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W1. AN EXAMPLE MOTIVATED BY DELLAVIGNA ET AL.

FIRST WE CONSIDER an example motivated by DellaVigna et al.’s (2010) exper-
iment on door-to-door charitable fund-raising that illustrates a form of non-
monotonicity. DellaVigna et al. (2010) provided homeowners with the option
to avoid a fundraiser by using a “Do Not Disturb” check box and found that
those who chose avoidance were concentrated among people who donate less
when avoidance is not possible. As we explain here, this example is consistent
with our model: whether the agent is willing to pay to avoid a temptation can
be a nonmonotone function of the temptation’s short-run utility. Intuitively,
those who are willing to pay to avoid a temptation can have intermediate util-
ities from choosing it, as those with very low values may find it easy to resist
without commitment, while those with high values will have a correspondingly
high control cost for choosing the commitment.

EXAMPLE W1—Door-to-Door Sales: This example has two decisions: First,
whether to avoid a tempting opportunity and, second, whether to give in to
temptation if it was not avoided. (For concreteness, think of the avoidance
activity as avoiding a door-to-door salesman.) As we will see, costly self-control
leads to a nonmonotonicity: if the temptation is very high or very low, then the
opportunity will not be avoided, but it may be avoided for intermediate levels
of temptation. The intuition is that when the opportunity is very good, there is
little conflict between the long-run self and shorter-run self, so the opportunity
should be taken advantage of and not avoided. When the opportunity is very
bad, the shorter-run self will not indulge much, so it is not worth paying a fixed
cost for avoidance. However, in the intermediate case, there may be a more
severe conflict between long-run self and shorter-run self, so the long-run self
may choose to commit so as to avoid the temptation.

The example is very simple and stylized. In period 1, a cost ' > 0 may be
paid or not; think of this as not being at home when the salesman calls. If the
cost is paid, the utility in all subsequent periods is 0. If the cost is not paid,
then in period 2, a decision must be made on whether to purchase from the
salesman. If the purchase is made, the utility in period 2 is B; otherwise it is
zero. In period 3, if the purchase was made, it must be paid for, resulting in
a disutility of —1.

To solve the model, we first compute temptation values in each period and
state, and then compute the agent’s objective function. We then solve the vari-
ous inequalities to see when each action is best.
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We begin by computing the temptation value in the last period in which ac-
tion is possible, namely in period 2 when the avoidance cost has not been paid.
Here the shorter-run self’s average present value from doing nothing is 0 and
that of purchasing is (1 — u)(B — 6u), so U, = (1 — ) max{0, B — 6u}. In
the initial state, if F is chosen, the shorter-run self’s value is —F (1 — du), while
if it is not chosen, the shorter-run player value is duU,. If B — éu < 0, then
also B — 6 < 0, so in period 2 the optimum is not to purchase, which incurs no
cost of self-control.

Now we suppose B — 6 > 0 and compute the agent’s decision. Resisting
temptation in period 2 will cost I'(1 — 6u)(B — 6u), so the purchase will be
made when (1 — 8)(B —6) > —I'(1 — éu)(B — 6w). If avoidance is chosen,
the shorter-run self pays the avoidance cost of —(1 — éu)F in the first period.
Since the temptation value is uU,, the average present value of avoidance is

—(1=8)F — I'(F(1 - 8u) + 8uUs)
=—(1-8F—T'(F(1—-28u)+éu(l—8u)max{0, B—du})

and avoidance is optimal if this is higher than the discounted average value
of long-run player utility in period 2, which is § max{(1 — 8)(B — 8), —I'(1 —
Op)(B — op)}.

Denote the strategy of not paying the avoidance cost and not purchasing
as a°, of not paying the avoidance cost and purchasing as a', and of paying the
avoidance cost as a”. We have the following characterization of the optimal
decision rule:

PROPOSITION W1: Set

Fw_lﬁ%l—ﬁuxl—ﬁxl—uﬁ
T (1=84T(1-58p))?

If F > F*, then a° is optimal for

- 1-6+TI'(A-6u)pm
T 1-86+T1-6p)

%

and a' is optimal if B> B*. If F < F*, then

B 1-8+T(—8u)u? 1-6+1'(1-6uw)
1= 6+TA-6up  SA1—86+T(1—5du)m)
1-6+1(1-8w) _p

F(1-dwos(l—p) ~—~

>B">éu+

and a° is optimal for B < B, a" is optimal for B < B < B, and a' is optimal for
B>B.
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PROOF: (i) As worked out above, the payoff to F is

—(1=8)F — y(F(1—6p) + dul>)
=—(1-8)F—y(F(1—-6un)+éu(l—o6w)max{0, B—u}).

(ii) Ifa (do not avoid, do not purchase) is chosen, the direct utility is 0 and
the reduced form utility is the temptation cost incurred in the second period:

V(a’) = —-I'8(1 — 8u)max{0, B — Su}.

(iii) If a' is chosen, the direct utility is (1 — §)(8B — 8%), while the cost of
self-control is in period 2 and is —I'(1 — du) min{0, B — &u}, as self-control is
needed only when the shorter-run player does not want to purchase. Thus

V(') =(1—8)8(B—8)+ I'5(1 — 8w) min{0, B — Sy}

If B < 6, then the optimum is not to purchase and there is no temptation
cost; here it is also not optimal to avoid in the first period, and the optimum
is a’. Next suppose that B > Su and consider the period-2 choice, assuming
the avoidance cost was not paid. If the purchase is not made, the average value
from period 2 onis —I'(1 — éuw)(B — du), while if it is made, the average value
is (1 — 8)(B — 8). So the optimum is not to purchase when

- 1-6+T'd-6mwp
T 1-64+T(1-68u)

*

Next observe that since B > du, the present value of utility from avoiding is
given by

—(1=8)F —I'(F(1—256u) +éu(l—0u)(B—0op)).
Then V' (af) > V(a°) if and only
1-8+TI(1—dp)
B>86u+ F=B
SRt TA s - T

Since B — du > 0, this implies there is a range of sufficiently small F where a”
is better and a range of F so large that a° is better.
Finally, V' (af) > V' (a') if

—(1=8)F —I'(F(1—36u)+du(l—0oun)(B—2o6u))
>8(1—8)(B—248)
or

- 1-6+T(1—-8u)u? 1-64+T(1-6p) F—@
T 1-6+TA—-0wp 61 —-06+T1A—-58uww) '
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We conclude that a is best when
1-86+T(1—8u)u? 1-64+T'(1-6w)
1—64+T'(1—-0w)u 61 —-6+T1—-6u)w)
1—-64+T(1—06w)
I —6u)é(1—p)

Straightforward algebra shows that there is a nonempty interval of B where a”
is best when

_Ta-ow-98d—w® _ .
T (A-8+TA-dp)y>

>B>du+

F

If F > F*, it is not optimal to use a’’; in this case, the optimum is determined
from the condition for VV(a") > V(a') above. If F < Fx and if B < B, then
V(af) <V (a’) and V' (a') <V (a"),so a’is optimal; if B < B < B, then V' (a) >
V' (a") and V' (af) > V' (a'), so a” is optimal; if B > B, then V' (a’) <V (a') and
V(a') > V(a"), so a' is optimal. Finally note that u < B, B*, so that the case
B < 8u where a° is optimal is included in this result. Q.E.D.

Note that the right-hand side inequality in B < B < B gets harder to satisfy
as w — 1 or as I' — 0. In the former case, the interests of the shorter-run self
are nearly aligned with those of the long-run self, while in the second case, the
shorter-run self defers to the wishes of the long-run self. In either case, paying
F is just an expensive way to not buy. Paying a small F is attractive as u — 0,
as here the first SR self is not very tempted by the second-period outcome, so
it is cheap to get him to agree to a commitment that will probably bind on the
next self.

DellaVigna et al. (2010) found that if an option to avoid the fundraiser is
available, about a quarter of people make use of it, and that if the option is
made cheaper by providing a “Do Not Disturb” check box, nearly a third of
people choose to avoid the salesperson. If we imagine that without checking
the box there is a cost of avoiding, then this is as our model predicts: the lower
the cost of avoidance, the more people will choose it. As noted above, Della-
Vigna et al. found that those who chose avoidance were concentrated among
people who donate less when avoidance is not possible. Whether this is the
case in our model depends on the distribution of B. If the lowest value of B/B

in the population is greater than or equal to 1 and the highest value of B/B
also exceeds 1, then all those who would not contribute when avoidance is
not possible (F = oco) will choose avoidance, while only some of those who
would contribute choose avoidance; this is what DellaVigna et al. found. On
the other hand, if the highest value of B/B in the population is less than or
equal to 1 while the lowest value of B/B is below 1, our model predicts the
opposite result. A more elaborate experiment could vary the value of B and
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the cutoffs more systematically—for example, in the flier describing the visit,
indicating that a level of matching funds are available ($3 to the charity for
every $1 you donate, for example). This would make it possible to test for the
nonmonotonicity in B that the model predicts.

‘W2. STATE DEPENDENCE

In the text, we defined the value of cognitive resources to be state-independent
if it depends on the state only through the stock of willpower; in a slight abuse
of notation, we write this as m(y,, w,) = m(w,). State-independent resource
valuation implies that the action most favored by the shorter-run self maxi-
mizes the utility of cognitive resources. To see this, define

M (hyy2) = EX, Y (8) (1 = 8p)m(ib,0)

£=0

and note that the value on the right-hand side is independent of k. If each pe-
riod’s action is chosen to maximize the value U* (4, a) of the current shorter-
run self, the foregone value each period is 0. This implies that the level of re-
sources at each period is as high as possible given the initial value; with state-
independent resource valuation, any action plan a that leads to this highest
possible path for w also maximizes the flow of benefits m(w,) in the strong
sense that no other action plan leads to a higher value of m in any period along
any history. As a consequence, any action plan that maximizes shorter-run util-
ity in each period on each history also maximizes M.

THEOREM W2: With state-independent resource valuation, argmax, U(h,,
a) = argmax, M (h,, a).

W3. THE GAME BETWEEN LONG-RUN AND SHORTER-RUN SELVES

Here we show that the optimization problem in the text can be identified
with the outcome of a game between the long-run self and a sequence of
shorter-run selves. To do this, we introduce an augmented state variable Y
that is defined in any period # in which a new shorter-run self is born and in-
cludes along with y, the value of n as well as available cognitive resources; that
is, Yx = (yu, wy, n). Notice that any strategy a that maps histories to actions
induces a well defined stochastic kernel I1(a, Y;)[dY},] based on the original
stochastic kernel and the laws of motion for cognitive resources.

In the game formulation, the actions are taken by the shorter-run selves, and
the long-run self chooses self-control actions that influence the preferences of
the shorter-run self; the control cost we specified in the text will now corre-
spond to a reduction in the utility function as opposed to an additional term.
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Each shorter-run self can be thought of as choosing an a: Although this con-
tains irrelevant information such as how the shorter-run self will behave after
he “dies,” we will ignore this in computing the shorter-run self’s payoff. Fol-
lowing Fudenberg and Levine (2006), we assume that before the shorter-run
self moves, the long-run self chooses a self-control action e € E. It is convenient
to take E = 0 U A; we then interpret e € A as the “suggested action” and e =0
as “no recommendation” or “no self-control.” In the game formulation, cog-
nitive resources follow the exact same equations of motion as in the reduced
form model and depend only on the action actually taken by the short-run self
and not on the self-control action e. We consider a sequence of stage games
between the long-run self and the kth shorter-run self. The kth stage game
consists of a choice of self-control action e by the long-run self and a response
a by the shorter-run self. The utility of the kth shorter-run self has the form
u(Yy, e, a), which we specify below.

Histories in this game are sequences of augmented states Y, along with the
chosen actions ey, a;. A strategy from the long-run self is a map e from the
previous history to a self-control action, and a strategy for the kth shorter-run
self is a map a, from the previous history and choice of the long-run self to
an action. The vector of strategies for all shorter-run players is denoted a. We
define the conditional expectation operator E. , y, given the strategies e, a and
state Y.

Fudenberg and Levine (2006) specified the procedure for deriving a util-
ity function from an underlying objective function and a “cost of self-control”
function. We mimic that procedure here to show that the equilibria of the game
are equivalent to those of a particular optimization problem that we define be-
low; we then show that the solution to this optimization problem is the same
as the solution to the optimization problem in the text .

To do so, we first define Ef_ , to be the conditional expectation when k is
alive. Write!

U(Yi,a)=(1=8)Eg,y, Y (3w u(aj,,, Vien)-
n=0
Parallel to the definition of M in Section W2, define

MY, a)=(1=8)Ef,y > (81)" *m(Yins Wicen),

n=0

ISince the right-hand side of this equality does not depend on e, we write the expectation
conditional on e = 0 to facilitate later steps.
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where again the right-hand side does not depend on e. Following Fudenberg
and Levine (2006), we now define the SR objective function in the game:

U(Yy,a) +maxM(Yy,a'),
e=0,

WY, e,a) = UYi,e) + M(Yy, ) — e —al, )
U(Ykaa)+M(Ykaa) ZU(Yka e)+M(Ykae)7

U(Yr,a)+M(Y,,a) — e —al, )
U(Ykaa)+M(Ykaa) < U(Yk7e)+M(Ykae)'

Notice that with this objective function the shorter-run self cares about re-
sources, but except when the utility U(Y,,a) + M(Y;, a) from the chosen ac-
tion is smaller than the utility U(Yy, e) + M(Yy, e) from the suggested action,
the shorter-run self views those resources as being outside of his control.

The long-run self is completely benevolent: her payoff in the game is the
discounted sum of shorter-run self utilities

V(Yi,e,8)=(1—8)Eesy, » 8 i(Yy, ex,a5).

k=0

We assume that U (Y, a), M (Y, a) are continuous in a and define the cost of
self-control to be

C(Yi,a)=u(Y:,0,a) — max u(Yy,e,a)

eli(Yy,e,a)>i(Yy,e,-)

0, a cargmaxu(Yy, 0, a),
ma/lxM(Yk, a) — M(Yk, a), ad¢argmaxu(Yy,0,a),

a’

which has the property that C(Y;,a) >0 and C(Y;,a) =0 if and only ifa €
argmax, u(Yy, 0,a’).

As in Fudenberg and Levine (2006), we now consider equilibria in which the
shorter-run selves optimize following every history, and the long-run player
anticipates this reaction and plays like a Stackelberg leader. This is designed
to capture what we imagine is the strategic naivete of the shorter-run self: with
one-period lifetimes for the shorter-run players, this Stackelberg equilibrium is
equivalent to subgame-perfect equilibrium in which the long-run player moves
first against each shorter-run player and is equivalent to the weaker concept
of SR-perfect Nash equilibrium defined in Fudenberg and Levine (2006). If
we assume that the long-run player can choose a self-control action e, that is
observed by shorter-run self k before choosing plan a,, SR-perfect Nash equi-
librium has the same implication here. However, the assumption that e, is cho-
sen once and for all at the beginning of the life of shorter-run self & is stronger
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when the shorter-run self lives multiple periods. First, the self-control action
changes the preferences of the shorter-run self over many periods. Second, the
self-control action cannot be “changed” as long as the particular shorter-run
self is alive. As we note below, if the long-run self were unable to commit for
the life of the shorter-run self, then there would be a nontrivial strategic inter-
action between the two.

As is the case in which the shorter-run self lives only for a single period,
the expectations of the shorter-run self about play by the long-run self do not
matter, because the long-run self has already moved. For this reason, the situ-
ation does not correspond to a repeated game (which it would in the absence
of the commitment assumption). Moreover, the case for subgame perfection
may be stronger here than it is in general, as when the long-run self can com-
mit, the predictions of subgame perfections are less sensitive to changes in the
information structure.

Fudenberg and Levine (2006) defined a SR-perfect Nash equilibrium profile
to be equivalent to a solution to the reduced form optimization problem of
maximizing

E.y, Y 8(u(Y,0,a) — C(Yy,a))

k=0

if the reduced strategy induced from the shorter-run players’ strategy profile is
a solution to the optimization problem. Conversely, if there exists a SR-perfect
Nash equilibrium profile with this property for a particular solution to the op-
timization problem, we say that this solution of the reduced form optimization
problem is equivalent to the SR-perfect Nash equilibrium profile. Provided
that U(Y,, a) and M(Y;, a) are continuous in a, the conditions of Fudenberg
and Levine’s (2006) Theorem 1 are satisfied, so this equivalence does indeed
hold.?

THEOREM W3: If U(Y,,a)and M (Y, a) are continuous in a, then SR-perfect
Nash equilibria are equivalent to solutions to the reduced form optimization prob-
lem.

We now wish to relate solutions to the optimization problem equivalent to
SR-perfect Nash equilibria

(*)  Eay, Y 84 u(Y,0,a) — C(Yy,a))

k=0

These conditions are costly and unlimited self-control, limited indifference, and continuity.
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to those of

(o) Eay, »_8"((1=8)ulay, yu) + m(yu, ,)),

n=0

the agent’s objective function that we used as the starting point in this paper.
THEOREM W4: (%) and (xx) have the same solutions.

PROOF: Observe that since we have assumed state independent resource
valuation, by Theorem W2, U (Yy,a) and M (Y, a) have the same argmax,
while i(Yy,0,a) = U(Yy, a) + maxy M (Y, a) trivially has the same arg max.
It follows that if a € argmax, (Y}, 0,a), then a € argmaxy M(Yk, a) and, by
definition, C(Y}, a) = 0. The former implies max, M (Yy,a) — M (Yy,a) =

so C(Y,,a) = maxy M(Y,,a') — M(Y,,a). Since this also holds by deﬁmtlon
for a ¢ argmax, (Y}, 0, a), it holds for all a. Hence

Eay, i & ((0(Ye, ) + maxM (¥, a))
k=0

— (rnagx]\;[(Yk, a') — M(Yy, a)))

=E.y, y_ 8 (U(Yy,a) + M (Y, ).

t=0

Let A,, be the probability £ is alive at ¢. Then we may write

E.y, Y 8“(U(Yi,a) + M(Yy, )

t=0

=E.y, ) 8(1-9) (Z(M)""Ak,kﬂu(aan, Yesn)

k=0 n=k

+ Z(alu/)n_kAk,k+nm(yk+m wk+n))

n=k
=Eay, 38" ) ()"  Apsn(1-8)
n=0 k=1

X (u(a‘,z+n, yk+n) + m(yk+n7 ibk+n))

= Euy, 38" (1= 8)(u(@,,» Yern) + Mo D). QED,

n=0



10 D. FUDENBERG AND D. K. LEVINE

Thus the reduced form of the game is the same agent’s objective function
that we used in our analysis, hence our study of the solutions of the agent’s
objective function can be interpreted as an equilibrium of this game.

Notice that we have assumed that the long-run self can commit for the life-
time of the shorter-run self. This is intended to capture the strategic naivete
of the shorter-run self as a passive actor. If the long-run self simply moves
first each period but cannot commit to contingent plans for future periods, the
equilibrium here is still a SR-perfect equilibrium, since we have shown that
the solution to the reduced form optimization problem is Markov, so that the
long-run self has no wish to renege on his commitment. However, without com-
mitment there can be other equilibria in which the shorter-run self chooses a
plan different from that suggested by the long-run self as part of a repeated
game equilibrium. However, we regard such equilibria as inconsistent with our
notion of the nature of the shorter-run self.

W4. RECURSIVE VERSUS OPPORTUNITY COST

The text supposes that the control cost depends on the foregone value, which
is defined with respect to the maximum possible SR utility from tomorrow on-
ward given tomorrow’s state. This specification does not necessarily satisfy the
property of being an opportunity cost. In general, an opportunity cost for the
short-run self would have the form

C(Yy,a)=GU(Yy) — U(Yy,a)),

where, as in Section W3, U(Yy,a) = (1 — 6)E(’§,a,yk Yoo (B ulay ., Yien)-
With this specification, the control cost is computed each period by the differ-
ence between the best expected present value available to a shorter-run self
born in that period and the present value actually received, taking into account
what will actually happen in future periods.

With this alternative specification of the cost, the alternative objective func-
tion for the long-run self in period 1 is

V(hi,a) = E,, Z 8" (t(Y1sn» @r4n)

n=0

— (1= wI'TU (yiin) — U (hig, @)])
—ulU®y) —U'(hy,a)].

Here the control cost is computed each period by the difference between the
best expected present value available to a short-run self born in that period
and the present value actually received. It has the form of an opportunity cost
that depends only on the best present value available to the short-run selves
and the actual utility they receive. Note that the name of the short-run self
born in period 1 4 n does not matter, so we may compute the self-control cost



TIMING AND SELF-CONTROL 11

without loss of generality for kK = 1 + n. This expected present value cost is
weighted by 1 — w, which is the probability of a new short-run self being born
in a given period. In period 1, however, the weight must be taken to be 1, since
the optimization problem always begins with the birth of a new short-run self.

In contrast, the formulation in the paper computes the foregone value and
thus the cost in each period “as if” no self-control will be used in future periods.
However, in the linear case, these two formulations are equivalent.

THEOREM W5: If C(Yy,a) = I'(U(Yy) — U(Yy,a)), then C(Yy, a) =
C(Yk,a).

PROOF: Since the identity of the SR self does not matter, is suffices to prove
this for £ = 1. So we must show

Ea,hl Z 5HA(Y1+m a1+n)

n=0

=Eun Y 8" (1= WU (G14) — U (hig, 2)])

n=0
+ulUy) — U'(hy, a)l.

We do so by showing that we can apply the principle of optimality for the
shorter-run self to compute the opportunity cost as a sum of current and fu-
ture foregone utilities; then we rearrange the resulting sum to get the desired
result. As noted in the text, the principle of optimality for the shorter-run self
gives the opportunity cost as a sum of weighted increments,

Uyn) = U"(hu,a) = U(y) = EL Y (88) (@i Yusr)

=0
= E:,h,, (Z(SM)((A(yn+la an+z))> .
=0

Writing out the full average present value of opportunity costs, we can in turn
express that as a weighted sum of foregone utilities,

Ean )8 (1= U (1) = U (g, @)])+ plU (1) — U' (hy, )]

=0

= Ea,hl Z 8 ((1 — W) Z(‘SIJ«)[/(A(YHZM, al+e+z’)))
=0

=0

+ M[Z(am”m(w, aw))}.

=0
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Set ¢” = ¢ + ¢'. The final step is to rearrange this sum to get the recursive cost

Eum Y > ((1= ) (8" " Arser, ar401)))

U'=0¢'<e:

+ M[Z(SM)W(A(YIH’, ﬂ1+v)):|

=0

=Eany 3 (1= 8" A(yreer, are) Y "

=0 o<p

+ M[Z(éu)”u\(yw, aw))}

=0

= Ean, Z SWA(MH“, a1+z”)(1 — pf”“)

=0

+ M[Z(SM)[(A(}’H@’, al+z’))j|

=0

o0
= Ea’hl Z 6[//A(y1+l” 5 al+(”)’
=0
which is the desired result.

The key idea is that the principle of optimality for the shorter-run self en-

ables us to write the overall loss to the shorter-run self as a sum of recursively
computed losses,

U(y,) — U"(h,,a)

=U(y) — (1= 8WEL, > (31) U(Yuees @ure)

£=0

=E, (1-6u) (Z(M)S(A(ym, am))).

=0

Hence the opportunity cost is just a weighted sum of the increments A(y,,

a,.¢), and the proof simply consists of bookkeeping to verify that the weights
are the same as in the recursive case. QE.D.

In the linear case, in other words, it does not matter whether the cost of
imposing self-control on the shorter-run self arises from recursive considera-
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tions or from an opportunity cost. The reason we adopted the recursive for-
mulation in the text is that in the nonlinear case, the model of opportunity
cost leads to implausible predictions about timing, such as changes in behavior
when a shorter-run self “dies.”

The recursive formulation of the text defines a cost of self-control for each
state and action to be a convex function g of the difference between the most
utility obtainable for any shorter-run self starting in that state and the utility
that would be obtained if the shorter-run self next period gets the most possible
utility,

C(y,a) =g(U<y) — (u(y, a)+98 f Uy)m(y'ly, a)[dy/]))
Y

The long-run self then solves the recursive problem directly without reference
to which shorter-run self is born at a particular time, resulting in reduced form
utility

Vi =Er Y 8 et Guse) — COnier @)

=0

In the opportunity cost formulation, the cost of self-control for shorter-run
self n born in period 7 is a convex function g of the difference between the most
utility obtainable for the shorter-run self and the utility actually obtained,

C:,hn = g(l_/(yn) - U:,hn)'

Note that there will typically be many shorter-run selves and that the long-run
player pays the control cost for the nth shorter-run when that self is “born.”

EXAMPLE W2: We now explore the difference between the two formulations
through a simple example. In the example, the recursive formulation captures
the simple intuition that when the probability of a temptation is reduced, it be-
comes less tempting. In the opportunity cost formulation, reducing the proba-
bility of a temptation has a complicated effect that depends on the exact timing
of when the temptation occurs relative to the “birth” of a new short-run self.
We argue that this is both unintuitive and inconsistent with experimental re-
sults.

In the example it is known that at some point in the future, a simple temp-
tation will arrive, and it will have value P for the long-run self and value $ for
the shorter-run self. The exact nature of this opportunity is initially unknown;
it is equally likely to be highly tempting (H) or less so (L). The agent learns
which opportunity he will face at a time #, + 1, where #; follows an exponential
waiting time with parameter p;, which is the conditional probability of arrival
each period. Once # arrives, the agent is informed which state prevails: there
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is a second exponential waiting time with parameter p, until the time ¢, when
the agent can choose whether to take the tempting action or decline it. No-
tice that #; and 1, take on the value zero with positive probability, meaning, for
example, that if 4 = t, = 0, the agent learns immediately that he faces an op-
portunity and he takes an action during the same period. Note also that when
p1 and p, are large compared to the birth rate 1 — u of the short-run players,
the initial short-run self will be the one who makes the eventual decision, while
in the reverse case, a short-run self will probably be born after # and soon
before t,.

In the highly tempting state H, the simple temptation if chosen is received
for sure. In the less tempting state L, there is only a probability g if the temp-
tation is chosen that it will be received.

ExXaMPLE W2a—Recursive Cost of Self-Control: In the recursive case, the
only relevant cost of self-control is in the period in which action is taken. The
maximization problem can be written conditional on whether state H or L has
occurred, so the condition for taking is exactly as in the text: in H the optimum
is to take if

P <g(9),
while in L the condition is

qP < g(gS).

Note moreover that this solution holds regardless of the values of p; and p,.

EXAMPLE W2b—Opportunity Cost of Self-Control: Here the long-run self
faces one decision problem before #, a different decision problem once the
information is revealed at ¢, but before action at £, and yet a third at the de-
cision time #. Each of these problems is stationary and independent of the
past history. Each one corresponds to a shorter-run self who faces a different
temptation. To compute that temptation, we simply compute the probability
distribution over arrivals of the event that the action becomes available, condi-
tional on which type the shorter-run self is.

To calculate the temptation utility for any shorter-run self born at or after #
and strictly before #, in state H, we compute the expectation of the discounted
value of S over different values of #,:

UM = E(ud)2S = Z(Mé)tZSm(l —p)°!
=1
_ u6paS
(1—pd(1—p2))
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In state L, the temptation utility is just U** = qU*". For the short-run self born
at exactly ,, the temptation utilities are U*’ = § and U** = ¢S. In either case,
the temptation costs are given by g(U*?) and g(qU*"). If p, is large relative
to p,, then it is far more likely that the shorter-run self is born after # than
before, so most of the weight in the objective function of the long-run self is
on these temptation costs. This leads to an analysis that is qualitatively similar
to the recursive case. In the laboratory, however, the time between when the
subjects learn they will face a particular decision problem and the time they
are asked to take an action is usually on the order of minutes, while we expect
the mean length of life of a shorter-run self® to be on the order of a day, so
that it much more likely that the shorter-run self is born before ¢, rather than
after.

The temptation utility for a self born before ¢ is the expected value of taking
the temptation, averaged over the arrival times # and #,. Since these times are
independent, the temptation value is

U'=E[(ud)“*20.5(1+ q)S]

_ 0.5udpp2(1+q)S
(1=8u(l—p))A—38u(l—p))

Let us focus on the case where most of the weight is on shorter-run selves
born before #. Let a’ be an indicator function of whether the long-run
self takes at J € {H,L}. Let Q = 0.5(a'’ + ga’) be the overall proba-
bility of the long-run self taking. Then the objective of the long-run self
is

oOp1 D2
V = P
O =T 5a=pa=sd=pn<
wop1 pa2S )
_ 0.5(1 — .
g((l—6#(1—p1>><1—6u<1—p2>>( d+9-0

In particular, the objective function depends only on Q. Notice that there are
four relevant values of Q: 0,0.5¢,0.5,0.5(1 + q). Note moreover that since g
is convex,

_V(0.59) =V (0) V(0.5 -V (0.59)

V= V. =
0 050 /o 05— 059
o= V(0.5(1+¢q)) —V(0.5)
T 05(14+¢9)—0.5

It follows that the optimal choice of Q is 0 if Vj < 0; it is 0.5¢q if V] > 0,
Vos, <0, itis g if Vs, >0, Vs <0, and it is 0.5(1 + ¢) if V{5 > 0, and since

3See Fudenberg and Levine (2010).



16 D. FUDENBERG AND D. K. LEVINE

increasing P lowers the slope of I/, the optimal Q is a decreasing function
of P. If P is close to zero, then Q should be equal to 1, meaning that the
long-run self takes regardless of the state. If P is highly negative, then Q
should be equal to zero, meaning that the long-run self never takes. As P
is reduced from zero, eventually the probability Q must be reduced from 1
to 0.5, meaning that the optimum is to take only in the state H. This is the
same behavior exhibited in the case in which most shorter-run selves are born
after ¢, or that of a recursive shorter-run self. As we reduce P further, the
probability Q must drop again from 0.5 to 0.5¢g, meaning that the optimum
is to take only in the state L. This is the opposite direction from that of a
shorter-run self born after ¢, or a recursive shorter-run self. It also is con-
trary to indicating that reversals have the form that as the probability of a
prize is reduced, behavior favored by the long-run self is more likely to be
observed.*
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