SUPPLEMENT TO "DIRECTED SEARCH FOR EQUILIBRIUM WAGE-TENURE CONTRACTS"
 (Econometrica, Vol. 77, No. 2, March 2009, 561-584)

By Shouyong Shi

This supplementary appendix provides the proofs of Lemmas 3.2, B.1, B.3, and B.4, and Theorem 6.1. Lemmas B.1, B.2, B.3, and B. 4 are used in the proof of Theorem 4.1 in the paper. All cross references to equations and sections use the numbering in the paper.

APPENDIX C

Proof of Lemma 3.2: Consider the firm's optimization problem (\mathcal{P}). The state variable is V that obeys (3.3). Treat γ, defined in (3.6), as an auxiliary state variable whose law of motion is

$$
\begin{equation*}
\frac{d}{d t} \gamma\left(t, t_{a}\right)=-[r+p(F(V(t)))] \gamma\left(t, t_{a}\right) \tag{C.1}
\end{equation*}
$$

Denote the shadow price of V as Λ_{V} and of γ as Λ_{γ}. Then the Hamiltonian of (\mathcal{P}) is

$$
\begin{aligned}
\mathcal{H}(t)= & (y-\tilde{w}) \gamma(t, 0)+\Lambda_{V}[r V-S(V)-u(\tilde{w})] \\
& -\Lambda_{\gamma}[r+p(F(V))] \gamma(t, 0),
\end{aligned}
$$

where I have suppressed the dependence of the variables on t, except that of γ. Denote $\Lambda_{c}(t)=\Lambda_{V}(t) / \gamma(t, 0)$, where the subscript c indicates the "current value." The optimality conditions of \tilde{w}, V, and γ are
(C.2) $-u^{\prime}(\tilde{w}) \Lambda_{c}-1 \leq 0$ and $\tilde{w} \geq 0, \quad$ with complementary slackness,
(C.3) $\quad \dot{\Lambda}_{c}=\Lambda_{\gamma} d p(F(V)) / d V$,
(C.4) $\quad \dot{\Lambda}_{\gamma}=-(y-\tilde{w})+\Lambda_{\gamma}[r+p(F(V))]$.

To derive (C.3), I have used the fact that $S^{\prime}(V)=-p(F(V))$ (see Lemma 3.1).
Using (C.1), I can rewrite (C.4) as $\frac{d}{d t}\left[\gamma(t, 0) \Lambda_{\gamma}(t)\right]=-[y-\tilde{w}(t)] \gamma(t, 0)$. Integrating this equation under the transversality condition, $\lim _{t \rightarrow \infty} \gamma(t, 0) \times$ $\Lambda_{\gamma}(t)=0$, I get $\Lambda_{\gamma}(t)=\tilde{J}(t)$ for all t, where $\tilde{J}(\cdot)$ is given by (3.7). Substituting $\Lambda_{\gamma}=\tilde{J}$ into (C.3) and the Hamiltonian yields

$$
\begin{equation*}
\dot{\Lambda}_{c}=\tilde{J} \frac{d p(F(V))}{d V} \tag{C.5}
\end{equation*}
$$

(C.6) $\quad \mathcal{H}(t)=\gamma(t, 0)\left[\frac{-d \tilde{J}(t)}{d t}+\Lambda_{c}(t) \dot{V}(t)\right]$.

Because $p(F(V))$ strictly decreases in V for all $t<\infty, \dot{\Lambda}_{c}(t)<0$ for all $t<\infty$.
Define t_{0} by $\Lambda_{c}\left(t_{0}\right)=0$. There is at most one such t_{0}, because $\dot{\Lambda}_{c}<0$. Moreover, $\Lambda_{c}(t)>0$ for all $t<t_{0}$ and $\Lambda_{c}(t)<0$ for all $t>t_{0}$. For all $t \leq t_{0}$, $-u^{\prime}(\tilde{w}(t)) \Lambda_{c}(t) \leq 0$, in which case (C.2) implies $\tilde{w}(t)=0$. For all $t>t_{0}$, the assumption $u^{\prime}(0)=\infty$ ensures $\tilde{w}(t)>0$: if $\tilde{w}(t)=0$, then $-u^{\prime}(\tilde{w}(t)) \Lambda_{c}(t)-1=$ $\infty>0$, which contradicts (C.2).

The remainder of the proof establishes a sequence of results. First, $d \tilde{w}(t) /$ $d t>0$ for all $t>t_{0}$. Suppose, to the contrary, that $d \tilde{w}(t) / d t \leq 0$ at $t=t_{1}$ for some $t_{1} \in\left(t_{0}, \infty\right)$. Because $\dot{\Lambda}_{c}<0$, then

$$
\frac{d}{d t}\left[-u^{\prime}(\tilde{w}(t)) \Lambda_{c}(t)\right]>-u^{\prime \prime}(\tilde{w}(t)) \Lambda_{c}(t) \frac{d \tilde{w}(t)}{d t}, \quad \text { all } t<\infty
$$

Because $d \tilde{w}(t) / d t \leq 0$ at $t=t_{1}$ and $\Lambda_{c}(t)<0$ for $t>t_{0}$, the derivative above on the right-hand side is strictly positive for t near t_{1}. As a result, there exists $\varepsilon>0$ such that $-u^{\prime}(\tilde{w}(t)) \Lambda_{c}(t)>-u^{\prime}\left(\tilde{w}\left(t_{1}\right)\right) \Lambda_{c}\left(t_{1}\right)=1$ for $t \in\left(t_{1}, t_{1}+\varepsilon\right]$, where the equality follows from (C.2) and $\tilde{w}\left(t_{1}\right)>0$. This result contradicts (C.2). Thus, I have shown that the wage path has the form
(C.7) $\tilde{w}(t)=0, \quad$ for $t<t_{0}$;

$$
\tilde{w}(t)>0 \quad \text { and } \quad d \tilde{w}(t) / d t>0, \quad \text { for } \quad t \in\left(t_{0}, \infty\right) .
$$

Because $\tilde{w}(t)$ is bounded for all t and increasing, then $\tilde{w}(t) \nearrow \bar{w}$ as $t \rightarrow \infty$.
Second, $\mathcal{H}(t)=0$ for all t. Differentiating (C.6) with respect to t and substituting (C.5) yields

$$
\frac{d \mathcal{H}(t)}{d t}=-\gamma(t, 0)\left[1+u^{\prime}(\tilde{w}(t)) \Lambda_{c}(t)\right] \frac{d \tilde{w}(t)}{d t}=0
$$

where the second equality uses the results that $d \tilde{w}(t) / d t=0$ for $t<t_{0}$, and $1+u^{\prime}(\tilde{w}(t)) \Lambda_{c}(t)=0$ for $t \geq t_{0}$. Because $\lim _{t \rightarrow \infty} \mathcal{H}(t)=0$, then $\mathcal{H}(t)=0$ for all t, which can be rewritten as
(C.8) $\quad d \tilde{J}(t) / d t=\Lambda_{c}(t) \dot{V}(t), \quad$ all t.

Third, $\dot{V}(t)>0$ for all $t<\infty$, and $\tilde{J}(t)$ is maximized at $t=t_{0}$. Suppose, to the contrary, that $\dot{V}\left(t_{1}\right) \leq 0$ for some $t_{1}<\infty$. If $t_{1}>t_{0}$, then $d \tilde{w}(t) / d t>0$ for all $t \in\left[t_{1}, \infty\right.$) (see (C.7)). Differentiating (3.3) yields

$$
\frac{d \dot{V}(t)}{d t}=[r+p(F(V(t)))] \dot{V}(t)-u^{\prime}(\tilde{w}(t)) \frac{d \tilde{w}(t)}{d t}
$$

$\dot{V}\left(t_{1}\right) \leq 0$ implies $d \dot{V}(t) / d t<0$ at $t=t_{1}$. By induction, $d \dot{V}(t) / d t<0$ for all $t \in\left[t_{1}, \infty\right)$. Thus, $V(t)$ strictly decreases toward \bar{V} as t increases from t_{1} to ∞,
contradicting the fact that $V(t) \leq \bar{V}$ for all $t<\infty$. If $t_{1} \leq t_{0}$, then $\tilde{w}\left(t_{1}\right)=0$ by (C.7), and so (3.3) implies $r V\left(t_{1}\right)-S\left(V\left(t_{1}\right)\right) \leq u(0)$. This result and (3.4) yield

$$
r V_{u}-S\left(V_{u}\right)-u(b)-\left[r V\left(t_{1}\right)-S\left(V\left(t_{1}\right)\right)\right]+u(0) \geq 0
$$

Because $S^{\prime}(V)<0$, the left-hand side of the equation is strictly decreasing in $V\left(t_{1}\right)$. Because the left-hand side is negative at $V\left(t_{1}\right)=V_{u}$, then $V\left(t_{1}\right)<V_{u}$. In this case, the worker will quit into unemployment, which will be suboptimal to the firm-a contradiction.

Recall that $\Lambda_{c}(t)>0$ for all $t<t_{0}$ and $\Lambda_{c}(t)<0$ for all $t>t_{0}$. Equation (C.8) and $\dot{V}>0$ imply that $d \tilde{J}(t) / d t>0$ for all $t<t_{0}$ and $d \tilde{J}(t) / d t<0$ for all $t>t_{0}$. That is, $\tilde{J}(t)$ is maximized at $t=t_{0}$.

Fourth, $t_{0} \leq 0$; thus, $\tilde{w}(t)>0$ for all $t>0$ and $d \tilde{w}(t) / d t>0$ for all $t<\infty$ (see (C.7)). Suppose $t_{0}>0$, to the contrary. Then $\tilde{J}\left(t_{0}\right)>\tilde{J}(0)$ by the previous result. Let $\{\tilde{w}(t)\}_{t=0}^{\infty}$ be the optimal contract that generates $\tilde{J}(0)$ to the firm. Consider an alternative contract $\{\hat{w}(t)\}_{t=0}^{\infty}$, where $\hat{w}(t)=\tilde{w}\left(t+t_{0}\right)$ for all t. This alternative contract is feasible and generates a higher value to the firm, $\tilde{J}\left(t_{0}\right)$, than the optimal contract-a contradiction.

Finally, (3.9) and (3.10) hold. Because $\tilde{w}(t)>0$ for all t, then $\Lambda_{c}(t)=$ $-1 / u^{\prime}(\tilde{w}(t))$ for all t. Differentiating this equation with respect to t and substituting (C.5), I get (3.9). Substituting Λ_{c} into (C.8) yields (3.10). Because $\dot{V}(t)>0$ and $\tilde{w}(t)>0$ for all $t<\infty$, then $d \tilde{J}(t) / d t<0$ for all $t<\infty$. Q.E.D.

Proof of Lemma B.1: Let $w \in \Omega$. Part (i) of the lemma was established in the analysis immediately following (4.8). It is easy to verify from (4.3) that $J_{w}(V)$ is strictly decreasing and continuously differentiable, with $J_{w}^{\prime}(V)=-1 / u^{\prime}(w(V))<0$. Since $w(V)$ is increasing, then $J_{w}^{\prime}(V)$ is decreasing, and so $J_{w}(V)$ is (weakly) concave. Because $q_{w}(V)=k / J_{w}(V)$ and $p_{w}(V)=$ $M\left(q_{w}(V)\right)$, I have

$$
p_{w}^{\prime}(V)=\frac{M^{\prime}\left(q_{w}(V)\right)\left[q_{w}(V)\right]^{2}}{u^{\prime}(w(V)) k}<0
$$

where $M^{\prime}(q)<0$ by Assumption 1. This shows that $p_{w}(V)$ is strictly decreasing and continuously differentiable. Moreover, parts (iii) and (iv) of Assumption 1 imply that $\left[M^{\prime}(q) q^{2}\right]$ is decreasing in q. Because $q_{w}(V)$ is increasing in V, $M^{\prime}\left(q_{w}(V)\right)\left[q_{w}(V)\right]^{2}$ is decreasing in V. Because $1 / u^{\prime}(w(V))$ is increasing in V and $M^{\prime}<0$, then $p_{w}^{\prime}(V)$ is decreasing. That is, $p_{w}(V)$ is (weakly) concave, and so part (ii) of the lemma holds.

If $w \in \Omega^{\prime}$, that is, if $w(V)$ is strictly increasing for all $V<\bar{V}$, then it is straightforward to strengthen the argument for part (ii) to show that $J_{w}(V)$ and $p_{w}(V)$ are strictly concave, as stated in part (iii).
Q.E.D.

Proof of Lemma B.2: To prove part (i) of the lemma, pick two arbitrary functions $w_{1}, w_{2} \in \Omega$, with $w_{2}(V) \geq w_{1}(V)$ for all V. Simplify the notation
$J_{w_{i}}$ to $J_{i}, F_{w_{i}}$ to F_{i}, and $p_{w_{i}}$ to p_{i}, where $i=1,2$. Because $w_{2}(V) \geq w_{1}(V)$ for all V, (4.3) implies $J_{2}(V) \geq J_{1}(V)$, and the assumption $M^{\prime}<0$ implies $p_{2}(V) \geq$ $p_{1}(V)$ for all V. Suppose, contrary to part (i) of the lemma, that $p_{1}\left(F_{1}(V)\right)>$ $p_{2}\left(F_{2}(V)\right)$ for some V. Let $q_{i}=k / J_{i}\left(F_{i}(V)\right), i=1,2$. Because $p_{i}\left(F_{i}(V)\right)=$ $M\left(q_{i}\right)$ and $M(q)$ is strictly decreasing in q, the supposition implies $q_{1}<q_{2}$ and, hence, $J_{1}\left(F_{1}(V)\right)>J_{2}\left(F_{2}(V)\right)$. Monotonicity of J_{w} in w implies $J_{2}\left(F_{2}(V)\right) \geq$ $J_{1}\left(F_{2}(V)\right)$. In this case, $J_{1}\left(F_{1}(V)\right)>J_{1}\left(F_{2}(V)\right)$ and so $F_{1}(V)<F_{2}(V)$. With these results, I can derive

$$
\begin{aligned}
0 & <p_{1}\left(F_{1}(V)\right)-p_{2}\left(F_{2}(V)\right) \\
& =p_{2}^{\prime}\left(F_{2}(V)\right)\left[F_{2}(V)-V\right]-p_{1}^{\prime}\left(F_{1}(V)\right)\left[F_{1}(V)-V\right] \\
& <\left[p_{2}^{\prime}\left(F_{2}(V)\right)-p_{1}^{\prime}\left(F_{1}(V)\right)\right]\left[F_{1}(V)-V\right] \\
& =\frac{F_{1}(V)-V}{k}\left[\frac{M^{\prime}\left(q_{2}\right)\left(q_{2}\right)^{2}}{u^{\prime}\left(w_{2}\left(F_{2}(V)\right)\right)}-\frac{M^{\prime}\left(q_{1}\right)\left(q_{1}\right)^{2}}{u^{\prime}\left(w_{1}\left(F_{1}(V)\right)\right)}\right] \\
& \leq \frac{F_{1}(V)-V}{u^{\prime}\left(w_{1}\left(F_{1}(V)\right)\right) k}\left[M^{\prime}\left(q_{2}\right)\left(q_{2}\right)^{2}-M^{\prime}\left(q_{1}\right)\left(q_{1}\right)^{2}\right] .
\end{aligned}
$$

The first inequality comes from the supposition, the first equality comes from (3.2), the second inequality comes from $F_{2}(V)>F_{1}(V)$ and $p_{2}^{\prime}\left(F_{2}\right)<0$, the second equality comes from computing $p_{i}^{\prime}\left(F_{i}\right)$, and the last inequality comes from $M^{\prime}\left(q_{2}\right)<0$ and $w_{2}\left(F_{2}(V)\right) \geq w_{1}\left(F_{2}(V)\right) \geq w_{1}\left(F_{1}(V)\right)$. Parts (iii) and (iv) of Assumption 1 imply that $M^{\prime}(q) q^{2}$ is decreasing in q. Because $q_{2}>q_{1}$, as shown above, the expression in the last line above is nonpositive-a contradiction.

To prove part (ii) of the lemma, let $w \in \Omega$, and $V_{2} \geq V_{1}$. Note that $w\left(V_{2}\right) \geq$ $w\left(V_{1}\right)$, because $w \in \Omega$. Moreover, because [$r V-S_{w}(V)$] is strictly increasing in $V, r V_{2}-S_{w}\left(V_{2}\right) \geq r V_{1}-S_{w}\left(V_{1}\right)$. Hence, the following inequality holds:

$$
\Delta \leq \Delta_{1} \equiv \frac{1}{u^{\prime}\left(w\left(V_{1}\right)\right)}\left[\begin{array}{c}
\max \left\{0, r V_{1}-S_{w}\left(V_{1}\right)-u\left(w\left(V_{1}\right)\right)\right\} \\
-\max \left\{0, r V_{1}-S_{w}\left(V_{1}\right)-u\left(w\left(V_{2}\right)\right)\right\}
\end{array}\right] .
$$

Consider all possible cases: (a) $r V_{1}-S_{w}\left(V_{1}\right) \geq u\left(w\left(V_{2}\right)\right.$), (b) $r V_{1}-S_{w}\left(V_{1}\right) \leq$ $u\left(w\left(V_{1}\right)\right)$, and (c) $u\left(w\left(V_{1}\right)\right)<r V_{1}-S_{w}\left(V_{1}\right)<u\left(w\left(V_{2}\right)\right)$. In each case, it can be verified that

$$
\Delta_{1} \leq \frac{u\left(w\left(V_{2}\right)\right)-u\left(w\left(V_{1}\right)\right)}{u^{\prime}\left(w\left(V_{1}\right)\right)}
$$

Thus, the first inequality in (B.1) holds.
To establish the second inequality in (B.1), I first show that

$$
\begin{aligned}
& \max \left\{0, r V_{2}-S_{w}\left(V_{2}\right)-u\left(w\left(V_{2}\right)\right)\right\} \\
& \quad \leq \frac{u^{\prime}\left(w\left(V_{2}\right)\right)}{u^{\prime}\left(w\left(V_{1}\right)\right)} \max \left\{0, r V_{2}-S_{w}\left(V_{2}\right)-u\left(w\left(V_{1}\right)\right)\right\} .
\end{aligned}
$$

This inequality is evident when $r V_{2}-S_{w}\left(V_{2}\right) \leq u\left(w\left(V_{2}\right)\right)$, because the left-hand side is 0 in that case. If $r V_{2}-S_{w}\left(V_{2}\right)>u\left(w\left(V_{2}\right)\right)$, the above inequality becomes

$$
\frac{r V_{2}-S_{w}\left(V_{2}\right)-u\left(w\left(V_{2}\right)\right)}{u^{\prime}\left(w\left(V_{2}\right)\right)} \leq \frac{r V_{2}-S_{w}\left(V_{2}\right)-u\left(w\left(V_{1}\right)\right)}{u^{\prime}\left(w\left(V_{1}\right)\right)}
$$

Because $\left[r V-S_{w}(V)\right]$ is strictly increasing in $V, r V_{2}-S_{w}\left(V_{2}\right) \leq r \bar{V}-S_{w}(\bar{V})=$ $u(\bar{w})$. In this case, (4.11) implies that $\left[r V-S_{w}(V)-u(w)\right] / u^{\prime}(w)$ is decreasing in w for any given V and $S_{w}(V)$. Since $w\left(V_{2}\right) \geq w\left(V_{1}\right)$, the above inequality holds.

Using the above result, I obtain

$$
\Delta \geq \frac{1}{u^{\prime}\left(w\left(V_{1}\right)\right)}\left[\begin{array}{c}
\max \left\{0, r V_{1}-S_{w}\left(V_{1}\right)-u\left(w\left(V_{1}\right)\right)\right\} \\
-\max \left\{0, r V_{2}-S_{w}\left(V_{2}\right)-u\left(w\left(V_{1}\right)\right)\right\}
\end{array}\right] .
$$

Consider all of the possible cases: (a) $u\left(w\left(V_{1}\right)\right) \geq r V_{2}-S_{w}\left(V_{2}\right)$, (b) $u\left(w\left(V_{1}\right)\right) \leq$ $r V_{1}-S_{w}\left(V_{1}\right)$, and (c) $r V_{1}-S_{w}\left(V_{1}\right)<u\left(w\left(V_{1}\right)\right)<r V_{2}-S_{w}\left(V_{2}\right)$. In each case, it is straightforward to deduce the second inequality in (B.1) from the above relation.
Q.E.D.

Proof of Lemma B.3: Let $w \in \Omega$, and consider the function $\psi w(V)$. With Lemma B.1, $\psi w(V)$ is a continuous and bounded function of V. Next, I prove that $\psi w(V)$ is an increasing function. To do so, let V_{1} and V_{2} be arbitrary values in $[\underline{V}, \bar{V}]$, with $V_{2} \geq V_{1}$. Simplify the notation $f\left(V_{i}\right)$ to f_{i}, where f includes the functions w, J_{w}, F_{w}, S_{w}, and ψw. I show that $\psi w_{2} \geq \psi w_{1}$. To do so, use the second inequality in (B.1) to obtain

$$
\begin{aligned}
\psi w_{2}-\psi w_{1} \geq & {\left[r+p_{w}\left(F_{w 1}\right)\right] J_{w 1}-\left[r+p_{w}\left(F_{w 2}\right)\right] J_{w 2} } \\
& +\left[r V_{1}-S_{w 1}-\left(r V_{2}-S_{w 2}\right)\right] / u^{\prime}\left(w_{1}\right) \\
= & {\left[r+p_{w}\left(F_{w 1}\right)\right]\left(J_{w 1}-J_{w 2}\right)+J_{w 2}\left[p_{w}\left(F_{w 1}\right)-p_{w}\left(F_{w 2}\right)\right] } \\
& +\left[r V_{1}-S_{w 1}-\left(r V_{2}-S_{w 2}\right)\right] / u^{\prime}\left(w_{1}\right) .
\end{aligned}
$$

Because $\left[r V-S_{w}(V)\right]^{\prime}=r+p_{w}\left(F_{w}\right)$ and $\left[r \bar{V}-S_{w}(\bar{V})\right]=u(\bar{w})$, then

$$
r V-S_{w}(V)=u(\bar{w})-\int_{V}^{\bar{V}}\left[r+p_{w}\left(F_{w}(z)\right)\right] d z
$$

Using this result and expressing $J_{w}(V)$ as in (4.3), I get

$$
\begin{align*}
& {\left[r+p_{w}\left(F_{w 1}\right)\right]\left(J_{w 1}-J_{w 2}\right)+\left[r V_{1}-S_{w 1}-\left(r V_{2}-S_{w 2}\right)\right] / u^{\prime}\left(w_{1}\right)} \tag{C.9}\\
& \quad=\int_{V_{1}}^{V_{2}}\left[\frac{r+p_{w}\left(F_{w 1}\right)}{u^{\prime}(w(z))}-\frac{r+p_{w}\left(F_{w}(z)\right)}{u^{\prime}\left(w_{1}\right)}\right] d z \geq 0 .
\end{align*}
$$

The inequality follows from $p_{w}\left(F_{w 1}\right) \geq p_{w}\left(F_{w}(z)\right)$ and $u^{\prime}(w(z)) \leq u^{\prime}\left(w_{1}\right)$ for all $z \in\left[V_{1}, V_{2}\right]$. Because $p_{w}(F)$ is a decreasing function of F, I have established
(C.10) $\psi w_{2}-\psi w_{1} \geq J_{w 2}\left[p_{w}\left(F_{w 1}\right)-p_{w}\left(F_{w 2}\right)\right] \geq 0$.

Now I verify $\psi w(V) \in[\underline{w}, \bar{w}]$ for all V, with $\psi w(\bar{V})=\bar{w}$. Because $w(\bar{V})=$ $\bar{w}, J_{w}(\bar{V})=k / \bar{q}$, and $p_{w}(\overline{\bar{V}})=0$, it is clear that $\psi w(\bar{V})=\bar{w}$. Since $\psi w(V)$ is increasing, $\psi w(V) \leq \psi w(\bar{V})=\bar{w}$ for all V. Similarly, $\psi w(V) \geq \underline{w}$ for all V if and only if $\psi w(\underline{V}) \geq \underline{w}$. To establish the latter inequality, note that $w(\underline{V}) \geq \underline{w}$, because $w \in \Omega$. Using (4.11) and the fact that $r \underline{V}=u(b)$, I have

$$
\frac{1}{u^{\prime}(w(\underline{V}))}\left[r \underline{V}-S_{w}(\underline{V})-u(w(\underline{V}))\right] \leq \frac{1}{u^{\prime}(\underline{w})}\left[u(b)-S_{w}(\underline{V})-u(\underline{w})\right] .
$$

The right-hand side of the inequality is nonnegative, because \underline{w} is set to be small. Thus,

$$
\begin{aligned}
& \psi w(\underline{V}) \geq y-\left[r+p_{w}\left(F_{w}(\underline{V})\right)\right] J_{w}(\underline{V}) \\
& -\frac{1}{u^{\prime}(\underline{w})}\left[u(b)-S_{w}(\underline{V})-u(\underline{w})\right] \\
& \geq y-\left[r+p_{\bar{w}}\left(F_{\bar{w}}(\underline{V})\right)\right] \bar{J}-\frac{1}{u^{\prime}(\underline{w})}\left[u(b)-S_{\underline{w}}(\underline{V})-u(\underline{w})\right] .
\end{aligned}
$$

The first inequality comes from the preceding result. The second inequality uses part (i) of Lemma B.2, the upper bound on J (defined in (4.8)), and the fact that $S_{w}(V)$ is increasing in w for any given V. With the above result, (4.10) implies $\psi w(\underline{V}) \geq \underline{w}$. Therefore, ψ maps functions in Ω back into functions in Ω.

Finally, if $V_{2}>V_{1}$, the inequalities in (C.9) and (C.10) are strict, because $F_{w}(V)$ is strictly increasing and $p_{w}\left(F_{w}(V)\right)$ is strictly decreasing in V for all $V<\bar{V}$ (see Lemma B.2). In this case, $\psi w \in \Omega^{\prime} \subset \Omega$. This completes the proof of Lemma B.3.
Q.E.D.

Proof of Lemma B.4: I prove that the following inequality holds for all $w_{1}, w_{2} \in \Omega$, and all V,
(C.11) $\left|\psi w_{2}(V)-\psi w_{1}(V)\right| \leq A\left\|w_{2}-w_{1}\right\|$,
where the norm is the sup norm and A is a finite constant. Once this is done, Lipschitz continuity of ψ is evident from the inequality

$$
\left\|\psi w_{2}-\psi w_{1}\right\|=\max _{V}\left|\psi w_{2}(V)-\psi w_{1}(V)\right| \leq A\left\|w_{2}-w_{1}\right\|
$$

To show (C.11), take two arbitrary functions, $w_{1}, w_{2} \in \Omega$, and fix V at an arbitrary value in $[\underline{V}, \bar{V}]$. Without loss of generality, assume $\psi w_{2}(V) \geq \psi w_{1}(V)$
for this given V. Since V is fixed, I suppress it from the functions if this does not cause confusion. Also, shorten the subscript w_{i} on J, p, F, and S to i, where $i=1,2$. I have

$$
\begin{aligned}
0 & \leq \psi w_{2}(V)-\psi w_{1}(V) \\
& =\left[r+p_{1}\left(F_{1}\right)\right]\left(J_{1}-J_{2}\right)+J_{2}\left[p_{1}\left(F_{1}\right)-p_{2}\left(F_{2}\right)\right]+\Delta_{2},
\end{aligned}
$$

where

$$
\Delta_{2}=\max \left\{0, \frac{r V-S_{1}-u\left(w_{1}\right)}{u^{\prime}\left(w_{1}\right)}\right\}-\max \left\{0, \frac{r V-S_{2}-u\left(w_{2}\right)}{u^{\prime}\left(w_{2}\right)}\right\} .
$$

To proceed, note that the following inequalities hold for all a_{1} and a_{2} :

$$
\max \left\{0, a_{1}\right\}-\max \left\{0, a_{2}\right\} \leq \max \left\{0, a_{1}-a_{2}\right\} \leq\left|a_{1}-a_{2}\right|
$$

Using these results, it is easy to verify that

$$
\Delta_{2} \leq\left|\frac{r V-S_{1}-u\left(w_{1}\right)}{u^{\prime}\left(w_{1}\right)}-\frac{r V-S_{1}-u\left(w_{2}\right)}{u^{\prime}\left(w_{2}\right)}\right|+\frac{\left|S_{2}-S_{1}\right|}{u^{\prime}\left(w_{2}\right)} .
$$

Denote the first term on the right-hand side above as Δ_{3}. Define

$$
\begin{equation*}
\mu_{1}=\min _{w \in[\underline{w}, \bar{w}]}\left|u^{\prime \prime}(w)\right|, \quad \mu_{2}=\max _{w \in[\underline{w}, \bar{w}]}\left|u^{\prime \prime}(w)\right| \tag{C.12}
\end{equation*}
$$

where μ_{1} and μ_{2} are positive and finite. Because ($r V-S_{1}$) is strictly increasing in $V, r V-S_{1} \leq u(\bar{w})$. Also, concavity of u implies $u(\bar{w}) \leq u(w)+u^{\prime}(w)(\bar{w}-$ $w)$. Then

$$
\begin{equation*}
\left|\frac{d}{d w}\left(\frac{r V-S_{1}-u(w)}{u^{\prime}(w)}\right)\right| \leq 1+\frac{\mu_{2}}{u^{\prime}(\bar{w})}(\bar{w}-\underline{w}) \equiv A_{1} . \tag{C.13}
\end{equation*}
$$

Hence,

$$
\Delta_{3} \leq A_{1}\left|w_{2}-w_{1}\right|, \quad \Delta_{2} \leq A_{1}\left|w_{2}-w_{1}\right|+\left|S_{2}-S_{1}\right| / u^{\prime}(\bar{w})
$$

Substituting these results into the earlier expression for $\left[\psi w_{2}(V)-\psi w_{1}(V)\right]$ and using the bounds in (4.8), I obtain
(C.14) $0 \leq \psi w_{2}(V)-\psi w_{1}(V)$

$$
\begin{aligned}
\leq & (r+\bar{p})\left|J_{1}-J_{2}\right|+\bar{J}\left|p_{2}\left(F_{2}\right)-p_{1}\left(F_{1}\right)\right| \\
& +\left|S_{2}-S_{1}\right| / u^{\prime}(\bar{w})+A_{1}\left|w_{2}-w_{1}\right| .
\end{aligned}
$$

Let me examine the first three terms on the right-hand side above. With μ_{2} defined in (C.12), the following inequality holds for all $w_{1}, w_{2} \in[\underline{w}, \bar{w}]$:
(C.15) $\left|\frac{1}{u^{\prime}\left(w_{1}(z)\right)}-\frac{1}{u^{\prime}\left(w_{2}(z)\right)}\right| \leq A_{2}\left\|w_{2}-w_{1}\right\|, \quad$ where $\quad A_{2} \equiv \frac{\mu_{2}}{\left[u^{\prime}(\bar{w})\right]^{2}}$.

Using this result and (4.3), I have
(C.16) $\quad\left|J_{1}-J_{2}\right| \leq \int_{V}^{\bar{V}}\left|\frac{1}{u^{\prime}\left(w_{1}(z)\right)}-\frac{1}{u^{\prime}\left(w_{2}(z)\right)}\right| d z \leq A_{2}(\bar{V}-\underline{V})\left\|w_{2}-w_{1}\right\|$.

To put a bound on the difference, $\left|p_{2}\left(F_{2}\right)-p_{1}\left(F_{1}\right)\right|$, define
(C.17) $\quad B_{1} \equiv m_{1} \bar{q}^{2} / k, \quad B_{2} \equiv\left(\bar{q} m_{2}+2 m_{1}\right) \bar{q}^{3} / k^{2}$,
where m_{1} and m_{2} are the bounds specified in Assumption 1. Clearly, B_{1} and B_{2} are finite. Because $k / J_{w}=q_{w} \leq \bar{q}$, it is straightforward to verify that

$$
\begin{equation*}
\left|\frac{d M\left(k / J_{w}\right)}{d J_{w}}\right| \leq B_{1}, \quad\left|\frac{d^{2} M\left(k / J_{w}\right)}{d J_{w}^{2}}\right| \leq B_{2} \tag{C.18}
\end{equation*}
$$

Using these bounds, (C.15), and (C.16), I can derive the following results for all $z \in[\underline{V}, \bar{V}]$:
(C.19) $\left|p_{2}(z)-p_{1}(z)\right| \leq B_{1}\left|J_{2}(z)-J_{1}(z)\right| \leq B_{1} A_{2}(\bar{V}-\underline{V})\left\|w_{2}-w_{1}\right\|$,

$$
\begin{align*}
\left|p_{2}^{\prime}(z)-p_{1}^{\prime}(z)\right|= & \left\lvert\, \frac{1}{u^{\prime}\left(w_{2}(z)\right)} \frac{d}{d J_{2}} M\left(\frac{k}{J_{2}(z)}\right)\right. \tag{C.20}\\
& \left.-\frac{1}{u^{\prime}\left(w_{1}(z)\right)} \frac{d}{d J_{1}} M\left(\frac{k}{J_{1}(z)}\right) \right\rvert\, \\
\leq & B_{1}\left|\frac{1}{u^{\prime}\left(w_{2}(z)\right)}-\frac{1}{u^{\prime}\left(w_{1}(z)\right)}\right| \\
& +\frac{1}{u^{\prime}\left(w_{2}(z)\right)}\left|\frac{d}{d J_{2}} M\left(\frac{k}{J_{2}(z)}\right)-\frac{d}{d J_{1}} M\left(\frac{k}{J_{1}(z)}\right)\right| \\
\leq & B_{1} A_{2}\left\|w_{2}-w_{1}\right\|+\frac{B_{2}}{u^{\prime}(\bar{w})}\left|J_{2}(z)-J_{1}(z)\right| \\
\leq & {\left[B_{1}+\frac{B_{2}}{u^{\prime}(\bar{w})}(\bar{V}-\underline{V})\right] A_{2}\left\|w_{2}-w_{1}\right\| . }
\end{align*}
$$

Now examine the difference $\left|p_{2}\left(F_{2}\right)-p_{1}\left(F_{1}\right)\right|$. Assume $F_{2} \geq F_{1}$ without loss of generality. (If $F_{2} \leq F_{1}$, switch the roles of F_{1} and F_{2} in the proof, and the
resulting bound is the same.) In the case where $p_{2}\left(F_{2}\right)<p_{1}\left(F_{1}\right)$, I have the inequalities

$$
\begin{aligned}
0 & <p_{1}\left(F_{1}\right)-p_{2}\left(F_{2}\right)=-p_{1}^{\prime}\left(F_{1}\right)\left(F_{1}-V\right)+p_{2}^{\prime}\left(F_{2}\right)\left(F_{2}-V\right) \\
& \leq\left(F_{1}-V\right)\left[p_{2}^{\prime}\left(F_{1}\right)-p_{1}^{\prime}\left(F_{1}\right)\right] .
\end{aligned}
$$

The equality follows from (3.2), and the last inequality follows from the fact that $p_{2}^{\prime}(F)(F-V)$ is decreasing in F. Because $0 \leq F_{1}-V \leq \bar{V}-\underline{V}$, the above result and (C.20) imply

$$
\begin{equation*}
\left|p_{2}\left(F_{2}\right)-p_{1}\left(F_{1}\right)\right| \leq\left[B_{1}+\frac{B_{2}}{u^{\prime}(\bar{w})}(\bar{V}-\underline{V})\right] A_{2}(\bar{V}-\underline{V})\left\|w_{2}-w_{1}\right\| . \tag{C.21}
\end{equation*}
$$

In the case where $p_{2}\left(F_{2}\right) \geq p_{1}\left(F_{1}\right)$, the following inequalities hold:

$$
0 \leq p_{2}\left(F_{2}\right)-p_{1}\left(F_{1}\right) \leq p_{2}\left(F_{1}\right)-p_{1}\left(F_{1}\right) \leq B_{1} A_{2}(\bar{V}-\underline{V})\left\|w_{1}-w_{2}\right\| .
$$

The second inequality comes from the fact that p is decreasing and the last inequality comes from (C.19). Thus, (C.21) holds in this case too.
Next, turn to the difference, $\left|S_{2}-S_{1}\right|$. Because S_{1} is the maximum of $p_{1}(F)(F-V)$ over F, then $S_{1} \geq p_{1}\left(F_{2}\right)\left(F_{2}-V\right)$. Using the inequality and (C.19), I have

$$
\begin{aligned}
S_{2}-S_{1} & \leq p_{2}\left(F_{2}\right)\left(F_{2}-V\right)-p_{1}\left(F_{2}\right)\left(F_{2}-V\right) \\
& =\left(F_{2}-V\right)\left[p_{2}\left(F_{2}\right)-p_{1}\left(F_{2}\right)\right] \leq B_{1} A_{2}(\bar{V}-\underline{V})^{2}\left\|w_{2}-w_{1}\right\| .
\end{aligned}
$$

Similarly, using the inequality, $S_{2} \geq p_{2}\left(F_{1}\right)\left(F_{1}-V\right)$, I can show that ($S_{1}-S_{2}$) is bounded by the same upper bound as above. Hence,

$$
\begin{equation*}
\left|S_{2}-S_{1}\right| \leq B_{1} A_{2}(\bar{V}-\underline{V})^{2}\left\|w_{2}-w_{1}\right\| . \tag{C.22}
\end{equation*}
$$

Assembling (C.16), (C.21), and (C.22) into (C.14), I obtain (C.11), where A is given as

$$
A=A_{1}+A_{2}(\bar{V}-\underline{V})\left\{(r+\bar{p})+\left[B_{1} \bar{J}+\frac{B_{1}+B_{2} \bar{J}}{u^{\prime}(\bar{w})}(\bar{V}-\underline{V})\right]\right\} .
$$

Clearly, A is finite. Moreover, A is independent of the particular functions w_{1} and w_{2} with which the functions $\left(J_{i}, q_{i}, p_{i}, F_{i}, S_{i}\right)$ are constructed. Q.E.D.

Proof of Theorem 6.1: First, I derive (6.2). Set $V=\bar{V}$ in (6.1). Because $\dot{V}=0$ at $V=\bar{V}$, the left-hand side of (6.1) is equal to 0 at $V=\bar{V}$. Moreover, the integral in (6.1) is equal to zero, because $F^{-1}(\bar{V})=\bar{V}$. Thus, at $V=\bar{V}$, (6.1) yields (6.2).

Second, I show that G is continuous; that is, G does not have any mass point. Suppose, to the contrary, that G has a mass $a>0$ at some value $V \in\left[v_{1}, \bar{V}\right]$. Then $G(V)-G(V-\dot{V} d t) \geq a$ for all $d t>0$ and so the left-hand side of (6.1) is equal to ∞. This is a contradiction, because the right-hand side of (6.1) is bounded.

Third, to establish (6.3) and continuity of g, denote the left-hand side derivative of G as $g\left(V_{-}\right)$. The left-hand side of (6.1) is equal to $g\left(V_{-}\right) \dot{V}$. Because G, F, F^{-1}, and $p(\cdot)$ are continuous, the right-hand side of (6.1) is continuous in V. Thus, $g\left(V_{-}\right) \dot{V}$ must be continuous. Because \dot{V} is continuous, g must be continuous. Then I can express the left-hand side of (6.1) as $g(V) \dot{V}$. After substituting $p\left(v_{1}\right)$ from (6.2), (6.1) becomes (6.3).

Fourth, g is continuously differentiable for all $V \neq v_{2}$. To see this, note that F, F^{-1}, and $p(\cdot)$ are continuously differentiable. Since g is continuous, G is continuously differentiable and so the right-hand side of (6.3) is continuously differentiable for all $V \neq v_{2}$. Thus, the left-hand side of the equation, $g(V) \dot{V}$, must be continuously differentiable for all $V \neq v_{2}$. Because \dot{V} is continuously differentiable, $g(V)$ is continuously differentiable for all $V \neq v_{2}$.

Fifth, I derive (6.5). For $V \in\left(v_{1}, v_{2}\right), F^{-1}(V)<v_{1}$ and so (6.3) becomes

$$
\begin{equation*}
g_{1}(V) \dot{V}=\delta\left[1-G_{1}(V)\right]-\int_{v_{1}}^{V} p(F(z)) g_{1}(z) d z \tag{C.23}
\end{equation*}
$$

Note that $T^{\prime}(V)=1 / \dot{V}$ from (4.1). Differentiating the function Γ in (6.4) yields

$$
\begin{equation*}
d \Gamma\left(V, v_{1}\right) / d V=-[\delta+p(F(V))] \Gamma\left(V, v_{1}\right) / \dot{V} \tag{C.24}
\end{equation*}
$$

With (C.24) and (C.23), it is straightforward to verify

$$
\begin{equation*}
\frac{d}{d V}\left[\frac{\dot{V} g_{1}(V)}{\Gamma\left(V, v_{1}\right)}\right]=0 \tag{C.25}
\end{equation*}
$$

Recall that $G_{1}\left(v_{1}\right)=0$, because $G(V)$ is continuous for all V. Taking the limit $V \downarrow v_{1}$ in (C.23) leads to $g_{1}\left(v_{1}\right) \dot{v}_{1}=\delta$. With this initial condition, integrating (C.25) from v_{1} to V yields (6.5). Since g is continuous, taking the limit $V \uparrow v_{2}$ in (6.5) gives $g\left(v_{2}\right)$.

Finally, I derive (6.6) by examining the case $V \in\left[v_{j}, v_{j+1}\right.$), where $j \geq 2$. In this case, $F^{-1}(V) \geq v_{1}$ and so (6.3) becomes

$$
\begin{align*}
g_{j}(V) \dot{V}= & \delta[1-G(V)]-\int_{F^{-1}(V)}^{v_{j}} p(F(z)) g_{j-1}(z) d z \tag{C.26}\\
& -\int_{v_{j}}^{V} p(F(z)) g_{j}(z) d z
\end{align*}
$$

I have separated the two groups of applicants who obtain jobs with values above V : one group comes from $\left(F^{-1}(V), v_{j}\right]$ and the other from $\left[v_{j}, V\right]$. With (C.26) and (C.24), I can derive
(C.27) $\quad \frac{d}{d V}\left[\frac{\dot{V} g_{j}(V)}{\Gamma\left(V, v_{1}\right)}\right]=\frac{p(V)}{\Gamma\left(V, v_{1}\right)} g_{j-1}\left(F^{-1}(V)\right) \frac{d F^{-1}(V)}{d V}$.

Integrating this equation from v_{j} to V yields (6.6). Because g is continuous, then $g_{j}\left(v_{j}\right)=\lim _{V \uparrow v_{j}} g_{j-1}(V)$, all j. This completes the proof of Theorem 6.1.
Q.E.D.

Dept. of Economics, University of Toronto, 150 St. George Street, Toronto, Ontario M5S 3G7, Canada; shouyong@chass.utoronto.ca.

Manuscript received April, 2008; final revision received August, 2008.

