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This supplementary appendix provides the proofs of Lemmas 3.2, B.1, B.3, and B.4,
and Theorem 6.1. Lemmas B.1, B.2, B.3, and B.4 are used in the proof of Theorem 4.1
in the paper. All cross references to equations and sections use the numbering in the
paper.

APPENDIX C

PROOF OF LEMMA 3.2: Consider the firm’s optimization problem (P). The
state variable is V that obeys (3.3). Treat γ, defined in (3.6), as an auxiliary
state variable whose law of motion is

d

dt
γ(t� ta)= −[

r +p(
F(V (t))

)]
γ(t� ta)�(C.1)

Denote the shadow price of V as ΛV and of γ as Λγ . Then the Hamiltonian of
(P) is

H(t)= (y − w̃)γ(t�0)+ΛV [rV − S(V )− u(w̃)]
−Λγ

[
r +p(F(V ))]γ(t�0)�

where I have suppressed the dependence of the variables on t, except that
of γ. Denote Λc(t) = ΛV (t)/γ(t�0), where the subscript c indicates the “cur-
rent value.” The optimality conditions of w̃, V , and γ are

−u′(w̃)Λc − 1 ≤ 0 and w̃≥ 0� with complementary slackness,(C.2)

Λ̇c =Λγ dp(F(V ))/dV �(C.3)

Λ̇γ = −(y − w̃)+Λγ

[
r +p(F(V ))]�(C.4)

To derive (C.3), I have used the fact that S′(V )= −p(F(V )) (see Lemma 3.1).
Using (C.1), I can rewrite (C.4) as d

dt
[γ(t�0)Λγ(t)] = −[y − w̃(t)]γ(t�0).

Integrating this equation under the transversality condition, limt→∞ γ(t�0) ×
Λγ(t)= 0, I get Λγ(t)= J̃(t) for all t, where J̃(·) is given by (3.7). Substituting
Λγ = J̃ into (C.3) and the Hamiltonian yields

Λ̇c = J̃ dp(F(V ))
dV

�(C.5)

H(t)= γ(t�0)
[−dJ̃(t)

dt
+Λc(t)V̇ (t)

]
�(C.6)
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Because p(F(V )) strictly decreases in V for all t <∞, Λ̇c(t) < 0 for all t <∞.
Define t0 by Λc(t0) = 0. There is at most one such t0, because Λ̇c < 0.

Moreover, Λc(t) > 0 for all t < t0 and Λc(t) < 0 for all t > t0. For all t ≤ t0,
−u′(w̃(t))Λc(t)≤ 0, in which case (C.2) implies w̃(t)= 0. For all t > t0, the as-
sumption u′(0)= ∞ ensures w̃(t) > 0: if w̃(t)= 0, then −u′(w̃(t))Λc(t)− 1 =
∞> 0, which contradicts (C.2).

The remainder of the proof establishes a sequence of results. First, dw̃(t)/
dt > 0 for all t > t0. Suppose, to the contrary, that dw̃(t)/dt ≤ 0 at t = t1 for
some t1 ∈ (t0�∞). Because Λ̇c < 0, then

d

dt

[−u′(w̃(t))Λc(t)
]
>−u′′(w̃(t))Λc(t)

dw̃(t)

dt
� all t <∞�

Because dw̃(t)/dt ≤ 0 at t = t1 andΛc(t) < 0 for t > t0, the derivative above on
the right-hand side is strictly positive for t near t1. As a result, there exists ε > 0
such that −u′(w̃(t))Λc(t) >−u′(w̃(t1))Λc(t1)= 1 for t ∈ (t1� t1 + ε], where the
equality follows from (C.2) and w̃(t1) > 0. This result contradicts (C.2). Thus,
I have shown that the wage path has the form

w̃(t)= 0� for t < t0;(C.7)

w̃(t) > 0 and dw̃(t)/dt > 0� for t ∈ (t0�∞)�

Because w̃(t) is bounded for all t and increasing, then w̃(t)↗ w̄ as t → ∞.
Second, H(t)= 0 for all t. Differentiating (C.6) with respect to t and substi-

tuting (C.5) yields

dH(t)
dt

= −γ(t�0)
[
1 + u′(w̃(t))Λc(t)

]dw̃(t)
dt

= 0�

where the second equality uses the results that dw̃(t)/dt = 0 for t < t0, and
1 + u′(w̃(t))Λc(t) = 0 for t ≥ t0. Because limt→∞ H(t) = 0, then H(t) = 0 for
all t, which can be rewritten as

dJ̃(t)/dt =Λc(t)V̇ (t)� all t�(C.8)

Third, V̇ (t) > 0 for all t <∞, and J̃(t) is maximized at t = t0. Suppose, to
the contrary, that V̇ (t1) ≤ 0 for some t1 <∞. If t1 > t0, then dw̃(t)/dt > 0 for
all t ∈ [t1�∞) (see (C.7)). Differentiating (3.3) yields

dV̇ (t)

dt
= [
r +p(

F(V (t))
)]
V̇ (t)− u′(w̃(t))

dw̃(t)

dt
�

V̇ (t1) ≤ 0 implies dV̇ (t)/dt < 0 at t = t1. By induction, dV̇ (t)/dt < 0 for all
t ∈ [t1�∞). Thus, V (t) strictly decreases toward V̄ as t increases from t1 to ∞,
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contradicting the fact that V (t)≤ V̄ for all t <∞. If t1 ≤ t0, then w̃(t1)= 0 by
(C.7), and so (3.3) implies rV (t1)−S(V (t1))≤ u(0). This result and (3.4) yield

rVu − S(Vu)− u(b)− [
rV (t1)− S(V (t1))

] + u(0)≥ 0�

Because S′(V ) < 0, the left-hand side of the equation is strictly decreasing in
V (t1). Because the left-hand side is negative at V (t1)= Vu, then V (t1) < Vu. In
this case, the worker will quit into unemployment, which will be suboptimal to
the firm—a contradiction.

Recall that Λc(t) > 0 for all t < t0 and Λc(t) < 0 for all t > t0. Equation (C.8)
and V̇ > 0 imply that dJ̃(t)/dt > 0 for all t < t0 and dJ̃(t)/dt < 0 for all t > t0.
That is, J̃(t) is maximized at t = t0.

Fourth, t0 ≤ 0; thus, w̃(t) > 0 for all t > 0 and dw̃(t)/dt > 0 for all t <∞
(see (C.7)). Suppose t0 > 0, to the contrary. Then J̃(t0) > J̃(0) by the previous
result. Let {w̃(t)}∞

t=0 be the optimal contract that generates J̃(0) to the firm.
Consider an alternative contract {ŵ(t)}∞

t=0, where ŵ(t) = w̃(t + t0) for all t.
This alternative contract is feasible and generates a higher value to the firm,
J̃(t0), than the optimal contract—a contradiction.

Finally, (3.9) and (3.10) hold. Because w̃(t) > 0 for all t, then Λc(t) =
−1/u′(w̃(t)) for all t. Differentiating this equation with respect to t and sub-
stituting (C.5), I get (3.9). Substituting Λc into (C.8) yields (3.10). Because
V̇ (t) > 0 and w̃(t) > 0 for all t <∞, then dJ̃(t)/dt < 0 for all t <∞. Q.E.D.

PROOF OF LEMMA B.1: Let w ∈ Ω. Part (i) of the lemma was estab-
lished in the analysis immediately following (4.8). It is easy to verify from
(4.3) that Jw(V ) is strictly decreasing and continuously differentiable, with
J ′
w(V )= −1/u′(w(V )) < 0. Sincew(V ) is increasing, then J ′

w(V ) is decreasing,
and so Jw(V ) is (weakly) concave. Because qw(V ) = k/Jw(V ) and pw(V ) =
M(qw(V )), I have

p′
w(V )= M ′(qw(V ))[qw(V )]2

u′(w(V ))k
< 0�

where M ′(q) < 0 by Assumption 1. This shows that pw(V ) is strictly decreas-
ing and continuously differentiable. Moreover, parts (iii) and (iv) of Assump-
tion 1 imply that [M ′(q)q2] is decreasing in q. Because qw(V ) is increasing in V ,
M ′(qw(V ))[qw(V )]2 is decreasing in V . Because 1/u′(w(V )) is increasing in V
andM ′ < 0, then p′

w(V ) is decreasing. That is, pw(V ) is (weakly) concave, and
so part (ii) of the lemma holds.

Ifw ∈Ω′, that is, ifw(V ) is strictly increasing for all V < V̄ , then it is straight-
forward to strengthen the argument for part (ii) to show that Jw(V ) and pw(V )
are strictly concave, as stated in part (iii). Q.E.D.

PROOF OF LEMMA B.2: To prove part (i) of the lemma, pick two arbitrary
functions w1, w2 ∈ Ω, with w2(V ) ≥ w1(V ) for all V . Simplify the notation
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Jwi to Ji, Fwi to Fi, and pwi to pi, where i = 1�2. Because w2(V ) ≥ w1(V ) for
all V , (4.3) implies J2(V )≥ J1(V ), and the assumptionM ′ < 0 implies p2(V )≥
p1(V ) for all V . Suppose, contrary to part (i) of the lemma, that p1(F1(V )) >
p2(F2(V )) for some V . Let qi = k/Ji(Fi(V )), i = 1�2. Because pi(Fi(V )) =
M(qi) andM(q) is strictly decreasing in q, the supposition implies q1 < q2 and,
hence, J1(F1(V )) > J2(F2(V )). Monotonicity of Jw in w implies J2(F2(V )) ≥
J1(F2(V )). In this case, J1(F1(V )) > J1(F2(V )) and so F1(V ) < F2(V ). With
these results, I can derive

0< p1(F1(V ))−p2(F2(V ))

= p′
2(F2(V ))[F2(V )− V ] −p′

1(F1(V ))[F1(V )− V ]
<

[
p′

2(F2(V ))−p′
1(F1(V ))

][F1(V )− V ]

= F1(V )− V
k

[
M ′(q2)(q2)

2

u′(w2(F2(V )))
− M ′(q1)(q1)

2

u′(w1(F1(V )))

]

≤ F1(V )− V
u′(w1(F1(V )))k

[M ′(q2)(q2)
2 −M ′(q1)(q1)

2]�

The first inequality comes from the supposition, the first equality comes from
(3.2), the second inequality comes from F2(V ) > F1(V ) and p′

2(F2) < 0, the
second equality comes from computing p′

i(Fi), and the last inequality comes
from M ′(q2) < 0 and w2(F2(V ))≥w1(F2(V ))≥w1(F1(V )). Parts (iii) and (iv)
of Assumption 1 imply that M ′(q)q2 is decreasing in q. Because q2 > q1, as
shown above, the expression in the last line above is nonpositive—a contradic-
tion.

To prove part (ii) of the lemma, let w ∈Ω, and V2 ≥ V1. Note that w(V2) ≥
w(V1), because w ∈ Ω. Moreover, because [rV − Sw(V )] is strictly increasing
in V , rV2 − Sw(V2)≥ rV1 − Sw(V1). Hence, the following inequality holds:

Δ≤ Δ1 ≡ 1
u′(w(V1))

[
max{0� rV1 − Sw(V1)− u(w(V1))}

−max{0� rV1 − Sw(V1)− u(w(V2))}
]
�

Consider all possible cases: (a) rV1 − Sw(V1) ≥ u(w(V2)), (b) rV1 − Sw(V1) ≤
u(w(V1)), and (c) u(w(V1)) < rV1 − Sw(V1) < u(w(V2)). In each case, it can be
verified that

Δ1 ≤ u(w(V2))− u(w(V1))

u′(w(V1))
�

Thus, the first inequality in (B.1) holds.
To establish the second inequality in (B.1), I first show that

max
{
0� rV2 − Sw(V2)− u(w(V2))

}

≤ u′(w(V2))

u′(w(V1))
max

{
0� rV2 − Sw(V2)− u(w(V1))

}
�
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This inequality is evident when rV2 −Sw(V2)≤ u(w(V2)), because the left-hand
side is 0 in that case. If rV2 − Sw(V2) > u(w(V2)), the above inequality becomes

rV2 − Sw(V2)− u(w(V2))

u′(w(V2))
≤ rV2 − Sw(V2)− u(w(V1))

u′(w(V1))
�

Because [rV − Sw(V )] is strictly increasing in V , rV2 − Sw(V2)≤ rV̄ − Sw(V̄ )=
u(w̄). In this case, (4.11) implies that [rV −Sw(V )−u(w)]/u′(w) is decreasing
in w for any given V and Sw(V ). Since w(V2) ≥ w(V1), the above inequality
holds.

Using the above result, I obtain

Δ≥ 1
u′(w(V1))

[
max{0� rV1 − Sw(V1)− u(w(V1))}

−max{0� rV2 − Sw(V2)− u(w(V1))}
]
�

Consider all of the possible cases: (a) u(w(V1))≥ rV2 −Sw(V2), (b) u(w(V1))≤
rV1 − Sw(V1), and (c) rV1 − Sw(V1) < u(w(V1)) < rV2 − Sw(V2). In each case,
it is straightforward to deduce the second inequality in (B.1) from the above
relation. Q.E.D.

PROOF OF LEMMA B.3: Let w ∈Ω, and consider the function ψw(V ). With
Lemma B.1, ψw(V ) is a continuous and bounded function of V . Next, I prove
that ψw(V ) is an increasing function. To do so, let V1 and V2 be arbitrary values
in [V � V̄ ], with V2 ≥ V1. Simplify the notation f (Vi) to fi, where f includes the
functions w, Jw, Fw, Sw, and ψw. I show that ψw2 ≥ ψw1. To do so, use the
second inequality in (B.1) to obtain

ψw2 −ψw1 ≥ [r +pw(Fw1)]Jw1 − [r +pw(Fw2)]Jw2

+ [rV1 − Sw1 − (rV2 − Sw2)]/u′(w1)

= [r +pw(Fw1)](Jw1 − Jw2)+ Jw2[pw(Fw1)−pw(Fw2)]
+ [rV1 − Sw1 − (rV2 − Sw2)]/u′(w1)�

Because [rV − Sw(V )]′ = r +pw(Fw) and [rV̄ − Sw(V̄ )] = u(w̄), then

rV − Sw(V )= u(w̄)−
∫ V̄

V

[
r +pw(Fw(z))

]
dz�

Using this result and expressing Jw(V ) as in (4.3), I get

[r +pw(Fw1)](Jw1 − Jw2)+ [rV1 − Sw1 − (rV2 − Sw2)]/u′(w1)(C.9)

=
∫ V2

V1

[
r +pw(Fw1)

u′(w(z))
− r +pw(Fw(z))

u′(w1)

]
dz ≥ 0�
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The inequality follows from pw(Fw1) ≥ pw(Fw(z)) and u′(w(z)) ≤ u′(w1) for
all z ∈ [V1� V2]. Because pw(F) is a decreasing function of F , I have established

ψw2 −ψw1 ≥ Jw2[pw(Fw1)−pw(Fw2)] ≥ 0�(C.10)

Now I verify ψw(V ) ∈ [w� w̄] for all V , with ψw(V̄ ) = w̄. Because w(V̄ ) =
w̄, Jw(V̄ ) = k/q̄, and pw(V̄ ) = 0, it is clear that ψw(V̄ ) = w̄. Since ψw(V ) is
increasing, ψw(V ) ≤ ψw(V̄ )= w̄ for all V . Similarly, ψw(V ) ≥ w for all V if
and only if ψw(V )≥w. To establish the latter inequality, note that w(V )≥w,
because w ∈Ω. Using (4.11) and the fact that rV = u(b), I have

1
u′(w(V ))

[
rV − Sw(V )− u(w(V ))] ≤ 1

u′(w)
[u(b)− Sw(V )− u(w)]�

The right-hand side of the inequality is nonnegative, because w is set to be
small. Thus,

ψw(V ) ≥ y − [
r +pw(Fw(V ))

]
Jw(V )

− 1
u′(w)

[u(b)− Sw(V )− u(w)]

≥ y − [
r +pw̄(Fw̄(V ))

]
J̄ − 1

u′(w)
[u(b)− Sw(V )− u(w)]�

The first inequality comes from the preceding result. The second inequality
uses part (i) of Lemma B.2, the upper bound on J (defined in (4.8)), and the
fact that Sw(V ) is increasing in w for any given V . With the above result, (4.10)
implies ψw(V ) ≥ w. Therefore, ψ maps functions in Ω back into functions
in Ω.

Finally, if V2 > V1, the inequalities in (C.9) and (C.10) are strict, because
Fw(V ) is strictly increasing and pw(Fw(V )) is strictly decreasing in V for all
V < V̄ (see Lemma B.2). In this case, ψw ∈ Ω′ ⊂Ω. This completes the proof
of Lemma B.3. Q.E.D.

PROOF OF LEMMA B.4: I prove that the following inequality holds for all
w1�w2 ∈Ω, and all V ,

|ψw2(V )−ψw1(V )| ≤A‖w2 −w1‖�(C.11)

where the norm is the sup norm and A is a finite constant. Once this is done,
Lipschitz continuity of ψ is evident from the inequality

‖ψw2 −ψw1‖ = max
V

|ψw2(V )−ψw1(V )| ≤A‖w2 −w1‖�

To show (C.11), take two arbitrary functions, w1�w2 ∈Ω, and fix V at an ar-
bitrary value in [V � V̄ ]. Without loss of generality, assume ψw2(V )≥ ψw1(V )
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for this given V . Since V is fixed, I suppress it from the functions if this does
not cause confusion. Also, shorten the subscriptwi on J, p, F , and S to i, where
i= 1�2. I have

0 ≤ ψw2(V )−ψw1(V )

= [r +p1(F1)](J1 − J2)+ J2[p1(F1)−p2(F2)] +Δ2�

where

Δ2 = max
{

0�
rV − S1 − u(w1)

u′(w1)

}
− max

{
0�
rV − S2 − u(w2)

u′(w2)

}
�

To proceed, note that the following inequalities hold for all a1 and a2:

max{0� a1} − max{0� a2} ≤ max{0� a1 − a2} ≤ |a1 − a2|�
Using these results, it is easy to verify that

Δ2 ≤
∣∣∣∣ rV − S1 − u(w1)

u′(w1)
− rV − S1 − u(w2)

u′(w2)

∣∣∣∣ + |S2 − S1|
u′(w2)

�

Denote the first term on the right-hand side above as Δ3. Define

μ1 = min
w∈[w�w̄]

|u′′(w)|� μ2 = max
w∈[w�w̄]

|u′′(w)|�(C.12)

where μ1 and μ2 are positive and finite. Because (rV −S1) is strictly increasing
in V , rV − S1 ≤ u(w̄). Also, concavity of u implies u(w̄)≤ u(w)+ u′(w)(w̄−
w). Then

∣∣∣∣ ddw
(
rV − S1 − u(w)

u′(w)

)∣∣∣∣ ≤ 1 + μ2

u′(w̄)
(w̄−w)≡A1�(C.13)

Hence,

Δ3 ≤A1|w2 −w1|� Δ2 ≤A1|w2 −w1| + |S2 − S1|/u′(w̄)�

Substituting these results into the earlier expression for [ψw2(V ) − ψw1(V )]
and using the bounds in (4.8), I obtain

0 ≤ ψw2(V )−ψw1(V )(C.14)

≤ (r + p̄)|J1 − J2| + J̄|p2(F2)−p1(F1)|
+ |S2 − S1|/u′(w̄)+A1|w2 −w1|�
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Let me examine the first three terms on the right-hand side above. With μ2

defined in (C.12), the following inequality holds for all w1, w2 ∈ [w� w̄]:
∣∣∣∣ 1
u′(w1(z))

− 1
u′(w2(z))

∣∣∣∣ ≤A2‖w2 −w1‖� where A2 ≡ μ2

[u′(w̄)]2
�(C.15)

Using this result and (4.3), I have

|J1 − J2| ≤
∫ V̄

V

∣∣∣∣ 1
u′(w1(z))

− 1
u′(w2(z))

∣∣∣∣dz ≤A2(V̄ − V )‖w2 −w1‖�(C.16)

To put a bound on the difference, |p2(F2)−p1(F1)|, define

B1 ≡m1q̄
2/k� B2 ≡ (q̄m2 + 2m1)q̄

3/k2�(C.17)

wherem1 andm2 are the bounds specified in Assumption 1. Clearly, B1 and B2

are finite. Because k/Jw = qw ≤ q̄, it is straightforward to verify that
∣∣∣∣dM(k/Jw)dJw

∣∣∣∣ ≤ B1�

∣∣∣∣d
2M(k/Jw)

dJ2
w

∣∣∣∣ ≤ B2�(C.18)

Using these bounds, (C.15), and (C.16), I can derive the following results for
all z ∈ [V � V̄ ]:

|p2(z)−p1(z)| ≤ B1|J2(z)− J1(z)| ≤ B1A2(V̄ − V )‖w2 −w1‖�(C.19)

|p′
2(z)−p′

1(z)| =
∣∣∣∣ 1
u′(w2(z))

d

dJ2
M

(
k

J2(z)

)
(C.20)

− 1
u′(w1(z))

d

dJ1
M

(
k

J1(z)

)∣∣∣∣
≤ B1

∣∣∣∣ 1
u′(w2(z))

− 1
u′(w1(z))

∣∣∣∣
+ 1
u′(w2(z))

∣∣∣∣ ddJ2
M

(
k

J2(z)

)
− d

dJ1
M

(
k

J1(z)

)∣∣∣∣
≤ B1A2‖w2 −w1‖ + B2

u′(w̄)
|J2(z)− J1(z)|

≤
[
B1 + B2

u′(w̄)
(V̄ − V )

]
A2‖w2 −w1‖�

Now examine the difference |p2(F2)−p1(F1)|. Assume F2 ≥ F1 without loss
of generality. (If F2 ≤ F1, switch the roles of F1 and F2 in the proof, and the
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resulting bound is the same.) In the case where p2(F2) < p1(F1), I have the
inequalities

0< p1(F1)−p2(F2)= −p′
1(F1)(F1 − V )+p′

2(F2)(F2 − V )
≤ (F1 − V )[p′

2(F1)−p′
1(F1)]�

The equality follows from (3.2), and the last inequality follows from the fact
that p′

2(F)(F − V ) is decreasing in F . Because 0 ≤ F1 − V ≤ V̄ − V , the above
result and (C.20) imply

|p2(F2)−p1(F1)| ≤
[
B1 + B2

u′(w̄)
(V̄ − V )

]
A2(V̄ − V )‖w2 −w1‖�(C.21)

In the case where p2(F2)≥ p1(F1), the following inequalities hold:

0 ≤ p2(F2)−p1(F1)≤ p2(F1)−p1(F1)≤ B1A2(V̄ − V )‖w1 −w2‖�
The second inequality comes from the fact that p is decreasing and the last
inequality comes from (C.19). Thus, (C.21) holds in this case too.

Next, turn to the difference, |S2 − S1|. Because S1 is the maximum of
p1(F)(F − V ) over F , then S1 ≥ p1(F2)(F2 − V ). Using the inequality and
(C.19), I have

S2 − S1 ≤ p2(F2)(F2 − V )−p1(F2)(F2 − V )
= (F2 − V )[p2(F2)−p1(F2)] ≤ B1A2(V̄ − V )2‖w2 −w1‖�

Similarly, using the inequality, S2 ≥ p2(F1)(F1 − V ), I can show that (S1 − S2)
is bounded by the same upper bound as above. Hence,

|S2 − S1| ≤ B1A2(V̄ − V )2‖w2 −w1‖�(C.22)

Assembling (C.16), (C.21), and (C.22) into (C.14), I obtain (C.11), where A
is given as

A=A1 +A2(V̄ − V )
{
(r + p̄)+

[
B1J̄ + B1 +B2J̄

u′(w̄)
(V̄ − V )

]}
�

Clearly, A is finite. Moreover, A is independent of the particular functions w1

and w2 with which the functions (Ji� qi, pi�Fi� Si) are constructed. Q.E.D.

PROOF OF THEOREM 6.1: First, I derive (6.2). Set V = V̄ in (6.1). Because
V̇ = 0 at V = V̄ , the left-hand side of (6.1) is equal to 0 at V = V̄ . Moreover,
the integral in (6.1) is equal to zero, because F−1(V̄ ) = V̄ . Thus, at V = V̄ ,
(6.1) yields (6.2).
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Second, I show thatG is continuous; that is,G does not have any mass point.
Suppose, to the contrary, that G has a mass a > 0 at some value V ∈ [v1� V̄ ].
Then G(V )−G(V − V̇ dt)≥ a for all dt > 0 and so the left-hand side of (6.1)
is equal to ∞. This is a contradiction, because the right-hand side of (6.1) is
bounded.

Third, to establish (6.3) and continuity of g, denote the left-hand side deriv-
ative of G as g(V−). The left-hand side of (6.1) is equal to g(V−)V̇ . Because
G, F , F−1, and p(·) are continuous, the right-hand side of (6.1) is continu-
ous in V . Thus, g(V−)V̇ must be continuous. Because V̇ is continuous, g must
be continuous. Then I can express the left-hand side of (6.1) as g(V )V̇ . After
substituting p(v1) from (6.2), (6.1) becomes (6.3).

Fourth, g is continuously differentiable for all V �= v2. To see this, note that
F , F−1, and p(·) are continuously differentiable. Since g is continuous, G is
continuously differentiable and so the right-hand side of (6.3) is continuously
differentiable for all V �= v2. Thus, the left-hand side of the equation, g(V )V̇ ,
must be continuously differentiable for all V �= v2. Because V̇ is continuously
differentiable, g(V ) is continuously differentiable for all V �= v2.

Fifth, I derive (6.5). For V ∈ (v1� v2), F−1(V ) < v1 and so (6.3) becomes

g1(V )V̇ = δ[1 −G1(V )] −
∫ V

v1

p(F(z))g1(z)dz�(C.23)

Note that T ′(V ) = 1/V̇ from (4.1). Differentiating the function Γ in (6.4)
yields

dΓ (V �v1)/dV = −[
δ+p(F(V ))]Γ (V �v1)/V̇ �(C.24)

With (C.24) and (C.23), it is straightforward to verify

d

dV

[
V̇ g1(V )

Γ (V �v1)

]
= 0�(C.25)

Recall that G1(v1)= 0, because G(V ) is continuous for all V . Taking the limit
V ↓ v1 in (C.23) leads to g1(v1)v̇1 = δ. With this initial condition, integrating
(C.25) from v1 to V yields (6.5). Since g is continuous, taking the limit V ↑ v2

in (6.5) gives g(v2).
Finally, I derive (6.6) by examining the case V ∈ [vj� vj+1), where j ≥ 2. In

this case, F−1(V )≥ v1 and so (6.3) becomes

gj(V )V̇ = δ[1 −G(V )] −
∫ vj

F−1(V )

p(F(z))gj−1(z)dz(C.26)

−
∫ V

vj

p(F(z))gj(z)dz�
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I have separated the two groups of applicants who obtain jobs with values
above V : one group comes from (F−1(V )� vj] and the other from [vj� V ]. With
(C.26) and (C.24), I can derive

d

dV

[
V̇ gj(V )

Γ (V �v1)

]
= p(V )

Γ (V �v1)
gj−1(F

−1(V ))
dF−1(V )

dV
�(C.27)

Integrating this equation from vj to V yields (6.6). Because g is continu-
ous, then gj(vj) = limV ↑vj gj−1(V ), all j. This completes the proof of Theo-
rem 6.1. Q.E.D.
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