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This document contains the following supplemental material: an omitted proof (Sec-
tion S.1), formal statements and proofs of results characterizing complementary inde-
pendence for other decision models (Section S.2), probabilistic sophistication for VEU
preferences (Section S.3), and the analysis of the consumption–savings example of Sec-
tion 4.5 (Section S.4).

S.1. OMITTED PROOFS

PROOF OF LEMMA 2: A binary relation � on a convex subset Φ of B(Σ) is
a preorder if it is reflexive and transitive; is monotonic if a ≥ b implies a � b;
is conic if a � b and α ∈ (0�1) imply αa + (1 − α)c � αb + (1 − α) � c; is
continuous if ak → a, bk → b, and ak � bk for all k imply a � b; is nontrivial if
a� b and not b � a for some a�b.

Now, for a�b ∈ B0(Σ�u(X)), let a �0 b iff the left-hand side of Eq. (22)
holds; also, for a�b ∈ B(Σ�u(X)), let a � b iff the left-hand side of Eq. (23)
holds.

I closely mimic Proposition 4 in Ghirarduto, Maccheroni, and Marinacci
(2004; GMM). Monotonicity, transitivity, and continuity of �0 and � follow
directly from the definition and the properties of I. Reflexivity follows from
monotonicity. To show that �0 and � are conic (i.e., independent), consider
α ∈ (0�1) and a�b� c ∈ B0(Σ�u(X)) or, respectively, B(Σ�u(X)). Then, for all
β ∈ (0�1], note that β[αa+ (1 − α)c] + (1 −β)d = βαa+ (1 −βα)[β(1−α)

1−βα
c +

1−β

1−βα
d] and similarly for b. Thus, a �0 b or, respectively, a � b implies, in par-

ticular, that

I
(
β[αa+ (1 − α)c] + (1 −β)d

)
= I

(
βαa+ (1 −βα)

[
β(1 − α)

1 −βα
c + 1 −β

1 −βα
d

])

≥ I

(
βαb+ (1 −βα)

[
β(1 − α)

1 −βα
c + 1 −β

1 −βα
d

])

= I
(
β[αb+ (1 − α)c] + (1 −β)d

)
for all β ∈ (0�1], so αa+ (1 − α)c �0 αb+ (1 − α)c or, respectively, αa+ (1 −
α)c � αb+ (1 − α)c. The case α= 1 is trivial.

Finally, if �0 is trivial, then in particular the conjunction “γ �0 γ
′ and not

γ′ �0 γ” is false for all γ�γ′ ∈ u(X). Take γ > γ′: then γ �0 γ
′ by monotonic-

ity, and so it must be the case that also γ′ �0 γ. By the definition of �0, taking
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α= 1, this implies that I(γ) = I(γ′), which contradicts the fact that I is nor-
malized. The same argument applies to �.

The first claim now follows by applying Proposition A.2 in GMM to �0.
For the second statement, note that continuity of I implies that the left-

hand side of Eq. (23) holds iff I(αa + (1 − α)c) ≥ I(αb + (1 − α)c) for all
c ∈ B0(Σ�u(X)): that is, one can restrict attention to mixtures with simple
functions. It then follows that �0 is the restriction of � to B0(Σ�u(X)).

Define �′ on B(Σ�u(X)) by stipulating that, for all a�b ∈ B(Σ�u(X)),
a �′ b iff q(a) ≥ q(b) for all q ∈ C . Then �′ is easily seen to be a nontriv-
ial, monotonic, continuous, conic preorder, and clearly a �′ b iff a � b for
a�b ∈ B0(Σ�u(X)): that is, �0 is also the restriction of �′ to B0(Σ�u(X)).
Therefore, for all a�b ∈ B0(Σ�u(X)), a � b iff a �′ b. It remains to be shown
that this implies �=�′.

Thus, suppose a � b for some a�b ∈ B(Σ�u(X)). Then, for every α ∈ (0�1),
αa(Ω)�αb(Ω) ⊂ intu(X) and αa � αb because � is conic. Hence, there exist
sequences (ak)� (bk) in B0(Σ�u(X)) such that ak ≥ αa, bk ≤ αb, ak → αa, and
bk → αb in the supremum norm. Then ak � αa � αb � bk for all k, so also
ak �′ bk. Since �′ is continuous, taking limits as k → ∞ yields αa �′ αb and
taking limits as α → 1 yields a �′ b. Exchanging the roles of � and �′ yields
the converse implication. Q.E.D.

S.2. CHARACTERIZATIONS OF COMPLEMENTARY INDEPENDENCE
FOR OTHER MODELS

PROPOSITION 7—Complementary Independence for MEU and CEU Pref-
erences:

1. A MEU preference � satisfies Axiom 7 if and only if there is p ∈ C such
that, for all q ∈C , 2p− q ∈ C (that is, p is the barycenter of C).

2. A CEU preference � satisfies Axiom 7 if and only if there is p ∈ ba1(Σ)
such that, for all E ∈ Σ, v(E)+ [1 − v(Ω \E)] = 2p(E).
In statements 1 and 2, p ∈ ba1(Σ) is the unique probability charge that satisfies
f � f̄ ⇔ ∫

u◦ f dp ≥ ∫
u◦ f̄ dp for all complementary pairs (f� f̄ ), where u is the

utility function in the MEU or CEU representation of �.

PROOF: Part 1 follows from Lemma 3 and the observation that, for MEU
preferences, the set C constructed in Lemma 2 coincides with C (cf. GMM,
Section 5.1).

For part 2, notice that the Choquet integral is positively homogeneous;
hence, I has a unique extension from B0(Σ�u(X)) to B0(Σ), and J(a) =
1
2I(a) − 1

2I(−a) for all a ∈ B0(Σ). If � satisfies complementary indepen-
dence, then, using the VEU representation, I(1E) = p(E) + A(Ep[ζ1E])
and I(−1E) = −p(E) + A(−Ep[ζ1E]) = −p(E) + A(Ep[ζ1E]), so I(1E) −
I(−1E) = 2p(E). On the other hand, using the CEU representation, Iv(E) =
v(E) and Iv(−1E) = −[1 − v(Ω \ E)]; since I = Iv, the claim follows. In the



VEU AND ATTITUDES TOWARD VARIATION 3

opposite direction, suppose that a = ∑K

k=1 αk1Ek
for a partition E1� 
 
 
 �EK

of Ω and numbers α1 < α2 < · · · < αK . Then Iv(a) = ∑K

k=1 αk[v(⋃K

�=k E�) −
v(

⋃K

�=k+1 E�)] and similarly, invoking the condition in the proposition,

Iv(−a) =
K∑

k=1

(−αk)

[
v

(
k⋃

�=1

E�

)
− v

(
k−1⋃
�=1

E�

)]

=
K∑

k=1

(−αk)

[
2p

(
k⋃

�=1

E�

)
− 1 + v

(
K⋃

�=k+1

E�

)
− 2p

(
k−1⋃
�=1

E�

)

+ 1 − v

(
K⋃

�=k

E�

)]

= −2
K∑

k=1

αkp(Ek)+ Iv(a)�

and so 1
2I(a) − 1

2I(−a) = J(a), where J is the linear functional represented
by p. The claim now follows from Lemma 1. Q.E.D.

PROPOSITION 8—Complementary Independence for Variational Prefer-
ences: Let � be a variational preference and assume that the utility function u is
unbounded either above or below. Then � satisfies Axiom 7 if and only if there
exists p ∈ ba1(Σ) such that

∀q ∈ ba1(Σ)� 2p− q ∈ ba1(Σ) ⇒ c∗(q)= c∗(2p− q)

and

2p− q /∈ ba1(Σ) ⇒ c∗(q) = ∞


In particular, c∗(p) = 0. Finally, p is the unique probability charge such that, for
all complementary pairs (f� f̄ ), f � f̄ ⇔ ∫

u ◦ f dp ≥ ∫
u ◦ f̄ dp.

The reader is referred to Maccheroni, Marinacci, and Rustichini (2006) for
a discussion of the unboundedness assumption.

PROOF OF PROPOSITION 8: The preference � has a niveloidal representa-
tion Ic∗�u, where Ic(a) = minq∈ba1(Σ)

∫
adq + c∗(q). For conciseness, say that

c∗ is symmetric around p ∈ ba1(Σ) iff it satisfies the condition in Proposi-
tion 8. By Lemma 1, Axiom 7 holds iff the functional J defined by J(a) =
1
2γ + 1

2Ic∗(a) − 1
2Ic∗(γ − a) is affine. Thus it suffices to show that J is affine iff

c∗ is symmetric around p.
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Suppose that c∗ is symmetric around p. Consider a complementary pair
(f� f̄ ) and let z ∈ X be such that 1

2f (ω) + 1
2 f̄ (ω) ∼ z. Thus, a ≡ u ◦ f =

2u(z) − u ◦ f̄ ≡ γ − u ◦ f̄ . Now let q∗ ∈ arg minq∈ba1(Σ)

∫
adq + c∗(q); since

clearly c∗(q∗) < ∞, 2p − q∗ ∈ ba1(Σ) and c∗(q∗) = c∗(2p − q∗). Now, for all
q ∈ ba1(Σ) such that 2p− q ∈ ba1(Σ),

∫
(γ − a)d(2p− q)+ c∗(2p− q)

= γ − 2
∫

adp+
∫

adq+ c∗(q)

≥ γ − 2
∫

adp+
∫

adq∗ + c∗(q∗)

=
∫
(γ − a)d(2p− q∗)+ c∗(2p− q∗)


Since any q ∈ ba1(Σ) such that 2p−q ∈ ba1(Σ) can obviously be written as q =
2p− [2p− q] and all other q ∈ ba1(Σ) have c∗(q) = ∞, it follows that Ic∗(γ −
a) = γ − 2

∫
adp + ∫

adq∗ + c∗(2p − q∗) = γ − 2
∫
adp + Ic∗(a). Therefore,

J(a)= 1
2γ + 1

2Ic∗(a)− 1
2Ic∗(γ − a)= ∫

adp, that is, J is affine and represented
by p.

In the opposite direction, suppose that γ+ 1
2Ic∗(a)− 1

2Ic∗(γ−a)= ∫
adp for

all a�γ − a ∈ B0(Σ); also, for every f ∈ F0, let mf ∈ X be such that u(mf ) =
1
2 minω∈Ω u(f (ω)) + 1

2 maxω∈Ω u(f (ω)) and recall that u(xf ) = Ic∗(u ◦ f ). For
every q ∈ ba1(Σ) such that 2p− q ∈ ba1(Σ),

c∗(2p− q) = sup
f∈F0

u(xf )−
∫

u ◦ f d(2p− q)

= −2
∫

u ◦ f dp+ sup
f∈F0

Ic∗(u ◦ f )−
∫
(−u ◦ f )dq

= −2
∫

u ◦ f dp+ sup
f∈F0

2
∫

u ◦ f dp

+ Ic∗(2u(mf )− u ◦ f )− 2u(mf )−
∫
(−u ◦ f )dq

= sup
f∈F0

Ic∗(2u(mf )− u ◦ f )−
∫

[2u(mf)− u ◦ f ]dq

= sup
f∈F0

Ic∗(u ◦ f )−
∫

u ◦ f dq = c∗(q)
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The last step follows because, for every f ∈ F0, there is f̄ ∈ F0 such that u◦ f̄ =
2u(mf ) − u ◦ f ; therefore, computing the supremum over f ∈ F0 is the same
as computing it over the complementary acts f̄ constructed from each f ∈ F0

in this way. If instead 2p − q /∈ ba1(Σ) but c∗(q) < ∞, the above calculations
still show that

sup
f∈F0

u(xf )−
∫

u ◦ f d(2p− q) = c∗(q) < ∞


Now 2p(Ω)− q(Ω) = 1, so there must be E ∈ Σ such that 2p(E)− q(E) < 0.
Therefore,

sup
f∈F0

u(xf )−
∫

u ◦ f d(2p− q)

= sup
f∈F0

Ic∗(u ◦ f )−
∫

u ◦ f d(2p− q)

≥ sup
α�β∈u(X) : α>β

Ic∗(β+ (α−β)1E)−
∫

[β+ (α−β)1E]d(2p− q)

= sup
α�β∈u(X) : α>β

Ic∗(β+ (α−β)1E)−β− (α−β)[2p(E)− q(E)]

≥ sup
α�β∈u(X) : α>β

β−β− (α−β)[2p(E)− q(E)] = ∞�

which contradicts c∗(q) < ∞. The second equality follows from the fact
that 2p(Ω) − q(Ω) = 1, and the second inequality follows from monotonic-
ity of Ic∗ ; the final equality uses the fact that u(X) is unbounded and
2p(E)− q(E) < 0. Q.E.D.

PROPOSITION 9: Let � be a smooth-ambiguity preference (with finite sup-
port μ). If there exists p ∈ ba1(Σ) such that μ(q) = μ(2p− q) for all q ∈ ba1(Σ),
then Axiom 7 holds. Furthermore, if 0 ∈ intu(X), p is the only probability charge
such that, for all complementary pairs (f� f̄ ), f � f̄ iff Ep[u ◦ f ] ≥ Ep[u ◦ f̄ ].

PROOF: Let (h� h̄) be complementary and write a = u ◦ h, γ − a = u ◦ h̄.
Then h � h̄ iff

∫
φ(Eq[a])dμ≥ ∫

φ(Eq[γ−a])dμ, that is, iff
∫
φ(Eq[a])dμ≥∫

φ(γ + Eq[−a])dμ. Under the assumption that μ(q) = μ(2p − q), this can
be rewritten as∫

φ(Eq[a])dμ ≥
∫

φ(γ + E2p−q[−a])dμ

=
∫

φ(γ − 2Ep[a] + Eq[a])dμ
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Since φ is strictly increasing, this holds if and only if Ep[a] ≥ γ

2 .
Now let f , f̄ , g, ḡ, and α be as in Axiom 7. Suppose that f � f̄ and g � ḡ.

Letting u◦ f̄ = γf −u◦f and u◦ ḡ = γg −u◦g, the preceding argument implies
that Ep[u◦f ] ≥ 1

2γf and Ep[u◦g] ≥ 1
2γg. Hence, Ep[u◦(αf +(1−α)g)] ≥ γα ≡

αγf + (1−α)γg. Since u◦ (αf̄ + (1−α)ḡ) = γα −u◦ (αf + (1−α)g), conclude
that αf + (1 − α)g � αf̄ + (1 − α)ḡ, that is, the axiom holds.

Finally, if u ◦ f̄ = γ − u ◦ f , then as noted above, f � f̄ iff Ep[u ◦ f ] ≥ 1
2γ.

Substituting for γ and simplifying, this is equivalent to 1
2 Ep[u◦ f ] ≥ 1

2 Ep[u◦ f̄ ],
and the factor 1

2 can be dropped. Now consider q �= p, so there is a ∈ B0(Σ)
with Ep[a] >Eq[a]. Since by assumption 0 ∈ intu(X), assume [−1�1] ⊂ u(X).
Construct f ∈ F0 such that u ◦ f (Ω) ⊂ [0� 1

2 ] and u ◦ f = αa + β with α > 0.
Then let f̄ ∈ F be such that u ◦ f̄ = −u ◦ f . Finally, construct g and ḡ such
that u ◦ g = u ◦ f − Ep[u ◦ f ] and u ◦ ḡ = u ◦ f̄ − Ep[u ◦ f̄ ]: this is possible as
1
2 ≥ u ◦ f (ω) ≥ 0 ≥ u ◦ f̄ (ω) ≥ − 1

2 and [−1�1] ⊂ u(X). Clearly, Ep[u ◦ g] =
0 = Ep[u ◦ ḡ] and u ◦ ḡ = −u ◦ f + Ep[u ◦ f ] = −u ◦ g; hence, g ∼ ḡ. However,
Eq[u ◦ g] = Eq[u ◦ f ] − Ep[u ◦ f ] < 0 and Eq[u ◦ ḡ] = Eq[−u ◦ g] > 0, that is,
Eq[u ◦ ḡ] > Eq[u ◦ g], which is inconsistent with g ∼ ḡ. Q.E.D.

S.3. PROBABILISTIC SOPHISTICATION FOR VEU PREFERENCES

An induced likelihood ordering �� is represented by a probability μ ∈ ca1(Σ)
iff, for all E�F ∈ Σ, E �� F iff μ(E) ≥ μ(F). Finally, a probability measure μ
is convex-ranged iff, for every event E ∈ Σ such that μ(E) > 0 and for every
α ∈ (0�1), there exists A ∈ Σ such that A ⊂E and μ(A)= αμ(E).

PROPOSITION 10: Fix a VEU preference relation � and let p ∈ ca1(Σ) be the
corresponding baseline probability. If the induced likelihood ordering �� is repre-
sented by a convex-ranged probability measure μ ∈ ca1(Σ), then μ= p1.

PROOF: Fix x� y ∈ X with x � y . Since the ranking of bets xEy is repre-
sented by μ and also by the map defined by E �→ u(x)p(E) + u(y)p(Ec) +
A(Ep[ζ · xEy]), there exists an increasing function g : [0�1] → [u(y)�u(x)]
such that u(x)p(E) + u(y)p(Ec) + A(Ep[ζ · xEy]) = g(μ(E)) for all events
E [this function g will in general depend upon x and y , but this is inconse-
quential]. Since A(Ep[ζ · yEx])=A(Ep[ζ · (x+ y −xEy)])=A(Ep[ζ ·xEy]),

g(μ(E))− g(1 −μ(E))= [u(x)− u(y)](2p(E)− 1)(28)

for all events E ∈ Σ. Since g is increasing, so is the map γ �→ g(γ) − g(1 −
γ); thus, μ(E) = μ(F) if and only if p(E) = p(F). Now, since μ is convex-
ranged, for any integer n there exists a partition {En

1 � 
 
 
 �E
n
n} of Ω such that

μ(En
j ) = 1

n
for all j = 1� 
 
 
 � n; correspondingly, p(En

j ) = p(En
k) for all j�k ∈
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{1� 
 
 
 � n} and, therefore, p(En
j ) = 1

n
for all j = 1� 
 
 
 � n. This implies that for

every event E such that μ(E) is rational, p(E)= μ(E).
To extend this equality to arbitrary events, note that for every event E such

that μ(E) > 0 and number r < μ(E), since μ is convex-ranged, there ex-
ists L ⊂ E such that μ(L) = r

μ(E)
μ(E) = r. Similarly, for every event E such

that μ(E) < 1 and number r > μ(E), there exists an event U ⊃ E such that
μ(U)= r. To see this, note that μ(Ω \ E) > 0 and 1 − r < μ(Ω \ E), so there
exists L ⊂ Ω \ E such that μ(L) = 1 − r; hence, U = Ω \ L has the required
properties.

Now consider sequences of rational numbers {�n}n≥0 ⊂ [0�1] and {un}n≥0 ⊂
[0�1] such that �n ↑ μ(E) and un ↓ μ(E). By the preceding argument, for every
n ≥ 1 there exist sets Ln ⊂ E ⊂ Un such that μ(Ln)= �n and μ(Un)= un. It was
shown above that p(Ln)= μ(Ln) and p(Un)= μ(Un); moreover, Ln ⊂E ⊂Un

implies that p(Ln) ≤ p(E)≤ p(Un). Therefore, p(E)= μ(E). Q.E.D.

S.4. CONSUMPTION–SAVINGS PROBLEM: FORMALITIES

As a preliminary step, consider a two-period version of the problem with EU
preferences,

max
s∈[0�w]

v(w − s)+ δ[πv(Hs)+ (1 −π)v(Ls)];

that is, find the optimal amount of savings s given wealth w, discount factor δ,
and probability of high return π. It is easy to verify that the solution is lin-
ear: s = αw, where α ∈ (0�1) depends upon all parameters but not on w. This
standard result will be used below to construct the solution to the multiperiod
problem with VEU preferences.

Now verify Eqs. (10), (11), and (12). Fix 0 ≤ τ < T and 0 ≤ t < T − 1. If
t ≥ τ − 1, then one easily verifies that Ep[ζt |Πτ(ω)] = Ep[ζt] = 0 for all ω. If
instead t < τ − 1, then Ep[ζt |Πτ(ω)] = ζt(ω).

For τ = 0, this implies that (ζt)0≤t<T−1 satisfies the properties in Definition 1.
For τ > 0, together with Eq. (7), this implies that ζt�Πτ(ω)(ω)= p(Πτ(ω))ζt(ω)
for t ≥ τ− 1 and ζt�Πτ(ω)(ω)= 0 otherwise. Equation (12) follows immediately.

This fact and Eq. (7) imply that, for all F ∈ Πτ,

VF(f ) = Ep[u ◦ f |F] −
T−2∑
t=0

∣∣Ep[ζt�Fu ◦ f |F]∣∣

=
T∑
t=0

δtEp[v ◦ ft |F] −
T−2∑

t=max(0�τ−1)

∣∣∣∣∣Ep

[
ζt�F

T∑
s=0

δsv ◦ fs
∣∣∣ F

]∣∣∣∣∣

Now if s ≤ τ, then Ep[ζtv ◦ fs|Πτ(ω)] = v ◦ fs(ω)Ep[ζt |Πτ(ω)], which is 0
for t ≥ τ − 1. If s > τ and t ≥ s, then fs depends upon r0� 
 
 
 � rs−1 and ζt
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depends upon rt� rt+1, and these are independent (given Πτ(ω)), so Ep[ζtv ◦
fs|Πτ(ω)] = Ep[v ◦ fs|Πτ(ω)]Ep[ζt|Πτ(ω)], which again equals 0. Finally, if
s = t + 1, then Ep[ζtv ◦ ft+1|Πτ(ω)] = Ep[Ep[ζtv ◦ ft+1|Πt+1(ω)]∣∣Πτ] = Ep[v ◦
ft+1Ep[ζt |Πt+1]

∣∣Πτ(ω)] = 0, because t ≥ max(0� τ − 1) implies t + 1 ≥ τ and
Ep[ζt|F] = 0 for all F ∈ Πt+1. Taking τ = 0, this argument yields Eq. (10) di-
rectly; for τ > 0, note that since t ≥ τ−1, ζt�Πτ(ω)(ω)= p(Πτ(ω))ζt(ω), and so
again Eq. (11) follows (cf. footnote 28).

Consistent planning can be formalized as follows. Let BT = {f ∈ FA(w0) : fT =
w

f
T }. Then, assuming that Bτ+1 has been defined for τ < T , let

Bτ =
⋂
ω∈Ω

⋃
w≥0

arg max
f∈Bτ+1 : wf

τ (ω)=w

Vτ(f |Πτ(ω))


The following result implies the stated equivalence (see item 4 in the propo-
sition for τ = 0). For a�b ∈ {H�L}, let η(a�b) = 1 if a = b and η(a�b) = −1
otherwise.

PROPOSITION 11: For all w ≥ 0, τ = 0� 
 
 
 �T , and F ∈ Πτ, the problem in
Eq. (13) has a unique solution, which takes the form sτ�F(w) = ατw; for ε > 0
small, ατ�F ∈ [0�1]. Furthermore,

Vτ(w)= βp
τ v(w)�

Φτ�t(w|F)= βτ�tv(w) (t = τ� 
 
 
 T − 2),

Φτ�τ−1(w|F)= η(rτ−1�H) ·βτ�τ−1v(w)�

Φτ�τ−2(w|F)= η(rτ−2� rτ−1) ·βτ�τ−2v(w)�

where βτ�t → 0 as ε → 0. Finally, (for ε > 0 small) for all τ = 0� 
 
 
 � T , ω ∈ Ω,
and f ∈ Bτ, the following statements hold:

1. fτ(ω)= (1 − ατ�Πτ(ω))w
f
τ (ω).

2. Vτ(w
f
τ(ω)) = ∑T

t=τ δ
t−τEp[v ◦ ft |Πτ(ω)].

3. For all t = τ − 2� 
 
 
 �T − 2, Φτ�t(w
f
τ (ω)|Πτ(ω)) = Ep[ζt�Πτ(ω) ×∑T

s=t+2 δ
s−τv ◦ fs|Πτ(ω)]


4. If f�g ∈ Bτ and wf
τ(ω)= wg

τ(ω), then ft(ω
′)= gt(ω

′) for all t = τ� 
 
 
 �T
and G ∈ Πt with G ⊂ Πτ(ω).

PROOF: For τ = T , the objective function in Eq. (13) reduces to v(w − s).
Thus, the unique solution is s∗

T�F(w) = 0, that is, αT�F = 0. Clearly VT (w) =
v(w), and ΦT�t can only be defined for t = T − 2, in which case ΦT�T−2(w|F)=
ζT−2�F(ω)VT (w)= η(rT−2(ω)� rT−1(ω)) · 2−Tεv(w), where ω = F [actually, F =
{ω}]. Thus, βT�T−2 = 2−Tε. Note that βT�T−2 → 0 as ε → 0.
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Now assume the claim is true for τ+ 1 ≤ T . Then the objective in Eq. (13) is
equivalent to

v(w − s)+ δβ
p
τ+1

[
1
2
v(Hs)+ 1

2
v(Ls)

]
− δ[βτ+1�τ−1 +βτ+1�τ][v(Hs)− v(Ls)]

− δ

T−2∑
t=τ+1

βτ+1�t[v(Hs)+ v(Ls)]�

which is a two-period consumption–savings problem with EU preferences,
probability of high output equal to

π =

1
2
β

p
τ+1 −

T−2∑
t=τ−1

βτ+1�t

β
p
τ+1 − 2

T−2∑
t=τ+1

βτ+1�t

and discount factor equal to

δπ ≡ δ

β
p
τ+1 − 2

T−2∑
t=τ+1

βτ+1�t




Since βτ+1�t → 0 as ε → 0, for ε small, π�δπ ∈ (0�1), so ατ�F ∈ [0�1]. To
complete the inductive step, the statement about Vτ(w) follows from standard
arguments, so consider the functions Φτ�t . For t > τ,

Φτ�t(w|F) = δ
{
Φτ+1�t(Hατ+1w|F ∩Hτ)+Φτ+1�t(Lατ+1w|F ∩Lτ)

}
= δ

{
βτ+1�tv(Hατ+1w)+βτ+1�tv(Lατ+1w)

}
and the claim follows from the properties of power utility; for t = τ, we get

Φτ�τ(w|F) = δ
{
η(H�H) ·βτ+1�τv(Hατ+1w)

+η(L�H) ·βτ+1�τv(Lατ+1w)
}

and again the claim follows; for t = τ − 1,

Φτ�τ−1(w|F) = δ
{
η(rτ−1�H) · [βτ+1�τ−1v(Hατ+1w)

+η(rτ−1�L) ·βτ+1�τ−1v(Lατ+1w)
]}
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= δ
{
η(rτ−1�H) · [βτ+1�τ−1v(Hατ+1w)

−βτ+1�τ−1v(Lατ+1w)
]};

finally, for t = τ − 2,

Φτ�τ−2(w|F) = Ep

[
ζτ−2�FVτ((1 − ατ�F)w)|F]

= η(rτ−2� rτ−1) · ε2−τβp
τ v((1 − ατ�F)w)

and the assertion follows. Note that βτ�τ−2 → 0 as ε → 0. Furthermore, if
βτ+1�t → 0 for t = τ − 1� 
 
 
 �T − 2 as ε → 0, then also βτ�t → 0.

Turn to the final claim. For τ = T , by construction fT = w
f
T = (1 −

αT�ΠT (ω))w
f
T , as αT�ΠT (ω) = 0; also, VT(w

f
T (ω)) = v(w

f
T (ω)) = v ◦ fT (ω) =

Ep[v ◦ fT |ΠT(ω)]. The only continuation adjustment to be examined is

ΦT�T−2(w
f
T (ω)|ΠT(ω)) = ζT−2(ω)VT (w

f
T (ω)) = ζT−2(ω)v(w

f
T (ω))

= ζT−2(ω)v(fT (ω)) = Ep[ζT−2v ◦ fT |ΠT(ω)]�
so item 3 holds. Finally, item 4 holds trivially.

Now assume the claim is true for τ + 1 ≤ T and consider τ < T . Fix ω ∈ Ω
and w ≥ 0 for which C(w�ω) ≡ {f ∈ Bτ+1 :wf

t (ω) = w} �= ∅. Clearly, for every
s ∈ [0�w] there is an act f ∈ C(w�ω) with fτ(ω) = w − s. Furthermore, any
two acts f�g ∈ C(w�ω) such that ft(ω) = gt(ω) clearly also satisfy w

f
τ+1(ω

′) =
w

g
τ+1(ω

′) for all ω′ ∈ Πτ(ω), and item 4 of the inductive hypothesis implies that
then ft(ω

′)= gt(ω
′) as well for all t = τ+ 1� 
 
 
 � T . Therefore, Vτ(f |Πτ(ω)) =

Vτ(g|Πτ(ω)). Also, if f ∈C(w�ω), then f ∈ Bτ+1 ⊂ FA(w0) and so w−fτ(ω) ∈
[0�w]. Thus, one can identify each choice of s ∈ [0�w] with a class of acts in
C(w�ω) that deliver the same continuation payoff; conversely, these classes
partition C(w�ω).

Now consider f ∈ C(w�ω) and let s = w − fτ(ω). By the induction hypoth-
esis, since f ∈ Bτ+1, for all ω′ ∈ Πτ(ω), Vτ+1(rτ(ω

′)s) = ∑T

t=τ+1 δ
t−τ−1Ep[v ◦

ft |Πτ+1(ω
′)], so by iterated expectations δEp[Vτ+1(rτs)|Πτ(ω)] = ∑T

t=τ+1 δ
t−τ ×

Ep[v ◦ ft |Πτ(ω)]. Moreover, again for ω′ ∈ Πτ+1(ω), Φτ+1�t(rτ(ω
′)s|

Πτ+1(ω
′)) = Ep[ζt�Πτ+1(ω

′)
∑T

s=t+2 δ
s−τ−1v ◦ fs|Πτ+1(ω

′)] for all t = τ − 1� 
 
 
 �
T −2. Since, for ω′ ∈Πτ(ω), Πτ+1(ω

′) equals either Πτ(ω)∩Hτ or Πτ(ω)∩Lτ ,
Eq. (12) and the induction hypothesis imply that

δ
{
Φτ+1�t(Hs|Πτ(ω)∩Hτ)+Φτ+1�t(Ls|Πτ(ω)∩Lτ)

}
= Ep

[
ζt�Πτ(ω)

T∑
s=t+2

δs−τv ◦ fs
∣∣∣ Πτ(ω)

]



Therefore, Vτ(f |Πτ(ω) equals the value of the objective function in Eq. (13)
at s = w − fτ(ω). It then follows that f maximizes Vτ(·|Πτ(ω) over C(w�ω) if
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and only if w − fτ(ω) = ατ�Πτ(ω)w. A fortiori, this is the case for f ∈ Bτ. This
and the induction hypothesis immediately imply item 4. Finally, items 2 and 3
follow from the arguments given in the last paragraph (which apply to any act
that prescribes the consistent planning choices from time τ+1 onward). Q.E.D.
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