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S1. PROOF OF LEMMA 5

TO PROVE THE LEMMA, we will find two scalars x and u such that the set

X = {
x :x ∈ (0�x]2�U(x�δ)≥ u for some δ ∈ [0�1]}

satisfies the desired properties. The proof combines two ideas: use market
clearing to put an upper bound on the holdings of the two assets, that is, to
show that, with probability close to 1, agents have portfolios in (0�x]2; use op-
timality to bound their holdings away from zero, by imposing the inequality
U(x�δ) ≥ u.

First, let us prove that X is a compact subset of R2
++. The following two

equalities follow from the fact that U(x�δ) is continuous, non-decreasing in δ
if x1 ≥ x2, and non-increasing if x1 ≤ x2:{

x :U(x�δ) ≥ u for some δ ∈ [0�1]�x1 ≥ x2
}

= {
x :U(x�1)≥ u�x1 ≥ x2

}
�{

x :U(x�δ) ≥ u for some δ ∈ [0�1]�x1 ≤ x2
}

= {
x :U(x�0)≥ u�x1 ≤ x2

}
�

The sets on the right-hand sides of these equalities are closed sets. Then X can
be written as the union of two closed sets, intersected with a bounded set:

X = ({
x :U(x�1)≥ u�x1 ≥ x2

} ∪ {
x :U(x�0)≥ u�x1 ≤ x2

})
∩ (0�x]2�

and thus is compact. Notice that x /∈ X if xj = 0 for some j because of Assump-
tion 2 and u >−∞. Therefore, X is a compact subset of R2

++.
Next, let us define x and u and the time period T . Given any ε > 0, set

x= 4/ε. Goods market clearing implies that

P
(
x
j
t > x|s) ≤ ε/4 for all t� for j = 1�2�(48)

To prove this, notice that

1 =
∫

x
j
t (ω)dP(ω|s)≥

∫
x
j
t (ω)>4/ε

x
j
t (ω)dP(ω|s)

≥ (4/ε)P
(
x
j
t > 4/ε|s)�
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which gives the desired inequality. Let u be an upper bound for the agents’
utility function u(·) (from Assumption 2). Choose a scalar u < u such that

u−U(x0� δ0)

u− u
≤ ε

8
�

for all initial endowments x0 and initial beliefs δ0. Such a u exists because
U(x0� δ0) > −∞, as initial endowments are strictly positive by Assumption 3,
and there is a finite number of types. Then notice that U(x0� δ0) ≤ E[vt | h0]
for all initial histories h0, because an agent always has the option to refuse any
trade. Moreover,

E
[
vt | h0

] ≤ P
(
vt < u | h0

)
u+ P

(
vt ≥ u | h0

)
u�

Combining these inequalities and rearranging gives

P
(
vt < u | h0

) ≤ u−U(x0� δ0)

u− u
≤ ε

8
�

Taking unconditional expectations shows that P(vt < u) ≤ ε/8. Since P(s) =
1/2, it follows that

P(vt < u | s) ≤ ε/4 for all t� for all s�(49)

Choose T so that

P
(|ut − vt |> u/2 | s) ≤ ε/4 for all t ≥ T�(50)

This can be done by Lemma 2, given that almost sure convergence implies
convergence in probability. We can then set u= u/2.

Finally, we check that P(xt ∈ X | s) ≥ 1 − ε for all t ≥ T , using the following
chain of inequalities:

P(xt ∈ X | s) ≥ P
(
xt ∈ (0�x]2�U(xt� δt) ≥ u | s)

≥ P
(
xt ∈ (0�x]2� vt ≥ u� |ut − vt | ≤ u/2 | s)

≥ 1 −
∑
j

P
(
x
j
t > x | s) − P(vt < u | s)− P

(|ut − vt |> u/2 | s)

≥ 1 − ε�

The first inequality follows becauseU(xt(ω)�δt(ω)) ≥ u impliesU(xt(ω)�δ)≥
u for some δ ∈ [0�1]. The second follows because vt(ω) ≥ u and |ut(ω) −
vt(ω)| ≤ u/2 imply ut(ω) = U(xt(ω)�δt(ω)) ≥ u/2 = u. The third follows
from repeatedly applying Lemma 4. The fourth combines (48), (49), and (50).
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S2. PROOF OF LEMMA 6

The idea of the proof is as follows. We construct a Taylor expansion to com-
pute the utility gains for any trade. Then we define the traded amount ζ and
the utility gain Δ satisfying (9) and (10).

Choose any two portfolios xA�xB ∈ X and any two beliefs δA�δB ∈ [0�1]
such that M(xB�δB)−M(xA�δA) > ε. Pick a price p sufficiently close to the
middle of the

interval between the marginal rates of substitution:

p ∈ [
M(xA�δA)+ ε/2�M(xB�δB)− ε/2

]
�

This price is chosen so that both agents will make positive gains. Consider
agent A and a traded amount ζ̃ ≤ ζ̄ (for some ζ̄ which we will properly choose
below). The current utility gain associated with the trade z̃ = (ζ̃�−pζ̃) can be
written as a Taylor expansion:

U(xA − z̃� δA)−U(xA�δA)(51)

= −π(δA)u
′(x1

A

)
ζ̃ + (

1 −π(δA)
)
u′(x2

A

)
pζ̃

+ 1
2
(
π(δA)u

′′(y1
) + (

1 −π(δA)
)
u′′(y2

)
p2

)
ζ̃2

≥ (
1 −π(δA)

)
u′(x2

A

)
(ε/2)ζ̃

+ 1
2
[
π(δA)u

′′(y1
) + (

1 −π(δA)
)
u′′(y2

)
p2

]
ζ̃2�

for some (y1� y2) ∈ [x1
A�x

1
A − ζ̄] × [x2

A + pζ̄�x2
A]. The inequality above fol-

lows because p ≥ M(xA�δA)+ ε/2. An analogous expansion can be done for
agent B.

Now we want to bound the last line in (51). To do so, we first define the
minimal and the maximal prices for agents with any belief in [0�1] and any
portfolio in X:

p= min
x∈X�δ∈[0�1]

{
M(x�δ)+ ε/2

}
�

p= max
x∈X�δ∈[0�1]

{
M(x�δ)− ε/2

}
�

These prices are well defined, as X is a compact subset of R2
++ and u(·) has

continuous first derivative on R2
++. Then, choose ζ̄ > 0 such that, for all ζ̃ ≤

ζ̄ and all p ∈ [p�p], the trade z̃ = (ζ̃�−pζ̃) satisfies ‖z̃‖ < θ and x + z̃ and
x− z̃ are in R2

+ for all x ∈ X . This means that the trade is small enough. Next,
we separately bound from below the two terms in the last line of the Taylor
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expansion (51). Let

D′
A = min

x∈X�δ∈[0�1]
(
1 −π(δ)

)
u′(x2

)
ε/2�

D′′
A = min

x∈X�δ∈[0�1]�p̃∈[p�p]�
y∈[x1�x1+ζ̄]×[x2−p̃ζ̄�x2]

1
2
[
π(δ)u′′(y1

) + (
1 −π(δ)

)
u′′(y2

)
p̃2

]
�

Note that D′
A is positive, D′′

A is negative, but D′′
Aζ̃

2 is of second order. Then,
there exist some ζA ∈ (0� ζ̄) such that, for all ζ̃ ≤ ζA,

D′
Aζ̃ +D′′

Aζ̃
2 > 0

and, by construction,

U(xA − z̃� δA)−U(xA�δA)≥ D′
Aζ̃ +D′′

Aζ̃
2�

Analogously, we can find D′
B�D

′′
B, and ζB such that, for all ζ̃ ≤ ζB, the utility

gain for agent B is bounded from below:

U(xB + z̃� δB)−U(xA�δB)≥D′
Bζ̃ +D′′

Bζ̃
2 > 0�

We are finally ready to define ζ and Δ. Let ζ = min{ζA�ζB} and

Δ= min
{
D′

Aζ +D′′
Aζ

2�D′
Bζ +D′′

Bζ
2
}
�

By construction, Δ and ζ satisfy the inequalities (9) and (10).
To prove the last part of the lemma, let

λ= 1
2
π(1)minx∈X{u′(x1)}

min{D′
A�D

′
B}

�

which, as stated in the lemma, only depends on X and ε. Using a second-order
expansion similar to the one above, the utility gain associated to z = (ζ�−pζ),
for an agent with portfolio xA and any belief δ ∈ [0�1], can be bounded below:

U(xA − z̃� δ)−U(xA�δ)≥ −π(1)min
x∈X

{
u′(x1

)}
ζ +D′′

Aζ
2�

Therefore, to ensure that (11) is satisfied, we need to slightly modify the con-
struction above, by choosing ζ so that the following holds:

−π(1)minx∈X{u′(x1)}ζ +D′′
Aζ

2

Δ
> λ�

The definitions of Δ and λ and a continuity argument show that this inequality
holds for some positive ζ ≤ min{ζA�ζB}, completing the proof.
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S3. PROOF OF LEMMA 7

For all x ∈R2 and all δ ∈ [0�1], define the measure Gt as follows:

Gt(x�δ)≡
⎧⎨
⎩
P

(
ω :xt(ω)= x�δt(ω)= δ | s1

)
− P

(
ω :xt(ω)= x�δt(ω)= δ | s2

)
if δ > 1/2�

0 if δ ≤ 1/2�

We first prove that Gt is a well-defined measure, and next, we prove properties
(i)–(iii).

Since P generates a discrete distribution over x and δ for each t, to prove
that Gt is a well-defined measure we only need to check that

P(xt = x�δt = δ | s2)≤ P(xt = x�δt = δ | s1)�

so that Gt is nonnegative. Take any δ > 1/2. Bayesian rationality implies that a
consumer who knows his belief is δ must assign probability δ to s1:

δ = P(s1 | xt = x�δt = δ)�

Moreover, Bayes’s rule implies that

P(s2 | xt = x�δt = δ)

P(s1 | xt = x�δt = δ)
= P(xt = x�δt = δ | s2)P(s2)

P(xt = x�δt = δ | s1)P(s1)
�

Rearranging and using P(s1)= P(s2) and δ > 1/2 yields

P(xt = x�δt = δ | s2)

P(xt = x�δt = δ | s1)
= 1 − δ

δ
< 1�

which gives the desired inequality.
Property (i) is immediately satisfied by construction. Property (ii) follows

because P(xt = x�δt = 1 | s2) = 0 for all x, given that δt = 1 requires that we
are at a history which arises with zero probability conditional on s2. The proof
of property (iii) is longer and involves the manipulation of market clearing
relations and the use of our symmetry assumption. Using the assumption of
uniform market clearing, find an M such that

∫
x2
t (ω)≤m

x2
t (ω)dP(ω|s1)≥ 1 − ε for all m ≥M�(52)

Notice that∫
x2
t (ω)≤m

x1
t (ω)dP(ω|s1)≤

∫
x1
t (ω)dP(ω|s1)= 1�
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which, combined with (52), implies that
∫
x2
t (ω)≤m

(
x1
t (ω)− x2

t (ω)
)
dP(ω|s1)≤ ε for all m ≥M�

Decomposing the integral on the left-hand side gives
∫
x1
t >x2

t

xt∈[0�m]2

(
x1
t − x2

t

)
dP(ω|s1)+

∫
x2
t =x1

t

xt∈[0�m]2

(
x1
t − x2

t

)
dP(ω|s1)(53)

+
∫
x1
t <x2

t

xt∈[0�m]2

(
x1
t − x2

t

)
dP(ω|s1)+

∫
x1
t >m

x2
t ≤m

(
x1
t − x2

t

)
dP(ω|s1)≤ ε�

Let us first focus on the first three terms on the left-hand side of this expression.
The second term is zero. Using symmetry to replace the third term, the sum of
the first three terms can then be rewritten as∫

x1
t >x2

t

xt∈[0�m]2

(
x1
t − x2

t

)
dP(ω|s1)+

∫
x1
t >x2

t

xt∈[0�m]2

(
x2
t − x1

t

)
dP(ω|s2)�(54)

These two integrals are equal to the sums of a finite number of nonzero terms,
one for each value of x and δ with positive mass. Summing the corresponding
terms in each integral, we have three cases: (a) terms with δt = δ > 1/2 and
P(xt = x�δt = δ | s1) > P(xt = x�δt = δ | s2) (by Bayes’s rule), which can be
written as

(
x1 − x2

)
P(xt = x�δt = δ | s1)− (

x1 − x2
)
P(xt = x�δt = δ | s2)

= (
x1 − x2

)
Gt(x);

(b) terms with δt = δ= 1/2 and P(xt = x�δt = δ | s1)= P(xt = x�δt = δ | s2)
(by Bayes’s rule), which are equal to zero,

(
x1 − x2

)
P(xt = x�δt = δ | s1)− (

x1 − x2
)
P(xt = x�δt = δ | s2)= 0;

(c) terms with δt = δ < 1/2 and P(xt = x�δt = δ | s1) = P(xt = x�δt = δ |
s2) (once more, by Bayes’s rule), which can be rewritten as follows, exploiting
symmetry:

(
x1 − x2

)
P

(
xt =

(
x1�x2

)
� δt = δ | s1

)
− (

x1 − x2
)
P

(
xt =

(
x1�x2

)
� δt = δ | s2

)
= (

x1 − x2
)[
P

(
xt =

(
x2�x1

)
� δt = 1 − δ | s2

)
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− P
(
xt =

(
x2�x1

)
� δt = 1 − δ | s1

)]
= (

x2 − x1
)
Gt

((
x2�x1

)
�1 − δ

)
�

Combining all these terms, the integral (54) is equal to
∫
x1>x2�δ>1/2
x∈[0�m]2

(
x1 − x2

)
dGt(x�δ)

+
∫
x1>x2�δ<1/2
x∈[0�m]2

(
x2 − x1

)
dGt

((
x2�x1

)
�1 − δ

)

=
∫
x1>x2�δ>1/2
x∈[0�m]2

(
x1 − x2

)
dGt(x�δ)+

∫
x2>x1�δ>1/2
x∈[0�m]2

(
x1 − x2

)
dGt(x�δ)

=
∫
x∈[0�m]2

(
x1 − x2

)
dGt(x�δ)�

where the first equality follows from a change of variables and the second from
the fact that Gt is zero for all δ ≤ 1/2. We can now go back to the integral
on the right-hand side of (53), and notice that the integrand (x1

t − x2
t ) in the

fourth term is positive, so replacing the measure P with the measure Gt , which
is smaller than or equal to P , reduces the value of that term. Therefore, the
inequality (53), in terms of the measure P , leads to the following inequality in
terms of the measure Gt :∫

x2≤m

(
x1 − x2

)
dGt ≤ ε�

completing the proof of property (iii).

S4. PROOF OF LEMMA 3

We start with the usual convergence properties. Since the marginal rates of
substitution of informed agents converge, by Proposition 1, and there is at least
a mass α of informed agents, using Lemmas 4 and 5 we can find a compact set
X ⊂ R2

++ and a time T ′ such that there is a sufficiently large mass of informed
agents with marginal rates of substitution sufficiently close to κt(s) (within ε̄/2)
and portfolios in X:

P
(∣∣M(xt� δt)− κt(s)

∣∣< ε̄/2� δt = δI(s)�xt ∈X | s)> (3/4)α

for all t ≥ T ′ and for all s, where ε̄ is defined as in Proposition 2.
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Now we provide an important concept. We want to focus on the utility gains
that can be achieved by small trades (of norm less than θ), by agents with
marginal rates of substitution sufficiently different from each other (by at least
ε̄/2). Formally, we proceed as follows. Take any θ > 0. Using Lemma 6, we
can then find a lower bound for the utility gain Δ> 0 from trade between two
agents with marginal rates of substitution differing by at least ε̄/2 and with
portfolios in X , making trades of norm less than θ. It is important to notice
that this is the gain achieved if the agents trade but do not change their be-
liefs. Therefore, it is also important to bound from below the gains that can be
achieved by such trades if beliefs are updated in the most pessimistic way. This
bound is also given by Lemma 6, which ensures that −λΔ is a lower bound for
the gains of the agent offering z at any possible ex post belief (where λ is a
positive scalar independent of θ).

Next, we want to restrict attention to agents who are close to their long-run
expected utility. Per period utility ut converges to the long-run value v̂t , by
Lemma 2. We can then apply Lemma 4 and find a time period T ≥ T ′ such
that, for all t ≥ T and for all s:

P(ut ≥ v̂t − αΔ/4�xt ∈X | s) > 1 − ε̄/2�(55)

and

P
(∣∣M(xt� δt)− κt(s)

∣∣< ε̄/4�ut ≥ v̂t − αΔ/8� δt = δI(s)�xt ∈X | s)(56)

>α/2�

Equation (55) states that there are enough agents, both informed and un-
informed, close to their long-run utility. Equation (55) states that there are
enough informed agents close to both their long-run utility and to their long-
run marginal rates of substitution.

We are now done with the preliminary steps ensuring proper convergence
and can proceed to the body of the argument.

Choose any t ≥ T . By Proposition 2, two cases are possible: either (i) the
informed agents’ long-run marginal rates of substitution are far enough
from each other, |κt(s1) − κt(s2)| ≥ ε̄; or (ii) they are close to each other,
|κt(s1) − κt(s2)| < ε̄, but there is a large enough mass of uninformed agents
with marginal rate of substitution far from that of the informed agents,
P(|M(xt� δt)− κt(s)| ≥ 2ε̄ | s) ≥ ε̄ for all s.

In the next two steps, we construct the desired trade z for each of these two
cases, and then complete the argument in step 3.

Step 1. Consider the first case, in which |κt(s1) − κt(s2)| ≥ ε̄. In this case,
an uninformed agent can exploit the difference between the informed agents’
marginal rates of substitution in states s1 and s2, making an offer at an inter-
mediate price. This offer will be accepted with higher probability in the state
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in which the informed agents’ marginal rate of substitution is higher. In partic-
ular, suppose

κt(s2)+ ε̄ ≤ κt(s1)

(the opposite case is treated symmetrically). Lemma 6 and the definition of the
utility gain Δ imply that there is a trade z = (ζ�−pζ), with price p= (κt(s1)+
κt(s2))/2 and size ‖z‖< θ, that satisfies the following inequalities:

U(xt + z�δt)≥ ut +Δ if M(xt� δt) > κt(s1)− ε̄/4 and xt ∈X�(57)

U(xt − z�δt)≥ ut +Δ if M(xt� δt) < κt(s2)+ ε̄/4 and xt ∈X�(58)

Equation (57) states that all (informed and uninformed) agents with
marginal rate of substitution above (κt(s1) − ε̄/4) will receive a utility gain
Δ from the trade z, in terms of current utility. Equation (58) states that all
(informed and uninformed) agents with marginal rate of substitution below
(κt(s1) + ε̄/4) will receive a utility gain Δ from the trade −z, in terms of cur-
rent utility.

Combining conditions (56) and (57) shows that, in state s1, there are at least
α/2 informed agents with after-trade utility above the long-run utility, U(xt +
z�δt) > v̂t . Since all these agents would accept the trade z, this implies that the
probability of acceptance of the trade is χt(z|s1) > α/2.

Next, we want to show that the trade z is accepted with sufficiently low prob-
ability conditional on s2. In particular, we want to show that χt(z|s2) < α/4.
The key step here is to make sure that the trade is rejected not only by in-
formed but also by uninformed agents. The argument is that if this trade were
to be accepted by uninformed agents, then informed agents should be offer-
ing z and gaining in utility. Formally, proceeding by contradiction, suppose
that the probability of z being accepted in state s2 is large: χt(z|s2) ≥ α/4.
Condition (56) implies that there is a positive mass of informed agents with
M(xt� δt) < κt(s2) + ε̄/2, xt ∈ X , and close enough to the long-run utility
ut ≥ v̂t − αΔ/8. By (58), these agents would be strictly better off making the
offer z and consuming xt − z if the offer is accepted and consuming xt if it is
rejected, since

(
1 −χt(zt |s2)

)
U(xt� δt)+χt(zt |s2)U(xt − z�δt) > ut + αΔ/4 > v̂t�

Since this strategy dominates the equilibrium payoff, this is a contradiction,
proving that χt(z|s2) < α/4.

Step 2. Consider the second case, in which the long-run marginal rates of
substitution of the informed agents are close to each other and there is a large
enough mass of uninformed agents with marginal rate of substitution far from
that of the informed agents.
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The argument is as follows: with positive probability, we can reach a point
where it is possible to separate the marginal rates of substitution of a group
of uninformed agents from the marginal rates of substitution of a group of in-
formed agents. This means that the uninformed agents in the first group can
make an offer z to the informed agents in the second group and they will ac-
cept the offer in both states s1 and s2. If the probabilities of acceptance χt(z|s1)
and χt(z|s2) are sufficiently close to each other, this would be a profitable devi-
ation for the uninformed, since their ex post beliefs after the offer is accepted
would be close to their ex ante beliefs. In other words, in contrast to the pre-
vious case, they would gain utility but not learn from the trade. It follows that
the probabilities χt(z|s1) and χt(z|s2) must be sufficiently different in the two
states, which leads to either (4) or to (5).

To formalize this argument, consider the expected utility of an uninformed
agent with portfolio xt and belief δt , who offers a trade z and stops trading
from then on:

ut + δtχt(z|s1)
(
U(xt − z�1)−U(xt�1)

)
+ (1 − δt)χt(z|s2)

(
U(xt − z�0)−U(xt�0)

)
�

where ut is the expected utility if the offer is rejected and the following two
terms are the expected gains if the offer is accepted, respectively, in states s1

and s2. This expected utility can be rewritten as

ut +χt(z|s1)
(
U(xt − z�δt)−U(xt� δt)

)
(59)

+ (1 − δt)
(
χt(z|s2)−χt(z|s1)

)(
U(xt − z�0)−U(xt�0)

)
�

using the fact that U(xt� δt) = δtU(xt�1)+ (1 − δt)U(xt�0) (by the definition
of U). To interpret (59), notice that, if the probability of acceptance was inde-
pendent of the signal, χt(z|s1)= χt(z|s2), then the expected gain from making
offer z would be equal to the second term: χt(z|s1)(U(xt − z�δt)−U(xt� δt)).
The third term takes into account that the probability of acceptance may be
different in two states, that is, χt(z|s2) − χt(z|s1) may be different from zero.
An alternative way of rearranging the same expression yields

ut +χt(z|s2)
(
U(xt − z�δt)−U(xt� δt)

)
(60)

+ (1 − δt)
(
χt(z|s1)−χt(z|s2)

)(
U(xt − z�1)−U(x�1)

)
�

In the rest of the argument, we will use both (59) and (60).
Suppose that there exist a trade z and a period t which satisfy the following

properties: (a) the probability that z is accepted in state 1 is large enough,

χt(z|s1) > α/4�
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and (b) there is a positive mass of uninformed agents with portfolios and beliefs
that satisfy

ut ≥ v̂t − (α/4)Δ�(61)

U(xt − z�δt)−U(xt� δt)≥ Δ�(62)

U(xt − z�δ)−U(xt� δ)≥ −λΔ for all δ ∈ [0�1]�(63)

for some Δ > 0 and λ > 0. In words, the uninformed agents are sufficiently
close to their long-run utility, their gains from trade at fixed beliefs have a
positive lower bound Δ, and their gains from trade at arbitrary beliefs have
a lower bound −λΔ.

Now we distinguish two cases. Suppose first that χt(z|s2) ≥ χt(z|s1). Then,
for the uninformed agents who satisfy (61)–(63), the expected utility (59) is
greater than or equal to

v̂t − (α/4)Δ+χt(z|s1)Δ− (
χt(z|s2)−χt(z|s1)

)
λΔ�

From individual optimality, this expression cannot be larger than v̂t , since v̂t is
the maximum expected utility for a proposer in period t. We then obtain the
following restriction on the acceptance probabilities χt(z|s1) and χt(z|s2):

χt(z|s1)(1 + λ)Δ ≤ αΔ/4 +χt(z|s2)λΔ�

Since χt(z|s1) > α/2 and χt(z|s1) ≥ χt(z|s2), it follows that α/4 < (1/2)×
χt(z|s2), and we obtain

χt(z|s1)(1 + λ) ≤ χt(z|s2)(1/2 + λ)�

which is equivalent to

χt(z|s1)≥ 1 + λ

1/2 + λ
χt(z|s2)�(64)

This shows that the probability of acceptance in state s1 is larger than the prob-
ability of acceptance in state s2 by a factor (1 + λ)/(1/2 + λ) greater than 1.

Consider next the case χt(z|s2) < χt(z|s1). Then, for the uninformed agents
who satisfy (61)–(63), the expected utility (60) is greater than or equal to

v̂t − αΔ/4 +χt(z|s2)Δ− (
χt(z|s1)−χt(z|s2)

)
λΔ�

An argument similar to the one above shows that optimality requires

χt(z|s2)≥ 1 + λ

1/2 + λ
χt(z|s1)�
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Some algebra shows that this inequality and χt(z|s1) > α/2 imply

1 −χt(z|s1) > 1 − α

2
1/2 + λ

1 + λ
�(65)

1 −χt(z|s1) >
(1 − α/2)(1/2 + λ)

(1 − α/2)(1/2 + λ)− α/4
(
1 −χt(z|s2)

)
�(66)

giving us a positive lower bound for the probability of rejection 1 − χt(z|s1)
and showing that 1 −χt(z|s1) exceeds 1 −χt(z|s2) by a factor greater than 1.

To complete this step, we show that there exist a trade z and a period t which
satisfy properties (a) and (b).

Notice that P(|M(xt� δt) − κt(s1)| ≥ 2ε̄ | s1) ≥ ε̄ requires that either
P(M(xt� δt) ≤ κt(s1) − 2ε̄ | s1) ≥ ε̄/2 holds or P(M(xt� δt) ≥ κt(s1) + 2ε̄ |
s1) ≥ ε̄/2. We concentrate on the first case, as the second is treated symmet-
rically. Set the trading price at p = min{κ(s1)�κ(s2)} − ε̄/2. Lemma 6 implies
that there are positive scalars Δ and λ and a trade z = (ζ�−pζ) with ‖z‖ < θ
that satisfy the following inequalities:

U(xt − z�δt)≥ ut +Δ� U(xt − z�δ)≥ ut − λΔ for all δ ∈ [0�1]�(67)

if M(xt� δt) < p− ε̄/4 and xt ∈ X�

and

U(xt + z�δt)≥ ut +Δ if M(xt� δt) > p+ ε̄/4 and xt ∈X�(68)

Since |M(xt� δt)−κt(s1)| < ε̄/4 implies M(xt� δt) > κt(s1)− ε̄/4 and κt(s1)−
ε̄/4 is larger than p+ ε̄/4 by construction, conditions (56) and (68) guarantee
that there is a positive mass of informed agents who accept z, ensuring that
χt(z|s1) > α/2, showing that z satisfies property (a).

Next, we want to prove that there is a positive mass of uninformed agents
who gain from making offer z. To do so, notice that |κt(s1)−κt(s2)|< ε̄ implies

p− ε̄/4 = min
{
κt(s1)�κt(s2)

} − (3/4)ε̄

≥ κt(s1)− (7/4)ε̄ > κt(s1)− 2ε̄�

which implies

P
(
M(xt� δt) < p− ε̄/4 | s1

) ≥ P
(
M(xt� δt)≤ κt(s1)− 2ε̄ | s1

) ≥ ε̄/2�

This, using Lemma 4 and condition (55), implies

P
(
M(xt� δt) < p− ε̄/4�ut ≥ v̂t − αΔ/4�xt ∈ X | s1

)
> 0�

which, combined with (67), shows that the trade z satisfies property (b).
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Step 3. Here we put together the bounds established above and define the
scalars β and ρ in the lemma’s statement. Consider the case treated in Step 1.
In this case, we can find a trade z such that the probability of acceptance con-
ditional on each signal satisfies χt(z|s1) > α/2 and χt(z|s2) < α/4. Therefore,
in this case, condition (4) is true as long as β and ρ satisfy

β≤ α/2 and ρ≤ 2�

Consider the case treated in Step 2. In this case, we can find a trade z such that
either χt(z|s1) > α/2 and (64) hold or (65) and (66) hold. This implies that
either condition (4) or condition (5) holds, as long as β and ρ satisfy

β≤ 1 − α

2
1/2 + λ

1 + λ
� ρ≤ 1 + λ

1/2 + λ
� ρ ≤ (1 − α/2)(1/2 + λ)

(1 − α/2)(1/2 + λ)− α/4
�

Setting

β= min
{
α/2�1 − α

2
1/2 + λ

1 + λ

}
> 0�

ρ= min
{

2�
1 + λ

1/2 + λ
�

(1 − α/2)(1/2 + λ)

(1 − α/2)(1/2 + λ)− α/4

}
> 1

ensures that all the conditions above are satisfied, completing the proof.

S5. PROOF OF LEMMA 8

Since δt(ω) are equilibrium beliefs, Bayesian rationality requires P(s1 | δt <
ε/(1 + ε)) < ε/(1 + ε) for all ε > 0. The latter condition implies P(s2 | δt <
ε/(1 + ε)) > 1 − ε/(1 + ε) and thus

P(s1 | δt < ε/(1 + ε))

P(s2 | δt < ε/(1 + ε))
< ε�

for all ε > 0. Bayes’s rule implies that

P(s1 | δt < ε/(1 + ε))

P(s2 | δt < ε/(1 + ε))
= P(δt < ε/(1 + ε) | s1)P(s1)

P(δt < ε/(1 + ε) | s2)P(s2)
�

Combining the last two equations and using P(s1)= P(s2)= 1/2 yields

P
(
δt < ε/(1 + ε) | s1

)
< εP

(
δt < ε/(1 + ε) | s2

) ≤ ε�

which gives the desired inequality.
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S6. PROOF OF LEMMA 9

Let us begin from the first part of the lemma. Suppose, by contradiction, that∣∣κt+J(s1)− κt(s1)
∣∣> ε

for some ε > 0 for infinitely many periods. Then, at some date t, an informed
agent with marginal rate of substitution close to κt(s) can find a profitable de-
viation by holding on to his portfolio xt for J periods and then trade with other
informed agents at t+J. Let us formalize this argument. Suppose, without loss
of generality, that

κt+J(s1) > κt(s1)+ ε

for infinitely many periods (the other case is treated in a symmetric way). Next,
using our usual steps and Proposition 1, it is possible to find a compact set X ,
a time T , and a utility gain Δ > 0 such that the following two properties are
satisfied: (i) in all periods t ≥ T , there is at least a measure α/2 of informed
agents with marginal rate of substitution sufficiently close to κt(s), utility close
to its long-run level, and portfolio xt in X , that is,

P
(∣∣M(xt� δt)− κt(s)

∣∣< ε/3�ut ≥ v̂t − γJαΔ/2�xt ∈X�δt = 1 | s)(69)

>α/2�

and (ii) in all periods t ≥ T in which κt+J(s) > κt(s)+ ε, there is a trade z such
that

U(x− z�1) > U(x�1)+Δ if M(x�1) < κt(s)+ ε/3 and x ∈X�(70)

and

U(x+ z�1) > U(x�1)+Δ if M(x�1) > κt+J(s)− ε/3 and x ∈ X�(71)

Pick a time t ≥ T in which κt+J(s) > κt(s) + ε and consider the following
deviation. Whenever an informed agent reaches time t and his portfolio xt

satisfies M(xt�1) < κt(s) + ε/3 and xt ∈ X , he stops trading for J periods
and then makes an offer z that satisfies (70) and (71). If the offer is rejected,
he stops trading from then on. The probability that this offer is accepted at
time t + J must satisfy χt+J(z|s1) > α/2, because of conditions (69) and (71).
Therefore, the expected utility from this strategy, from the point of view of
time t, is

ut + γJχt+J(z|s1)
(
U(xt − z�1)− ut

)
> ut + γJαΔ/2 ≥ v̂t�

so this strategy is a profitable deviation and we have a contradiction.
The second part of the lemma follows from the first part, using Proposition 1

and the triangle inequality.
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S7. EXAMPLES

In this section, we present two examples in which the equilibrium can be an-
alyzed analytically. The first objective of these examples is to show existence
of equilibrium with symmetry across states and uniform market clearing in
some special cases. The second objective is to study how information acqui-
sition takes place in equilibrium. The third objective is to study how the equi-
librium is affected by changing the parameter γ, which controls the probability
that the game ends. In particular, we are interested in what happens when γ
goes to 1.

Higher values of γ correspond to economies in which agents have the chance
to do more rounds of trading before the game ends. We can interpret the limit
γ → 1 as a frictionless trading limit, in which agents have the chance to make
infinite rounds of trading before the game ends. In a full information econ-
omy in which agents can trade forever (i.e., with no discounting), Gale (1986a)
showed that bilateral bargaining yields a Walrasian outcome, in which agents
making the first offer do not have any monopoly power, due to the fact that
their partners have unlimited chances to make further trades in the future. We
can then ask whether a similar result applies in our model with asymmetric
information when γ goes to 1. Our first example shows that, in general, the re-
sult does not extend. In particular, in that example, agents remain uninformed
even as γ goes to 1. This bounds the gains from trade that can be reaped by
responders who refuse to trade in the first round. Therefore, agents who are
selected as proposers in the first period keep some monopoly power. In our
second example, on the other hand, uninformed agents have the opportunity
to acquire perfect information in equilibrium and payoffs converge to those of
perfect competition.

In all the examples, there are two types, with initial portfolios x1�0 = (ω�1 −
ω) and x2�0 = (1−ω�ω), for some ω ∈ (1/2�1). Let φ(s1)= ϕ> 1/2 and recall
that, by symmetry, φ(s2) = 1 − ϕ. Informed agents with endowment x1�0 are
called “rich informed agents” in state s1 and “poor informed agents” in state
s2, as their endowment’s present value is greater in the first case. The opposite
labels apply to informed agents with x2�0.

For analytical tractability, we modify the setup of our model in the first round
of trading and make the following assumption. In period t = 1, the matching
process is such that agents meet other agents with complementary endowments
with probability 1, that is, type 1 agents only get matched with type 2 agents. In
all following periods, agents meet randomly as in the setup of Section 1. All our
results from previous sections hold in this modified environment, as they only
rely on the long-run properties of the game. The purpose of this assumption is
to construct equilibria in which almost all trades take place in the first round.

We consider two examples. In the first example, uninformed agents do not
learn anything about the state s and keep their initial beliefs at δ = 1/2. In
the second example, all uninformed agents learn the state s exactly in the first
round of trading. For ease of exposition, we present the main results for the two
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examples in Sections S7.1 and S7.2, and present some more technical deriva-
tions behind the examples in Sections S7.3 and S7.4.

S7.1. Example 1: An Equilibrium With No Learning

For this example, we introduce an additional modification to our baseline
model, assuming that, in period t = 1, all informed agents get to be proposers
with probability 1. In particular, in t = 1, informed agents are only matched
with uninformed agents and the informed agent is always selected as the pro-
poser.11 If two uninformed agents meet at t = 1, each is selected as the pro-
poser with probability 1/2. From period t = 2 onward, the matching and the
selection of the proposer are as in the baseline model. That is, each agent has
the same probability of meeting an informed or uninformed partner and each
agent has probability 1/2 of being selected as the proposer. As pointed out
above, the changes made in period t = 1 do not affect the long-run properties
of the game and the general results of the previous sections still hold.

For a given scalar η ∈ (0�1), to be defined below, our aim is to construct an
equilibrium in which strategies and beliefs satisfy:

S1. In t = 1, all proposers of type i offer zi�E = (η�η)−x−i�0. All responders
accept.

S2. In t = 2�3� � � � , all proposers offer zero trade.
S3. In t = 2�3� � � � , all uninformed responders reject any offer z that satisfies

min
{
ϕz1 + (1 −ϕ)z2� (1 −ϕ)z1 +ϕz2

}
< 0;

all informed responders reject any offer z that satisfies

ϕz1 + (1 −ϕ)z2 < 0 if s = s1� or

(1 −ϕ)z1 +ϕz2 < 0 if s = s2�

B1. Uninformed responders keep their beliefs unchanged after offer zi�E in
period t = 1 and after offer 0 in period t ≥ 2.

B2. In t = 1, after an offer z 
= zi�E , uninformed responders adjust their be-
lief to δ= 1 if they are of type 1 and to δ= 0 if they are of type 2.

B3. In t = 2�3� � � � , after an offer z 
= 0, uninformed responders adjust their
belief to δ = 1 if ϕz1 + (1 −ϕ)z2 < (1 −ϕ)z1 +ϕz2 and to δ = 0 if ϕz1 + (1 −
ϕ)z2 > (1 −ϕ)z1 +ϕz2.

Notice that, in equilibrium, all agents reach endowments on the 45 degree
line after one round of trading and remain there from then on. S1–S3 and
B1–B3 describe strategies and beliefs in equilibrium and along a subset of
off-the-equilibrium-path histories. This is sufficient to show that we have an
equilibrium, since we can prove that, if other agents’ strategies satisfy S1–S3,

11This requires assuming α< 1/2.
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the payoff from any deviating strategy is bounded above by the equilibrium
payoff. An important element of our construction is that following off-the-
equilibrium-path offers at t ≥ 2, uninformed agents hold “pessimistic” beliefs,
meaning that they expect the state s to be the one for which the present value of
the offer received is smaller. This, together with the fact that all agents are on
the 45 degree line starting at date 2, implies that deviating agents have limited
opportunities to trade after period 1.

The argument to prove that an equilibrium with these properties exists is in
two steps. First, we show that zero trade from period t = 2 on is a continuation
equilibrium. Second, we go back to period t = 1 and show that making and
accepting the offers zi�E is optimal at t = 1.

To show that no trade is an equilibrium after t = 2, we use property S3.
Let V (x�δ) denote the continuation utility of an agent with endowment x and
belief δ ∈ [0�1] at any time t ≥ 2.12 This value function is independent of t since
the environment is stationary after t = 2. Since other agents’ strategies satisfy
S3, the endowment process of a deviating agent who starts at (x�δ) satisfies the
following property: if the state is s1, any endowment x̃ reached with positive
probability at future dates must satisfy

ϕx̃1 + (1 −ϕ)x̃2 ≤ ϕx1 + (1 −ϕ)x2�

This property holds because, in s1, neither informed nor uninformed agents will
accept trades that increase the expected value of the proposer’s endowment
computed using the probabilities ϕ and 1 − ϕ. A similar property holds in s2,
reversing the roles of the probabilities ϕ and 1 −ϕ. These properties, together
with concavity of the utility function, imply that the continuation utility V (x�δ)
is bounded as follows:

V (x�δ) ≤ δu
(
ϕx1 + (1 −ϕ)x2

) + (1 − δ)u
(
(1 −ϕ)x1 +ϕx2

)
�(72)

In the continuation equilibrium, all agents start from a perfectly diversified
endowment with x1 = x2. So an agent can achieve the upper bound in (72)
by not trading. This rules out any deviation by proposers on the equilibrium
path. A similar argument shows that the off-the-equilibrium-path responses in
S3 are optimal.13 So we have an equilibrium for t ≥ 2. The argument for no
trade in periods t ≥ 2 is closely related to the no-trade theorem of Milgrom
and Stokey (1982).

Turning to period t = 1, consider a rich informed proposer with endowment
x1�0 in state s1. If he deviates and offers z 
= z1�E , the uninformed responder’s
belief goes to δ = 0. Then the offer will only be accepted if V (x1�0 + z�0) ≥
V (x1�0�0) and the payoff of the proposer, if the offer is accepted, would be

12The value function is defined at the beginning of the period, before knowing whether the
game ends or there is another round of trading.

13See Proposition 6 in Section S7.3.
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V (x1�0 − z�1). In Section S7.3, we derive an upper bound on this payoff. We
can then find parametric examples and choose η so that offering z1�E yields
a higher payoff. The reason why this is possible is that, if the proposer offers
z1�E , the uninformed responder’s belief remains at δ = 1/2, so the informed
proposer is able to trade at better terms in period 1.

Consider next a poor informed proposer with endowment x2�0 in state s1. If
he deviates, the uninformed responder adjusts his belief to δ = 1. Since the
poor informed proposer also holds belief δ = 1, we can show that the best
deviation by a poor informed proposer is to make an offer that reaches the 45
degree line for both. However, the responder’s outside option is higher at δ= 1
than at δ = 1/2, because he holds a larger endowment of asset 1. This makes
the participation constraint of the responder tighter than at the equilibrium
offer z2�E and allows us to construct parametric examples in which the poor
informed proposer prefers not to deviate.

Having shown that both the rich informed proposer and the poor informed
proposer prefer not to deviate, we can then show that an uninformed proposer
prefers not to deviate either, using the argument that the payoff of an unin-
formed agent under a deviation is weakly dominated by the average of the
payoffs of an informed agent with the same endowment. In Section S7.3, we
derive sufficient conditions that rule out deviations in period t = 1 and show
how to construct parametric examples that satisfy these conditions. The fol-
lowing proposition contains such an example.

PROPOSITION 4: Suppose the utility function is u(c) = c1−σ/(1 − σ) and the
parameters (σ�ω�ϕ) are in a neighborhood of (4�9/10�94/(94 + 1)). There is an
η ∈ (0�1) and a cutoff ᾱ > 0 for the fraction of informed agents in the game, such
that S1–S3 and B1–B3 form an equilibrium if 0 ≤ α < ᾱ .

An important ingredient in the construction of the example in the proposi-
tion is to assume that the fraction of informed agents α is sufficiently small.
This puts a bound on the utility from trading in periods t ≥ 2, because it im-
plies that an agent only gets a chance to trade with informed agents with a
small probability. In particular, property S3 means that an agent who starts at
x at t = 2 and only trades with uninformed agents before the end of the game
can only reach endowments x̃ that satisfy both

ϕx̃1 + (1 −ϕ)x̃2 ≤ ϕx1 + (1 −ϕ)x2

and

(1 −ϕ)x̃1 +ϕx̃2 ≤ (1 −ϕ)x1 +ϕx2�

This restriction is crucial in constructing upper bounds on the continuation
utility of deviating agents at date t = 1. The intuition is that the trades zi�E
at date t = 1 are proposed and accepted in equilibrium because the outside
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option is to trade with fully diversified, mostly uninformed agents in periods
t = 2�3� � � � . In period t = 1, there are large gains from trade coming from
the fact that agents are not diversified, but all these gains from trade are ex-
hausted in the first round of trading. From then on, the presence of asymmetric
information limits the gains from trade for a deviating agent who is still undi-
versified at the end of t = 1.

Somewhat surprisingly, under the assumptions in Proposition 4 an equilib-
rium can be constructed for any value of γ. This is because what bounds the
continuation utility in period t = 2 is the small probability of trading with in-
formed agents in future periods. So for any value of γ, we can choose the cut-
off ᾱ sufficiently small to make the probability of trading with informed agents
approach zero and sustain our equilibrium. Larger values of γ correspond to
economies in which agents trade more frequently before the game ends. Then
the observation above can be interpreted as follows. There can be economies
close to the frictionless limit—that is, with γ close to 1—in which no infor-
mation is revealed in equilibrium. This happens because more frequent trade
implies that the diversification motive for trade is exhausted more quickly.
However, once the diversification motive is exhausted, the no-trade theorem
implies that no further trade occurs and so no further information is revealed.

When the mass of informed agents α is zero, the equilibrium holds for all
γ, so we can take γ → 1. We then have an economy in which the limit equi-
librium allocation is an allocation in which uninformed agents with the same
endowments get different consumption levels depending on whether they were
selected as proposers or responders in the very first period of the game. So we
have an example of an economy in which the presence of more frequent rounds
of trading does not lead, in the limit, to a perfectly competitive outcome, un-
like in the economies with perfect information analyzed by Gale (1986a). This
shows that the presence of asymmetric information can have powerful effects
in decentralized economies. Again, the underlying idea is that the no-trade the-
orem limits the agents’ ability to trade in the long run, and this induces agents
to accept trades in the early stages of the game, when diversification motives
are stronger. This undermines the ability of future rounds of trading to act as
a check on the monopoly power of proposers in the early stages of the game.

S7.2. Example 2: An Equilibrium With Learning

We now turn to an example in which uninformed agents acquire perfect in-
formation in the first round of trading. As in Example 1, we assume that, in the
first round of trading, each agent is matched with an agent with complemen-
tary endowments. Moreover, we assume that almost all agents are informed,
so there is only a zero mass of uninformed agents. We also assume that prefer-
ences display constant absolute risk aversion:

u(c)= −e−ρa�
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This assumption allows us to characterize analytically the value function
V (x�δ) for δ = 0 and δ = 1. Notice that CARA preferences do not satisfy the
property limc→0 u(c) = −∞, which was assumed in Section 2 (Assumption 2).
However, the only purpose of that property was to ensure that endowments
stay in a compact set with probability close to 1 in equilibrium. Here, we can
check directly that endowments remain in a compact set in equilibrium. So all
our general results still apply.

The analysis of this example proceeds in two steps. First, we characterize
the equilibrium focusing on the behavior of informed agents—which can be
done, given that uninformed agents are in zero mass. Second, we look at the
uninformed agent’s problem at date t = 1 and derive conditions that ensure
that his optimal strategy is to experiment, making an offer that perfectly reveals
the state s.

For the first step, we need to derive four equilibrium offers zi�E(s) which
depend on the proposer type i and on the state s. In equilibrium, all proposers
of type i make offer zi�E(s) in state s, all responders accept, and both proposer
and responder reach a point on the 45 degree line. The offers zi�E(s) are found
maximizing V (xi�0 − z�δ) subject to

V (x−i�0 + z�δ)≥ V (x−i�0� δ)�

with δ = 1 if s1 and δ = 0 if s2. Since the two agents share the same beliefs, it
is not difficult to show that the solution to this problem yields an allocation on
the 45 degree line for both agents and that they stop trading from period t = 2
onward. For this argument, it is sufficient to use the upper bound (72), which
was used for our Example 1 and also holds here. We then obtain the following
proposition.14

PROPOSITION 5: If all agents are informed, there is an equilibrium in which all
agents reach the 45 degree line in the first round of trading and stop trading from
then on.

Before turning to our second step, however, we need to derive explicitly the
form of the V function and the offers zi�E(s). These steps are more techni-
cal and are presented in Section S7.4. The assumption of CARA utility helps
greatly in these derivations, as it allows us to show that the value function takes
the form V (x) = −exp{−ρx1}f (x2 − x1) for some decreasing function f and
that the function f can be obtained as the solution of an appropriate functional
equation.

We can then turn to our second step and consider uninformed agents in
period t = 1. The case of uninformed responders is easy. Since they meet in-
formed proposers with probability 1 and these proposers make different offers

14A detailed proof is in Section S7.4.
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in the two states, they acquire perfect information on s and respond like in-
formed agents, accepting the offer and reaching the 45 degree line.

The case of uninformed proposers is harder. We want to show that an un-
informed proposer with endowment i makes offer zi�E(s1) if i = 1 and offer
zi�E(s2) if i = 2, where zi�E(s) are the offers derived above for informed agents.
In other words, uninformed proposers mimic the behavior of rich informed
proposers. By making these offers, uninformed proposers get to learn exactly
the state s, because their offer is accepted with probability 1 in one state and
rejected with probability 1 in the other. While this implies that they become
informed from period t = 2 onward, it also implies that, with probability 1/2,
they do not reach the 45 degree line in the first round of trading. Our charac-
terization of the V function in Section S7.4 allows us to compute their payoff in
this case and to characterize their trading in periods t = 2�3� � � � . In particular,
the optimal behavior of uninformed agents who fail to trade in period t = 1 is
to make an infinite sequence of trades in all periods t ≥ 2 in which they are
selected as proposers. The difference x1 −x2 is reduced by a factor of 1/2 each
time they get to trade, so that they asymptotically reach the 45 degree line.

Let us show that the offers described above are optimal for the uninformed
proposer. We focus on type i = 1, as the case of i = 2 is symmetric. To prove
that offering z1�E(s1) is optimal at time t = 1, we need to check that:

1. offer z1�E(s1) is rejected by informed agents in s2;
2. offer z1�E(s1) dominates any other offer accepted by informed agents only

in s1;
3. offer z1�E(s1) dominates any offer accepted by informed agents only in

state s2;
4. offer z1�E(s1) dominates any offer accepted by informed agents in both

states.
Conditions 1 to 3 are proved in Section S7.4 and hold for any choice of pa-

rameters. The most interesting condition is the last one, which ensures that the
uninformed agent prefers to learn even though it entails not trading with prob-
ability 1/2 in the first period. In Section S7.4, we derive an upper bound for the
expected utility from any offer accepted by informed responders in both s1 and
s2. Making the following assumptions on parameters:

ρ= 1� ϕ = 2/3� ω= 1�

we can compute the expected utility from offering z1�E(s1) and the upper bound
just discussed. The values we obtain are plotted in Figure S1 for different val-
ues of γ.

As the figure shows, there is a range of γ for which experimenting dominates
non-experimenting, so uninformed agents offer z1�E(s1). Notice that as γ goes
to 1, the expected utility of the uninformed agent converges to the expected
utility of the informed agent and both converge to the expected utility in a
Walrasian rational expectations equilibrium. So unlike in Example 1, in this
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FIGURE S1.—Example 2.

case, as the frequency of trading increases, the equilibrium payoffs converge to
those of a perfectly competitive rational expectations equilibrium.

As a final remark, notice that, in this example, some agents—the uninformed
proposers whose offer is rejected in the first round—only reach an efficient
allocation asymptotically. However, we can characterize the speed at which
this convergence occurs. To measure distance from efficiency, let us use the
distance dt ≡ |x1

t − x2
t |. Since this distance is reduced by 1/2 every time the

agent gets to make an offer and trade, after n trades in which the agent is
selected as the proposer, the distance is reduced to 2−nd0. It is then possible to
show that, for every ε, there is a γ large enough that the probability of dt < ε is
larger than 1−ε. That is, with γ close to 1, the allocation approaches efficiency
also for uninformed first-round proposers.

S7.3. Example 1: Proofs

PROPOSITION 6: In the economy of Example 1, individual strategies are opti-
mal for t ≥ 2.

PROOF: Consider first a proposer, informed or uninformed, who has not
deviated up to time t, so he holds an endowment x on the 45 degree line,
either (η�η) or (1 −η�1 −η), and beliefs δ ∈ [0�1]. From inequality (72), the
expected payoff from any deviating strategy is bounded above by

δu
(
ϕx1 + (1 −ϕ)x2

) + (1 − δ)u
(
(1 −ϕ)x1 +ϕx2

) = u
(
x1

)
�
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given that x1 = x2. Making a zero offer today and not trading in all future
periods achieves the upper bound u(x1), so the agent cannot gain by deviating.
Turning to a responder, consider first an uninformed responder. Suppose he
receives an off-the-equilibrium-path offer z 
= 0 at t ≥ 2, with

min
{
ϕz1 + (1 −ϕ)z2� (1 −ϕ)z1 +ϕz2

}
< 0�

Suppose, without loss of generality, that ϕz1 + (1 − ϕ)z2 is smaller than (1 −
ϕ)z1 +ϕz2, and thus smaller than zero. From B3, his belief after receiving offer
z is δ = 1. Using (72), his expected utility after accepting the offer is bounded
above by

u
(
ϕ

(
x1 + z1

) + (1 −ϕ)
(
x2 + z2

))
< u

(
ϕx1 + (1 −ϕ)x2

) = u
(
x1

)
�

Rejecting the offer yields the payoff u(x1) and strictly dominates accepting the
offer. A similar argument shows optimality for informed responders. Q.E.D.

The following lemma provides an upper bound on the continuation utility
which will be used below. Define the function

W (x�δ)≡ max
z

U(x− z�δ)(73)

s.t. ϕz1 + (1 −ϕ)z2 ≥ 0�

(1 −ϕ)z1 +ϕz2 ≥ 0�

and the quantity

Ξ(α)≡ 1 − γ

1 − γ + αγ/2
�

which is the probability of trading only with uninformed agents between any
period t ≥ 2 and the end of the game.

LEMMA 10: The following is an upper bound on the value function V (x�δ):

V (x�δ) ≤ Ξ(α)
[
δW (x�1)+ (1 − δ)W (x�0)

]
+ (

1 −Ξ(α)
)
u for δ ∈ {0�1}�

PROOF: Consider first an informed agent with δ = 1. Consider a deviating
strategy starting at (x�1) at time t, and consider any history ht+j along which
the agent only meets uninformed agents. Let x(ht+j) = x + ∑

zn be his en-
dowment at that history, where zn are all the successful trades made along the
history. Each trade zn must satisfy ϕz1

n + (1−ϕ)z2
n ≥ 0 and (1−ϕ)z1

n +ϕz2
n ≥ 0,
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and so z = ∑
zn must satisfy the same inequalities. By the definition of W , the

expected utility at history ht+j then satisfies

U
(
x
(
ht+j

)
�1

) ≤W (x�1)�

Following any history in which the agent meets informed agent, the utility is
bounded by the upper bound u. Taking expectation over all future histories
yields the bound ΞW (x�1)+ (1−Ξ)u. An uninformed agent cannot do better
than receiving perfect information on the state s and then re-optimize, which
yields the bound in the lemma. Q.E.D.

For the following result, we define

w∗
R ≡ max

z
W (x1�0 − z�1)(74)

s.t. W (x2�0 + z�0)≥U(x2�0�0)�

PROPOSITION 7: If η satisfies

u(1 −η) >w∗
R�(75)

u(η) <U(x2�0�0)�(76)

u(η) >
1
2
W (x2�0�0)+ 1

2
W (x2�0�1)�(77)

there is an α̂ ∈ (0�1) such that, if α < α̂, the strategies in S1–S3 are individually
optimal.

PROOF: Proposition 6 shows optimality in all periods t ≥ 2, so we can re-
strict attention to time t = 1. Consider first the behavior of responders. We
focus on responders with x2�0; the case of responders with x1�0 is symmetric.
All responders are uninformed and they accept the equilibrium offer if

u(η)≥ 1
2
V (x2�0�1)+ 1

2
V (x2�0�0)�(78)

Using Lemma 10, a sufficient condition for (78) is

u(η)≤Ξ(α)

[
1
2
W (x2�0�0)+ 1

2
W (x2�0�1)

]
+ (

1 −Ξ(α)
)
u�

Assumption (77), together with limα→0 Ξ(α) = 1, ensures that this condition
holds for α→ 0.
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Consider next informed proposers. We focus on proposers with endowment
x1�0; the case of proposers with x2�0 is symmetric. Suppose the proposer devi-
ates by offering z 
= z1�E and the responder’s belief goes to δ = 0. The z offer
will be rejected if

Ξ(α)W (x2�0 + z�0)+ (
1 −Ξ(α)

)
u <U(x2�0�0)�

given that the left-hand side is an upper bound on the continuation utility after
accepting the offer and the right-hand side is a lower bound on the contin-
uation utility after rejecting the offer. If the state is s1, the proposer is a rich
informed agent and his continuation utility is bounded above by W (x1�0 −z�1).
The utility from deviating is then bounded above by

wR(α)= max
z

Ξ(α)W (x1�0 − z�1)+ (
1 −Ξ(α)

)
u

s.t. Ξ(α)W (x2�0 + z�0)+ (
1 −Ξ(α)

)
u≥U(x2�0�0)�

The function wR(α) is continuous in α and wR(0) = w∗
R, so assumption (75)

ensures that u(1 − η) > wR(α) as α → 0. If the state is s2, the proposer is a
poor informed agent and the utility from deviating is bounded above by

wP(α)= max
z

Ξ(α)W (x1�0 − z�0)+ (
1 −Ξ(α)

)
u�

s.t. Ξ(α)W (x2�0 + z�0)+ (
1 −Ξ(α)

)
u≥U(x2�0�0)�

When α = 0, the solution to this problem is given by perfect risk sharing with
x1

2�0 + z1 = x2
2�0 + z2 = u−1(U(x2�0�0)). The proposer’s payoff is then

wP(0)= u
(
1 − u−1

(
U(x2�0�0)

))
�

This payoff is strictly dominated by offering z1�E if

1 −η> 1 − u−1
(
U(x2�0�0)

)
�

which is equivalent to assumption (76). A continuity argument ensures that
u(1 −η) >wP(α) for α→ 0.

Finally, consider uninformed proposers. Since informed proposers can con-
dition their strategy on the realization of s, an uninformed proposer cannot do
better than the expected gain of the informed proposer’s deviations. Since this
gain is negative under both values of s, the expected gain is negative and the
uninformed proposer strictly prefers not to deviate. Q.E.D.

S7.3.1. Proof of Proposition 4

Given Proposition 7, we need to find parameters that satisfy conditions (75)–
(77). The following lemma simplifies this construction.
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LEMMA 11: The function W satisfies the following properties:
1. W (x2�0�1)= u(ϕ(1 −ω)+ (1 −ϕ)ω).
2. If

ϕu′(ω)

(1 −ϕ)u′(1 −ω)
= 1�(79)

then

w∗
R =W (x1�0�1)= ϕu(ω)+ (1 −ϕ)u(1 −ω)�(80)

PROOF: Consider problem (73), which defines W . The problem is concave,
so the following first-order conditions, together with the constraints, are suffi-
cient for an optimum:

π(δ)u′(x1 − z1
) = ϕλ+ (1 −ϕ)μ�(

1 −π(δ)
)
u′(x2 − z2

) = (1 −ϕ)λ+ϕμ�

At (x�δ) = (x2�0�1), we have a solution with λ > 0, μ = 0, and z2 > 0 > z1,
which gives us property 1.

At (x�δ) = (x2�0�0), we have a solution at z = 0 with

λ= u′(1 −ω)− u′(ω)

ϕ

1 −ϕ
− 1 −ϕ

ϕ

> 0�(81)

μ=
ϕ

1 −ϕ
u′(ω)− 1 −ϕ

ϕ
u′(1 −ω)

ϕ

1 −ϕ
− 1 −ϕ

ϕ

> 0�

where the second inequality follows from (79) and ϕ > 1/2. This implies
W (x2�0�0)= U(x2�0�0) and the envelope theorem implies

∂W (x2�0�0)
∂x1

= (1 −ϕ)u′(1 −ω)�(82)

∂W (x2�0�0)
∂x2

= ϕu′(ω)�(83)

A symmetric argument applies to the case (x�δ) = (x1�0�1), leading to
W (x1�0�1)= U(x1�0�1) and

∂W (x1�0�1)
∂x1

= ϕu′(ω)�

∂W (x1�0�1)
∂x2

= (1 −ϕ)u′(1 −ω)�
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Consider problem (74), which defines w∗
R. The first-order conditions for this

problem are

∂W (x1�0 − z�1)
∂x1

= λ
∂W (x2�0 + z�0)

∂x1
�

∂W (x1�0 − z�1)
∂x2

= λ
∂W (x2�0 + z�0)

∂x2
�

These conditions are satisfied by setting z = 0 and λ = 1, so we have w∗
R =

W (x1�0�1)= U(x1�0�1). Q.E.D.

Given Proposition 7 and Lemma 11, to construct an example it is sufficient
to find a utility function, probabilities, and endowments that satisfy the four
conditions:

ϕu′(ω) = (1 −ϕ)u′(1 −ω)�

u(1 −η) > ϕu(ω)+ (1 −ϕ)u(1 −ω)�

u(η) < ϕu(ω)+ (1 −ϕ)u(1 −ω)�

u(η) >
1
2
u
(
ϕ(1 −ω)+ (1 −ϕ)ω

) + 1
2
(
ϕu(ω)+ (1 −ϕ)u(1 −ω)

)
�

With CRRA utility, the first condition boils down to

ϕ

1 −ϕ
=

(
ω

1 −ω

)σ

�

and the remaining conditions are satisfied for σ = 4, ω = 0�9, ϕ = 0�94/(1 +
0�94), and η = 0�1265.

S7.4. Example 2: Proofs

S7.4.1. Characterization of the Value Function V

Throughout this section, we fix the value of δ at either 0 or 1. Our objective
is to prove Proposition 8 below, which shows that the maximum continuation
utility V (x�δ) is well defined for all x ∈ R2 and shows how to compute it. We
exploit the fact that, with exponential utility, the per-period utility U takes the
form

U(x�δ) = −e−ρx1f0(x2 − x1)�(84)

where

f0(ξ)≡ π(δ)+ (
1 −π(δ)

)
e−ρξ�
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PROPOSITION 8: If the utility function is exponential and all agents are on the
45 degree line at t = 2, then there exists a continuation equilibrium in which the
maximum continuation utility V (x�δ) is well defined for any x ∈ R2, agents accept
any offer that satisfies V (z�δ) ≥ V (0� δ), and V takes the form

V (x�δ) = −e−ρx1f (x2 − x1)�(85)

where f solves the functional equation

f (ξ) = (1 − γ)f0(ξ)+ γ

(
1
2
f (ξ)+ 1

2

[
f

(
ξ

2

)]2)
�

The proof of this proposition is split in a number of lemmas.

LEMMA 12: Suppose the continuation utility V (x�δ) is well defined for all
x ∈ R2. Suppose all agents are on the 45 degree line and an agent with endow-
ment x accepts offer z if it satisfies V (x + z�δ) ≥ V (x�δ). Then V satisfies two
properties:

(i) it takes the form (85) for some function f ;
(ii) it satisfies the Bellman equation

V (x�δ) = (1−γ)U(x�δ)+γ

(
1
2
V (x�δ)+ 1

2
max

z:V (z�δ)≥V (0�δ)
V (x−z�δ)

)
�(86)

PROOF: Consider two agents with endowments x and x+ a, where a is any
scalar. The second agent can follow the trading strategy of the first agent and
get, in every period, the same utility level scaled by a factor e−ρa. This implies
V (x + a�δ) ≥ e−ρaV (x�δ). A symmetric argument for the first agent implies
V (x�δ)≥ eρaV (x+ a�δ). Combining these two inequalities, we have

V (x+ a�δ) = e−ρaV (x�δ) for all a�(87)

Defining f (ξ) = −V ((0� ξ)�δ), this implies (85). If x is on the 45 degree line,
(87) implies that V (x + z�δ) ≥ V (x�δ) is equivalent to V (z�δ) ≥ V (0� δ).
So if all agents are on the 45 degree line, an agent with endowment x who
gets selected to make an offer, chooses z to maximize V (x − z�δ) subject to
V (z�δ) ≥ V (0� δ). A standard dynamic programming argument implies that
the value function V (x�δ) satisfies the functional equation (86). Q.E.D.

Our next step is to show that there is a function V that solves the functional
equation (86). Let T denote the mapping that, given a function v :R2 → R,
yields

Tv(x) = (1 − γ)U(x�δ)+ γ

(
1
2
v(x)+ 1

2
max

z:v(z)≥v(0)
v(x+ z)

)
�
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A fixed point of T is a solution to the functional equation (86). To establish
existence of a fixed point, our strategy is the following: restrict attention to v

functions that are generated by functions f in some set B; define a self-map T̂

on the space B; find a fixed point of T̂ in B and use it to construct a function v
that is a fixed point of the original operator T .

DEFINITION 4: A is the set of continuous, non-increasing functions f :R →
R+ that satisfy f (0)= 1 and

f
(
λξ′ + (1 − λ)ξ′′) ≤ [

f
(
ξ′)]λ[f (

ξ′′)]1−λ
(88)

for all ξ′ 
= ξ′′ and all λ ∈ (0�1)�

Condition (88) is essentially a property of log-convexity of f . The next lemma
shows that (88) is equivalent to concavity of v.

LEMMA 13: Let v(x)= −e−ρx1f (x2 −x1) for some continuous, non-increasing
function f :R →R+. The function v is concave iff f satisfies (88).

PROOF: v is concave iff the set {(x1� ξ) :v(x1�x1 + ξ) ≥ −κ} is convex for
any κ > 0 (for κ ≤ 0 the set is empty). But v(x1�x1 + ξ) ≥ −κ is equivalent to
e−ρx1f (ξ) ≤ κ. Take two values ξ′ and ξ′′ and choose x′

1 and x′′
1 so that

e−ρx′
1f

(
ξ′) = e−ρx′′

1f
(
ξ′′) = 1�

The convexity of {(x1� ξ) : e−ρx1f (ξ) ≤ 1} implies that

e−ρ[λx′
1+(1−λ)x′′

1 ]f
(
λξ′ + (1 − λ)ξ′′) ≤ 1 = [

e−ρx′
1f

(
ξ′)]λ[e−ρx′′

1f
(
ξ′′)](1−λ)

�

which yields property (88). The converse is easy and is omitted. Q.E.D.

LEMMA 14: Take any function v(x) = −e−ρx1f (x2 −x1) for some f ∈A. Then,
the following offer solves the maximization problem in (86):

z1 = 1
ρ

log f
(
x2 − x1

2

)
�

z2 = z1 + x2 − x1

2
�

and

Tv(x) = −eρx1h(x2 − x1)�

where h is in A and satisfies

h(ξ)= (1 − γ)f0(ξ)+ γ

(
1
2
f (ξ)+ 1

2

[
f

(
ξ

2

)]2)
�(89)
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PROOF: Using ξ = x2 −z2 − (x1 −z1), we can rewrite the optimization prob-
lem as

max
z1�z2

−e−ρ(x1−z1)f (ξ)�(90)

s.t. − e−ρz1f (x2 − x1 − ξ) ≥ −1�

Substituting for z1 in the constraint, we have

max
ξ

−e−ρx1f (ξ)f (x2 − x1 − ξ)�(91)

From (88) and

1
2
ξ + 1

2
(x2 − x1 − ξ) = x2 − x1

2
�

we have

f (ξ)f (x2 − x1 − ξ) ≥
[
f

(
x2 − x1

2

)]2

�(92)

The last inequality implies that setting ξ = (x2 −x1)/2 is optimal. This gives us
the optimal value for z2 −z1. To get the optimal level of z1, we use the constraint
(90). The expression for h follows from substituting the optimal choices of z1

and ξ in the objective function (91), substituting in (86), and using (84). Conti-
nuity and monotonicity of h and the fact that h(0)= 1 follow immediately from
(89) and the definition of f0. It remains to establish the log-convexity of h. The
maximization problem in (86) yields a concave function of x, because v is con-
cave. Then Tv is a convex combination of concave functions and so is concave.
Lemma 13 implies that h satisfies (88). Q.E.D.

Lemma 14 suggests that, to prove existence of a fixed point for T , we define
the mapping T̂ as

T̂ f (ξ)= (1 − γ)f0(ξ)+ γ

(
1
2
f (ξ)+ 1

2

[
f

(
ξ

2

)]2)
�

and look for a fixed point of this mapping. The advantage is that we can choose
any positive scalar M and take as the domain of T̂ the space of continuous
functions on the interval [0�M], since ξ ∈ [0�M] implies ξ/2 ∈ [0�M].

DEFINITION 5: BM is the set of continuous, non-increasing functions f : [0�
M] → [0�1] that satisfy f (0)= 1, (88), and

f
(
ξ′) − f (ξ) ≥ −ρ

(
ξ′ − ξ

)
if ξ′ ≥ ξ�(93)
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The additional property (93) is useful, as it ensures the equicontinuity of the
functions in BM . We can show that T̂ is a self-map on BM .

LEMMA 15: T̂ is a mapping from BM to BM .

PROOF: That T̂ preserves continuity, monotonicity, f (ξ) ≥ 0, f (0) = 1, and
(88) is an immediate corollary of Proposition 14. It remains to prove that T̂
preserves the bound f (ξ) ≤ 1 and that it preserves (93). Property (88) implies
f (ξ/2)2 ≤ f (ξ). Substituting in the definition of T̂ f , we then have

T̂ f (ξ)≤ (1 − γ)f0(ξ)+ γf(ξ)≤ (1 − γ)f0(0)+ γf(0)= 1�

since both f0 and f are non-increasing. To prove (93), take two values ξ′ ≥ ξ.
By convexity, f0 satisfies

f0

(
ξ′) − f0(ξ) ≥ f ′

0(ξ)
(
ξ′ − ξ

) = −ρ(1 −π)e−ρξ
(
ξ′ − ξ

)
≥ −ρ

(
ξ′ − ξ

)
�

Moreover, since f satisfies

f
(
ξ′) − f (ξ) ≥ −ρ

(
ξ′ − ξ

)
and is bounded above by 1, we have

[
f

(
1
2
ξ′

)]2

−
[
f

(
1
2
ξ

)]2

=
[
f

(
1
2
ξ′

)
+ f

(
1
2
ξ

)][
f

(
1
2
ξ′

)
− f

(
1
2
ξ

)]
≥ −2ρ

(
1
2
ξ′ − 1

2
ξ

)
�

Combining the last three inequalities, we have

T̂ f
(
ξ′) − T̂ f (ξ)

= (1 − γ)
[
f0

(
ξ′) − f0(ξ)

] + γ

2
[
f
(
ξ′) − f (ξ)

]

+ γ

2

{[
f

(
1
2
ξ′

)]2

−
[
f

(
1
2
ξ

)]2}

≥ −ρ
(
ξ′ − ξ

)
�

which completes the argument.
We can now state our existence result for f . Q.E.D.

LEMMA 16: The mapping T̂ has a fixed point f in BM .
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PROOF: Define the sequence of functions {fn}∞
n=0 starting at f0 and letting

fn = T̂ fn−1 for n = 1�2�3� � � � . First, we want to show that the sequence {fn} is
monotone. We prove it by induction. Notice that

f1(ξ)=
(

1 − γ

2

)
f0(ξ)+ γ

2

[
f0

(
1
2
ξ

)]2

≤ f0(ξ)�(94)

since the log-convexity of f0 implies f0(ξ/2)2 ≤ f0(ξ). The definition of the
sequence means that

fn(ξ)= (1 − γ)f0(ξ)+ γ

2
fn−1(ξ)+ γ

2
fn−1

(
1
2
ξ

)
�

Writing the same equation at n+ 1 and taking differences side by side, we have

fn+1(ξ)− fn(ξ)= γ

2
[
fn(ξ)− fn−1(ξ)

] + γ

2

[
fn

(
1
2
ξ

)
− fn−1

(
1
2
ξ

)]
�

This means that fn ≤ fn−1 implies fn+1 ≤ fn. Since f1 ≤ f0 from (94), by induc-
tion we have fn ≤ fn−1 for all n:

f1(ξ)− f0(ξ)= γ

2
[
fn(ξ)− fn−1(ξ)

] + γ

2

[
fn

(
1
2
ξ

)
− fn−1

(
1
2
ξ

)]
�

Since f0 is in BM , all the functions in the sequence are in BM and so they all
satisfy

−ρ
(
ξ′ − ξ

) ≤ fn
(
ξ′) − fn(ξ)≤ 0

for any pair ξ′ ≥ ξ. This implies that the sequence {fn}∞
n=0 is uniformly bounded

and equicontinuous. Notice that BM is closed in the sup-norm topology. Then
by the Arzelà–Ascoli theorem, the sequence {fn}∞

n=0 admits a subsequence
{fnk}∞

k=0 that converges uniformly to a function f in BM . Moreover, the fact
that the original sequence {fn}∞

n=0 is monotone implies that it also converges
uniformly to f . It is easy to show that the mapping T̂ is continuous on BM .
Therefore,

f = lim
n→∞

fn = lim
n→∞

T̂ fn−1 = T̂ lim
n→∞

fn−1 = T̂ f�

which completes the argument. Q.E.D.

To complete the proof of Proposition 8, we need to go back to the function
V (x�δ). If x2 ≥ x1, we can choose any M >x2 −x1, find the function f that is a
fixed point of T̂ on BM , and set V (x�δ) = −e−ρx1f (x2 − x1). If x2 < x1, we can
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proceed in a symmetric fashion, and prove the existence of a function g such
that V (x�δ) = −e−ρx2g(x1 − x2). The function f is then found setting

f (ξ) = e−ρξg(−ξ)�

completing the proof.

S7.4.2. Equilibrium in Periods t ≥ 2

We need to show that if an agent is already on the 45 degree line, his optimal
strategy is never to trade. That is, we need to show that the trade z = (0�0) is
a solution to the maximization problem

max
z

V (x− z�δ)� s.t. V (z�δ) ≥ V (0� δ)�

if x1 = x2. To do so, we argue that V satisfies the property

V (x�δ) ≤ u
(
π(δ)x1 + (

1 −π(δ)
)
x2

)
(95)

with equality if x1 = x2.

PROPOSITION 9: The function V satisfies (95).

PROOF: First, we prove that the mapping T preserves this property. If v
satisfies (95), then we want to prove that the function J, defined as

J(x) = max
z

v(x− z)� s.t. v(z)≥ v(0)�

also satisfies (95). Suppose, by contradiction, that J(x) > u(πx1 + (1 −π)x2).
Then there exists a z such that v(x− z) > u(πx1 + (1 −π)x2). Since v satisfies
(95), we have

u
(
πx1 + (1 −π)x2

)
< u

(
π(x1 − z1)+ (1 −π)(x2 − z2)

)
�

which implies

πx1 + (1 −π)x2 <π(x1 − z1)+ (1 −π)(x2 − z2)�

Similarly, v(z)≥ v(0) and (95) imply

0 ≤ πz1 + (1 −π)z2�

Summing side by side the last two inequalities yields a contradiction. The func-
tion Tv is equal to a convex combination of U and J. It is easy to show that
U satisfies (95) and the property is preserved under convex combination. So
Tv satisfies (95). It remains to prove that the condition holds as an equality if
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x1 = x2, and this follows from the fact that z = 0 is always feasible. Since the
function V (x�δ) can be derived as the limit of sequence of functions vn, start-
ing at v0 = U (see Lemma 16), U satisfies (95), and the set of functions that
satisfy (95) is closed, the result follows. Q.E.D.

The following is an immediate corollary.

COROLLARY 1: For t ≥ 2, zero trade is optimal for all agents with endowment
on the 45 degree line.

PROOF: In the proof of Proposition 9, we show that

max
z

{
V (x− z�δ)� s.t. V (z�δ) ≥ V (0� δ)

} ≤ u
(
πx1 + (1 −π)x2

)
�

If x1 = x2, setting z = 0 achieves the upper bound u(πx1 + (1 − π)x2), hence
zero trade is optimal. Q.E.D.

S7.4.3. Strategies at t = 1

Let us first consider equilibrium offers of informed agents. We focus on rich
informed agents in s1, but analogous results hold for the other cases.

PROPOSITION 10: In period t = 1, if informed agent of type 1 meets type 2 and
s1, the proposer offers a trade z1�E(s1) such that

x1�0 − z1�E(s1)= (1 −η�1 −η)�

x2�0 + z1�E(s1)= (η�η)�

where

η= 1 −ω− [
log f (2ω− 1)

]
/ρ�

PROOF: Given the value function V derived above, it is easy to check that
η satisfies V ((η�η)�1) = V ((1 − ω�ω)�1), since V ((η�η)�1) = −e−ρη and
V ((1 − ω�ω)�1) = −e−ρ(1−ω)f (2ω − 1). We need to show that z1�E(s1) is op-
timal for the proposer. To do so, notice that, given the definition of η, the
inequality V ((1 −ω�ω)+ z) ≥ V ((1 −ω�ω)) can be rewritten as V ((η�η)+
z − z1�E(s1)) ≥ V ((η�η)) or, given the properties of V , as V (z − z1�E(s1)�δ) ≥
V (0� δ). So the maximization problem of the proposer can be rewritten as

max
z̃

{
V

(
(1 −η�1 −η)− z̃� δ

)
s.t. V (z̃� δ)≥ V (0� δ)

}
�

The argument for Corollary 1 shows that it is optimal to choose z̃ = 0, that is,
z = z1�E(s1). Q.E.D.
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S7.4.4. Uninformed Agents Experiment

Without loss of generality, consider an uninformed proposer of type 1, with
endowment (ω�1 − ω). We want to show that, at t = 1, he finds it optimal to
experiment, by making an offer that is only accepted by the informed agents
in one state of the world. In particular, we want to show that it is optimal for
him to offer z1�E(s1). If the offer is accepted, he stops trading; if it is rejected,
he trades in all following periods, whenever he is the proposer, offering the
trades described in Lemma 14. Given that the agent learns the state s from the
fact that his offer is rejected, and given that from t = 2 onward he will meet,
with probability 1, informed agents with endowments on the 45 degree line, his
behavior for t ≥ 2 is optimal by the results of the previous subsections.

To prove optimality at t = 1, we need to check that:
1. offer z1�E(s1) is rejected by informed agents in s2;
2. offering z1�E(s1) is better than any other offer accepted by the informed

agent only in s1;
3. offering z1�E(s1) is better than any offer accepted by the informed agent

only in state s2;
4. offering z1�E(s1) is better than any offer accepted by the informed agent

in both states.
To check part 1, we need to show that

V
(
(1 −ω�ω)+ z1�E(s1)�0

)
< V

(
(1 −ω�ω)�0

)
�(96)

But since (1 −ω�ω)+ z1�E(s1) = (η�η) (where η is defined in Proposition 10)
and V ((η�η)�0)= V ((η�η)�1)= V ((1 −ω�ω)�1), this condition boils down
to

V
(
(1 −ω�ω)�1

)
< V

(
(1 −ω�ω)�0

)
�

This inequality follows from the fact that, given that ω > 1 − ω, V ((1 −
ω�ω)�δ) is monotone decreasing in δ.

Part 2 can be proved as follows. To ensure that the offer is accepted by the
informed in state s1, the offer must satisfy

V
(
(1 −ω�ω)+ z�1

) ≥ V
(
(1 −ω�ω)�1

)
�(97)

V
(
(1 −ω�ω)+ z�0

)
< V

(
(1 −ω�ω)�0

)
�(98)

The payoff of the uninformed agent if he makes an offer accepted only in state
1 is

1
2
V

(
(ω�1 −ω)− z�1

) + 1
2
V

(
(ω�1 −ω)�0

)
�(99)

Consider the problem of maximizing (99) subject to (97) and (98). If we relax
the problem by omitting constraint (98), the optimal offer is z1�E(s1), because it
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maximizes the first term of (99) and the second term is a constant independent
of z. But since z1�E(s1) satisfies (96), the second constraint is also satisfied and
so z1�E(s1) solves the original problem. The payoff from this offer is

VE = 1
2
V

(
(ω�1 −ω)− z1�E(s1)�1

) + 1
2
V

(
(ω�1 −ω)�0

)
�

To check part 3, we need to check that there is an upper bound on the utility
the proposer can get by making an offer accepted only in state 2 and that this
upper bound corresponds to the payoff from no trade (1/2)V ((ω�1 −ω)�1)+
(1/2)V ((ω�1 −ω)�0). In particular, inspecting indifference curves for our nu-
merical examples, we see that all the offers that induce acceptance only in state
2 involve that the proposer buys asset 1 in exchange for asset 2 and that these
offers are dominated by no trade.

To check part 4, notice that the payoff of the uninformed agent if he makes
an offer accepted in both states is bounded above by the solution to the follow-
ing problem:

V NE = max
z

1
2
V

(
(ω�1 −ω)− z�1

) + 1
2
V

(
(ω�1 −ω)− z�0

)
(100)

subject to

V
(
(1 −ω�ω)+ z�δ

) ≥ V
(
(1 −ω�ω)�δ

)
for δ= 0�1. This is because the continuation utility of the uninformed is lower
than or equal to the objective function in (100). So we need to check the in-
equality

V NE < VE�

This is the condition discussed in the main text and represented graphically in
Figure S1.
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