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Abstract

Measuring the effect of peers on individuals’ outcomes is a challenging problem, in
part because individuals often select peers who are similar in both observable and unob-
servable ways. Group formation experiments avoid this problem by randomly assigning
individuals to groups and observing their responses; for example, do first-year students
have better grades when they are randomly assigned roommates who have stronger
academic backgrounds? In this paper, we propose randomization-based permutation
tests for group formation experiments, extending classical Fisher Randomization Tests
to this setting. The proposed tests are justified by the randomization itself, require
relatively few assumptions, and are exact in finite samples. This approach can also
complement existing strategies, such as linear-in-means models, by using a regression
coefficient as the test statistic. We apply the proposed tests to two recent group for-
mation experiments.
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1 Introduction

Peers influence a broad range of individual outcomes, from health to education to co-

authoring papers.1 However, studying these peer effects in practice is challenging in part

because individuals typically select peers who are similar in both observed and unobserved

ways (Sacerdote, 2014). Randomized group formation, also known as exogenous link for-

mation, avoids this problem by randomly assigning individuals to groups and observing

their responses. Among its many applications, this approach has been used to assess the

effect of dorm-room composition on student grade point average (GPA; Sacerdote, 2001;

Bhattacharya, 2009; Li et al., 2019), the effect of squadron composition on individual perfor-

mance at military academies (Lyle, 2009; Carrell et al., 2013), the effect of business groups on

the diffusion of management practices (Fafchamps and Quinn, 2018; Cai and Szeidl, 2017),

the effect of group or team assignments on the performance of professional athletes (Guryan

et al., 2009), and the effect of co-workers on productivity (Herbst and Mas, 2015; Cornelis-

sen et al., 2017). A typical substantive question is then, for example: what is the effect

of randomly assigning an incoming first-year student to a roommate with high academic

preparation (the “exposure”) on the student’s own end-of-year GPA?

In this paper, we propose analyzing randomized group formation designs from the per-

spective of “randomization inference,” in the spirit of Fisher (1935). Like the classic Fisher

Randomization Test (FRT), our ultimate proposal is a straightforward permutation test that

(conditionally) permutes each individual’s exposure. This test is exact in finite-samples, re-

quires relatively few assumptions, and is justified by the randomization itself. Thus, we

argue that our approach is a natural benchmark for analyzing randomized group formation

designs, building on a growing literature within economics and econometrics (see Lehmann

and Romano, 2005; Imbens and Rubin, 2015; Canay et al., 2017; Young, 2019) that seeks to

use the randomization itself as the source of uncertainty when analyzing randomized trials.

Moreover, we can combine this approach with popular model-based frameworks, such as

the linear-in-means model (Manski, 1993), by using a model to generate the test statistics

for subsequent randomization tests. When such models are correctly specified, the corre-

sponding randomization tests are likely to have higher power. Even when the models are

incorrectly specified, our proposed randomization tests can still ensure that the p-values are

finite-sample valid.

To develop this procedure, we have to overcome several technical and computational hurdles.

1All of the co-authors entered the same graduate program in the same year.
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First, a key challenge for randomization tests under interference is that the null hypotheses

of interest are not typically “sharp,” in the sense of specifying all potential outcomes for all

units (Rosenbaum, 2007; Hudgens and Halloran, 2008). For example, the null hypothesis of

no difference between having 0 or 1 students with high academic preparation in a dorm room

does not have any information about dorm rooms that have 2 students of that type. An

important innovation for causal inference under interference is to restrict the randomization

test to a subset of units, known as focal units, which “makes the null hypothesis sharp” and

allows for otherwise standard conditional randomization tests (Aronow, 2012; Athey et al.,

2018; Basse et al., 2019). Our first contribution is to extend these results to randomized group

formation designs, and show that restricting our attention to focal units indeed enables valid

randomization-based tests, at least in principle.

In practice, however, it is difficult to obtain draws from the appropriate null distribution in

group formation designs. The computationally straightforward approach of naively permut-

ing the exposure of interest (e.g., permuting the number of students in a room of a specific

type) is not typically valid, since permuted exposures can be incompatible with the original

group formation design. Conversely, the conceptually valid approach of repeatedly assigning

groups can be computationally prohibitive for testing non-sharp null hypotheses that require

conditioning on a specific set of focal units.

Our second main contribution is therefore to develop computationally efficient randomization

tests that can be implemented easily via permutations. For a broad class of designs, we show

that permuting exposures separately for each level of individuals’ own attributes (e.g., high

academic preparation) leads to valid randomization tests. Using algebraic group theory,

we prove that a key property in all these designs is equivariance, which, roughly speaking,

ensures that an invariance in the design translates into an invariance on peer exposure. Our

paper thus provides one of the first, general theoretical results on efficient implementation

of randomization tests of peer effects via permutations.

We apply our results to two studies based on randomized group formation designs: first-year

students randomly assigned to dorms (Li et al., 2019) and chief executive officers (CEOs)

randomly assigned to group meetings (Cai and Szeidl, 2017). We describe stylized versions of

these examples in the next section and discuss the applications in more detail in Section 6.

In the appendix, we also include extensive simulation studies showing the validity of the

method under a range of scenarios.

Our approach combines two recent threads in the literature on causal inference under in-
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terference. In the first thread, Aronow (2012), Athey et al. (2018), and Basse et al. (2019)

develop conditional randomization tests that are valid under interference; we discuss this

further in Section 3.2. In that setup, the groups are fixed and the intervention itself is ran-

domized. In the second thread, Li et al. (2019) explicitly consider group formation designs

and define peer effects using the potential outcomes framework. Their paper mainly con-

siders the Neymanian perspective that focuses on randomization-based point and interval

estimation based on normal approximations (Imbens and Rubin, 2015; Abadie et al., 2020).

By contrast, our paper chiefly considers the Fisherian perspective that instead focuses on

finite-sample exact p-values via randomization-based testing. This allows us to examine hy-

potheses for smaller subpopulations, including those in our motivating examples. Moreover,

our approach is valid for arbitrary outcome distributions, including possibly heavy-tailed

sales revenue in the second example (Rosenbaum, 2002; Lehmann and Romano, 2005).

2 Setup and framework

2.1 From regression to randomization inference for peer effects

To illustrate the notation and the key concepts, we introduce two running examples. Exam-

ple 1 presents an idealized version of Sacerdote (2001) and Li et al. (2019), in which incoming

college first-year students are randomly assigned to dorm rooms. Example 2 presents an

idealized version of Cai and Szeidl (2017), in which CEOs of Chinese firms are randomly

assigned to attend monthly group meetings. Both examples have a common structure in

which individuals are randomly assigned to groups. We observe attribute A and outcome Y

for each individual, and the attributes of peer individuals in the group, W . The goal is to

estimate the “effect” of W on Y . We make these statements more precise in the next section

and analyze the original data from both examples in Section 6.

Example 1. Suppose that N incoming first-year students are paired into N/2 dorm rooms

of size 2. We classify incoming first-year students as having high (A = 1) or low (A = 0)

incoming level of academic preparation (e.g., based on standardized test scores and high school

grades). We want to understand whether a first-year student’s end-of-year GPA varies based

on the academic preparation of their roommate (W ). Specifically, is there an effect on end-

of-year GPA (Y ) of being assigned a roommate with ‘high’ incoming preparation (W = 1)

relative to being assigned to a roommate with ‘low’ incoming preparation (W = 0)?

Example 2. Suppose that N firm CEOs are assigned to N/3 monthly meeting groups of size
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3 where they discuss business and management practices. Each CEO is classified as leading

a ‘large firm’ (A = 1) or ‘small firm’ (A = 0). We want to assess whether the revenue of a

CEO’s company (Y ) is affected by the composition of the meeting group (W ). Specifically,

is there an impact on the firm’s revenue of assigning that firm’s CEO to a group with two

CEOs from large firms (W = 2) relative to assigning that firm’s CEO to a group with one

(W = 1) or no CEOs (W = 0) from large firms?

These examples capture the notion of a peer effect as the idea that a given unit’s outcome may

be affected by their peers’ attributes. A vast literature in economics formalizes these ideas;

see, among others, Manski (1993), Brock and Durlauf (2001), Sacerdote (2011), Goldsmith-

Pinkham and Imbens (2013), and Angrist (2014). We now briefly review common existing

approaches and discuss recent work that motivates the use of linear regression from the

randomization perspective (Li et al., 2019). Since our eventual goal is a fully randomization-

based framework for analyzing randomized group formation designs, our discussion here

necessarily focuses on reduced-form approaches, setting aside a vibrant literature on more

structural models of peer effects and social interactions (see Bramoullé et al., 2020).

Linear-in-means model. We begin with the workhorse linear-in-means model, described

in detail in a seminal paper from Manski (1993), which regresses Y on Ā, the average

attribute in the group. Following a long literature (see Sacerdote, 2011), we initially consider

the leave-one-out form of this model, which separates out A, a unit’s own attribute, and W

(a transformation of) the leave-own-unit-out average attribute:

Y obs
i = α + βAi + τWi + εi,

where Y obs
i is the observed outcome for unit i. For Example 1, both A and W are binary; for

Example 2, A is binary and W takes on three values, {0, 1, 2}. The coefficient τ is referred

to as the exogenous peer effect (Manski, 1993) or the social return (Angrist, 2014). Standard

errors are typically clustered at the group level. Importantly, we do not include specifications

with Y on the right-hand side and therefore do not consider so-called endogenous peer effects.

While this avoids a range of thorny econometric questions (see Manski, 1993; Angrist, 2014),

this choice necessarily restricts the type of substantive questions we can address. Similarly,

since we focus on experiments in which individuals are randomly assigned to groups, we also

exclude correlated effects, which could arise if individuals self-select into groups.
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Heterogeneous treatment effect model. Even when we focus exclusively on exogenous

peer effects, there are many challenges with the linear-in-means model. Most immediately, as

Sacerdote (2011) notes: “from an empirical point of view, researchers have found that peer

effects are not in fact linear-in-means.” This has led researchers to instead consider interacted

specifications that allow for possible nonlinearities (Sacerdote, 2001; Duncan et al., 2005; Cai

and Szeidl, 2017). In the context of our examples these are specifications of the form:

Y obs
i = α + βAi + τWi + γAi ·Wi + εi. (1)

Here the relevant effects are appropriate combinations of the coefficients τ and γ, and, as

above, the standard errors are typically clustered at the group level. Again, this interacted

model is typically motivated by the desire to estimate a more flexible specification for the

(sometimes implicit) underlying model of social interactions.

Motivating regression from randomization. Somewhat surprisingly, Li et al. (2019)

show that randomization fully justifies the interacted specification (1) above for a broad

class of randomized group formation designs. Moreover, Li et al. (2019) argue that the

randomization-based perspective justifies the use of non-clustered robust standard errors,

suggesting that the common practice of clustering standard errors is overly conservative for

such designs, analogous to arguments from Abadie et al. (2023). In this case, failing to

include the interaction (i.e., simply running the regression of Y on A and W ) leads to a

precision-weighted average of the subgroup effects.

From regression to randomization-based testing. As we show below, the regression-

based approach from Li et al. (2019), while conceptually elegant, can have poor finite-sample

performance. In particular, the asymptotic theory in that paper assumes that both A and

W have very few levels, and that the number of individuals within each A × W group is

large. This is not a reasonable approximation in our applications, however; for instance, in

the roommates application we analyze in Section 6, the size of an A ×W subgroup can be

as small as 4 students.

Our main contribution is to justify and implement randomization-based tests for exogenous

peer effects, building on recent proposals for randomization tests under interference (Aronow,

2012; Athey et al., 2018; Basse et al., 2019; Puelz et al., 2022). At a high level, we propose

the permutation-based analog of the fully interacted regression model discussed above. The

primary technical obstacle is justifying this approach from the randomized group formation
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design itself. As we will see, this requires substantial technical overhead, even if the final

procedure is itself straightforward. To demonstrate this, we also develop theory for general

randomization-based tests for non-sharp nulls.

2.2 Notation and setup

We now formalize the problem setup outlined above. Consider N units to be assigned to

K different groups; both numbers are fixed. Let U = {1, . . . , N} denote the set of units.

Let Li ∈ L = {1, . . . , K} denote the labeled group to which unit i is assigned, and define

L = (Li)
N
i=1 as the full group-label assignment vector. Also, let P (L) ∈ [0, 1] denote the

probability distribution of L, which is known from the experimental design. In a group

formation design, the individual i’s treatment assignment can be defined as

Zi =
{
j ∈ U : j ̸= i and Lj = Li

}
. (2)

Assignment Zi is therefore the set of individuals assigned to the same group as individual i.

Let Z = (Zi)
N
i=1 be the full assignment vector.

As we discuss above, a key feature of our setting is that each individual i exhibits a salient

attribute, Ai; for example, Ai = 1 if individual i has high academic preparation entering

college. This attribute often plays a special role in group formation designs; for example, in

the stratified group formation design we consider in Section 5.1, a room must have a fixed,

pre-defined number of students with Ai = 1. Formally, attribute Ai takes values in a set A,
which could be a transformation (e.g., coarsened version) of covariatesXi. We let A = (Ai)

N
i=1

and X = (Xi)
N
i=1 be the full vector of attributes and matrix of covariates, respectively.

The goal of this paper is to understand how peers’ attributes affect unit outcomes, and so

we define the exposure for each unit i as:

Wi = wi(Z) = {Aj : j ∈ Zi}, (3)

that is, the exposure of unit i is the multiset of attributes of its neighbors, where a multiset

is a set with possibly repeated values. Define W = w(Z) = (wi(Z))
N
i=1 as the full vector of

exposures, and denote by W = {w1, . . . ,wm} the finite set of possible exposure values in the

experiment. Finally, we let Yi(Z) denote the real-valued potential outcome of unit i under

assignment Z.
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While this formulation is general, it is often useful to define exposures as simple functions

of the attribute vector A. For example, when A is binary, a natural choice is to define

Wi = wi(Z) =
∑
j∈Zi

Aj, (4)

the number of “neighbors” of unit i with attribute A = 1. All results in the paper hold for

general exposure mappings as in (3); we use the simpler formulation in (4) in the running

examples for simplicity.

Notation. These definitions are nested, so that L determines Z, and Z determines W .

As such, any function on one domain is also a function on a ‘finer’ domain. To ease notation,

we will use ‘f(Z)’ to denote a function defined on the domain of Z that is implied by fω(W ),

and, similarly, use ‘f ℓ(L)’ to denote the function on the domain of L that is implied by either

fω(W ) or f(Z), noting that these all map to the same value: fω(W ) = f(Z) = f ℓ(L). For

instance, we write W = wℓ(L) to express the exposures in (3) as a function of L.

2.3 Assumptions and exclusion restrictions

The primary goal of our analysis is to estimate the causal effect of exposing a unit to a

mix of peers with one set of attributes versus another, known as the exogenous peer effect

(Manski, 1993) or the social return (Angrist, 2014). Formalizing such effects is non-trivial,

however, with a substantial literature defining estimands in terms of coefficients in a linear

model. Following a more recent set of papers, we instead formalize these effects via exposure

mappings based on potential outcomes (Toulis and Kao, 2013; Manski, 2013; Aronow et al.,

2017; Li et al., 2019), which capture the summary of Z that is sufficient to define potential

outcomes on the unit level.

To do so, we make the critical assumption that the exposure is properly specified in the sense

defined below (Aronow et al., 2017):

Assumption 1. For all i ∈ U and for all Z,Z ′, we have

wi(Z) = wi(Z
′) ⇒ Yi(Z) = Yi(Z

′).

Under Assumption 1, each unit i has |W| = m potential outcomes, one for each level of
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exposure, and we may write

Yi(Z) = Y ω
i (wi(Z)) = Y ω

i (Wi)

to indicate that potential outcomes depend only on the exposure level and not the particular

group assignment.

Example 1 (continued). With dorm rooms of size 2, the exposure Wi of student i is then

the attribute Aj of student i’s roommate. More generally, under the exposure mapping in

(4), each unit has only two possible exposures, since Wi ∈ W = {0, 1}, and thus each unit

has two potential outcomes {Y ω
i (0), Y ω

i (1)}.

Example 2 (continued). Here, each group has size 3 and the assignment Zi of unit i is

the unordered pair of indices of the other two CEOs in the group. CEO i’s exposure is then

the number of the other CEOs from large firms. In this case, each unit has three possible

exposures, since Wi ∈ W = {0, 1, 2} under (4), and thus each unit has three potential

outcomes {Y ω
i (0), Y ω

i (1), Y ω
i (2)}.

Discussion of Assumption 1. Assumption 1, which is not justified by the randomiza-

tion, is the key substantive assumption in our setup and merits further discussion. At its

core, this assumption is an exclusion restriction: the only impact of the randomization on

an individual’s outcome is by changing the salient attributes A — and only the salient at-

tributes — of the other individuals in the group. For instance in Example 1, Assumption

1 implies that room assignment affects unit i’s GPA only by changing i’s roommate’s aca-

demic ability, excluding other possible channels of peer influence. This necessarily reduces

otherwise complex individual and social interactions to a scalar quantity; for discussion, see

Sacerdote (2011).2 Assumption 1 also plays a role analogous to the stable unit treatment

value assumption (SUTVA) by ruling out effects from changing other groups. Thus, when

combined with the exposure mapping of (3), this assumption implies both a form of partial

interference and a form of stratified interference (Hudgens and Halloran, 2008). Finally,

beyond assuming that attribute A is the relevant quantity, Assumption 1 also assumes that

the functional form is correctly specified, though we typically allow W to be fully flexible

with respect to A.

As we discuss in Appendix A.1, the procedure we outline below will still lead to a valid

2Similar challenges arise in other econometric applications, such as ‘judge fixed effects’, where the choice
of attribute (e.g., conviction rate) is important in the overall analysis (e.g., Frandsen et al., 2023).

8



test without imposing Assumption 1 — though interpreting that rejection is challenging. In

particular, the test might reject even if the null hypothesis is indeed correct but Assumption

1 does not hold, for instance if an individual’s outcome depends on attributes other than

A. At present, there is limited guidance for applied researchers on specifying exposure

mappings, in part because these mappings can be highly context-dependent. For point

estimation, violating Assumption 1 complicates the implied estimand, which will typically

correspond to a particular weighted average of treatment effects. See Li et al. (2019, Section

7) for a discussion in the context of peer effects, Sävje (2023) for more a general discussion of

inference with misspecified exposure mappings, and Leung (2022) for an alternative approach

that considers approximate exposures. For testing, the situation is more complicated, since

it is difficult to interpret a rejection in the absence of Assumption 1. This remains an open

research area.

2.4 Sharp and non-sharp null hypotheses

Following the literature on FRTs, we focus on hypotheses defined at the unit level, unlike the

regression-based approaches in Section 2.1, which focus on so-called weak null hypotheses

that average over units. A key technical challenge is that many unit-level null hypotheses of

interest are non-sharp; a primary goal in this paper is to develop procedures that are both

theoretically valid (Section 3) and computationally tractable (Section 4) for such hypotheses.

To illustrate the distinction between sharp and non-sharp null hypotheses, let Zobs, W obs =

w(Zobs), and Y obs = Y (Zobs) be, respectively, the observed assignment, exposure, and out-

come vectors. We say a null hypothesis is sharp if, given the null and the observed data, the

potential outcomes {Y ω
i (w1), Y

ω
i (w2), . . . , Y

ω
i (wm)} are imputable for all units i ∈ U.

First, consider the global null hypothesis:

H0 : Y
ω
i (w1) = Y ω

i (w2) = · · · = Y ω
i (wm) for all i ∈ U. (5)

The null hypothesis in (5) is sharp. As we show in Section 3.1, we can test this hypothesis

using a standard FRT; Li et al. (2019, Section 7.1) briefly consider this approach as well.

This global sharp null is analogous to the omnibus null hypothesis in a classical analysis of

variance (Ding and Dasgupta, 2018) and is a useful starting point for analyses: if there is no

evidence of any effect at all, then further analyses are likely less interesting. See Lehmann

and Romano (2005, Ch. 15).
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At the same time, many substantively interesting causal hypotheses for peer effects are not

sharp. One important example is the pairwise null hypothesis of the type:

Hw1,w2

0 : Y ω
i (w1) = Y ω

i (w2) for all i ∈ U, (6)

where w1,w2 ∈ W. To illustrate, Example 2 has three possible exposures W = {0, 1, 2}, and
the sharp null hypothesis of (5) can be written as: H0 : Y

ω
i (0) = Y ω

i (1) = Y ω
i (2) for all i ∈ U.

This contains strictly more information about the missing potential outcomes than a pairwise

null hypothesis (6), such as H1,2
0 : Y ω

i (1) = Y ω
i (2) for all i ∈ U. Substantively, the global

sharp null hypothesis assumes that changing the number of peer CEOs from large firms has

no effect whatsoever on a firm’s revenue. By contrast, the pairwise non-sharp null hypothesis

instead imposes that there is no impact on firm revenue of having one versus two peer CEOs

from large firms, without imposing any restrictions on revenue in the absence of any peer

CEOs from large firms. Thus, the ability to test pairwise null hypotheses is critical for

learning more from the experiment than the initial conclusion that the experiment indeed

had some effect somewhere.

Finally, we are often interested in null hypotheses for the subset of units with a given attribute

Ai = a. As we discuss in our applications below, we frequently believe that the exposure

will have differential effects depending on an individual’s own attribute. Specifically, we can

modify both (5) and (6) to only consider units with Ai = a:

H0(a) : Y
ω
i (w1) = Y ω

i (w2) = · · · = Y ω
i (wm) for all i ∈ U such that Ai = a (7)

and

Hw1,w2

0 (a) : Y ω
i (w1) = Y ω

i (w2) for all i ∈ U such that Ai = a. (8)

The results below immediately carry over to these subgroup null hypotheses by conditioning

on the set of units with Ai = a. We therefore focus on the simpler null hypotheses of (5)

and (6), returning to subgroup null hypotheses in Section 6.

We note that this framework does not require formally specifying an alternative hypothesis;

see Athey et al. (2018) for a discussion in the context of randomization tests under network

interference. In our applications, the choice of the test statistic is motivated by having power

against two-sided alternative hypotheses on coefficients from a linear regression model, such

as the coefficient on W in the regression of Y on A and W .
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2.5 Toy example and sketch of key ideas

Before turning to the theoretical results, we first illustrate the key challenges through a

toy example, shown in Figure 1. For this example, individuals possess a binary attribute,

represented by squares (Ai = 1) and circles (Ai = 0), and are assigned to one of three

dorm rooms, one with size 3 (Room I, a “triple”) and two with size 2 (Rooms II and III,

“doubles”), shown as large rectangles.3 Rooms are assigned via a completely randomized

group formation design (see Section 5.2), which means that the sizes of the three rooms are

fixed, but that the number of square roommates in each room can vary. Here the exposure

mapping is the number of roommates with Aj = 1 as defined in (4), so that W = {0, 1, 2}.
Figure 1 shows the realized assignment Zobs and induced exposure W obs.

In this toy example, we are interested in testing two null hypotheses. First, the global

sharp null hypothesis is that individuals’ outcomes are the same regardless of the number of

“square” roommates. Written in terms of unit-level outcomes, this is H0 : Y
ω
i (0) = Y ω

i (1) =

Y ω
i (2) for all i ∈ U. Second, a non-sharp, pairwise null hypothesis is whether there is an

effect of having zero versus one “square” roommate, H0,1
0 : Y ω

i (0) = Y ω
i (1) for all i ∈ U.

Our starting place for testing these null hypotheses is a permutation test based on permuting

the exposure vector, W obs. The right-hand columns of Figure 1 show three possible permu-

tations, swapping the observed exposure for unit 5, W obs
5 , with, respectively, the exposures

for units 4, 3, and 2 (W obs
4 , W obs

3 , W obs
2 ).

Naive permutation tests can fail. While seemingly natural, the first two permutations

in Figure 1, W ′ and W ′′, are invalid. The first permutation W ′, which swaps the exposures

of units 4 and 5, leads to invalid tests for both H0 and H0,1
0 because it is incompatible with

the group formation design; that is, there are no assignments Z ′ such that, w(Z ′) = W ′.

To see this, note that under W ′, units 1, 2, and 5 — the only “square” units in the set —

would each need to have exactly one other “square” roommate. But this configuration is

impossible as it requires an even number of “square” units.

The second permutation W ′′, which swaps the exposures of units 3 and 5, leads to an invalid

test for H0,1
0 . In particular, we observe Y obs

3 = Y ω
3 (2) for unit 3; under H0,1

0 we have no

information about either Y ω
3 (0) or Y ω

3 (1), since H0,1
0 is only about treatment exposures 0

and 1. And since W ′′
3 = 0, we cannot construct a valid test statistic under W ′′.

3The sizes of the rooms themselves are not central here, and merely restrict the set of possible exposures.
We also mean no disrespect to any of our former roommates, several of whom could be described as “squares.”
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Figure 1: Example of a group formation design. Squares represent units with attribute
Ai = 1 and circles units with attribute Ai = 0. Units with exposure Wi = 0 (i.e., zero
“square” roommates) are shaded grey; units with exposure Wi = 1 have no color; and units
with exposure Wi = 2 (only unit 3) have a patterned background.

Randomization tests based on draws from the assignment distribution are valid

but computationally prohibitive. An alternative to naively permuting W obs is to in-

stead re-draw room assignments directly, Z ′ ∼ P (Z ′), and compute the induced exposures

for each assignment, W ′ = w(Z ′). This will always lead to valid, direct randomization-based

tests for the sharp global null hypothesis, H0, though these are not always permutation tests.

However, extending this to non-sharp null hypotheses like H0,1
0 is non-trivial. In Figure 1,

for instance, we need to sample from all room assignments such that unit 3 has exposure

Wi = 2. Enumerating all such room assignments becomes exponentially hard (increasing

in the sample size), and is especially challenging when w(·) is complex. As such, exact or

approximate sampling (e.g., rejection sampling) from the conditional treatment assignment

distribution is prohibitive.4

Permutation tests stratified by attribute are valid and tractable for both sharp

and non-sharp null hypotheses. Remarkably, we can generate valid, computationally

4To illustrate, consider Example 1 with N = 32 units in K = 8 rooms of 4 students. Drawing 1,000
samples from the conditional exposure distribution via rejection sampling requires over 400 hours on a
conventional laptop, though this can be parallelized. By contrast, the actual roommates application in
Section 6 has N = 156 units in K = 39 groups. Since computation time increases exponentially in the
number of groups, a practical test based on rejection sampling is infeasible.
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tractable randomization tests for both null hypotheses by simply stratifying the permutations

based on attribute A. In Figure 1, this is the set of permutations that separately permute

the exposures for circles and squares. The rightmost column of Figure 1 shows one such

permutation W ′′′, which swaps the exposures for units 2 and 5; this is valid because both

units 2 and 5 are “squares.”

While the final procedure is straightforward, the mathematical justification is intricate and

stems from a key property called equivariance. As we formalize in Theorem 1, equivariance

guarantees that, under some technical restrictions on the design and the exposure function,

permuting room assignment stratified by attribute is equivalent to permuting the exposure

directly, and these permutations lead to a valid test. These technical conditions are satisfied

for many common designs, including those in the applications we re-analyze in Section 6.

The final permutation in Figure 1 illustrates this idea: due to equivariance, swapping the

room assignments Z for units 2 and 5 is equivalent to swapping their implied exposures.

Thus, W ′′′ could form the basis of a valid permutation test for H0,1
0 .

3 Valid tests in arbitrary group formation designs

In this section, we introduce conceptually general — albeit possibly infeasible — procedures

for constructing valid tests for sharp and non-sharp null hypotheses for arbitrary group

formation designs. For sharp null hypotheses, the procedure is a straightforward application

of the standard FRT to our setting. For non-sharp null hypotheses, however, the procedure

requires greater care to ensure validity. We turn to constructing feasible randomization tests

in the next section.

3.1 Randomization test for the sharp null

We start with a brief review of the classical FRT for sharp null hypotheses (Fisher, 1935;

Lehmann and Romano, 2005; Imbens and Rubin, 2015), as a stepping stone to the more

challenging non-sharp null hypotheses discussed in Section 3.2. Consider a test statistic

T (z;Y ) as a function of the observed treatment and outcome vectors; any choice will lead

to a valid test, but certain statistics will lead to more power. One reasonable choice, for

example, is the coefficient of W in the regression of Y on (W,A) and other covariates; see

also Section 6.2 for an applied example. We can test the sharp null hypothesis H0 with

Procedure 1 below.
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Procedure 1. Consider observed assignment Zobs ∼ P (Zobs).

1. Observe outcomes, Y obs = Y (Zobs).

2. Compute test statistic T obs = T (Zobs;Y obs).

3. For Z ′ ∼ P (Z ′), let T ′ = T (Z ′;Y obs) and define pval(Zobs) = P (T ′ ≥ T obs), where

T obs is fixed and the randomization distribution is with respect to P (Z ′).

This procedure is computationally straightforward if the analyst has access to the assignment

mechanism P (Z), which is necessary for Step 3.

Proposition 1. The p-value obtained in Procedure 1 is valid, in the sense that if H0 is true,

then P{pval(Zobs) ≤ α} ≤ α for any α ∈ [0, 1].

In general, it is difficult to compute pval(Zobs) exactly, and we must rely on Monte Carlo

approximation. This can be done by replacing the third step above by:

3. For r = 1, . . . R, draw Z(r) ∼ P (Z(r)) and compute T (r) = T (Z(r);Y obs). Then compute

the approximation pval(Zobs) ≈ R−1
∑R

r=1 1(T
(r) ≥ T obs).

In practice, the test statistic T used in Procedure 1 is chosen to depend on Z only through

the exposures W = w(Z). Following our convention in Section 2.2, we can re-write this test

statistic as T (Z;Y obs) = T ω(W ;Y obs). Procedure 1 can then be reformulated as:

Procedure 1b (special case). Consider observed assignment Zobs ∼ P (Zobs).

1. Observe outcomes, Y obs = Y ω(W obs).

2. Compute test statistic T obs = T ω(W obs;Y obs).

3. For W ′ ∼ P (W ′), let T ′ = T ω(W ′;Y obs) and define pval(Zobs) = P (T ′ ≥ T obs), where

T obs is fixed and the randomization distribution is with respect to P (W ′).

The distribution P (W ′) used above is directly induced by P (Z ′), as P (W ′) = P{w(Z ′)}, and
the validity of Procedure 1b follows from that of Procedure 1, as established by Proposition 1.

3.2 Randomization tests for non-sharp nulls

We now turn to the more challenging problem of testing non-sharp pairwise hypotheses

such as Hw1,w2

0 . In general, Procedure 1 can only be valid if the test statistic is imputable

under H0 (Basse et al., 2019); that is, T (Z;Y (Z)) = T (Z;Y obs) under H0, for all Z for

which P (Z) > 0. This property holds because H0 is sharp, which implies that Y (Z) = Y obs
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under H0. In contrast, pairwise null hypotheses like Hw1,w2

0 are not sharp, and the FRT

methodology does not apply directly.

3.2.1 Focal units

One popular technical tool for randomization tests under interference is to restrict the test

statistic to use only outcomes from a subpopulation of units, known as focal units (Aronow,

2012; Athey et al., 2018; Basse et al., 2019; Puelz et al., 2022). Here, we use this device to

construct valid tests: we effectively “make the null hypothesis sharp” by restricting the test

to the set of focal units. We formalize this next.

Let a binary variable Ui to indicate whether unit i is selected as a focal unit. To test Hw1,w2

0

we can define U as follows:

U = u(Z) = (U1, . . . , UN) ∈ {0, 1}N , with Ui = 1 if and only if wi(Z) ∈ {w1,w2}. (9)

That is, we select as focal units the set of units that receive either exposure w1 or exposure

w2 under assignment Z. The realized set of focal units, Uobs = u(Zobs), therefore denotes the

set of all units with observed exposure w1 or w2, the null exposures of interest. To illustrate,

for testing the pairwise null hypothesis H1,2
0 in Example 2, the focal units are all CEOs who

have W obs
i = 1 or W obs

i = 2 peer CEOs from large firms. So long as we restrict testing to

this subset of units — and under some restrictions on the possible assignment vectors — the

null hypothesis Hw1,w2

0 behaves like a sharp null hypothesis. Basse et al. (2019) build on this

intuition and develop a valid conditional testing procedure.

Adapting the formulation from Basse et al. (2019) to the peer effects setting requires two

changes to Procedure 1. First, we need to resample assignments (Step 3 of Procedure 1)

with respect to the conditional distribution of treatment assignment,

P{Z ′ | u(Z ′) = Uobs} ∝ 1{u(Z ′) = Uobs}P (Z ′), (10)

rather than with respect to the unconditional distribution. In the terminology of Basse

et al. (2019), Uobs is the conditioning event of the test, and its (degenerate) conditional

distribution P (U | Z) = 1{u(Z) = U} is the conditioning mechanism. Second, to ensure

that the potential outcomes used by the test are imputable, we need to restrict the test

statistic to the units in the focal set; we denote this new test statistic as T (z;Y, U).
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3.2.2 Valid tests

The following procedure leads to a valid test of the pairwise non-sharp hypothesis Hw1,w2

0 .

Procedure 2. Consider observed assignment Zobs ∼ P (Zobs).

1. Observe outcomes, Y obs = Y (Zobs).

2. Let Uobs = u(Zobs) and compute T obs = T (Zobs;Y obs, Uobs).

3. For Z ′ ∼ P (Z ′ | Uobs), let T ′ = T (Z ′;Y obs, Uobs) and define the p-value as pval(Zobs) =

P (T ′ ≥ T obs | Uobs), where T obs is fixed and the randomization distribution is with

respect to P (Z ′ | Uobs) as defined in (10).

As in Section 3.1, we generally consider test statistics that depend on Z only through the

exposure vector W = w(Z). In addition, notice that the focal indicator U = u(Z) in (9)

also depends on Z only through W . Following our convention in Section 2.2, this allows us

to redefine the focal indicator as U = u(Z) = uω(W ), and rewrite Procedure 2 as follows:

Procedure 2b (special case). Consider observed assignment Zobs ∼ P (Zobs).

1. Observe outcomes, Y obs = Y ω(W obs).

2. Compute Uobs = uω(W obs) and T obs = T ω(W obs;Y obs, Uobs).

3. For W ′ ∼ P (W ′ | Uobs), let T ′ = T ω(W ′;Y obs, Uobs) and define the p-value as

pval(Zobs) = P (T ′ ≥ T obs), where T obs is fixed and the randomization distribution

is with respect to P (W ′ | Uobs). Note again that the distribution P (W ′ | Uobs) is

induced by that of P (Z ′ | u(Z ′) = Uobs).

Proposition 2. Procedure 2 and its special case, Procedure 2b, lead to valid p-values con-

ditionally and marginally for Hw1,w2

0 . That is, if Hw1,w2

0 is true then P{pval(Zobs) ≤ α |
Uobs} ≤ α for any Uobs and any α ∈ [0, 1], and thus P{pval(Zobs) ≤ α} ≤ α as well.

The proof for Proposition 2 uses Theorem 1 of Basse et al. (2019). For the rest of this paper,

we only consider test statistics that depend on Z through W = w(Z) alone. All statements

in subsequent sections will thus be in terms of Procedures 1b and 2b instead of 1 and 2.

The conditional randomization tests described in this section differ from standard conditional

tests in several important ways. First, the goal of standard conditional tests is typically to

make the test more powerful (Lehmann and Romano, 2005; Hennessy et al., 2016), rather

than to ensure validity. The conditioning in Procedures 2 and 2b, by contrast, is necessary to
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ensure that the test is valid. Second, the procedure depends strongly on the non-sharp null

hypothesis being tested. Indeed, conditional randomization tests can only test certain non-

sharp null hypotheses, such as Hw1,w2

0 , which typically dictate the conditioning mechanism.

Computational challenges with testing non-sharp nulls. As discussed in Section 2.5,

testing non-sharp null hypotheses is computationally intractable in realistic settings. Indeed,

while we can easily draw samples from the unconditional distribution P (W ) through w(Z),

where Z ∼ P (Z), Step 3 of Procedure 2b requires draws from the unwieldy conditional

distribution P (W | Uobs). Our main proposal in the next section directly addresses this

computational issue.

4 Using design symmetry to construct computation-

ally tractable permutation tests

In this section, we show that certain designs can lead to computationally tractable conditional

distributions P (W | U), which are crucial in the randomization tests discussed above. Our

analysis relies on results from algebraic group theory; readers interested in the concrete

consequences of these results on the design of randomization tests in our setting may skip

ahead to Section 5.

4.1 Equivariant maps and stabilizers

This subsection introduces three key algebraic concepts for our main theoretical result. Let

SN be the symmetric group containing all permutations of N elements; i.e., bijections of

{1, . . . , N} onto itself. For any permutation π ∈ SN and a real-valued N -length vector

X ∈ X ⊆ RN , let πX = (Xπ−1(i))
N
i=1 be the vector obtained by permuting the indices of X

according to π.

Definition 1 (Stabilizer). X is closed under SN in the sense that πX ∈ X for all π ∈ SN

and X ∈ X. Fix X ∈ X. The set SN(X) = {π ∈ SN : πX = X} also forms a group and is

called the stabilizer of X in SN .

A stabilizer SN(X) captures all possible ways of permuting X without changing X. For in-

stance, if X is a binary vector, then a permutation π ∈ SN(X) separately permutes elements

with Xi = 0 and Xi = 1, respectively. This formalizes the argument we sketched out in
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Section 2.5: the operations that “permute units with the same attribute” are precisely the

elements of SN(A), the stabilizer of the attribute vector A = (Ai)
N
i=1 in the symmetric group.

Definition 2 (Orbits and Partitions). Fix a subgroup of the symmetric group Π ⊆ SN . Fix

X ∈ X, where X is closed under Π. Then, the set {πX : π ∈ Π} is called the orbit of X with

respect to Π. These orbits define a unique partition of X, denoted by O(X; Π).

An orbit is a collection of vectors that are permuted versions of one another. A key property

of orbits is that they partition the set that the permutations act upon. This is important in

our application because our permutation test onW essentially conditions on an orbit, and we

would like the symmetries of our design P (L) to be propagated to the conditional distribution

of L given an orbit. The final property that guarantees such symmetry propagation is

equivariance.

Definition 3 (Equivariant maps). Fix a subgroup of the symmetric group Π ⊆ SN . Sets X
and X′ are closed under Π in the sense that πX ∈ X and πX ′ ∈ X′ for all X ∈ X, X ′ ∈ X′

and π ∈ Π. A function f : X → X′ is equivariant with respect to Π if

f(πX) = πf(X), for all X ∈ X, π ∈ Π.

By definition, equivariant maps preserve a symmetry from their domain to their target set.

This concept is crucial for our main theoretical result, which we turn to next.

4.2 Main result: Sufficient conditions for valid permutation tests

on exposures

We now state our main theoretical result, which establishes that if the exposure function,

wℓ(·), and the focal unit selection function, uℓ(·), are equivariant with respect to a particular

permutation subgroup, then the treatment exposure W is uniformly distributed within an

orbit defined by that subgroup.

Theorem 1. Let P (L) denote a distribution of the group labels with support L = {1, . . . , K}N .
Let W = wℓ(L) ∈ WN be the corresponding exposures, and let U = uℓ(L) ∈ {0, 1}N

be the focal indicator vector, for some wℓ(·), uℓ(·) defined by the analyst. Define SA,U =

SN(A)∩SN(U), which is the permutation subgroup of SN that leaves A (the attribute vector)

and U (the focal unit vector) unchanged. Suppose that the following conditions hold.
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(a) P (L) = P (πL), for all π ∈ SA,U and L ∈ L.

(b) wℓ(·) is equivariant with respect to SA,U .

(c) uℓ(·) is equivariant with respect to SA,U .

Then, W is uniformly distributed conditional on the event {W ∈ B}, where B ∈ O(WN ;SA,U).

Theorem 1 formalizes the intuition behind the example in Section 2.5: under the conditions

of the theorem, we can implement Procedure 2b by directly permuting the exposures of

only the focal units, and making sure that these permutations are stratified with respect

to the attribute value; the space of these permutations is exactly SA,U . The sharp null of

Procedure 1b is a special case of this result by defining uℓ(L) = 1N , i.e., by selecting all units

to be focals. In this special case, SA,U = SN(A) and so we can directly permute the entire

exposure vector, W , across units with the same attribute value.

All three conditions in Theorem 1 are intuitive and testable in practice. Condition (a)

expresses a design symmetry condition. This depends on the experimental design, and will

generally be satisfied for a permutation group that is larger than SA,U , such as in the stratified

and completely randomized designs we consider in the next section. In particular, the design

symmetry condition holds for both our applications. For instance, in Cai and Szeidl (2017),

the design is invariant to permutations between firms of the same size and industry in the

same subregion (i.e., the attribute A is a vector of length 3); we discuss this condition more

in Section 6.

Condition (b) depends on the definition of the exposures, and is part of the analysis rather

than the design. This condition posits that, for two units with the same attribute A and

focal status U , swapping the group label assignments also swaps their exposures; Condition

(b) does not require the exclusion restriction in Assumption 1. Finally, Condition (c) is also

under the analyst’s control and requires that swapping group label assignments for two units

also swaps their selection as focal units.

We note that Theorem 1 is more general than the specific group formation design settings we

consider in this paper. In particular, our definition of the exposure function wℓ(·) in Eq. (3)

satisfies Condition (b), and our definition of the focal selection function uℓ(·) in Eq. (9)

satisfies Condition (c). In fact, Condition (c) holds more generally whenever focal selection

depends on whether the observed exposure belongs to a predefined set. We summarize these

results in the following lemma.
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Lemma 1. Conditions (b) and (c) of Theorem 1 hold under definitions in Eqs. (3) and (9).

Since Conditions (b) and (c) hold in our setting, we will only check the design symmetry in

Condition (a) going forward.

As a technical note, Theorem 1 contributes to the existing theory of randomization tests by

providing sufficient conditions under which symmetry in distribution of a random variable

implies symmetry in distribution to a function of that variable. In our context, while the

standard theory of randomization tests (Lehmann and Romano, 2005) could be applied on

hypotheses in the space of labels (L), it is not directly applicable in the exposure space,

W = wℓ(L) because W is not generally invariant to permutations even when L is. The toy

example in Section 2.5 illustrated this point through permutations of the exposure vector

that were inconsistent with the experimental design. Theorem 1 delivers conditions under

whichW maintains a permutation symmetry like L. Crucially, the theorem also characterizes

the permutation subgroup (SA,U) for which such symmetry propagation is possible.

5 Permutation tests in two group formation designs

We now apply the theory of the previous section in practice. We consider two designs, the

stratified randomized design and completely randomized design, and show that these designs

have the required symmetries for permutation tests on exposures.

5.1 Stratified randomized design

The stratified randomized design is an important special case of group formation design that

satisfies the design symmetry condition in Theorem 1(a). Specifically, we consider designs

that, separately for each level of attribute A, assign K group-labels to N units completely

at random. In a simplified setting with a binary attribute and two individuals per group,

this design randomly assigns one individual of each type to each group.

Definition 4 (Stratified randomized design). Consider a distribution of group labels, P (L),

that assigns equal probability to all vectors L such that for every attribute a ∈ A and every

group-label k ∈ {1, . . . , K}, the number of units with attribute Ai = a assigned to group-

label k is equal to a fixed integer na,k. The design P (Z) induced by such P (L) is called a

stratified randomized group formation design, denoted by SR(nA), where nA = (na,k) satisfies

the constraint that
∑K

k=1 na,k = |{i ∈ U : Ai = a}|.
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Figure 2: Example of supports for two latent distributions P (L) inducing two stratified
randomized experiments. Both examples have N = 5 units, K = 2 rooms labelled 1 and 2,
and a binary attribute. Left: (n0,1, n0,2) = (1, 2) and (n1,1, n1,2) = (2, 0). Right: (n′

0,1, n
′
0,2) =

(2, 1) and (n′
1,1, n

′
1,2) = (1, 1).

The stratified randomized design generalizes the design in Li et al. (2019, Section 2.4.2) by

allowing the group sizes to vary. As an illustration, Figure 2 shows all possible assignments

for two stratified randomized designs in a setting in which we allocate students with a binary

attribute to their dorm rooms. The design on the left is SR(nA) with (n0,1, n0,2) = (1, 2),

meaning that there is one unit with attribute Ai = 0 assigned to room 1, and two to room

2; and (n1,1, n1,2) = (2, 0), meaning that that there are two units with attribute Ai = 1

assigned to room 1, and no unit assigned to room 2. The design on the right is SR(n′
A) with

(n′
0,1, n

′
0,2) = (2, 1) and (n′

1,1, n
′
1,2) = (1, 1).

As stated in Lemma 2 below, the stratified randomized design satisfies the design symmetry

condition in Theorem 1 since the number of units assigned to any attribute-label pair remains

fixed under any permutation of the labels that stratifies on A.

Lemma 2. Definition 4 satisfies Condition (a) in Theorem 1.

Our recommended procedure for testing the sharp null under a stratified design is as follows:
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Procedure 1c (Sharp null under the stratified randomized design). Consider observed as-

signment Zobs ∼ SR(nA) and corresponding exposure W obs.

1. Observe outcomes, Y obs = Y ω(W obs).

2. Compute T obs = T ω(W obs;Y obs).

3. For r = 1, . . . , R, obtain W (r) via a random permutation of W obs, stratifying on the

attribute A, and then compute T (r) = T ω(W (r);Y obs).

4. Compute the approximate p-value pval(W obs) = R−1
∑R

r=1 1(T
(r) ≥ T obs).

In Step 3 above, we randomly permute W obs stratifying on attribute A, that is, we randomly

permute within each subvector of W obs corresponding to a given value of A. This procedure

is identical to how one would analyze a stratified completely randomized multi-arm trial

in the non-interference setting — with the exposure vector W obs being the analog to the

treatment vector in that case (Imbens and Rubin, 2015, Chapter 9). That is, given the data

(Yi,Wi, Ai)
N
i=1, the analyst simply perform a complete randomization test stratified on A.

The analogy with the traditional setting extends to testing the non-sharp nulls introduced in

Section 3.2, with only minor modifications. Recall that for Procedure 2c, the test statistics

are restricted to focal units, i.e., T (z;Y, U). Our recommended procedure for testing non-

sharp nulls under a stratified design is then:

Procedure 2c (Non-sharp nulls under the stratified randomized design). Consider observed

assignment Zobs ∼ SR(nA) and corresponding exposure W obs.

1. Observe outcomes, Y obs = Y ω(W obs).

2. Let Uobs = u(Zobs) be the focal unit selection as in (9).

3. Compute T obs = T ω(W obs;Y obs, Uobs).

4. For r = 1, . . . , R, obtain W (r) via a random permutation of W obs, restricted only to focal

units (Uobs
i = 1) and stratifying on the attribute A. Compute T (r) = T ω(W (r);Y obs, Uobs).

5. Compute the approximate p-value pval(W obs) = R−1
∑R

r=1 1(T
(r) ≥ T obs).

Although less obvious than in the case of Procedure 1c, Procedure 2c also connects to

traditional randomization tests. Given the data (Yi,Wi, Ai)
N
i=1, the analyst first subsets the

array to contain only focal units (Uobs
i = 1), and then simply performs a stratified complete

randomization test on this reduced data, stratifying on A. Interestingly, there is a gap
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in the literature for randomization tests for non-sharp null hypotheses, even in traditional

stratified randomized experiments without peer effects. Our permutation test applies to the

traditional setting as well. Finally, we note that both Procedures 1c and 2c are finite-sample

exact with a direct application of Theorem 1. See Appendix D.3 for details.

5.2 Completely randomized design

Another common design is the completely randomized design, which fixes the overall number

of units that receive each group-label, without stratifying on the attribute. Despite this

difference, we will show that the completely randomized design can be analyzed exactly like

a stratified randomized design by conditioning on the observed attribute-group assignments.

Definition 5 (Completely randomized design). Consider a distribution of group labels,

P (L), that assigns equal probability to all vectors L such that for every group-label k ∈
{1, . . . , K}, the number of units assigned to group-label k is equal to a fixed integer nk.

The design P (Z) induced by such P (L) is a completely randomized group formation design,

denoted by CR(n), where n = (n1, . . . , nK) satisfies
∑K

k=1 nk = N .

Lemma 3. Definition 5 satisfies Condition (a) in Theorem 1.

The completely randomized design generalizes the design in Li et al. (2019, Section 2.4.1) by

allowing the size of the groups to vary. Importantly, we can construct a stratified randomized

design from a completely randomized design by conditioning on the number of units with

each level of the attribute in each group. As a result, conditional on nA, we can analyze a

completely randomized group formation design exactly like a stratified randomized design.

Corollary 1. Consider P (Z) ∼ CR(n). The null hypotheses H0 (resp. Hw1,w2

0 ) can be

tested with Procedure 1c (resp. Procedure 2c) as if the design were SR(nA), where nA is the

observed number of units with each value of the attribute A assigned to each group.

This connection is important since many designs are not stratified on the attribute of interest;

e.g., the application we analyze in Section 6.1 uses a completely randomized design rather

than a stratified randomization design. Importantly, conditioning on nA is necessary to

ensure the validity of the permutation test even in completely randomized designs. Figure 1

gives an example in which the unconditional permutation test is invalid.

Remark 1 (Incorporating additional covariates). All our procedures can be extended to

incorporate additional covariates in the design and analysis stages. These strategies will
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generally increase the power of the test, so long as covariates are predictive of the potential

outcomes (Zhao and Ding, 2021). Most immediately, we could stratify both the permutations

and the test statistic by an additional discrete covariate. We could also consider regression-

adjusted test statistics, rather than test statistics based on the raw outcomes (Rosenbaum,

2002). We could further tailor these models to a particular interference structure; for in-

stance, Athey et al. (2018) propose a test statistic derived from the linear-in-means model.

Importantly, this approach does not assume that the linear-in-means model is correct, but

rather that this parameterization captures departures from the null hypothesis.

6 Applications

We illustrate our approach by re-analyzing two randomized group formation experiments.

The first application is from Li et al. (2019), who assess the impact of randomly assigned

roommates on student GPA. Our conditional testing approach yields results that are consis-

tent with their randomization-based estimate. The second application is from Cai and Szeidl

(2017), who conduct a randomized experiment to estimate the effect of social connections

on firm performance. Our approach complements the results from their regression-based

estimates by uncovering interesting heterogeneity in the peer group effect.

6.1 Random roommate assignment

Li et al. (2019) explore the impact of the composition of randomly assigned roommates

on student academic performance among students at a top Chinese university. For ease of

exposition, we restrict our analysis to theN = 156 male students admitted to the Department

of Informatics, the largest department in the original study. The attribute of interest is

whether students are admitted via a college entrance exam (Ai = 1), known as Gaokao, or

via an external recommendation (Ai = 0). Students are assigned to dorm rooms of size four

via complete randomization, as described in Section 5.2; that is, the number of students of

each background in each room is a random quantity.

The exposure of interest is the number of roommates admitted via the entrance exam wi(Z) =∑
j∈Zi

Aj. We focus on the null hypothesis H0,3
0 : Y ω

i (0) = Y ω
i (3) for all i = 1, . . . , N = 156,

that is, a student’s end-of-year GPA is the same if he is randomly assigned to have zero

Gaokao roommates versus three Gaokao roommates. Moreover, following Li et al. (2019),

we want to test this null hypothesis separately for Gaokao and recommendation students,
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Table 1: p-values, difference-in-means point estimates and 95% confidence intervals for the
application of Li et al. (2019).

p-value estimate confidence interval

H0,3
0 0.04 −0.31 (−0.67,−0.02)

H0,3
0 (0) 0.02 −0.37 (−0.73,−0.05)

H0,3
0 (1) 0.23 −0.28 (−0.81, 0.12)

which we denote H0,3
0 (1) and H0,3

0 (0) respectively. Here, Assumption 1 states that group

formation only affects end-of-year GPA by changing the number of Gaokao roommates for a

student. This excludes, for example, the subject area or sociability of roommates as impor-

tant mechanisms for group peer effects. Among 17 students from Gaokao, 13 have observed

exposure W obs
i = 0 and 4 have observed exposure W obs

i = 3; among 45 students from recom-

mendation, 40 have observed exposure W obs
i = 0 and 5 have observed exposure W obs

i = 3.

Table 1 reports the p-value using a difference-in-means test statistic, and the correspond-

ing inverted confidence intervals for the overall null hypothesis H0,3
0 and the subgroup null

hypotheses H0,3
0 (1) and H0,3

0 (0).

Our results are substantively close to those obtained by Li et al. (2019). First, our point

estimates are identical to those from Li et al. (2019), since both are based on a difference

in means. Our p-values and confidence intervals are also similar, with the exception of

H0,3
0 (1), the separate null hypothesis on Gaokao students. For this, Li et al. (2019) find a

p-value ≤ 0.05, while we cannot reject that null hypothesis. One possible explanation for this

discrepancy is that, while our p-values are exact, Li et al. (2019) instead use an asymptotic

approximation, which may be unwarranted given the small sample size. We investigate this

more in Appendix C.1, where we conduct simulation calibrated on this application and show

that normal asymptotics can fail severely.

6.2 Meeting groups among firm managers

We now turn to the study from Cai and Szeidl (2017), in which CEOs of Chinese firms

were randomly assigned to meetings where they discussed management practices, with ten

managers per group. Groups were encouraged to meet monthly for roughly a year; firms

assigned to control did not meet. The primary outcome of interest is growth in firm sales,

defined as the difference in (log) firm sales from endline to baseline.5

5Cai and Szeidl (2017) collected survey data at baseline, midline, and endline. While the authors analyzed
the experiment using panel data regression, we side-step the panel structure here by defining the outcome
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Cai and Szeidl (2017) focused on the impact of assigning CEOs to meeting groups versus

a business-as-usual control group. Here we revisit a secondary analysis in their paper that

explores the role of peer composition. In particular, among treated firms, the group formation

design was stratified across three attributes: firm sector (manufacturing/service), location

(26 subregions), and firm size (small/large).6 Using this design, Cai and Szeidl (2017) “ask

whether firms randomized into groups with larger peers grew faster,” finding evidence in the

affirmative.

We revisit this question using our proposed randomization inference framework, where firm

size is the exposure of interest. In particular, we focus on the 1,323 firms with non-missing

data (on size and revenue) that were randomly assigned to meetings. We first consider the

global sharp null of any effect of peer size on sales, and then highlight a source of peer effect

heterogeneity by testing the sharp null within subgroups defined by sector and size. In the

Appendix, we also consider alternative exposure definitions and look at pairwise, non-sharp

null hypotheses to further explore this source of heterogeneity.

Global sharp null hypothesis. We start with the global sharp null hypothesis that there

is no effect whatsoever of peer size on sales. The exposure of interest is Wi =
1

|Zi|
∑

j∈Zi
sizej,

where Zi is the set of peer firms for firm i, and sizej is the log-number of employees in firm

j at baseline. Let W ⊂ R be the exposure domain, then the global sharp null hypothesis is:

H0 : Y
ω
i (w) = Y ω

i (w′) for all i ∈ U and w,w′ ∈ W. (11)

That is, under H0, the average employee size of firm i’s peer group does not affect the firm’s

revenue. As we discuss in Section 2.3, Assumption 1 plays a critical role in interpreting

a rejection of our null hypothesis. In this application, Assumption 1 states that group

formation only affects sales by changing the size of a firm’s peer companies. This excludes,

for example, the number of other peer firms’ clients (rather than number of employees) from

affecting a firm’s own revenue. To check robustness, we explore alternative definitions of the

exposure in Appendix B.

To mirror the analysis in Cai and Szeidl (2017), we set the test statistic to be the coefficient

as the difference in log firm sales between endline and baseline. We note, however, that our framework
accommodates a wide range of outcomes and test statistics, including those generated by panel regressions.

6Firm size is dichotomized at median employment of the sample of firms in the corresponding subregion,
where the authors use the number of employees at baseline as a proxy for the quality of the firm.
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of W in the following linear regression:7

Y obs
i = α + βA∗

i + τWi + εi, (12)

where A∗
i = sectori × locationi × sizei includes all interactions between firm sector, location,

and size for unit i. We can now employ Procedure 1b to test H0, computing a one-sided p-

value of p = 0.02 over 20,000 replications. Importantly, even if the linear model in Equation

(12) is not correctly specified, the randomization test remains finite-sample valid.

Heterogeneity by firm size and type. Since our approach is exact in finite-samples, we

can easily restrict our analysis to subsets of firms, here defined by sector and size following

Cai and Szeidl (2017). We repeat Procedure 1b separately within each subgroup, using

the estimated coefficient τ from Equation (12), except with the levels of A∗ restricted to

the appropriate subgroup. The results in Figure 3 show substantial heterogeneity in peer

group effects. In particular, the signal is concentrated entirely among small service firms

(p = 0.0015), and is essentially zero for the other three subgroups.

Cai and Szeidl (2017) also explored heterogeneity, albeit only in the “direct effects” from

treatment (i.e., meetings versus no meetings) rather than in peer effects; they find larger

firms benefited more from the meetings. Our analysis complements this picture by showing

that the impact of larger peers was concentrated mainly among small service firms. We

emphasize that the regression specification of Cai and Szeidl (2017) in (11) cannot easily

capture the heterogeneity we show here. In particular, their regression model needs to

include all size-sector-subregion interactions (∼85 in total) dictated by the experimental

design in order to identify τ (see Section III.B in Cai and Szeidl, 2017). These interactions,

however, essentially “wash out” the size-sector interaction effect we observe here. Thus

our randomization-based analysis complements the regression-based analyses and offers new

insights. Finally, an additional benefit of our analysis is that our p-values are exact, which is

especially important for subgroups. In Appendix C.2, we highlight this through a simulation

study showing that regression-based tests can be severely distorted in simple but realistic

group formation designs motivated by Cai and Szeidl (2017).

7To aid interpretation, we follow the regression specification in Cai and Szeidl (2017). However, the
randomization inference theory from Li et al. (2019) shows that a regression specification that includes the
interaction of A and W is also justified by the randomization itself.
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Figure 3: Randomization distributions for H0 in (11) within firm subpopulations according
to size and sector. The dashed lines indicate observed values of the test statistic; ‘n’ is the
subpopulation size, and ‘p’ is the one-sided p-value calculated from Procedure 1b.

7 Discussion

We have proposed valid randomization tests for testing peer effects in group formation ex-

periments. While a promising first step, there remain several open questions. First, our

results motivate new considerations for the design of group formation experiments. In par-

ticular, arbitrary designs do not necessarily satisfy the sufficient conditions we propose for

valid permutation tests. We therefore recommend using the experimental designs like the

stratified and completely randomized designs in Section 5 if researchers want to use our

permutation-based tests.

Second, sometimes the group structures may be more elaborate than what we have studied in

this paper. For example, we might assign students to classrooms and then separately assign
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teachers to those classrooms. Alternatively, there may be multiple, possibly overlapping

groups; e.g., students nested within classrooms nested within schools. Finally, randomizing

peers may often be infeasible or raise ethical concerns. Thus, extending the ideas in this

paper to the observational study setting, especially for sensitivity analysis, is a promising

avenue for future work.

References

Abadie, A., S. Athey, G. W. Imbens, and J. M. Wooldridge (2020). Sampling-based versus
design-based uncertainty in regression analysis. Econometrica 88, 265–296.

Abadie, A., S. Athey, G. W. Imbens, and J. M. Wooldridge (2023). When should you adjust
standard errors for clustering? The Quarterly Journal of Economics 138, 1–35.

Angrist, J. D. (2014). The perils of peer effects. Labour Economics 30, 98–108.

Aronow, P. M. (2012). A general method for detecting interference between units in ran-
domized experiments. Sociological Methods & Research 41, 3–16.

Aronow, P. M., C. Samii, et al. (2017). Estimating average causal effects under general
interference, with application to a social network experiment. The Annals of Applied
Statistics 11, 1912–1947.

Athey, S., D. Eckles, and G. W. Imbens (2018). Exact p-values for network interference.
Journal of the American Statistical Association 113, 230–240.

Basse, G. W., A. Feller, and P. Toulis (2019). Randomization tests of causal effects under
interference. Biometrika 106, 487–494.

Bhattacharya, D. (2009). Inferring optimal peer assignment from experimental data. Journal
of the American Statistical Association 104, 486–500.
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Sävje, F. (2023). Causal inference with misspecified exposure mappings. Biometrika.

Toulis, P. and E. Kao (2013). Estimation of causal peer influence effects. In International
Conference on Machine Learning, pp. 1489–1497.

Wu, J. and P. Ding (2020). Randomization tests for weak null hypotheses in randomized
experiments. Journal of the American Statistical Association 116, 1898–1913.

Young, A. (2019). Channeling fisher: Randomization tests and the statistical insignificance
of seemingly significant experimental results. The Quarterly Journal of Economics 134 (2),
557–598.

Zhao, A. and P. Ding (2021). Covariate-adjusted Fisher randomization tests for the average
treatment effect. Journal of Econometrics 225, 278–294.

31


