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APPENDIX B: TECHNICAL DETAILS

Unbalanced Panel

THE ESTIMATION PROCEDURE can be modified to handle unbalanced data.
Stock and Watson (1998) presented a method for estimating unbalanced factor
models based on the expectation–maximization (EM) algorithm.1 The proce-
dure is extended here to models with regressors. Two sets of iterations are
needed: outer iterations and inner iterations. Outer iterations are those be-
tween β and the factor model, similar to balanced panels. Inner iterations are
those within the factor model associated with the EM method. For cross sec-
tion i, suppose we have observations for t = 1�2� � � � � Ti (missing observations
could occur at the beginning of the sample or at both ends). Suppose λi and Ft
are observable for the moment, then the least squares estimator for β is

β̂=
(

N∑
i=1

Ti∑
t=1

XitX
′
it

)−1 N∑
i=1

Ti∑
t=1

Xit(Yit − λ′
iFt)�(49)

Assuming β is known, let Wit = Yit − X ′
itβ. Then Wit = λ′

iFt + εit is a pure
factor model with unbalanced panel. Let T = max{T1�T2� � � � �TN} and define
Iit = 1 for observable (i� t) and = 0, otherwise. The EM algorithm in Stock
and Watson (1998) imputes the missing values at each stage of iteration us-
ing estimates from the prior stage. More specifically, let λ̂(h−1)

i and F̂ (h−1)
t

(i = 1� � � � �N; t = 1�2� � � � � T ) be the estimates at stage h− 1. Let W (h)
it =Wit

for Iit = 1 and = λ̂(h−1)′
i · F̂ (h−1)

t for Iit = 0 (with starting valueW (0)
it = 0). Finally,

let W (h) = (W (h)
it ) be the T × N matrix. The h stage estimate for F̂ (h) is the

first r eigenvectors associated with the first r largest eigenvalues of the matrix
W (h)W (h)′ , subject to the constraints F̂ (h)′ F̂ (h)/T = I and Λ̂(h) = T−1W (h)′ F̂ (h).
This process continues until convergence. Let λ∗

i and F∗
t be the final stage es-

timates; these values are then plugged into (49) to obtain a new estimate of β
(outer iteration). With the new β, we recompute Wit = Yit −Xitβ for Iit = 1,
readying for another round of inner iterations. Within the inner iterations, the

1A comprehensive description of the EM algorithm as well as its application to pure factor
models can be found in the monograph by McLachlan and Krishnan (1996).
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starting value for W (0)
it when Iit = 0 is now W (0)

it = λ∗′
i F

∗
t (instead of zero for

faster convergence), where λ∗
i and F∗

t are the converged values in the previ-
ous round of inner iterations. Note that convergence for the inner iterations
is not necessary. In fact, inner iterations can be reduced to a single round of
computation.

PROOF OF LEMMA A.1: From 1
NT

∑N

i=1X
′
iεi = op(1), it is sufficient to show

supF
1
NT

∑N

i=1X
′
iPFεi = op(1). Using PF = FF ′/T ,

1
NT

∥∥∥∥∥
N∑
i=1

XiPFεi

∥∥∥∥∥ =
∥∥∥∥∥ 1
N

N∑
i=1

(
X ′
iF

T

)
1
T

T∑
t=1

Ftεit

∥∥∥∥∥
≤ 1
N

N∑
i=1

∥∥∥∥X ′
iF

T

∥∥∥∥ ·
∥∥∥∥∥ 1
T

T∑
t=1

Ftεit

∥∥∥∥∥�
Note that T−1‖X ′

iF‖ ≤ T−1‖Xi‖ · ‖F‖ = √
rT−1/2‖Xi‖ ≤ √

r( 1
T

∑T

t=1 ‖Xit‖2)1/2

because T−1/2‖F‖ = √
r. Thus, using the Cauchy–Schwarz inequality, the above

is bounded by

√
r

(
1
N

N∑
i=1

1
T

T∑
t=1

‖Xit‖2

)1/2(
1
N

N∑
i=1

∥∥∥∥∥ 1
T

T∑
t=1

Ftεit

∥∥∥∥∥
2)1/2

�

The first expression is Op(1). It suffices to show that the second term is op(1)
uniformly in F . Now

1
N

N∑
i=1

∥∥∥∥∥ 1
T

T∑
t=1

Ftεit

∥∥∥∥∥
2

= tr

(
1
N

N∑
i=1

1
T 2

T∑
t=1

T∑
s=1

FtF
′
sεitεis

)

= tr

(
1
T 2

T∑
t=1

T∑
s=1

FtF
′
s

1
N

N∑
i=1

[εitεis −E(εitεis)]
)

+ tr

(
1
T 2

T∑
t=1

T∑
s=1

FtF
′
s

1
N

N∑
i=1

σii�ts

)
�

where σii�ts = E(εitεis). The first expression is bounded by the Cauchy–Schwarz
inequality:(

1
T 2

T∑
t=1

T∑
s=1

‖Ft‖2‖Fs‖2

)1/2

N−1/2

×
(

1
T 2

T∑
t=1

T∑
s=1

[
1√
N

N∑
i=1

[εitεis −E(εitεis)]
]2)1/2

�
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But T−1
∑T

t=1 ‖Ft‖2 = ‖F ′F/T‖ = r. Thus the above expression is equal to
rN−1/2Op(1). Next, | 1

N

∑N

i=1σii�ts| ≤ τts by Assumption C(ii). Again by the
Cauchy–Schwarz inequality,

∥∥∥∥∥ 1
T 2

T∑
t=1

T∑
s=1

FtF
′
s

1
N

N∑
i=1

σii�ts

∥∥∥∥∥ ≤
(

1
T 2

T∑
t=1

T∑
s=1

‖Ft‖2‖Fs‖2

)1/2

×
(

1
T 2

T∑
t=1

T∑
s=1

τ2
ts

)1/2

= rT−1/2

(
1
T

T∑
t=1

T∑
s=1

τ2
ts

)1/2

= rO
(
T−1/2

)
�

where the last equality follows from τ2
ts ≤ Mτts and Assumption C(ii). The

proof for the remaining statements are the same, so are omitted. Note that
we do not need bounded support for Ft and our optimization with respect to
Ft does not need to be taken over bounded set. Q.E.D.

PROOF OF LEMMA A.2: Denote the term inside ‖ · ‖2 as A. Then the left-
hand side is equal to E tr(AA′). Using E‖Ft‖4 ≤M and Assumption C(iv), (i)
follows readily. The proof of (ii) is similar. Q.E.D.

PROOF OF LEMMA A.3: (i) This part extends Lemma B.2 of Bai (2003). Us-
ing (42), it is easy to see that the first five terms are each Op(β̂− β). In fact,
the first, third, and fifth terms are op(β̂ − β); the second and fourth terms
are Op(β̂ − β). The next three terms are considered in Bai (2003) and each
is shown to be Op(δ−2

NT ) in the absence of β. With the estimation of β, they
are each shown to be Op(β̂−β)Op(δ−1

NT )+Op(δ−2
NT ) due to Proposition A.1(ii)

instead of Lemma A.1 of Bai (2003). But Op(β̂− β)Op(δ−1
NT ) is dominated by

Op(β̂−β), the order of the first five terms. Thus summing over the eight terms,
we obtain part (i).

For part (ii),

‖T−1F̂ ′(F̂ − F 0H)‖ ≤ T−1‖F̂ − F 0H‖2 + ‖H‖T−1‖F 0′(F̂ − F 0H)‖
= Op(β̂−β)+Op(δ−2

NT )

by part (i) and Proposition A.1(ii). The proof of part (iii) is identical to part (i).
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For (iv),

1
NT

N∑
i=1

X ′
iMF̂(F̂ − F 0H)= 1

N

N∑
i=1

1
T
X ′
i(F̂ − F 0H)

+ 1
N

N∑
i=1

X ′
i F̂

T
F̂ ′(F̂ − F 0H)�

The first term on the right is an average of (iii) over i and thus is still that order
of magnitude. The second term is bounded by 1

N

∑N

i=1 ‖Xi/
√
T‖2

√
r‖T−1F̂ ′(F̂−

F 0H)‖ =Op(1)‖T−1F̂ ′(F̂ − F 0H)‖. Thus (iv) follows from part (ii). Q.E.D.

PROOF OF LEMMA A.4: Part (i) extends Lemma B.1 of Bai (2003). The
proof is omitted as it is easier than the proof of part (ii) (a proof can be found
in the working version). Now consider the proof of (ii). From (42) and denoting
G= (F 0′F̂/T )−1(Λ′Λ/N)−1 for the moment,

T−1N−1/2
N∑
k=1

ε′
k(F̂H

−1 − F 0)= T−1N−1/2
N∑
k=1

ε′
k(I1 + · · · + I8)G

= a1 + · · · + a8�

We show that the first four terms are each T−1/2Op(β̂−β):

‖a1‖ ≤ T−1/2‖G‖
(

1
N

N∑
i=1

∥∥∥∥∥
(

1√
TN

N∑
k=1

T∑
t=1

εktXit

)∥∥∥∥∥
(‖Xi‖2

T

))

× ‖β̂−β‖2

= T−1/2‖β̂−β)‖2Op(1)�

a2 = 1
NT

1√
N

N∑
k=1

N∑
i=1

ε′
kXi(β− β̂)λi

(
Λ′Λ
N

)−1

= 1√
T

1
N

N∑
i=1

1√
NT

N∑
k=1

T∑
t=1

Xitεkt(β̂−β)λi
(
Λ′Λ
N

)−1

= T−1/2Op(β̂−β)�

‖a3‖ ≤ T−1/2‖G‖
(

1
N

N∑
i=1

∥∥∥∥∥ 1√
NT

N∑
k=1

T∑
t=1

εktXit

∥∥∥∥∥
(‖εi‖2

T

))
‖β̂−β‖

= T−1/2Op(‖β̂−β‖)�
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a4 = T−1/2

(
1√
NT

N∑
k=1

T∑
t=1

εktF
′
t

)
(β− β̂)′

(
1
N

N∑
i=1

(
X ′
i F̂

T

))
G

= T−1/2Op(β̂−β)�

For a5, let Wi =X ′
i F̂/T and note that ‖Wi‖2 ≤ ‖Xi‖2/T :

a5 = 1
NT

1√
N

N∑
k=1

N∑
i=1

ε′
kεi(β− β̂)′WiG

= 1√
N

1
T

T∑
t=1

(
1√
N

N∑
k=1

εkt

)(
1√
N

N∑
i=1

εit(β̂−β)Wi

)
G

=N−1/2Op(β̂−β)�

For a6,

a6 = 1
NT 2

1√
N

N∑
k=1

ε′
kF

0
N∑
i=1

λiε
′
iF̂G

= 1
NT 2

1√
N

N∑
k=1

ε′
kF

0
N∑
i=1

λiε
′
iF

0HG

+ 1
NT 2

1√
N

N∑
k=1

ε′
kF

0
N∑
i=1

λiε
′
i(F̂ − F 0H)G

= a6�1 + a6�2�

a6�1 = 1√
NT

(
1√
NT

N∑
k=1

T∑
t=1

F 0′
t εkt

)(
1√
NT

N∑
i=1

T∑
t=1

λiF
0′
t εit

)
HG

=Op
(
T−1N−1/2

)
�

a6�2 = T−1/2

(
1√
NT

N∑
k=1

T∑
t=1

F 0′
t εkt

)
1
TN

N∑
i=1

λiε
′
i(F̂ − F 0H)G�

‖a6�2‖ ≤ T−1/2Op(1)
1
N

N∑
i=1

‖λi‖
∥∥∥∥ εi√

T

∥∥∥∥‖F̂ − F 0H‖√
T

‖G‖

= T−1/2[Op(β̂−β)+Op(δ−1
NT )]

= T−1/2(β̂−β)+Op(δ−2
NT )�
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Next consider a7 and a8:

a7 = 1
NT

1√
N

N∑
k=1

N∑
i=1

ε′
kεiλ

′
i

(
Λ′Λ
N

)−1

=N−1/2 1
T

T∑
t=1

[(
1√
N

N∑
k=1

εkt

)(
1√
N

N∑
i=1

εitλ
′
i

)](
Λ′Λ
N

)−1

= Op
(
N−1/2

)
�

a8 = 1
NT 2

1√
N

N∑
k=1

N∑
i=1

ε′
kεi(ε

′
iF̂)G

= 1
NT 2

1√
N

N∑
k=1

N∑
i=1

ε′
kεi(ε

′
iF

0)HG

+ 1
NT 2

1√
N

N∑
k=1

N∑
i=1

ε′
kεi(ε

′
i(F̂ − F 0H))G

= b8 + c8�

b8 = 1
NT

N∑
i=1

[(
1√
TN

N∑
k=1

T∑
t=1

(εktεit −E(εktεit))
)

×
(

1√
T

T∑
s=1

εisF
0
s H

)]
G

+ 1√
NT

1
NT

N∑
k=1

N∑
i=1

T∑
t=1

γki�t
1√
T

T∑
s=1

εisF
0
s HG

= Op(T
−1)+Op

(
(NT)−1/2

)
�

Ignoring G,

c8 = T−1/2 1
N

N∑
i=1

1√
TN

N∑
k=1

T∑
t=1

[εktεit −E(εktεit)]ε
′
i(F̂ − F 0H)

T

+ 1
N3/2T

N∑
k=1

N∑
i=1

T∑
t=1

γki�t
ε′
i(F̂ − F 0H)

T

= c8�1 + c8�2�
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‖c8�1‖ ≤ T−1/2

(
1
N

N∑
i=1

[
1√
TN

N∑
k=1

T∑
t=1

[εktεit −E(εktεit)]
]2)1/2

×
(

1
N

N∑
i=1

‖εi‖2

T

)1/2 ‖F̂ − F 0H‖√
T

= T−1/2Op(‖β̂−β‖)+ T−1/2Op(δ
−1
NT )

= T−1/2Op(‖β̂−β‖)+Op(δ−2
NT )�

‖c8�2‖ ≤ 1√
N

‖F̂ − F 0H‖√
T

1
N

N∑
k=1

N∑
i=1

|γki|‖εi‖√
T

= [
Op(‖β̂−β‖)+Op(δ−1

NT )
]
N−1/2

=N−1/2Op(‖β̂−β‖)+Op(δ−2
NT )�

Note that

EN−1
N∑
k=1

N∑
i=1

|γki|‖εi‖√
T

≤ max
i
E

(‖εi‖√
T

)
N−1

N∑
k=1

N∑
i=1

|γki| =O(1)�

Part (iii) is derived from (ii) with division by
√
N . The presence of λk does

not alter the results. A direct proof would be similar to that of (ii). The details
are omitted.

Part (iv) is the same as (iii) with λk replaced by (X ′
kF

0/T)(F 0′F 0/T) =
Op(1). The first term on the right is an elaboration of the corresponding
Op(N

−1) term appearing in (iii). This elaborated expression will be used
later. Q.E.D.

PROOF OF LEMMA A.5: Rewrite the left-hand side as

1
N2T 2

N∑
i=1

N∑
k=1

X ′
i(εkε

′
k −Ωk)F̂Gλi

− 1
N

N∑
i=1

(
X ′
i F̂

T

)
1

NT 2

N∑
k=1

F̂ ′(εkε′
k −Ωk)F̂Gλi

= I + II�
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Adding and subtracting terms yields

I = 1
N2T 2

N∑
k=1

N∑
i=1

X ′
i(εkε

′
k −Ωk)F

0HGλi

+ 1
N2T 2

N∑
k=1

N∑
i=1

X ′
i(εkε

′
k −Ωk)(F̂ − F 0H)Gλi�

The first term on the right is equal to

(
1

N2T 2

) N∑
i=1

N∑
k=1

{
T∑
t=1

T∑
s=1

Xit[εktεks −E(εktεks)]F 0′
s HGλi

}

= 1

T
√
N

1
N

N∑
i=1

[
N−1/2

N∑
k=1

1
T

T∑
t=1

T∑
s=1

Xit[εktεks −E(εktεks)]F 0′
s

]

×HGλi
=Op

(
1

T
√
N

)

by Lemma A.2(ii). Denote

as =
(

1√
NT

N∑
k=1

T∑
t=1

Xit[εktεks −E(εktεks)]
)

=Op(1)�

Then the second term of I is

1√
NT

1
N

N∑
i=1

1
T

T∑
s=1

as(F̂s − F 0
s H)

′Gλi�

Notice ∥∥∥∥∥ 1
T

T∑
s=1

as(F̂s − F 0
s H)

∥∥∥∥∥ ≤
(

1
T

T∑
s=1

‖as‖2

)1/2(
1
T

T∑
s=1

‖F̂s − F 0
s H‖2

)1/2

= Op(β̂−β)+Op(δ−1
NT )�

Thus the second term of I is (NT)−1/2[Op(β̂−β)+Op(δ−1
NT )]. Consider II:

‖II‖ ≤ 1
N

N∑
i=1

∥∥∥∥XiF̂

T

∥∥∥∥‖Gλi‖ ·
∥∥∥∥∥ 1
NT 2

N∑
k=1

F̂ ′(εkε′
k −Ωk)F̂

∥∥∥∥∥
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= Op(1)

∥∥∥∥∥ 1
NT 2

N∑
k=1

F̂ ′(εkε′
k −Ωk)F̂

∥∥∥∥∥�
But

1
NT 2

N∑
k=1

F̂ ′(εkε′
k −Ωk)F̂

=H 1
NT 2

N∑
k=1

F 0′(εkε′
k −Ωk)F

0H

+H 1
NT 2

N∑
k=1

F 0′(εkε′
k −Ωk)(F̂ − F 0H)

+ 1
NT 2

N∑
k=1

(F̂ − F 0H)′(εkε′
k −Ωk)F

0H

+ 1
NT 2

N∑
k=1

(F̂ − F 0H)′(εkε′
k −Ωk)(F̂ − F 0H)

= b1 + b2 + b3 + b4�

Now

b1 =H
(

1
T 2N

) N∑
k=1

T∑
t=1

T∑
s=1

FsF
′
t [εktεks −E(εktεks)]H =Op

(
1

T
√
N

)

by Lemma A.2(i). Next

b2 =H
1√
NT

1
T

T∑
s=1

[
1√
NT

T∑
t=1

N∑
k=1

F 0
t [εktεks −E(εktεks)]

]

× (F̂s −H ′F 0
s )�

Thus if we let As = 1√
NT

∑T

t=1

∑N

k=1F
0
t [εktεks −E(εktεks)], then

‖b2‖ ≤ ‖H‖ 1√
NT

(
1
T

T∑
s=1

‖As‖2

)1/2(
1
T

T∑
s=1

‖F̂s −H ′F 0
s ‖2

)1/2

= 1√
NT

[
Op(‖β̂−β‖)+Op(δ−1

NT )
]
�
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The term b3 has the same upper bound because it is the transpose of b2. The
last term is

b4 = 1√
N

1
T 2

T∑
t=1

T∑
s=1

(F̂t −H ′F 0
t )(F̂s −H ′F 0

s )
′

×
[

1√
N

N∑
i=1

[εktεks −E(εktεks)]
]
�

Thus by the Cauchy–Schwarz inequality,

‖b4‖ ≤ 1√
N

(
1
T

T∑
t=1

‖Ft −H ′F 0
t ‖2

)

×
(

1
T 2

T∑
t=1

T∑
s=1

[
1√
N

N∑
i=1

[εktεks −E(εktεks)]
]2)1/2

= 1√
N
Op(‖β̂−β‖2)+ 1√

N
Op(δ

−2
NT )�

Now collecting terms yields the lemma. Q.E.D.

PROOF OF LEMMA A.6: First note that ‖(F 0′F̂/T )−1(Λ′Λ/N)−1‖ = Op(1).
Next, ‖X ′

iMF̂ΩF̂‖ ≤ ‖X ′
iMF̂‖‖ΩF̂‖, ‖X ′

iMF̂‖ ≤ ‖Xi‖, and ‖ΩF̂‖ ≤ λmax(Ω) ×
‖F̂‖ = λmax(Ω)

√
rT , where λmax(Ω) is the largest eigenvalue of Ω and is

bounded by assumption. The lemma follows from 1
N

∑N

i=1(‖Xi‖/
√
T)‖λi‖ =

Op(1). Q.E.D.

PROOF OF LEMMA A.7: (i) The first two results of Lemma A.3 can be rewrit-
ten as

F 0′F̂/T − (F 0′F 0/T)H =Op(‖β̂−β‖)+Op(δ−2
NT )

and

I − (F̂ ′F 0/T)H =Op(‖β̂−β‖)+Op(δ−2
NT )�

Left multiply the first equation byH ′ and use the transpose of the second equa-
tion to obtain

I −H ′(F 0′F 0/T)H =Op(‖β̂−β‖)+Op(δ−2
NT )�

Right multiplying by H ′ and left multiplying by H ′−1, we obtain

I − (F 0′F 0/T)HH ′ =Op(‖β̂−β‖)+Op(δ−2
NT )�
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This is equivalent to (i).
(ii) We have

‖PF̂ − PF0‖2 = tr[(PF̂ − PF0)2] = 2 tr(Ir − F̂ ′PF0 F̂/T )�

Proposition 1(ii) already implies Ir − F̂ ′PF0 F̂/T = op(1). By rewriting T−1F̂ ′ ×
F 0 = T−1F̂(F 0 − F̂H−1) + H, we can easily show, using earlier lemmas that
Ir − F̂ ′PF0 F̂/T =Op(‖β̂−β‖)+Op(δ−2

NT ). The details are omitted. Q.E.D.

PROOF OF LEMMA A.8: First consider 1√
NT

∑N

i=1Xi(MF0 −MF̂)εi. Note that
MF0 −MF̂ = PF̂ − PF0 and PF̂ = F̂ F̂ ′/T . By adding and subtracting terms,

1√
NT

N∑
i=1

X ′
i F̂

T
F̂ ′εi − 1√

NT

N∑
i=1

X ′
iPF0εi

= 1√
NT

N∑
i=1

X ′
i(F̂ − F 0H)

T
H ′F 0′εi

+ 1√
NT

N∑
i=1

X ′
i(F̂ − F 0H)

T
(F̂ − F 0H)′εi

+ 1√
NT

N∑
i=1

X ′
iF

0H

T
(F̂ − F 0H)′εi

+ 1√
NT

N∑
i=1

X ′
iF

0

T

[
HH ′ −

(
F 0′F 0

T

)−1]
F 0′εi

= a+ b+ c+ d�
Consider a. Note that (F̂s −H ′F 0

s )
′H ′F 0

t is scalar and thus commutable with
Xit :

a= 1
T

T∑
s=1

(F̂s −H ′F 0
s )

′H ′
(

1√
NT

N∑
i=1

T∑
t=1

F 0
t Xisεit

)
�

Thus

‖a‖ ≤
[

1
T

T∑
s=1

‖F̂s −H ′F 0
s ‖2

]1/2

‖H‖

×
[

1
T

T∑
s=1

∥∥∥∥∥
(

1√
NT

N∑
i=1

T∑
t=1

F 0
t Xisεit

)∥∥∥∥∥
2]1/2

= [
Op(‖β̂−β‖)+Op(δ−1

NT )
]
Op(1)= op(1)�
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Similarly,

b= T 1/2 1
T 2

T∑
s=1

T∑
t=1

(F̂s −H ′F 0
s )

′(F̂t −H ′F 0
t )

(
1√
N

N∑
i=1

Xisεit

)

and

‖b‖ ≤ √
T

(
1
T

T∑
t=1

‖F̂t −H ′F 0
t ‖2

)(
1
T 2

T∑
s=1

T∑
t=1

∥∥∥∥∥ 1√
N

N∑
i=1

Xitεit

∥∥∥∥∥
2)1/2

= √
T

[
Op(‖β̂−β‖2)+Op(δ−2

NT )
]
Op(1)�

Consider c:

c = 1√
NT

N∑
i=1

X ′
iF

0

T
HH ′(F̂H−1 − F 0)′εi

= 1√
NT

N∑
i=1

X ′
iF

0

T

(
F 0′F 0

T

)−1

(F̂H−1 − F 0)′εi

+ 1√
NT

N∑
i=1

X ′
iF

0

T

[
HH ′ −

(
F 0′F 0

T

)−1]
(F̂H−1 − F 0)′εi

= c1 + c2�
Denote Q=HH ′ − (F 0′F 0/T)−1 for the moment. We show c2 = op(1), that is,

c2 = √
NT

(
1
NT

N∑
i=1

[
ε′
i(F̂H

−1 − F 0)⊗
(
X ′
iF

0

T

)])
vec(Q)

= √
NT

[
(NT)−1/2(‖β̂−β‖)+Op(N−1)+N−1/2Op(δ

−2
NT )

]
vec(Q)

by the argument of Lemma A.4(iii) and (iv). By Lemma A.7, vec(Q) =
Op(‖β̂ − β‖) + Op(δ

−2
NT ). Thus c2 = Op(β̂ − β) + √

T/NOp(δ
−2
NT ) + √

T ×
Op(δ

−4
NT )

p−→ 0 if T/N3 → 0.
By Lemma A.4(iv), switching the role of i and k, we get

c1 = (√NT/N)ψNT +Op(β̂−β)+ √
TOp(δ

−2
NT )�

where

ψNT = 1
N

N∑
i=1

N∑
k=1

X ′
iF

0

T

(
F 0′F 0

T

)−1(
Λ′Λ
N

)−1

λk

(
1
T

T∑
t=1

εitεkt

)
�(50)
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which is Op(1). To see this, let Ai = (X ′
iF0/T)(F

0′F 0/T)−1 and Bk = (Λ′Λ/
N)−1λk. Then

ψNT = 1
T

T∑
t=1

(
N−1/2

N∑
i=1

Aiεit

)(
N−1/2

N∑
k=1

Bkεkt

)
=Op(1)�

For d, again let Q=HH ′ − (F 0′F 0/T)−1. Then

d = 1√
NT

N∑
i=1

[
ε′
iF

0 ⊗
(
X ′
iF

0

T

)]
vec(Q)(51)

=
(

1√
NT

N∑
i=1

T∑
t=1

F 0
t εit ⊗

(
X ′
iF

0

T

))
vec(Q)=Op(1) vec(Q)�(52)

which is op(1) because vec(Q) = Op(‖β̂− β‖)+ Op(δ
−2
NT ) by Lemma A.7. In

summary, ignore dominated terms:

1√
NT

N∑
i=1

X ′
i(MF0 −MF̂)εi =

(√
NT

N

)
ψNT + √

TOp(‖β̂−β0‖2)(53)

+Op(β̂−β)+ √
TOp(δ

−2
NT )�

Let Vi = 1
N

∑N

k=1 aikXk. Then replacing Xi with Vi, the same argument leads to

1√
NT

N∑
i=1

V ′
i (MF0 −MF̂)εi =

(√
NT

N

)
ψ∗
NT + √

TOp(‖β̂−β0‖2)(54)

+Op(β̂−β)+ √
TOp(δ

−2
NT )�

where ψ∗
NT =Op(1) is defined as

ψ∗
NT = − 1

N

N∑
i=1

N∑
k=1

V ′
i F

0

T

(
F 0′F 0

T

)−1(
Λ′Λ
N

)−1

λk

(
1
T

T∑
t=1

εitεkt

)
�(55)

which is also Op(1) for the same reasoning as for ψNT . Combining (53) and
(54), and defining ξ†

NT =ψNT −ψ∗
NT , we obtain the lemma:

1√
NT

N∑
i=1

[
X ′
iMF̂ − 1

N

N∑
k=1

aikX
′
kMF̂

]
εi

= 1√
NT

N∑
i=1

[
X ′
iMF0 − 1

N

N∑
k=1

aikX
′
kMF0

]
εi
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−
(√

NT

N

)
(ψNT −ψ∗

NT )+ √
TOp(‖β̂−β0‖2)

+Op(‖β̂−β0‖)+ √
TOp(δ

−2
NT )� Q.E.D.

PROOF OF LEMMA A.9: (i) We have

D(F̂)−D(F 0)= 1
NT

N∑
i=1

X ′
i(MF̂ −MF0)Xi

− 1
T

[
1
N2

N∑
i=1

N∑
k=1

X ′
i(MF̂ −MF0)Xkaik

]
�

The norm of the first term on the right is bounded by

∥∥∥∥∥ 1
NT

N∑
i=1

X ′
i(PF̂ − PF0)Xi

∥∥∥∥∥ ≤ 1
N

N∑
i=1

(‖Xi‖2

T

)
‖PF̂ − PF0‖ = op(1)

by Lemma A.7(ii). The proof that the second term is op(1) is the same.
(ii) By Lemma A.6, ζNT = Op(1), and by Lemma A.8, ξ†

NT = Op(1) so
that ξNT = D(F̂)−1ξ†

NT = Op(1). Thus Corollary 1 implies that
√
NT(β̂ −

β)= Op(
√
N/T)+Op(

√
T/N). That is, β̂− β=Op(

1
N
)+Op( 1

T
)= Op(δ

−2
NT ).

The proof for (i) implies that ‖D(F̂) − D(F 0)‖ ≤ Op(1)‖PF̂ − PF0‖. But by
Lemma A.7(ii), ‖PF̂ − PF0‖ = Op(‖β̂− β‖1/2)+Op(δ−1

NT )= Op(δ
−1
NT ). In sum-

mary, ‖D(F̂) −D(F 0)‖ ≤ Op(δ
−1
NT ). It follows that

√
T/N‖D(F̂) −D(F 0)‖ ≤√

T/NOp(δ
−1
NT )= op(1) if T/N2 → 0. The proof of (iii) is the same.

(iv) From ξNT = D(F̂)−1ξ†
NT ,

√
T/N[D(F̂) − D(F 0)] = op(1) by part (ii),

and ξ†
NT = Op(1), it suffices to show

√
T/N[D(F 0)−1ξ†

NT − B] = op(1). Let
Aik = λ′

k⊗[(Xi−Vi)′F 0/T ] andG= (F 0′F 0/T)−1(Λ′Λ/N)−1. Then E‖Aik‖2 ≤
M and ‖G‖ =Op(1). We have

D(F 0)ξ†
NT −B

= −D(F 0)−1 1
N

N∑
i=1

N∑
k=1

[
Aik

1
T

T∑
t=1

(εitεkt − σik�tt)
]

vec(G)�

Assumption C(iv) implies that the above is Op(T−1/2). Thus
√
T/N[D(F 0)−1 ×

ξ†
NT −B] =Op(N−1/2)= op(1).
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(v) Comparing ζNT and C , and in view of (iii), it suffices to show that the
difference

1
NT

N∑
i=1

X ′
iMF̂ΩF̂

(
F 0′F̂
T

)−1(
Λ′Λ
N

)−1

λi

− 1
NT

N∑
i=1

X ′
iMF0ΩF 0

(
F 0′F 0

T

)−1(
Λ′Λ
N

)−1

λi

multiplied by
√
N/T is op(1). Using ab− cd = a(b− c)+ (a− c)b, by adding

and subtracting terms, we first consider

1
NT

N∑
i=1

Xi(MF̂ −MF0)ΩF̂Gi�

where Gi = (F 0′F̂/T )−1(Λ′Λ)−1λi. Note that ‖ΩF̂‖ ≤ λmax(Ω)‖F̂‖ = O(
√
T),

where λmax(Ω) is the largest eigenvalue of Ω and is O(1). Further, ‖Xi(MF̂ −
MF0)‖ ≤ ‖Xi‖‖PF̂ − PF0‖ = ‖Xi‖Op(δ−1

NT ). Thus∥∥∥∥∥ 1
NT

N∑
i=1

Xi(MF̂ −MF0)ΩF̂Gi

∥∥∥∥∥
≤O(1)‖PF̂ − PF0‖ 1

N

N∑
i=1

(
T−1/2‖Xi‖

)‖Gi‖ =Op(δ−1
NT )�

But
√
N/TOp(δ

−1
NT )= op(1) if N/T 2 → 0. Next consider

1
NT

N∑
i=1

XiMF0Ω

[
F̂

(
F 0′F̂
T

)−1

− F 0

(
F 0′F 0

T

)−1](
Λ′Λ
N

)−1

λi�

From ‖XiMF0Ω‖ ≤ λmax(Ω)‖XiMF0‖ ≤ λmax(Ω)‖Xi‖ and 1
N

∑N

i=1 T
−1/2‖Xi‖ ×

‖Λ′Λ/Nλi‖ =Op(1), it suffices to show

T−1/2[F̂(F 0′F̂/T )−1 − F 0(F 0′F 0/T)−1]
= T−1/2(F̂ − PF0 F̂)(F 0′F̂/T )−1

=Op(δ−1
NT )�

But T−1/2‖F̂ − PF0 F̂‖ = ‖PF̂ − PF0‖ =Op(δ−1
NT ), proving the lemma. Q.E.D.

PROOF OF LEMMA A.10: By definition, Λ̂′ = 1
T
F̂ ′(Y − Xβ̂), where Y =

(Y1� � � � �YN) is T ×N and X is T ×N ×p (three-dimensional matrix), so that
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Xβ̂ is T ×N (readers may consider β is a scalar so that X is simply T ×N).
Thus from Y −Xβ̂= F 0Λ′ + ε−X(β̂−β0),

Λ̂′ = T−1F̂ ′F 0Λ′ + T−1F̂ ′ε− T−1F̂ ′X(β̂−β0)�

From F 0 = F 0 − F̂H−1 + F̂H−1 and using F̂ ′F̂/T = I, we have

Λ̂′ −H−1Λ′ = T−1F̂ ′(F 0 − F̂H−1)Λ′ + T−1F̂ ′ε− T−1F̂ ′X(β̂−β)�(56)

Thus

N−1/2‖Λ̂′ −H−1Λ′‖

≤ √
r
‖F̂ 0 − F̂H−1‖√

T

‖Λ‖√
N

+ T−1/2

∥∥∥∥ 1√
NT

F̂ ′ε

∥∥∥∥ + √
r

‖X‖√
NT

‖β̂−β‖�

The first term is Op(‖β̂ − β‖) + Op(δ
−1
NT ) by Proposition A.1(ii); the second

term is Op(T−1/2); the third term is Op(‖β̂−β‖) in view ‖X‖/√NT =Op(1).
Thus N−1/2‖Λ̂′ −H−1Λ′‖ =Op(‖β̂−β‖)+Op(δ−1

NT ). This is equivalent to (i).
For (ii), left multiplying Λ on each side and then dividing by N gives

N−1(Λ̂′ −H−1Λ′)Λ= T−1F̂ ′(F 0 − F̂H−1)(Λ′Λ/N)

+ (TN)−1F̂ ′εΛ− (TN)−1F̂ ′X(β̂−β)Λ�
The first term on the right is Op(‖β̂ − β‖) + Op(δ

−2
NT ) by Lemma A.3. The

second term is

(TN)−1(F̂ − F 0H)′εΛ+ (TN)−1HF 0′εΛ= a+ b�
But a is the left-hand side of Lemma A.4(iii), thus having the desired result.
Term b is simply (TN)−1/2Op(1), also as desired. Finally,

‖(TN)−1F̂ ′X(β̂−β)Λ‖ ≤ √
r‖X/√TN‖ · ‖Λ/√N‖ · ‖β̂−β‖

= Op(‖β̂−β‖)
proving (ii). By adding and subtracting terms, (iii) follows from (i) and (ii). Part
(iv) follows from A−1 − B−1 =A−1(B−A)B−1 and (iii). Part (v) follows from
(59) below and Lemma A.3. For part (vi), multiply (59) by ‖T−1/2Xi‖ on each
side and then take the sum. The bound is the same as in (v). Q.E.D.

PROOF OF LEMMA A.11: The denominator of B is D(F 0). Equation (61)
shows that

√
T/N[D̂0 −D(F 0)] = op(1). Thus it is sufficient to consider the
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numerator only. We shall prove

(√
T

N

)[
1
N

N∑
i=1

X ′
i F̂

T

(
Λ̂′Λ̂
N

)−1

λ̂iσ̂
2
i(57)

− 1
N

N∑
i=1

X ′
iF

0

T

(
F 0′F 0

T

)−1(
Λ′Λ
N

)−1

λiσ
2
i

]
= op(1)

and

(√
T

N

)[
1
N

N∑
i=1

V̂ ′
i F̂

T

(
Λ̂′Λ̂
N

)−1

λ̂iσ̂
2
i(58)

− 1
N

N∑
i=1

V ′
i F

0

T

(
F 0′F 0

T

)−1(
Λ′Λ
N

)−1

λiσ
2
i

]
= op(1)�

Consider (57). There are four items being estimated, namely F , Λ′Λ/N , λi,
and σ2

i . Using the identity âb̂ĉd̂ − abcd = (â− a)b̂ĉd̂ + a(b̂− b)ĉd̂ + ab(ĉ −
c)d̂+ abc(d̂− d), the first corresponding term is∥∥∥∥∥ 1

N

N∑
i=1

X ′
i(F̂ − F 0H)

T

(
Λ̂′Λ̂
N

)−1

λ̂iσ̂
2
i

∥∥∥∥∥
≤ ‖F̂ − F 0H‖√

T

(
1
N

N∑
i=1

‖Xi‖√
T

∥∥∥∥
(
Λ̂′Λ̂
N

)−1

λ̂iσ̂
2
i

∥∥∥∥
)

=Op(δ−1
NT )�

The second corresponding term is Op(δ
−1
NT ), which follows from Lem-

ma A.10(iv). The term HH ′ arises in the interim, which just matches (F 0′F 0/
T)−1 by Lemma A.7 and HH ′ − (F 0′F 0/T)−1 =Op(δ−1

NT ).
For the third corresponding term, from (56),

λ̂i −H−1λi = T−1F̂ ′(F 0 − F̂H−1)λi + T−1F̂ ′εi − T−1F̂ ′X ′
i(β̂−β)(59)

= T−1F̂ ′(F 0 − F̂H−1)λi + T−1(F̂ − F̂ 0H)′εi

+ T−1HF 0′εi − T−1F̂ ′Xi(β̂−β)�
This means that the corresponding third term is also split into four expressions.
Each expression can be easily shown to be dominated by Op(δ−1

NT ).
Next

ε̂it = εit +X ′
it(β̂−β)+ (F̂t −H ′F 0

t )H
−1λi + F̂ ′

t (λ̂i −H−1λi)�(60)
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It is easy to show that 1
T

∑T

t=1 ε̂
2
it − 1

T

∑T

t=1 ε
2
it = Op(δ

−1
NT ). Furthermore,

1
T

∑T

t=1 ε
2
it − σ2

i = 1
T

∑T

t=1[ε2
it − E(ε2

it)] = Op(T
−1/2). In summary, (57) is equal

to
√
T/NOp(δ

−1
NT )= op(1) if T/N2 → 0.

Consider (58). The only difference between (58) and (57) is Xi replaced by
V̂i. Thus it is sufficient to prove

(√
T

N

)
1
N

N∑
i=1

(V̂i − Vi)′F 0

T
Ai = op(1)�

where Ai = (F 0′F 0/T)−1(Λ′Λ/N)−1λiσ
2
i =Op(1):∥∥∥∥∥ 1

N

N∑
i=1

(V̂i − Vi)′F 0

T
Ai

∥∥∥∥∥
≤

(
1
N

N∑
i=1

T−1/2‖V̂i − Vi‖‖Ai‖
)∥∥T−1/2F 0

∥∥�
Now V̂i − Vi = 1

N

∑N

k=1(âik − aik)Xk, where

âik − aik = (λ̂i −H−1λi)
′(Λ̂′Λ̂/N)−1λ̂k

+ λ′
iH

′−1[(Λ̂′Λ̂/N)−1 −H ′(Λ′Λ/N)−1H]λ̂k
+ λ′

i(Λ
′Λ/N)−1H(λ̂k −H−1λk)�

Thus

1
N

N∑
i=1

T−1/2‖V̂i − Vi‖‖Ai‖

≤
(

1
N

N∑
i=1

‖λ̂i −H−1λi‖‖Ai‖
)∥∥∥∥

(
Λ̂′Λ̂
N

)−1∥∥∥∥
(

1
N

N∑
k=1

‖λ̂k‖
∥∥∥∥ Xk√

T

∥∥∥∥
)

+
∥∥∥∥
[(
Λ̂′Λ̂
N

)−1

−H ′
(
Λ′Λ
N

)−1

H

]∥∥∥∥
(

1
N

N∑
i=1

‖H−1λi‖‖Ai‖
)

×
(

1
N

N∑
k=1

‖λ̂k‖
∥∥∥∥ Xk√

T

∥∥∥∥
)

+ 1
N

N∑
i=1

∥∥∥∥λi
(
Λ′Λ
N

)−1

H

∥∥∥∥‖Ai‖ 1
N

N∑
k=1

‖(λ̂k −H−1λk)‖
∥∥∥∥ Xk√

T

∥∥∥∥�
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Each term on the right is bounded Op(δ−1
NT ) by Lemmas A.10. Thus (58) is

equal to
√
T/NOp(δ

−1
NT ), which is op(1) if T/N2 → 0. Q.E.D.

PROOF OF LEMMA A.12: We only analyze terms involving the difference
Ω̂−Ω, because expressions that involve other estimates were analyzed in the
proof of Lemma A.11. Consider

1
NT

N∑
i=1

X ′
iMF̂(Ω̂−Ω)F̂

(
Λ̂′Λ̂
N

)−1

λ̂i

= 1
NT

N∑
i=1

X ′
i(Ω̂−Ω)F̂

(
Λ̂′Λ̂
N

)−1

λ̂i

+ 1
NT

N∑
i=1

X ′
i F̂

T
F̂ ′(Ω̂−Ω)F̂

(
Λ̂′Λ̂
N

)−1

λ̂i = a+ b�

a= 1
N

N∑
i=1

1
T

T∑
t=1

XitF̂
′
t

(
1
N

N∑
k=1

ε̂2
kt − σ2

k�t

)(
Λ̂′Λ̂
N

)−1

λ̂i�

‖a‖ ≤
[

1
T

T∑
t=1

(∥∥∥∥∥ 1
N

N∑
i=1

XitF̂
′
t

(
Λ̂′Λ̂
N

)−1

λ̂i

∥∥∥∥∥
)2]1/2

×
[

1
T

T∑
t=1

(
1
N

N∑
k=1

ε̂2
kt − σ2

k�t

)2]1/2

�

But 1
N

∑N

k=1 ε̂
2
kt −σ2

k�t = 1
N

∑N

k=1[ε̂2
kt − ε2

kt] + 1
N

∑N

k=1[ε2
kt −σ2

k�t] = 1
N

∑N

k=1[ε̂2
kt −

ε2
kt]+Op(N−1/2). Moreover, 1

N

∑N

k=1[ε̂2
kt −ε2

kt] =Op(δ−1
NT ) and so is the average

over t. Thus a=Op(δ−1
NT ). Next

‖b‖ ≤ T−1‖F̂ ′(Ω̂−Ω)F̂‖ 1
N

N∑
i=1

∥∥∥∥X ′
i F̂

T

∥∥∥∥
∥∥∥∥
(
Λ̂′Λ̂
N

)−1

λ̂i

∥∥∥∥
= T−1‖F̂ ′(Ω̂−Ω)F̂‖Op(1)�

But 1
T
‖F̂ ′(Ω̂ − Ω)F̂‖ = 1

T
‖∑T

t=1 F̂t F̂
′
t (

1
N

∑N

k=1 ε̂
2
kt − σ2

k�t)‖ ≤ √
r{ 1

T

∑T

t=1[ 1
N

×∑N

k=1(ε̂
2
kt −σ2

k�t)]2}1/2 =Op(δ−1
NT ), that is, b=Op(δ−1

NT ). Thus
√
N/T(Ĉ −C)=√

N/TOp(δ
−1
NT )→ 0 if N/T 2 → 0. Q.E.D.
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PROOF OF PROPOSITION 2: (i) Because D(F 0)
p−→ D0, it suffices to prove

D̂0 −D(F 0)
p−→ 0, where

D(F 0)= 1
NT

N∑
i=1

X ′
iMF0X ′

i −
1

TN2

N∑
i=1

N∑
k=1

X ′
iMF0Xkaik

and D̂0 is the same as D(F 0) with F 0 and aik replaced by F̂ and âik. The
proof of Proposition A.2 shows that ‖ 1

NT

∑N

i=1X
′
i(MF̂ −MF0)Xi‖ =Op(1)‖PF̂ −

PF0‖ ≤Op(‖β̂−β‖1/2)+Op(δ−1
NT )=Op(δ−1

NT ) by Lemma A.7(ii). It remains to
show

δ= 1
TN2

N∑
i=1

N∑
k=1

X ′
iMF̂Xk[âik − aik] = op(1)�

Noticing aik = λ′
k(Λ

′Λ/N)−1λi, and adding and subtracting terms yields

âik − aik = (λ̂k −H−1λk)
′(Λ̂′Λ̂/N)−1λ̂i

+ λ′
kH

′−1[(Λ̂′Λ̂/N)−1 −H ′(Λ′Λ/N)−1H]λ̂i
+ λ′

k(Λ
′Λ/N)−1H(λ̂i −H−1λi)

= bik + cik + dik�
Decompose δ into δ1 + δ2 + δ3, where δ1� δ2, and δ3 are defined the same
way as δ but with âik − aik replaced by bik, cik, and dik, respectively. From
T−1‖X ′

iMF̂Xk‖ ≤ ‖T−1/2Xi‖‖T−1/2Xk‖,

‖δ1‖ ≤
(

1
N

N∑
i=1

∥∥T−1/2Xi

∥∥∥∥∥∥
(
Λ̂′Λ̂
N

)−1

λ̂i

∥∥∥∥
)

×
(

1
N

N∑
k=1

∥∥T−1/2Xk

∥∥‖λ̂k −H−1λk‖
)
�

By Lemma A.10(v), ‖δ1‖ =Op(δ−1
NT )+Op(‖β̂−β‖)= op(1). Next,

‖δ2‖ ≤
(

1
N

N∑
i=1

∥∥T−1/2Xi

∥∥‖λ̂i‖
)(

1
N

N∑
k=1

∥∥T−1/2Xk

∥∥‖λk‖‖H−1‖
)

×
∥∥∥∥
(
Λ̂′Λ̂
N

)−1

−H ′
(
Λ′Λ
N

)−1

H

∥∥∥∥�
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which is Op(δ−2
NT )+Op(‖β̂−β‖) by Lemma A.10(iii). Finally, δ3 = op(1) using

the same argument for δ1. In summary, D̂0 −D(F 0)= op(1). In fact, we obtain
a stronger result D̂0 −D(F 0)=Op(δ−1

NT ). Thus√
T/N[D̂0 −D(F 0)] = √

T/NOp(δ
−1
NT )= op(1)(61)

provided that T/N2 → 0. Similarly√
N/T [D̂0 −D(F 0)] = √

N/TOp(δ
−1
NT )= op(1)

provided that N/T 2 → 0. These two results are used in the bias-corrected es-
timators.

Consider D̂1. Let D∗
1 = 1

NT

∑N

i=1σ
2
i

∑T

t=1ZitZ
′
it . From D∗

1
p−→ D1, we only

need to show D̂1 −D∗
1

p−→ 0:

D̂1 −D∗
1 = 1

N

N∑
i=1

(σ̂2
i − σ2

i )
1
T

T∑
t=1

ẐitẐ
′
it

+ 1
N

N∑
i=1

σ2
i

1
T

T∑
t=1

(ẐitẐ
′
it −ZitZ′

it)

= a+ b�

‖a‖ ≤ 1
N

N∑
i=1

|(σ̂2
i − σ2

i )|
1
T

T∑
t=1

‖Ẑit‖2�

From

ε̂it = εit +X ′
it(β̂−β)+ (F̂t −H ′F 0

t )H
−1λi + F̂ ′

t (λ̂i −H−1λi)

and

λ̂i −H−1λi = T−1F̂ ′(F 0 − F̂H−1)λi

+ T−1(F̂ − F̂ 0H)′εi + T−1HF 0′εi − T−1F̂ ′Xi(β̂−β)
(see the proofs of Lemmas A.10 and A.11), we can write

1
T

T∑
t=1

ε̂2
it −

1
T

T∑
t=1

ε2
it =Op(δ−1

NT )vi�

where Op(δ−1
NT ) does not depend on i and where vi is such that 1

N

∑N

i=1 |vi|2 =
Op(1). Now σ̂2

i −σ2
i = 1

T

∑T

t=1 ε̂
2
it − 1

T

∑T

t=1 ε
2
it + 1

T

∑T

t=1[ε2
it −σ2

i ] =Op(δ−1
NT )vi+
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T−1/2wi, where wi = T−1/2
∑T

t=1[ε2
it − σ2

i ] =Op(1). Thus

‖a‖ ≤ Op(δ−1
NT )

1
N

N∑
i=1

|vi|
(

1
T

T∑
t=1

‖Ẑit‖2

)

+ T−1/2 1
N

N∑
i=1

|wi|
(

1
T

T∑
t=1

‖Ẑit‖2

)
=Op(δ−1

NT )�

The proof of b being op(1) is the same as that of part (i); the factor σ2
i does

not affect the proof.
The proof of D̂2 being consistent for D̂2 is similar and thus is omitted.
Consider D̂3. Let D∗

3 = 1
NT

∑N

i=1

∑T

t=1ZitZ
′
itσ

2
i�t . From D∗

3
p−→D3, it is suffi-

cient to show D̂3 −D∗
3 = op(1):

D̂3 −D∗
3 = 1

NT

N∑
i=1

T∑
t=1

ẐitẐ
′
it(ε̂

2
it − ε2

it)

+ 1
NT

N∑
i=1

T∑
t=1

(ẐitẐ
′
it −ZitZit)ε2

it

+ 1
NT

N∑
i=1

T∑
t=1

ZitZ
′
it(ε

2
it − σ2

i�t)�

The first term is bounded by(
1
NT

N∑
i=1

T∑
t=1

‖Ẑit‖4

)1/2(
1
NT

N∑
i=1

T∑
t=1

(ε̂2
it − ε2

it)
2

)1/2

�

so it is easy to show 1
NT

∑N

i=1

∑T

t=1(ε̂
2
it − ε2

it)
2 = op(1). The second term on the

right is essentially analyzed in part (i); the extra factor ε2
it does not affect the

analysis. The third term being op(1) is due to the law of large numbers, as in
White’s heteroskedasticity estimator. Thus D̂2 −D∗

3 = op(1). Q.E.D.

On Instrumental Variable Interpretation in Section 6

The estimator can be interpreted as an instrumental variable (IV) estimator
with Zi as the IV. Left multiplying Z′

i on each side of

Yi =Xiβ+ Fλi + εi�
we obtain, noting Z′

iF = 0,

Z′
iYi =Z′

iXiβ+Z′
iε�
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Summing over i and solving for β, we obtain the instrumental variable estima-
tor

β̂IV =
(

N∑
i=1

Z′
iXi

)−1 N∑
i=1

Z′
iYi�

Moreover, it is easy to show
∑N

i=1Z
′
iXi = ∑N

i=1Z
′
iZi. Thus the instrumental

variable estimator has the same form as the asymptotic representation of the
interactive-effects estimator. It follows that the latter estimator is an asymp-
totic IV estimator with Zi as instruments.

A Useful Lemma for Section 8

LEMMA A.13: The following identities hold (i.e., ε̇i can be replaced by εi):

N∑
i=1

Żi(F̂)
′ε̇i ≡

N∑
i=1

Żi(F̂)
′εi�(62)

N∑
i=1

Ż′
iε̇i ≡

N∑
i=1

Ż′
iεi�(63)

PROOF: First note that

ε̇i = εi − ιT ε̄i· − ε̄+ ιT ε̄··�

where ε̄ = (ε̄·1� ε̄·2� � � � � ε̄·T )′ does not depend on i. From the constraint∑T

t=1 F̂t = F̂ ′ιT = 0, we have MF̂ιT = ιT . Also, Ẋ ′
iιT = 0 for all i. It follows

that Ż′
iιT = 0 in view of

Żi(F̂)= Ẋ ′
iMF̂ − 1

N

N∑
k=1

aikẊ
′
kMF̂�

From
∑N

i=1 Ẋi = 0 and
∑N

i=1 aik = 0, we have
∑N

i=1 Żi = 0. It follows that∑N

i=1 Żi(F̂)
′ε̄ = 0. Thus

∑N

i=1 Żi(F̂)
′ε̇i = ∑N

i=1 Żi(F̂)
′εi, proving (62). We have

used the fact that
∑N

i=1 aik = 0, which follows from
∑N

i=1 λi = 0. Noting that
F 0′ιT = 0, due to the restriction (29), the proof of (63) is identical to that of
(62). Q.E.D.
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APPENDIX C: ADDITIONAL RESULTS ON TESTING ADDITIVE
VERSUS INTERACTIVE EFFECTS

PROOF OF (34): Under the i.i.d. assumption, E(εiε′
j)= 0 and Eεiε′

i = σ2IT .
Thus

E(ηψ′)= σ2 1
NT

N∑
i=1

X ′
iMF [Xi − ιT X̄i· − X̄ + ιT X̄··]

= σ2 1
NT

N∑
i=1

X ′
iMFXi − σ2 1

T
X̄ ′MFX̄

from MFιT = 0, because F contains ιT as one of its columns. Next,

Eξψ′ = σ2 1
NT

N∑
i=1

[
1
N

N∑
k=1

aikX
′
kMF

]
[Xi − ιT X̄i· − X̄ + ιT X̄··]

= σ2 1
TN2

N∑
i=1

N∑
k=1

aikX
′
kMFXi

− σ2 1
NT

N∑
k=1

[
1
N

N∑
i=1

aik

]
X ′
kMFX̄

= σ2 1
TN2

N∑
i=1

N∑
k=1

aikX
′
kMFXi − 1

T
σ2X̄ ′MFX̄�

because
∑N

i=1 aik = 1 under the null hypothesis. This follows from λi = (1�αi)′
with

∑
i αi = 0. Thus

E[(η− ξ)ψ′] = σ2 1
NT

N∑
i=1

X ′
iMFXi

− 1
T

1
N2

N∑
i=1

N∑
k=1

aikX
′
kMFXi = σ2D(F 0)�

Q.E.D.

C.1. Time-Invariant versus Time-Varying Individual Effects

Consider the null hypothesis of the fixed-effects model

Yit =X ′
itβ+ λi + εit�(64)
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where λi is an unobservable scalar. The alternative hypothesis is that the fixed
effects are time-varying,

Yit =X ′
itβ+ λiFt + εit�(65)

where Ft is also an unobservable scalar. This is a single factor interactive-
effects model. If Ft = 1 for all t, the fixed-effects model is obtained.

The interactive-effects estimator for β is consistent under both models (64)
and (65), but is less efficient than the least squares dummy-variable estimator
for model (64), as the latter imposes the restriction Ft = 1 for all t. Neverthe-
less, the fixed-effects estimator is inconsistent under model (65). The principle
of the Hausman test is applicable here.

The least squares dummy-variable estimator is

√
NT(β̂FE −β)=

(
1
NT

N∑
i=1

X ′
iMTXi

)−1
1√
NT

N∑
i=1

X ′
iMTεi�

where MT = IT − ιT ι′T /T . For the interactive model, the estimator is
√
NT(β̂IE −β)

=D(F 0)−1 1√
NT

N∑
i=1

[
X ′
iMF0 − 1

N

N∑
k=1

aikX
′
kMF0

]
εi + op(1)�

Let

η= 1√
NT

N∑
i=1

X ′
iMF0εi� ξ= 1√

NT

N∑
i=1

[
1
N

N∑
k=1

aikX
′
kMF0

]
εi�(66)

By Proposition A.3,
√
NT(β̂IE −β)=D(F 0)−1(η− ξ)+ op(1)�(67)

Under the null hypothesis, F 0 = ιT , and thus MT =MF0 and
√
NT(β̂FE −β)=A−1η�

where A= ( 1
NT

∑N

i=1X
′
iMTXi).

The variances of the two estimators (the conditional variance to be precise)
are

var(
√
NT(β̂FE −β))= σ2A−1�

var(
√
NT(β̂IE −β))= σ2D(F 0)−1�
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respectively. To show that the variance of the difference in estimators is equal
to the difference in variances, that is,

var(β̂IE − β̂FE)= var(β̂IE)− var(β̂FE)�

it suffices to show

E(ηξ′)=E(ξξ′)�(68)

The proof is given below. Note that Eξξ′ is positive definite, that is, A −
D(F 0) = Eξξ′ is positive definite. This implies that var(

√
NT(β̂IE − β̂FE)) =

σ2[D(F 0)−1 −A−1] is a matrix of full rank (positive definite). Thus

J =NTσ2(β̂IE − β̂FE)
′[D(F 0)−1 −A−1]−1(β̂IE − β̂FE)

d−→ χ2
p�

Replacing D(F 0) and σ2 by their consistent estimators, the above is still
true. Proposition 2 shows that D(F 0) is consistently estimated by D̂0. Let
σ̂2 = 1

L

∑N

i=1

∑T

t=1 ε̂
2
it , where L=NT − (N + T)−p+ 1. Then σ̂2 p−→ σ2.

C.2. Homogeneous versus Heterogeneous Time Effects

For the purpose of comparison, the usual time effects are called homoge-
neous time effects since they are the same across individuals:

Yit =Xitβ+ Ft + εit�
where Ft is an unobservable scalar. The heterogeneous time-effects model is

Yit =Xitβ+ λiFt + εit�
which is a simple interactive-effects model with r = 1. The least squares
dummy-variable method for the homogeneous effects gives

√
NT(β̂FE −β)= B−1ψ�

where B = ( 1
NT

∑N

i=1(Xi − X̄)′(Xi − X̄)) and ψ = 1√
NT

∑N

i=1(Xi − X̄)′εi, and
X̄ = 1

N

∑N

i=1Xi, is a T×1 vector. The interactive-effects estimator has the same
representation as in (67). Under the null hypothesis of the homogeneous time
effect, we have λi = 1 for all i and hence aik = 1. It follows that

var(η− ξ)= σ2D(F 0)= σ2 1
NT

N∑
i=1

X ′
iMF0Xi − σ2 1

T
X̄ ′MF0X̄�

It is shown below that

Eηψ′ = var(η− ξ)= σ2D(F 0)� E(ξψ′)= 0�(69)
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This implies that

var(β̂IE − β̂FE)= var(β̂IE)− var(β̂FE)�

Thus Hausman’s test takes the form

J =NTσ2(β̂IE − β̂FE)
′[D(F 0)−1 −B−1]−1(β̂IE − β̂FE)

d−→ χ2
p�

The above still holds with D(F 0) and σ2 replaced by D̂0 and σ̂2.

PROOF OF (68): Under i.i.d. assumptions for εit , using Eεiε′
j = 0 for i 
= j

and Eεiε′
i = σ2IT ,

E(ηξ′)= σ2 1
N2T

N∑
i=1

N∑
k=1

aikX
′
kMFXi�

E(ξξ′) = 1
N3T

N∑
i=1

N∑
j=1

N∑
k=1

N∑
�=1

aikX
′
kMFE(εiεj)MFX�aj�

= σ2 1
N2T

N∑
k=1

N∑
�=1

(
1
N

N∑
i=1

aikai�

)
X ′
kMFX�

= σ2 1
N2T

N∑
k=1

N∑
�=1

ak�X
′
kMFX� =Eηξ′

since 1
N

∑N

i=1 aikai� = ak�. Q.E.D.

PROOF OF (69): We have

E(ηφ′)= σ2 1
NT

N∑
i=1

X ′
iMF [Xi − X̄]

= σ2 1
NT

N∑
i=1

X ′
iMFXi − σ2 1

T
X̄ ′MFX̄�

E(ξψ′) = σ2 1
N2T

N∑
i=1

N∑
k=1

aikX
′
kMF [Xi − X̄]

= σ2 1
T
X̄ ′MF(X̄ − X̄)= 0�

Note that aik = 1 for all i and k under the null hypothesis. Q.E.D.
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C.3. The Number of Factors

In this section we argue why the number of factors can be consistently es-
timated, and discuss how to use this fact to discern additive and interactive-
effects. For pure factor models, Bai and Ng (2002) showed that the number
of factors can be consistently estimated based on the information criterion ap-
proach. Their analysis can be amended to our current setting. Details will not
be presented to avoid repetition, but intuition will be given.

We assume that r ≤ k, where k is given. Suppose r is unknown, but we en-
tertain k factors in the estimation. It can be shown that as long as k ≥ r, we
have β̂(k)IE − β= Op(1/

√
NT), where the superscript k indicates k factors are

estimated. Let ûit(k)= Yit −X ′
it β̂

(k)
IE and ε̂it(k)= ûit(k)− λ̂i(k)′F̂t(k). Then

ûit(k)= λ′
iFt + εit +Op(1/

√
NT)�

Thus ûit has a pure factor model; the Op(1/
√
NT) error will not affect the

analysis of Bai and Ng (2002). This means that

1
NT

N∑
i=1

T∑
t=1

ε̂2
it(k)− 1

NT

N∑
i=1

T∑
t=1

ε2
it =Op

(
1

min[N�T ]
)
�

Since k≥ r, the above is true when k is replaced by k. Thus,

σ̂2(k)− σ̂2(k)=Op(1/min[N�T ])�

where σ̂2(k)= 1
NT

∑N

i=1

∑T

t=1 ε̂
2
it(k).

If k< r, unless λ′
iFt are uncorrelated with the regressors, and E(λi)= 0 and

E(Ft)= 0, β cannot be consistently estimated. In any case, F 0 cannot be con-
sistently estimated since F 0 is T × r and F̂(k) is only T × k. The consequence
of inconsistency is

σ̂2(k)− σ̂2(k) > c > 0

for some c > 0, not depending on N and T . This implies that any penalty func-
tion that converges to zero but is of greater magnitude than Op(1/min[N�T ])
will lead to consistent estimation of the number of factors. In particular,

CP(k)= σ̂2(k)+ σ̂2(k)[k(N + T)− k2] log(NT)
NT

or

IC(k)= log σ̂2(k)+ [k(N + T)− k2] log(NT)
NT
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will work. That is, let k̂ = arg mink≤k CP(k) or k̂ = arg mink≤k IC(k). Then
P(k̂ = r) → 1 as N�T → 0. Although the usual Bayesian information crite-
rion (BIC) only assumes either T → ∞ orN → ∞ but not both, the IC(k) has
the same form as the BIC criterion, as there is a total ofNT observations. With
k factors, the number of parameters is k(N + T)− k2 + p, where k2 reflects
the restriction F ′F/T = I and Λ′Λ= diagonal, but p does not vary with k, so
can be excluded in the penalty function. The CP criterion is similar to Mallows’
Cp.

Ignoring k2 for a moment (since it is dominated by k(N + T) for large
N and T ), the penalty function in IC(k) is k · g(N�T), where g(N�T) =
(N + T) log(NT)

NT
. Clearly, the penalty function goes to zero as N�T → 0, unless

N = exp(T) or T = exp(N) (these are the rare situations where BIC breaks
down; Bai and Ng (2002) suggested several alternative criteria). In addition,
g(N�T) is of larger magnitude than 1/min[N�T ] since g(N�T)∗min[N�T ] →
∞. These two properties of a penalty function imply consistency, as shown by
Bai and Ng (2002).

Given that the number of factors can be consistently estimated, we can
determine whether an additive model or interactive model is more appro-
priate. Suppose the null hypothesis postulates time-invariant fixed effects as
Yit =X ′

itβ+ λi + εit . Then

Yit − Ȳi· = (Xit − X̄i·)′β+ εit − ε̄i·�
Under the time-varying fixed-effects model Yit =X ′

itβ+ λiFt + εit , we have

Yit − Ȳi· = (Xit − X̄i·)′β+ λi(Ft − F̄)+ εit − ε̄i·�
Under the null hypothesis, no factor exists, and under the alternative, there
exists one factor.

The same argument works for the fixed time-effects model, in which we use
Yit − Ȳ·t as the left-hand side variable and Xit − X̄·t as the right-hand side
variable.

Next consider the additive versus the interactive model:

Yit =X ′
itβ+μ+ αi + ξt + εit

or

Ẏit = Ẋ ′
itβ+ ε̇it �

where Ẏit and Ẋit were defined previously. Therefore, the transformed data
exhibit no factors. Under the interactive model (32), the transformed data obey

Ẏit = Ẋ ′
itβ+ λ′

iFt + ε̇it �
The factor structure is unscathed by the transformation and the number of
factors is still two.
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APPENDIX D: ADDITIONAL RESULTS FOR SECTION 10

We now explain the meaning of D(F 0) > 0 and argue that it can be segre-
gated into some intuitive and reasonable conditions. To simplify notation and
for ease of discussion, we assume the only regressors are time invariant or com-
mon (no Xit), that is,

Xi = (ιTx′
i�W )� β′ = (γ′� δ′)�

The condition D(F 0) > 0 implies the following four restrictions:
I. Genuine interactive-effects: F 0 or its rotation does not contain ιT ; Λ or

its rotation does not contain ιN . Otherwise, we are back in the environment of
Hausman and Taylor, and instrumental variables must be used to identify β. In
algebraic notation

1
T
ι′TMF0ιT > 0 and

1
N
ι′NMΛιN > 0�

II. No multicollinearity between W and F 0: The following matrix is positive
definite:

1
T
W ′MF0W > 0�

Without this assumption, even if F 0 is observable, we cannot identify β and Λ
due to multicollinearity.

III. No multicollinearity between x and Λ:

1
N
x′MΛx> 0�

This is required for identification of β and F 0.
IV. Identification of the grand mean, if it exists: At least one of the following

holds:

1
N
(x� ιN)

′MΛ(x� ιN) > 0�(70)

1
T
(ιT �W )

′MF0(ιT �W ) > 0�(71)

That is, either x does not contain ιN or W does not contain ιT . If both contain
the constant regressor, there will be two grand mean parameters, and thus they
are not identifiable.
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To see thatD(F 0) > 0 implies the above four conditions, we simply compute

D(F)=
[
((1/N)x′MΛx)(ι

′
TMFιT/T)

(W ′MFιT/T)((1/N)ι′NMΛx)

((1/N)x′MΛιN)(ι
′
TMFW /T)

((1/N)ι′NMΛιN)(W
′MFW /T)

]
�

For a positive definite matrix, the diagonal block matrices must be positive defi-
nite. This leads to the first three conditions immediately. To see thatD(F 0) > 0
also implies IV, we use a contradiction argument. Suppose neither of the matri-
ces in (70) and (71) is positive definite, and since they are semipositive definite,
their determinants must be zero. Then it is not difficult to show that the deter-
minant of D(F 0) is also zero. This contradicts D(F 0) > 0.

More interestingly, the four conditions above are also sufficient forD(F 0) >
0, a consequence of the following lemma.

LEMMA 14: Let A be a q× q symmetric matrix. Assume the (q+ 1)× (q+ 1)
matrix

Ā=
[
A α
α′ τ

]
> 0

is positive definite, so A> 0 and τ > 0 (a scalar). Suppose

B̄=
[
ν b′

b B

]
≥ 0� with ν > 0�B > 0�

is semipositive definite, where B is �× � and ν is scalar. Then the following (q+
�)× (q+ �) matrix is positive definite:

Ā♦B̄=
[
Aν αb′

bα′ τB

]
> 0�

The role of Ā and B̄ can be reversed. The lemma only requires one
of them to be positive definite, not both. Now suppose (70) holds. Let
Ā = 1

N
(x� ιN)

′MΛ(x� ιN) and B̄ = 1
T
(ιT �W )

′MF0(ιT �W ), and Ā > 0. In ad-
dition, A = 1

N
x′MΛx > 0, τ = ι′NMΛιN > 0, ν = 1

T
ι′TMF0ιT > 0, and B =

W ′MF0W/T > 0, all following from the first three conditions. Thus the as-
sumptions of Lemma 14 hold. It follows that Ā♦B̄ > 0, but Ā♦B̄ = D(F 0).
Thus the four conditions imply D(F 0) > 0. We now summarize the result.

LEMMA 15: The matrix D(F 0) > 0 if and only if the above four conditions
hold.
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REMARK ON LEMMA 14: B̄ need not be positive definite. For example, for
�= 1, B̄ can be the 2 × 2 matrix with each entry being 1. Then Ā♦B̄ = Ā > 0.
The lemma holds if Ā ≥ 0 with A > 0 and τ > 0, but B̄ > 0 (reversing the
role of Ā and B̄). Moreover, from Ā♦B̄ > 0, one can deduce the condition
of the lemma (or the conditions reversing the role of Ā and B̄). In this sense,
the condition is necessary and sufficient. The operator ♦ is analogous to the
Hadamard product, which requires equal sizes for Ā and B̄, and is defined
as componentwise multiplication. We are not aware of any matrix result in
this nature. The lemma can be proved for � = 1 and for arbitrary q then with
induction over � (the proof is available from the author). Q.E.D.

PROOF OF PROPOSITION 3: As in the proof of Proposition 1, denote the
true value by (β0�F 0). Recall that the objective function can be written as
SNT (β�F)= S̃NT (β�F)+ op(1), where

S̃NT (β�F)= (β−β0)′D(F)(β−β0)+ θ′Bθ�

where B= [(Λ′Λ/N)−1 ⊗ IT ]> 0, and θ is a function of (β�F) such that

θ= vec(MFF
0)+B−1 1

NT

N∑
i=1

(λi ⊗MFXi)(β−β0);(72)

see the proof of Proposition 1 in Appendix A. Since D(F) is semipositive defi-
nite for any F and since B is positive definite,

S̃NT (β�F)≥ 0

for all (β�F). On the other hand, S̃NT (β0�F 0) = 0. We show that (β0�F 0) is
the unique point at which S̃NT (β�F) achieves its minimum, where uniqueness
with respect to F 0 is up to a rotation (identification restrictions on F and Λ in
fact fix the rotation). Letting

(β∗�F∗)= arg min S̃NT (β�F)�

we can show (β∗�F∗)= (β0�F 0). Since S̃NT (β∗�F∗)= 0, we must have

(β∗ −β0)′D(F∗)(β∗ −β0)= 0 and θ∗ = θ(β∗�F∗)= 0�

If D(F∗) is of full rank, then β∗ − β0 = 0. In this case, from 0 = θ∗ =
vec(MF∗F 0), we have F∗ = F 0. Only when D(F∗) is not full rank is it possi-
ble for β∗ 
= β0. The matrix D(F∗) will not be full rank if F∗ or its rotation
contains the column ιT or contains a column of W . We show that this is not
possible under D(F 0) > 0. If F∗ contains the column ιT , then

D(F∗)=
[

0 0
0 ((1/N)ι′NMΛιN)(W

′MF∗W )/T

]
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and it follows that

0 = (β∗ −β0)D(F∗)(β∗ −β0)= a(δ∗ − δ0)′(W ′MF∗W/T)(δ∗ − δ0)�

where a= 1
N
ι′NMΛιN > 0. The above implies that

MF∗W (δ∗ − δ0)= 0

since x′x= 0 implies x= 0. Therefore,

MF∗Xi(β
∗ −β0)= (MF∗ιTx

′
i�MF∗W )(β∗ −β0)

= (0�MF∗W )(β∗ −β0)=MF∗W (δ∗ − δ0)= 0�

Thus, by (72), 0 = θ∗ = vec(MF∗F 0). It follows that F∗ = F 0. Thus F∗ cannot
contain ιT since F 0 does not contain ιT , a contradiction. Next, suppose that
F∗ contains at least one column of W . Partition W = (W1�W2) and suppose,
without loss of generality, that F∗ contains W2. Then MF∗W = (MF∗W1�0) and

D(F∗)=
⎡
⎣ ((1/N)x′MΛx)(ι

′
TMF∗ιT /T)

(W ′
1MF∗ιT /T)((1/N)ι′NMΛx)

0
((1/N)x′MΛιN)(ι

′
TMF∗W1/T) 0

((1/N)ι′NMΛιN)(W
′

1MF∗W1/T) 0
0 0

⎤
⎦ �

Under 1
T
ι′TMF∗ιT > 0, the first 2 × 2 block of D(F∗) is positive definite by

Lemma 14. Partition δ= (δ′
1� δ

′
2)

′ so β= (γ′� δ′
1� δ

′
2)

′. Partition β∗ and β0 cor-
respondingly. From

(β∗ −β0)′D(F∗)(β∗ −β0)= 0

we have γ∗ −γ0 = 0 and δ∗
1 −δ0

1 = 0. Thus β∗ −β0 = (0′�0′� δ∗′
2 −δ0′

2 ). Together
with MF∗W2 = 0, we have

MF∗Xi(β
∗ −β0)= (M∗

FιTx
′
i�MF∗W1�0)(β∗ −β0)= 0�

In view of (72), 0 = θ∗ = vec(MF∗F 0). It follows that F∗ = F 0, again a contradic-
tion. In summary, under the assumption that D(F 0) > 0, the optimal solution
of S̃NT (β�F) is achieved uniquely at (β0�F 0). This implies that β̂ is a consistent
estimator for β0; see the proof of Proposition 1 in Appendix A. Q.E.D.

APPENDIX E: FINITE SAMPLE PROPERTIES VIA SIMULATIONS

Data are generated according to

Yit =Xit�1β1 +Xit�2β2 + aλ′
iFt + εit�
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λi = (λi1�λi2)′, and Ft = (Ft1�Ft2). The regressors are generated according to

Xit�1 = μ1 + c1λ
′
iFt + ι′λi + ι′Ft +ηit�1�

Xit�2 = μ2 + c2λ
′
iFt + ι′λi + ι′Ft +ηit�2

with ι′ = (1�1). The variables λij�Ftj , and ηit�j are all i.i.d. N(0�1). The impor-
tant parameters are

(β1�β2)= (1�3)�

We set c1 = c2 = μ1 = μ2 = 1 and a= 1. We first consider the case of

εit i.i.d. N(0�4)

and then extend it to correlated errors.
To estimate (β̂IE� F̂), consider the iteration scheme in (11) and (12). A start-

ing value for β or F is needed. The least squares objective function is not
globally convex, so there is no guarantee that an arbitrary starting value will
lead to the global optimal solution. Two natural choices exist. The first is the
simple least squares estimator of β, ignoring the interactive-effects. The sec-
ond is the principal components estimator for F , ignoring the regressors. If λi
and Ft have unusually large nonzero means (arbitrarily stretching the model),
the first choice can fail, but the second choice leads to the optimal solution.
This is because as the interactive-effects become dominant, it makes sense to
estimate the factor structure first. In this case, using the within-group estimator
β as a starting value will also work. To minimize the chance of local minimum,
both choices are used. Upon convergence, we choose the estimator that gives a
smaller value of the objective function. Iterations based on (11) and (12) have
difficulty achieving convergence for models with time-invariant and common
regressors.

A more robust iteration scheme (having a much better convergence prop-
erty) is the following: given F and Λ, compute β̂(F�Λ) = (

∑N

i=1X
′
iXi)

−1 ×∑N

i=1X
′
i(Yi −Fλi), and given β, compute F and Λ from the pure factor model

Wi = Fλi + ei with Wi = Yi −Xiβ. This iteration scheme only requires a sin-
gle matrix inverse (

∑N

i=1X
′
iXi)

−1, so there is no need to update during iter-
ation, unlike the scheme of β̂(F) = (

∑N

i=1X
′
iMFXi)

−1
∑N

i=1X
′
iMFYi. Further-

more, if N > T , we do principal components analysis using WW ′ (T ×T), and
if N < T , we use W ′W (N ×N) to speed up computation. The same product
F̂ λ̂i is achieved, no matter which matrix is used. For the model associated with
Table I, the iteration method in the previous paragraph has many realizations
that do not converge to global optimum, but for the iteration scheme here, all
lead to global solutions.
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TABLE III

VARIOUS ESTIMATORS; I.I.D. ERRORS

Within-Group Estimator Infeasible Estimator Interactive-Effects Estimator

Mean Mean Mean Mean Mean Mean
N T β1 = 1 SD β2 = 3 SD β1 SD β2 SD β1 SD β2 SD

100 3 1.363 0.145 3.364 0.145 0.990 0.161 3.008 0.158 1.022 0.236 3.025 0.229
100 5 1.382 0.096 3.382 0.098 1.000 0.089 3.000 0.086 1.021 0.133 3.021 0.129
100 10 1.388 0.064 3.393 0.063 0.998 0.055 3.002 0.054 1.011 0.071 3.014 0.067
100 20 1.396 0.043 3.399 0.042 0.997 0.034 3.002 0.035 1.002 0.040 3.006 0.040
100 50 1.399 0.027 3.400 0.027 1.000 0.021 3.001 0.021 1.002 0.024 3.003 0.024
100 100 1.399 0.020 3.399 0.020 1.000 0.015 2.999 0.015 1.001 0.017 3.000 0.017

3 100 1.360 0.150 3.361 0.136 0.996 0.090 2.999 0.093 1.039 0.240 3.032 0.231
5 100 1.384 0.098 3.380 0.095 1.003 0.071 2.998 0.070 1.025 0.132 3.019 0.128

10 100 1.389 0.062 3.393 0.063 0.998 0.046 3.002 0.048 1.009 0.066 3.011 0.069
20 100 1.394 0.043 3.395 0.042 0.999 0.034 3.001 0.035 1.004 0.041 3.006 0.041
50 100 1.399 0.027 3.398 0.028 1.000 0.021 3.000 0.021 1.002 0.024 3.002 0.024

For comparison, we also compute two additional estimators: (i) the usual
within-group estimator β̂LSDU and (ii) the infeasible estimator β̂(F), assuming
F is observable.

From Table III, we can draw several conclusions. First, the within estimator
is biased and inconsistent. Biases become more severe when the interactive-
effects are magnified by setting a larger a. For example, if a = 10, the biases
are also almost ten times larger (not reported). The infeasible estimator and
the interactive-effects estimator are virtually unaffected by the value of a. Sec-
ond, both the feasible and the interactive-effects estimators are unbiased and
consistent. The interactive-effects estimator is less efficient than the infeasible
estimator, as can be seen from the larger standard errors, which is consistent
with the theory. Third, even with small N and T , the interactive-effects esti-
mator performs quite well, and as both N and T increase and the standard
deviation becomes smaller.

Table IV gives results for cross-sectionally correlated εit . For cross-sectional
data in reality, a large value of |i− j| does not necessarily mean the correlation
between εit and εjt is small. Nevertheless, for the purpose of introducing cross-
section correlation, εit is generated as AR(1) for each fixed t such that

εit = ρεi−1�t + eit�
where ρ = 0�7. Once cross-section correlation is introduced, the data can be
permuted cross-sectionally if wanted, but the results do not depend on any
particular permutation. We generate stationary data by discarding the first
100 observations. This implies that var(εit) = σ2

e /(1 − ρ2) ≈ 4 for σ2
e = 2 and

ρ= 0�7. Thus the variance of εit is approximately the same as the variance for
Table III. Theorem 1 claims that forN � T , cross-section correlation does not
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TABLE IV

VARIOUS ESTIMATORS; CROSS-SECTIONALLY CORRELATED ERRORS

Within-Group Estimator Infeasible Estimator Interactive-Effects Estimator

Mean Mean Mean Mean Mean Mean
N T β1 = 1 SD β2 = 3 SD β1 SD β2 SD β1 SD β2 SD

100 3 1.368 0.136 3.366 0.142 1.005 0.176 2.996 0.172 1.062 0.235 3.061 0.242
100 5 1.381 0.094 3.382 0.092 0.995 0.092 2.999 0.093 1.064 0.152 3.069 0.157
100 10 1.390 0.061 3.393 0.061 0.998 0.056 3.002 0.058 1.053 0.105 3.057 0.107
100 20 1.397 0.043 3.395 0.042 1.001 0.039 2.999 0.038 1.033 0.078 3.031 0.076
100 50 1.397 0.026 3.400 0.026 0.999 0.023 3.001 0.022 1.010 0.046 3.013 0.046
100 100 1.399 0.020 3.399 0.019 1.000 0.016 3.000 0.016 1.006 0.030 3.005 0.030

3 100 1.368 0.110 3.370 0.105 1.002 0.089 2.999 0.091 1.176 0.166 3.181 0.171
5 100 1.382 0.075 3.385 0.076 1.000 0.070 3.000 0.070 1.222 0.117 3.218 0.117

10 100 1.394 0.053 3.392 0.056 1.002 0.050 2.998 0.049 1.237 0.089 3.238 0.090
20 100 1.396 0.040 3.395 0.041 1.000 0.038 2.999 0.037 1.227 0.089 3.227 0.088
50 100 1.399 0.027 3.398 0.027 1.001 0.024 3.000 0.023 1.072 0.116 3.071 0.117

aMatlab programs are available from the author.

affect consistency. On the other hand, for small N (no matter how large is T ),
the estimates are inconsistent. The simulation results are consistent with those
predictions.

Table V presents results for panel models with lagged dependent variables

Yit = ρYi�t−1 +Xit�1β1 +Xit�2β2 + λ′
iFt + εit

((ρ�β1�β2)= (0�75�1�3); t = 2�3� � � � � T ; i= 1�2� � � � �N)�

TABLE V

MODELS WITH LAGGED DEPENDENT VARIABLES AND HETEROKEDASTICITY

Interactive-Effects Estimator Within Estimator

Mean Mean Mean Mean Mean Mean
N T ρ= 0�75 SD β1 = 1 SD β2 = 3 SD ρ= 0�75 SD β1 = 1 SD β2 = 3 SD

100 5 0.733 0.029 1.125 0.161 3.114 0.163 0.713 0.032 1.345 0.111 3.314 0.117
100 10 0.739 0.012 1.090 0.103 3.087 0.097 0.735 0.012 1.383 0.059 3.375 0.059
100 20 0.748 0.004 1.017 0.042 3.018 0.041 0.744 0.006 1.392 0.039 3.390 0.038
100 30 0.749 0.003 1.009 0.030 3.009 0.030 0.746 0.005 1.395 0.031 3.394 0.032
100 50 0.750 0.002 1.004 0.022 3.004 0.022 0.748 0.003 1.397 0.025 3.396 0.024
100 100 0.750 0.001 1.002 0.015 3.002 0.016 0.749 0.002 1.398 0.017 3.399 0.018

5 100 0.743 0.011 1.072 0.131 3.068 0.125 0.748 0.008 1.380 0.087 3.382 0.083
10 100 0.747 0.007 1.024 0.074 3.029 0.073 0.749 0.006 1.391 0.055 3.394 0.055
20 100 0.749 0.003 1.009 0.039 3.009 0.038 0.749 0.004 1.396 0.036 3.397 0.037
30 100 0.749 0.003 1.005 0.030 3.005 0.030 0.749 0.003 1.395 0.031 3.396 0.031
50 100 0.750 0.002 1.002 0.022 3.003 0.022 0.749 0.003 1.397 0.024 3.399 0.024
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where Xit�1�Xit�2, λi, and Ft are generated as in previous tables. We also allow
time serial heteroskedasticity in εit , with εit ∼N(0�1) for t odd and ∼N(0�4)
for t even. For small T , the estimated parameters are biased primarily due
to heteroskedasticity. Under large T , the estimator performs quite well. The
within-group estimator for ρ is not heavily biased, but the estimators for β1

and β2 are biased for all combinations of N and T .
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