+Op

(
K′W +

N2

)

= −K′W
N

N∑
i=1

fiE[ε2
i v

′
i]

N
+ op(ρW�N)

by Lemma A.18(ii). Similarly, we have E[Th
4 h

′|z] = −(K′W/N)(
∑N

i=1 fi ×
E[ε2

i ui]/N)+ op(ρW�N). Last, Lemma A.18(iii)–(viii) implies that

E[h(Th
5 )

′|z] =Op

(
1
N

)
= op(ρW�N)

and that E[Th
5 h

′|z] = op(ρW�N).
Let

ζ̂ =
N∑
i=1

fiPii(W )E[ε2
i v

′
i]/N − K′W

N

N∑
i=1

fiE[ε2
i v

′
i]/N�

Note that ζ̂ = 0 under the third moment condition in the theorem. Therefore,
we have

E(Â(K)) = σ2
εH − σ2

ε

f ′(I − P(W ))f

N
− σ2

ε

f ′(I − P(W ))f

N

− f ′(I − P(W ))μv(W )

N
− μv(W )′(I − P(W ))f

N

+ σ2
εΣv

W ′Γ W

N
+ Cum[εi� εi� vi� v′

i]

∑
i

(Pii(W ))2

N

+ ζ̂ + ζ̂ ′ + σ2
ε

f ′(I − P(W ))(I − P(W ))f

N

+ σ2
ε

f ′(I − P(W ))f

N
+ σ2

ε

f ′(I − P(W ))f

N
+ op(ρW�N)

= σ2
εH + σ2

εΣv

W ′Γ W

N
+ σ2

ε

f ′(I − P(W ))(I − P(W ))f

N

+ Cum[εi� εi� vi� v′
i]

∑
i

(Pii(W ))2

N
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− f ′(I − P(W ))μv(W )

N
− μv(W )′(I − P(W ))f

N

+ ζ̂ + ζ̂ ′ + op(ρW�N)�

By Lemma A.1 of Donald and Newey (2001), we have the desired result.
For the MAFuller estimator β̂ defined in (2.4) the result can be established

by noting the following. By the construction of Λ̂m, we have 0 ≤ 1 − Λ̂m≤ 1.
Therefore,

0 < Λ̌m − Λ̂m

=
α

N −m
(1 − Λ̂m)

2

1 − α

N −m
(1 − Λ̂m)

= α((1 − Λ̂m)
2)

N −m− α(1 − Λ̂m)

≤ α

N −M − α
= O

(
1
N

)

uniformly over m. It therefore follows that

Λ̌(W )= Λ̂(W )+Op(1/N)�(A.63)

Now let ρW�N = tr(S(W )). We have

X ′P(W )X

N
− Λ̌(W )

X ′X
N

= X ′P(W )X

N
− Λ̂(W )

X ′X
N

+Op

(
1
N

)

= X ′P(W )X

N
− Λ̂(W )

X ′X
N

+ op(ρW�N)

by (A.63), X ′X/N =Op(1) and 1/N = op(ρW�N). Similarly, we have

X ′P(W )ε√
N

− Λ̌(W )
X ′ε√
N

= X ′P(W )ε√
N

− Λ̂(W )
X ′ε√
N

+Op

(
1
N

)

= X ′P(W )ε√
N

− Λ̂(W )
X ′ε√
N

+ op(ρW�N)�

Therefore, the higher order mean squared errors of the MALIML and the
MAFuller estimator are the same. Q.E.D.
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A.5. Verification of Regularity Conditions for Unconstrained Optimal Weights

To demonstrate that the regularity conditions imposed are not too strin-
gent, it is useful to consider various optimal weights and verify that the con-
ditions hold. We note that when Ω is equal to ΩU or ΩB, a closed form
solution for W ∗ is available. Let γm = λ′H−1f ′(I − Pm)fH

−1λ/N and let U
be the matrix whose (i� j) element is γmax(i�j) so that λ′H−1f ′(I − P(W ))(I −
P(W ))fH−1λ/N = W ′UW . This implies that Sλ(W ) is quadratic function
in W and the optimal weight is given by solving the first-order condition. For
the MALIML estimator with Ω =ΩU , we have

W ∗ = (1′
M(U + σ2

v Γ )−11M)
−1(U + σ2

v Γ )−11M

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
v

σ2
v +N(γ1 − γ2)

− σ2
v

σ2
v +N(γ1 − γ2)

+ σ2
v

σ2
v +N(γ2 − γ3)

���

− σ2
v

σ2
v +N(γM−2 − γM−1)

+ σ2
v

σ2
v +N(γM−1 − γM)

− σ2
v

σ2
v +N(γM−1 − γM)

+ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

such that

j∑
s=1

ws = σ2
v

σ2
v +N(γj − γj+1)

�

It follows that for some ε > 0,∣∣∣∣∣
j∑

s=1

ws

∣∣∣∣∣≤ j2α+1

N

σ2
v

j2α+1σ2
v /N + ε

wpa1 for j /∈ J̄

and ∣∣∣∣∣
j∑

s=1

ws

∣∣∣∣∣≤ L2α+1

N

σ2
v

ε
for j /∈ J̄� j ≤ L

such that, for L =O(N1/(2(2α+1))), it follows that

sup
j /∈J̄�j≤L

∣∣∣∣∣
j∑

s=1

ws

∣∣∣∣∣=Op(1/
√
N)�
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The case of MA2SLS with Ω = ΩU is handled next. The optimal weight is
given by

W ∗
U = arg min

W ∈ΩU

Sλ(W )

= 1
2
A−1

(
Kλ′H−1BNH−1λ+ 2 − 1′

MA−1Kλ′H−1BNH−1λ

1′
MA−11M

1M

)

= eM + 1
2

2(σ2
εσ

2
λ + σ2

λε +Mσ2
λε)−Bλ

σ2
λσ

2
ε + σ2

λε + σ2
λε

M−1∑
j=1

σ2
λ + σ2

λε/σ
2
ε

σ2
λ + σ2

λε/σ
2
ε +N(γj − γj+1)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
λ + σ2

λε/σ
2
ε

σ2
λ + σ2

λε/σ
2
ε +N(γ1 − γ2)

− σ2
λ + σ2

λε/σ
2
ε

σ2
λ + σ2

λε/σ
2
ε +N(γ1 − γ2)

+ σ2
λ + σ2

λε/σ
2
ε

σ2
λ + σ2

λε/σ
2
ε +N(γ2 − γ3)

���

− σ2
λ + σ2

λε/σ
2
ε

σ2
λ + σ2

λε/σ
2
ε +N(γM−1 − γM)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

First, consider (γj − γj+1) < γj ≤ C < ∞ which holds because fi is bound-
ed by Assumption 3(iv) such that λ′H−1f ′(I − Pm)fH

−1λ/N ≤ λ′H−1f ′ ×
fH−1λ/N ≤ supi ‖fi‖2‖λ′H−1‖2 ≤ C for some C <∞. Then

M−1∑
j=1

σ2
λ + σ2

λε/σ
2
ε

σ2
λ + σ2

λε/σ
2
ε +N(γj − γj+1)

≥ 1
N

M−1∑
j=1

σ2
λ + σ2

λε/σ
2
ε

(σ2
λ + σ2

λε/σ
2
ε )/N +C

=O

(
M

N

)

such that

2(σ2
εσ

2
λ + σ2

λε +Mσ2
λε)−Bλ

σ2
λσ

2
ε + σ2

λε + σ2
λε

M−1∑
j=1

σ2
λ + σ2

λε/σ
2
ε

σ2
λ + σ2

λε/σ
2
ε +N(γj − γj+1)

= Op(M)�
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By the same argument as before we have

σ2
λ + σ2

λε/σ
2
ε

σ2
λ + σ2

λε/σ
2
ε +N(γj − γj+1)

≤ L2α+1

N

σ2
λ + σ2

λε/σ
2
ε

σ2
λ + σ2

λε/σ
2
ε + ε

for j /∈ J̄� j ≤L

such that

sup
j /∈J̄�j≤L

∣∣∣∣∣
j∑

s=1

ws

∣∣∣∣∣=Op

(
ML2α+1

N

)
�

where the desired rate obtains if

L= o

((
N1/2

M

)1/(2α+1))
�
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