
Appendix

The appendix contains the omitted proofs for most of the results in the main text,
in the order in which they appeared. The only exceptions are Theorem 2 regarding the
larger domain LM , Proposition 1 regarding strong stochastic dynamic consistency and a
few results in Section 4, whose proofs are relegated to the online appendix.

Throughout the proofs we will often use the notation KX(a) = Ka(X), so that KX is
a map from R to R. The following facts are standard:

Lemma 2. Let X,Y ∈ L∞.

1. KX : R→ R is well defined, non-decreasing and continuous.

2. If KX = KY then X and Y have the same distribution.

Proof. Over R the map KX is continuous and non-decreasing. This follows directly
from the fact that KX(a) is the certainty equivalent of a CARA expected utility prefer-
ence with coefficient of risk aversion equal to −a. That lima→∞KX(a) = max[X] and
lima→−∞KX(a) = min[X] follow from a simple application of Laplace’s method. It is a
standard fact that KX = KY implies that X and Y have the same distribution (see for
instance Curtiss, 1942).

A Proof of Theorem 1

We follow the proof outlined in §5 of the main text and first establish Theorem 6.

A.1 Proof of Theorem 6

First, we can add the same constant b to both X and Y so that min[Y + b] = −N and
max[X + b] = N for some N > 0. Since translating both X and Y leaves the existence of
an appropriate Z unchanged (and also does not affect KX > KY ), we henceforth assume
without loss of generality that min[Y ] = −N , and max[X] = N . Since KX > KY , we
know that min[X] > −N and max[Y ] < N .

Denote the c.d.f.s of X and Y by F and G, respectively. Let σ(x) = G(x) − F (x).
Note that σ is supported on [−N,N ] and bounded in absolute value by 1. Moreover, by
choosing ε > 0 sufficiently small, we have that min[X] > −N + ε and max[Y ] < N − ε. So
σ(x) is positive on [−N,−N + ε] and on [N − ε,N ]. In fact, there exists δ > 0 such that
σ(x) ≥ δ whenever x ∈ [−N + ε

4 ,−N + ε
2 ] and x ∈ [N − ε

2 , N −
ε
4 ]. We also fix a large

constant A such that

e
εA
4 ≥ 8N

εδ
.
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Define
Mσ(a) =

∫ N

−N
σ(x)eax dx.

Note that for a 6= 0, integration by parts shows Mσ(a) = 1
a

(
E
[
eaX

]
− E

[
eaY

])
, and that

Mσ(0) = E [X]− E [Y ]. Therefore, since KX > KY , we have that Mσ is strictly positive
everywhere. Since Mσ(a) is clearly continuous in a, it is in fact bounded away from zero
on any compact interval.

We will use these properties of σ to construct a truncated Gaussian density h such that

[σ ∗ h](y) =
∫ N

−N
σ(x)h(y − x) dx ≥ 0

for each y ∈ R. If we let Z be a random variable independent from X and Y , whose
distribution has density function h, then σ ∗ h = (G− F ) ∗ h is the difference between the
c.d.f.s of Y + Z and X + Z. Thus [σ ∗ h](y) ≥ 0 for all y would imply X + Z ≥1 Y + Z.

To do this, we write h(x) = e−
x2
2V for all |x| ≤ T , where V is the variance and T is the

truncation point to be chosen.20 We will show that given the above constants N and A,
[σ ∗ h](y) ≥ 0 holds for each y when V is sufficiently large and T ≥ AV +N .

First consider the case where y ∈ [−AV,AV ]. In this region, |y−x| ≤ T is automatically
satisfied when x ∈ [−N,N ]. So we can compute the convolution σ ∗ h as follows:∫

σ(x)h(y − x) dx = e−
y2
2V ·

∫ N

−N
σ(x) · e

y
V
·x · e−

x2
2V dx. (9)

Note that y
V in the exponent belongs to the compact interval [−A,A]. So for our fixed

choice of A, the integral Mσ( yV ) =
∫N
−N σ(x) · e

y
V
·x dx is uniformly bounded away from zero

when y varies in the current region. Thus,∫ N

−N
σ(x) · e

y
V
·x · e−

x2
2V dx = Mσ

(
y

V

)
−
∫ N

−N
σ(x) · e

y
V
·x · (1− e−

x2
2V ) dx

≥Mσ

(
y

V

)
− 2N · eAN · (1− e

−N2
2V ),

(10)

which is positive when V is sufficiently large. So the right-hand side of (9) is positive.
Next consider the case where y ∈ (AV, T +N − ε]; the case where −y is in this range

can be treated symmetrically. Here the convolution can be written as

[σ ∗ h](y) =
∫ N

max{−N,y−T}
σ(x) · e

−(y−x)2
2V dx.

We break the range of integration into two sub-intervals: I1 = [max{−N, y − T}, N − ε]
and I2 = [N − ε,N ]. On I1 we have σ(x) = G(x)− F (x) ≥ −1. As long as AV ≥ N − ε,

20In general we need a normalizing factor to ensure h integrates to one, but this multiplicative constant
does not affect the argument.
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we have e
−(y−x)2

2V ≤ e
−(y−N+ε)2

2V for y > AV and x ≤ N − ε, and thus∫
x∈I1

σ(x) · e
−(y−x)2

2V dx ≥ −2N · e
−(y−N+ε)2

2V .

On I2 we have σ(x) ≥ 0 by our choice of ε, and furthermore σ(x) ≥ δ when x ∈ [N− ε
2 , N−

ε
4 ].

Thus ∫
x∈I2

σ(x) · e
−(y−x)2

2V dx ≥ ε

4 · δ · e
−(y−N+ ε

2 )2

2V ≥ 2N · e
−(y−N+ ε

2 )2

2V − εA4 ,

where the second inequality holds by the choice of A. Observe that when y > AV and V
is large, the exponent −(y−N+ ε

2 )2

2V − εA
4 is larger than −(y−N+ε)2

2V . Summing the above two
inequalities then yields the desired result that [σ ∗ h](y) ≥ 0.

Finally, if y ∈ (T +N−ε, T +N ], then the range of integration in computing [σ∗h](y) is
from x = y−T to x = N , where σ(x) is always positive. So the convolution is positive. And
if y > T +N , then clearly the convolution is zero. These arguments symmetrically apply
to −y ∈ (T +N − ε, T +N ] and −y > T +N . We therefore conclude that [σ ∗ h](y) ≥ 0
for all y, completing the proof.

A.2 Integral Representation

For fixed X, KX(a) = Ka(X) is a function of a, from R to R. Let L denote the set of
functions {KX : X ∈ L∞}. If Φ is a monotone additive statistic and KX = KY , then X
and Y have the same distribution and Φ(X) = Φ(Y ). Thus there exists some functional
F : L → R such that Φ(X) = F (KX). It follows from the additivity of Φ and the additivity
of Ka that F is additive: F (KX +KY ) = F (KX) +F (KY ).21 Moreover, F is monotone in
the sense that F (KX) ≥ F (KY ) whenever KX ≥ KY (i.e., KX(a) ≥ KY (a) for all a ∈ R);
this follows from Lemma 1 which in turn is proved by Theorem 6 (see §5 in the main text).

The rest of this proof is a functional analysis exercise analogous to the proof of Theorem
2 in Mu, Pomatto, Strack, and Tamuz (2021), but for completeness we provide the details
below. The main goal is to show that the monotone additive functional F on L can be
extended to a positive linear functional on the entire space of continuous functions C(R).
We first equip L with the sup-norm of C(R) and establish a technical claim.

Lemma 3. F : L → R is 1-Lipschitz:

|F (KX)− F (KY )| ≤ ‖KX −KY ‖.
21We note that L is closed under addition. This is because KX +KY = KX′ +KY ′ whenever X ′, Y ′ are

independently distributed random variables with the same distribution as X,Y . Such random variables
X ′, Y ′ exist as the probability space is non-atomic, see for example Proposition 9.1.11 in Bogachev (2007).
Thus, for KX ,KY ∈ L we can find X ′, Y ′ so that KX +KY = KX′ +KY ′ = KX′+Y ′ ∈ L.
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Proof. Let ‖KX −KY ‖ = ε. Then KX+ε = KX + ε ≥ KY . Hence, by Lemma 1, F (KY ) ≤
F (KX+ε), and so

F (KY )− F (KX) ≤ F (KX+ε)− F (KX) = F (Kε) = Φ(ε) = ε.

Symmetrically we have F (KX)− F (KY ) ≤ ε, as desired.

Lemma 4. Any monotone additive functional F on L can be extended to a positive linear
functional on C(R).

Proof. First consider the rational cone spanned by L:

ConeQ(L) = {qL : q ∈ Q+, L ∈ L}.

Define G : ConeQ(L)→ R as G(qL) = qF (L), which is an extension of F . The functional
G is well defined: If mnK1 = r

nK2 for K1,K2 ∈ L and n,m, r ∈ N, then, using the fact that
L is closed under addition, we obtain mF (K1) = F (mK1) = F (rK2) = rF (K2), hence
m
n F (K1) = r

nF (K2). G is also additive, because

G

(
m

n
K1

)
+G

(
r

n
K2

)
= m

n
F (K1) + r

n
F (K2) = 1

n
F (mK1 + rK2) = G

(
m

n
K1 + r

n
K2

)
.

In the same way we can show G is positively homogeneous over Q+ and monotone.
Moreover, G is Lipschitz: Lemma 3 implies∣∣∣∣G(mn K1

)
−G

(
r

n
K2

)∣∣∣∣ = 1
n
|F (mK1)− F (rK2)| ≤ 1

n
‖mK1 − rK2‖ =

∥∥∥∥mn K1 −
r

n
K2

∥∥∥∥ .
Thus G can be extended to a Lipschitz functional H defined on the closure of ConeQ(L)
with respect to the sup norm. In particular, H is defined on the convex cone spanned by L:

Cone(L) = {λ1K1 + · · ·+ λkKk : k ∈ N and for each 1 ≤ i ≤ k, λi ∈ R+,Ki ∈ L}.

It is immediate to verify that the properties of additivity, positive homogeneity (now over
R+), and monotonicity extend, by continuity, from G to H.

Consider the vector subspace V = Cone(L)− Cone(L) ⊂ C(R) and define I : V → R as

I(g1 − g2) = H(g1)−H(g2)

for all g1, g2 ∈ Cone(L). The functional I is well defined and linear (because H is additive
and positively homogeneous). Moreover, by monotonicity of H, I(f) ≥ 0 for any non-
negative function f ∈ V.

The lemma then follows from the next theorem of Kantorovich (1937), a generalization
of the Hahn-Banach Theorem. It applies not only to C(R) but to any Riesz space (see
Theorem 8.32 in Aliprantis and Border, 2006).
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Theorem. Let V be a vector subspace of C(R) with the property that for every f ∈ C(R)
there exists a function g ∈ V such that g ≥ f . Then every positive linear functional on V
extends to a positive linear functional on C(R).

The “majorization” condition g ≥ f is satisfied because every function in C(R) is
bounded and V contains all of the constant functions.

The integral representation in Theorem 1 now follows from Lemma 4 by the Riesz-
Markov-Kakutani Representation Theorem.

A.3 Uniqueness of Mixing Measure

We complete the proof of Theorem 1 by showing that the mixing measure µ is unique:

Lemma 5. Suppose µ and ν are two Borel probability measures on R such that∫
R
Ka(X) dµ(a) =

∫
R
Ka(X) dν(a).

for all X ∈ L∞.22 Then µ = ν.

Proof. We first show µ({∞}) = ν({∞}). For any ε > 0, consider the Bernoulli random
variable Xε that takes value 1 with probability ε and value 0 with probability 1−ε. It is easy
to see that as ε decreases to zero, Ka(Xε) also decreases to zero for each a <∞ whereas
K∞(Xε) = max[Xε] = 1. Since Ka(Xε) is uniformly bounded in [0, 1], the Dominated
Convergence Theorem implies

lim
ε→0

∫
R
Ka(Xε) dµ(a) = µ({∞}).

A similar identity holds for the measure ν, so µ({∞}) = ν({∞}) follows from the assumption
that

∫
RKa(Xε) dµ(a) =

∫
RKa(Xε) dν(a).

We can symmetrically apply the above argument to the Bernoulli random variable that
takes value 1 with probability 1 − ε and value 0 with probability ε. Thus µ({−∞}) =
ν({−∞}) holds as well.

Next, for each n ∈ N+ and real number b > 0, define a random variable Xn,b by

P [Xn,b = n] = e−bn

P [Xn,b = 0] = 1− e−bn.
22The proof shows that it suffices to require such equality for non-negative integer-valued X.
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Then Ka(Xn,b) = 1
a log

[
(1− e−bn) + e(a−b)n

]
, and so

lim
n→∞

1
n
Ka(Xn,b) = lim

n→∞
1
n

1
a

log
[
1− e−bn + e(a−b)n

]
=

0 if a < b

a−b
a if a ≥ b.

This result holds also for a = 0,±∞.
Note that 1

nKa(Xn,b) is uniformly bounded in [0, 1] for all values of n, b, a, since
Ka(Xn,b) is bounded between min[Xn,b] = 0 and max[Xn,b] = n. Thus, by the Dominated
Convergence Theorem,

lim
n→∞

∫
R

1
n
Ka(Xn,b) dµ(a) =

∫
[b,∞]

a− b
a

dµ(a), (11)

and similarly for ν. It follows that for all b > 0,∫
[b,∞]

a− b
a

dµ(a) =
∫

[b,∞]

a− b
a

dν(a).

As µ({∞}) = ν({∞}), we in fact have∫
[b,∞)

a− b
a

dµ(a) =
∫

[b,∞)

a− b
a

dν(a).

This common integral is denoted by f(b).
We now define a measure µ̂ on (0,∞) by the condition dµ̂(a)

dµ(a) = 1
a ; note that µ̂ is a

positive measure, but need not be a probability measure. Then

f(b) =
∫

[b,∞)

a− b
a

dµ(a) =
∫

[b,∞)
(a− b) dµ̂(a) =

∫ ∞
b

µ̂([x,∞)) dx,

where the last step uses Tonelli’s Theorem. Hence µ̂([b,∞]) is the negative of the left
derivative of f(b) (this uses the fact that µ̂([b,∞]) is left continuous in b). In the same
way, if we define ν̂ by dν̂(a)

dν(a) = 1
a , then ν̂([b,∞]) is also the negative of the left derivative

of f(b). Therefore µ̂ and ν̂ are the same measure on (0,∞), which implies that µ and ν
coincide on (0,∞).

By a symmetric argument (with n−Xn,b in place of Xn,b), we deduce that µ and ν
also coincide on (−∞, 0). Finally, since they are both probability measures, µ and ν must
have the same mass at 0, if any. So µ = ν.

B Applications to Time Lotteries

B.1 Monotone Additive Statistics for Non-Negative Random Variables

In our applications to time lotteries the random times are non-negative (bounded) random
variables. We accordingly prove a version of Theorem 1 that applies to this smaller domain.
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Proposition 7. Φ: L∞+ → R is a monotone additive statistic if and only if there exists a
unique Borel probability measure µ on R such that for every X ∈ L∞

Φ(X) =
∫
R
Ka(X) dµ(a). (12)

Proof. It suffices to show that a monotone additive statistic defined on L∞+ can be extended
to a monotone additive statistic defined on L∞. Suppose Φ is defined on L∞+ . Then for
any bounded random variable X, we can define

Ψ(X) = min[X] + Φ(X −min[X]),

where we note that X −min[X] is a non-negative random variable.
Clearly Ψ is a statistic that depends only on the distribution of X (as Φ does), and

Ψ(c) = c + Φ(0) = c for constants c. When X is non-negative, the additivity of Φ
gives Φ(X) = Φ(min[X]) + Φ(X − min[X]) = min[X] + Φ(X − min[X]), so Ψ is an
extension of Φ. Moreover, Ψ is additive because min[X + Y ] = min[X] + min[Y ], and
Φ(X + Y − min[X + Y ]) = Φ(X − min[X]) + Φ(Y − min[Y ]) by the additivity of Φ.
Finally, to show Ψ is monotone, suppose X and Y are bounded random variables satisfying
X ≥1 Y . Then we can choose a sufficiently large n such that X + n and Y + n are both
non-negative, and X+n ≥1 Y +n. Since Φ is monotone for non-negative random variables,
Φ(X + n) ≥ Φ(Y + n). Thus Ψ(X + n) ≥ Ψ(Y + n) by the fact that Ψ extends Φ, and
Ψ(X) ≥ Ψ(Y ) by the additivity of Ψ. This proves that Ψ is a monotone additive statistic
on L∞ that extends Φ.

B.2 Proof of Theorem 3

It is straightforward to check that the representation satisfies the axioms, so we focus
on the other direction of deriving the representation from the axioms. In the first step,
we fix any reward x > 0. Then by monotonicity in time and continuity, for each (x, T )
there exists a (unique) deterministic time Φx(T ) such that (x,Φx(T )) ∼ (x, T ). Clearly,
when T is a deterministic time, Φx(T ) is simply T itself. Note also that if S first-order
stochastically dominates T , then

(x,Φx(T )) ∼ (x, T ) � (x, S) ∼ (x,Φx(S)),

so that Φx(S) ≥ Φx(T ). We next show that for any T and S that are independent,
Φx(T + S) = Φx(T ) + Φx(S). Indeed, by stochastic stationarity, (x,Φx(T )) ∼ (x, T )
implies (x,Φx(T ) + S) ∼ (x, T + S) and (x,Φx(S)) ∼ (x, S) implies (x,Φx(T ) + Φx(S)) ∼
(x,Φx(T ) + S). Taken together, we have

(x,Φx(T ) + Φx(S)) ∼ (x, T + S).
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Since Φx(T ) + Φx(S) is a deterministic time, the definition of Φx gives Φx(T ) + Φx(S) =
Φx(T + S) as desired. It follows that each Φx : L∞+ → R is a monotone additive statistic.

In the second step, note that our preference � induces a preference on R++ × R+

consisting of deterministic dated rewards. By Theorem 2 in Fishburn and Rubinstein
(1982), for any given r > 0 we can find a continuous and strictly increasing utility function
u : R++ → R++ such that for deterministic times t, s ≥ 0

(x, t) � (y, s) if and only if u(x) · e−rt ≥ u(y) · e−rs.

By definition, (x, T ) ∼ (x,Φx(T )) for any random time T . Thus we obtain that the decision
maker’s preference is represented by

(x, T ) � (y, S) if and only if u(x) · e−rΦx(T ) ≥ u(y) · e−rΦy(S).

It remains to show that for all x, y > 0, Φx and Φy are the same statistic. For this we
choose deterministic times t and s such that (x, t) ∼ (y, s), i.e., u(x) · e−rt = u(y) · e−rs.
For any random time T , stochastic stationarity implies (x, t+ T ) ∼ (y, s+ T ), so that

u(x) · e−rΦx(t+T ) = u(y) · e−rΦy(s+T ).

Using the additivity of Φx and Φy, we can divide the above two equalities and obtain
Φx(T ) = Φy(T ) as desired. Since this holds for all T and all x, y > 0, we can write
Φx(T ) = Φ(T ) for a single monotone additive statistic Φ. This completes the proof.

B.3 Proof of Proposition 2

Define, for every t ≥ 0, vi(t) = e−ait and v(t) = e−at. We have that for any two random
times S and T , (1, S) �i (1, T ) if and only if E [vi(S)] ≥ E [vi(T )], and (1, S) � (1, T ) if
and only if E [v(S)] ≥ E [v(T )]. Thus it follows from the Pareto axiom that for any two
random times S and T , E [vi(S)] ≥ E [vi(T )] for all i implies E [v(S)] ≥ E [v(T )].

By Harsanyi’s Theorem (Zhou, 1997, Theorem 2) there exist (λi) in R+ and c ∈ R such
that for every t, v(t) =

∑
i λivi(t) + c. By letting t→∞ we obtain 0 = c and by setting

t = 0 it follows that 1 =
∑
i λi. Further plugging in t = 1 and t = 2, we obtain

n∑
i=1

λie−2ai = e−2a =
(
e−a

)2 =
(

n∑
i=1

λie−ai
)2

.

But the Cauchy-Schwarz inequality gives

n∑
i=1

λie−2ai =
(

n∑
i=1

λie−2ai

)
·
(

n∑
i=1

λi

)
≥
(

n∑
i=1

λie−ai
)2

.
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Thus equality holds. Since the individual discount rates {ai} are assumed to be distinct,
the equality condition of the Cauchy-Schwarz inequality implies that exactly one λi is
nonzero (in fact equal to 1), and hence a = ai for some agent i.

Without loss of generality suppose a = a1. It remains to show that u(x) is a constant
multiple of u1(x) so that the social preference coincides with agent 1. Note that by the
same argument as above, v1(t) = e−a1t cannot be expressed as a linear combination of
1, v2(t), v3(t), · · · , vn(t) whenever a1 is distinct from a2, · · · , an. So the contrapositive of
Harsanyi’s Theorem implies the existence of random times S and T such that E [vi(S)] ≥
E [vi(T )] for all i > 1 but E [v1(T )] > E [v1(S)]. In what follows we fix these particular S
and T , and also fix ε > 0 sufficiently small so that E [v1(T )] ≥ (1 + ε)E [v1(S)].

For any pair of rewards x, y ∈ R++, we now show that the Pareto property implies
u(y)
u1(y) = u(x)

u1(x) which will complete the proof. To do this, let k be a sufficiently large positive
integer, and define T⊕k, S⊕k to be the random variables obtained by adding k independent
copies of T and S. Since the moment generating function E

[
e−αZ

]
is multiplicative when we

add two independent random variables Z1 and Z2, our previous assumptions about S and T
imply that E

[
e−aiS⊕k

]
≥ E

[
e−aiT⊕k

]
for all i > 1 but E

[
e−a1T⊕k

]
≥ (1 + ε)kE

[
e−a1S⊕k

]
.

Next, let tk ∈ R be the number that satisfies

e−a1tk · u1(x)E
[
e−a1T⊕k

]
= u1(y)E

[
e−a1S⊕k

]
.

Thus, the time lottery (x, T⊕k + tk) is indifferent to (y, S⊕k) for agent 1. At the same time,
the above equality implies ea1tk ≥ (1 + ε)k · u1(x)

u1(y) , so that limk→∞ tk =∞. In particular,
we deduce that for k large, eaitk ≥ ui(x)

ui(y) for every i > 1 and thus

e−aitk · ui(x)E
[
e−aiT⊕k

]
≤ ui(y)E

[
e−aiS⊕k

]
.

Therefore (x, T⊕k + tk) is less preferred than (y, S⊕k) for every agent i > 1.
Putting together the above analysis, we can find k and tk such that (x, T⊕k + tk) is

weakly less preferred than (y, S⊕k) for every agent, with indifference for agent 1. By the
Pareto property, (x, T⊕k + tk) must be weakly less preferred than (y, S⊕k) under the social
preference. That is, we must have

e−atk · u(x)E
[
e−aT⊕k

]
≤ u(y)E

[
e−aS⊕k

]
.

But we already know e−a1tk · u1(x)E
[
e−a1T⊕k

]
= u1(y)E

[
e−a1S⊕k

]
and a = a1, so after

dividing out e−atk , E
[
e−aT⊕k

]
and E

[
e−aS⊕k

]
we obtain u(y)

u1(y) ≥
u(x)
u1(x) .

Finally, since x, y are arbitrary, we can switch them and use the same argument to
deduce the opposite inequality u(x)

u1(x) ≥
u(y)
u1(y) . This proves that

u(y)
u1(y) = u(x)

u1(x) for any pair of
rewards x, y. Hence the social utility representation is a constant multiple of agent 1’s.
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B.4 Proof of Proposition 3

We prove that the proposed representation for the social preference relation � satisfies the
Pareto axiom. If (x, T ) �i (y, S) for every i, then ui(x)e−riΦi(T ) ≥ ui(y)e−riΦi(S), which
can be rewritten as

ri(Φi(S)− Φi(T )) ≥ log ui(y)
ui(x) .

Summing across i using the weights λi we obtain
n∑
i=1

λiri(Φi(S)− Φi(T )) ≥
n∑
i=1

λi log ui(y)
ui(x) = log u(y)

u(x) ,

where the last equality uses u = Πn
i=1u

λi
i . Since rΦ =

∑n
i=1 λiriΦi, it follows that

r(Φ(S) − Φ(T )) ≥ log u(y)
u(x) , which is equivalent to u(x)e−rΦ(T ) ≥ u(y)e−rΦ(S). Thus

(x, T ) � (y, S) as desired.

B.5 Proof of Proposition 4

We assume the Pareto axiom holds and deduce its implications. Note that if Φi(T ) ≤ Φi(S)
for every i, then (1, T ) �i (1, S) for every i and thus, by the Pareto axiom, (1, T ) � (1, S)
and Φ(T ) ≤ Φ(S) also hold.

We say that a collection of monotone additive statistics (Φ1, . . . ,Φn,Φ) have the Pareto
property if Φi(T ) ≤ Φi(S) for every i implies Φ(T ) ≤ Φ(S). We have the following result:

Lemma 6. Let (Φ1, . . . ,Φn,Φ) be monotone additive statistics defined on L∞+ , and suppose
that they satisfy the Pareto property. Then there exists a probability vector (β1, . . . , βn)
such that Φ =

∑n
i=1 βiΦi.

Proof. Let (µ1, . . . , µn, µ) be the mixing measures on R that correspond to the monotone
additive statistics (Φ1, . . . ,Φn,Φ). Define the linear functionals (I1, . . . , In, I) on C(R) as
Ii(f) =

∫
R fdµi and I(f) =

∫
R fdµ.

We call a set of functions D ⊆ C(R) a Pareto domain if for every f, g ∈ D,

Ii(f) ≥ Ii(g) i = 1, . . . , n =⇒ I(f) ≥ I(g).

The Pareto property implies L+ = {KX : X ∈ L∞+ } is a Pareto domain. Define, as in the
proof of Theorem 1, L = {KX : X ∈ L∞} as well as the rational cone spanned by L:

coneQ(L) = {qL : q ∈ Q+, L ∈ L} =
∞⋃
n=1

1
n
L

We show that L and coneQ(L) are both Pareto domains. Given X,Y ∈ L∞, let c be a
large positive constant such that X + c ≥ 0 and Y + c ≥ 0. If Ii(KX) ≥ Ii(KY ) for all i
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then Ii(KX + c) ≥ Ii(KY + c) for all i since each Ii is linear. Thus, by the Pareto property
and the linearity of I, I(KX + c) ≥ I(KY + c) and I(KX) ≥ I(KY ). This shows L is a
Pareto domain. As for coneQ(L), observe that Ii( 1

mKX) ≥ Ii( 1
nKY ) for all i is equivalent

to Ii(nKX) ≥ Ii(mKY ) for all i, which implies I(nKX) ≥ I(mKY ) since L is a Pareto
domain and is closed under addition. This shows I( 1

mKX) ≥ I( 1
nKY ) as desired.

Next we show that the closure of coneQ(L) (with respect to the usual sup norm) is also
a Pareto domain. Let f, g be in the closure, such that Ii(f) ≥ Ii(g) for all i. Pick sequences
(fk) and (gk) in coneQ(L) converging to f and g. Define εi,k = |Ii(f)−Ii(fk)|+|Ii(g)−Ii(gk)|
and εk = max1≤i≤n εi,k. Then from Ii(f) ≥ Ii(g) we deduce Ii(fk) ≥ Ii(gk)−εk = Ii(gk−εk)
for every i. Note that gk− εk belongs to coneQ(L) since the latter contains all the constant
functions and is closed under addition. Thus by the fact that coneQ(L) is a Pareto domain,
Ii(fn) ≥ Ii(gn − εn) for every i implies I(fk) ≥ I(gk − εk) = I(gk) − εk for every k.
Continuity of the functionals (Ii) yields εk → 0. Continuity of I thus yields I(f) ≥ I(g).

This proves that the closure of coneQ(L) is a Pareto domain. Since the subset of a
Pareto domain is a Pareto domain, we conclude that cone(L) (i.e. the cone generated by
L) is a Pareto domain as well.

Now define V = cone(L)− cone(L) to be the vector space generated by the cone. It
is immediate to verify, using the linearity of the integral, that V is a Pareto domain as
well. In particular, for any f ∈ V , Ii(f) ≤ 0 for every i implies I(f) ≤ 0. Corollary 5.95 in
Aliprantis and Border (2006) thus implies there exist non-negative scalars β1, . . . , βn such
that I =

∑n
i=1 βiIi on V. So I(KX) =

∑n
i=1 βiIi(KX) for every X ∈ L∞, which implies

Φ(X) =
∑n
i=1 βiΦi(X). For constant X this implies

∑
i βi = 1, proving the lemma.

Thus, the Pareto axiom implies that the social certainty equivalent Φ must be a convex
combination of the individual Φi. To complete the proof, we restrict to the case of identical
utility functions ui = u which additionally satisfies limx→0 u(x) = 0 or limx→∞ u(x) =∞.
In this case, in order for u = Πn

i=1u
λi
i to hold, the weights λ1, . . . , λn must sum to 1.

Therefore the desired identity rΦ =
∑n
i=1 λiriΦi requires us to show that not only Φ is a

convex combination of (Φi), but rΦ is also a convex combination of (riΦi).
To prove this, we make use of the Pareto axiom when applied to time lotteries with

different rewards. For any S, T ∈ L∞+ , the Pareto axiom says that if rewards x, y are such
that riΦi(S)− riΦi(T ) ≥ log (u(y)/u(x)) for all i, then rΦ(S)− rΦ(T ) ≥ log (u(y)/u(x))
also holds. By the richness assumption on u, we can choose x, y with

log (u(y)/u(x)) = min
1≤i≤n

{riΦi(S)− riΦi(T )}.

Therefore the Pareto axiom implies that for any S, T ∈ L∞+ ,

rΦ(S)− rΦ(T ) ≥ min
1≤i≤n

{riΦi(S)− riΦi(T )}. (13)
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The conclusion that rΦ is a convex combination of (riΦi) will follow from the condition
(13) via an application of Farkas’ Lemma. To rewrite this condition in linear algebra
form, we let m ≤ n be the largest number of different Φi that are linearly independent
(when viewed as functions on L∞+ ). Reordering if necessary, we can assume Φ1, . . . ,Φm

are linearly independent, and every Φi is a (not necessarily positive) linear combination of
those m. Thus we can find vectors γ1, . . . , γn ∈ Rm such that every riΦi can be rewritten
as the following inner product (i.e., linear combination):

riΦi = γi · (Φ1, . . . ,Φm).

Since Φ is a convex combination of (Φi), there also exists γ ∈ Rm such that rΦ =
γ · (Φ1, . . . ,Φm).

Consider the following set of vectors:

W = {w ∈ Rm : γ · w ≥ min
1≤i≤n

γi · w}.

Let D be all vectors of the form (Φ1(S)−Φ1(T ), . . . ,Φm(S)−Φm(T )) for some S, T ∈ L∞+ .
Condition (13) says that D ⊆ W. Note that −D = D, and D is closed under addition
because every Φi is additive. Moreover, since the definition of W involve homogeneous
inequalities, 1

ND ⊆ W for every positive integer N . From these properties we deduce that
any vector of the form q1w1 + · · ·+ qkwk with qj ∈ Q and wj ∈ D belongs to W , because it
can be written as 1

Nw for some positive integer N and w ∈ D. Since W is a closed set, the
span of D (not just the rational span) is also contained in W. Finally note that D spans
the entirety of Rm. This is because by setting T = 0, D in particular includes vectors of
the form (Φ1(S), . . . ,Φm(S)), and such vectors cannot all belong to a lower-dimensional
subspace by the assumption that Φ1, . . . ,Φm are linearly independent.

Therefore, D =W = Rm, which implies

γ · w ≥ min
1≤i≤n

γi · w for all w ∈ Rm. (14)

For any ε > 0, this condition implies that there exists no w ∈ Rm such that −γi ·w ≤ −1−ε
for every i while γ·w ≤ 1. LetA be an (n+1)×mmatrix whose first n rows are−γ1, . . . ,−γn,
and whose last row is γ. Let b be the n + 1-dimensional vector (−1 − ε, . . . ,−1 − ε, 1).
Then Aw ≤ b has no solution w ∈ Rm.

By Farkas’ Lemma, there exists a non-negative n+1-dimensional vector z = (z1, . . . , zn+1)
such that z′A = 0 while z · b < 0. The former implies zn+1γ = z1γ

1 + · · ·+ znγ
n, while the

latter implies zn+1 < (1 + ε)(z1 + · · ·+ zn). Note that zn+1 cannot be zero, for otherwise
we have a positive linear combination of γ1, . . . , γn that gives the zero vector, leading to
the impossible implication that a positive linear combination of Φ1, . . . ,Φn equals zero.
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Thus we can write γ = α1γ
1 + · · ·+ αnγ

n, with non-negative weights αi = zi
zn+1

whose
sum is greater than 1

1+ε . Consequently rΦ =
∑n
i=1 αiriΦi, which implies r =

∑n
i=1 αiri

and thus αi ≤ r
ri

in any such representation. Since ε is arbitrary, a compactness argument
then yields that γ =

∑n
i=1 αiγ

i for some non-negative weights αi with
∑n
i=1 αi ≥ 1.

We can also choose b̂ = (1− ε, . . . , 1− ε,−1) and deduce from (14) that Aw ≤ b̂ has no
solution w ∈ Rm. Then a similar analysis yields γ = α̂1γ

1 + · · ·+ α̂nγ
n for some weights

α̂i ≥ 0 and
∑n
i=1 αi <

1
1−ε . Again by compactness, we can assume

∑n
i=1 α̂i ≤ 1. Finally,

by suitably averaging between αi and α̂i, we can find non-negative weights (λi) whose sum
is equal to 1, such that γ =

∑n
i=1 λiγ

i. So rΦ =
∑n
i=1 λiriΦi. Since Φ is also a convex

combination of (Φi), it follows that r =
∑
i λiri, completing the proof.

C Proof of Theorem 4

Since the preference � is represented by Φ, the betweenness axiom is equivalent to the
following:

Φ(X) = Φ(Y ) if and only if Φ(XλY ) = Φ(Y ).

In this case, we say that the statistic Φ satisfies betweenness. We need to show that
Φ(X) satisfies betweenness if and only if it is equal to Ka(X) for some a ∈ R or equal to
βK−aβ(X) + (1− β)Ka(1−β)(X) for some β ∈ (0, 1) and a ∈ (0,∞).

We first show the “if” direction. Specifically, when Φ(X) = Ka(X) for some a ∈ R, then
the preference is CARA expected utility, which satisfies independence and thus betweenness.
When Φ(X) = βK−aβ(X) + (1− β)Ka(1−β)(X), we can use the definition of K to rewrite
it as

Φ(X) = 1
a

(
logE[ea(1−β)X ]− logE[e−aβX ]

)
.

Thus Φ(X) = Φ(Y ) if and only if logE
[
ea(1−β)X

]
− logE

[
e−aβX

]
= logE

[
ea(1−β)Y

]
−

logE
[
e−aβY

]
, which in turn is equivalent to

E
[
ea(1−β)X

]
E
[
ea(1−β)Y ] =

E
[
e−aβX

]
E [e−aβY ] .

Since E
[
ebXλY

]
= λE

[
ebX

]
+ (1− λ)E

[
ebY
]
for every b ∈ R, it is not difficult to see that

the above ratio equality holds if and only if it holds when X is replaced by XλY . Hence
Φ(X) = Φ(Y ) if and only if Φ(XλY ) = Φ(Y ), i.e. betweenness is satisfied.

Turning to the “only if” direction. We will characterize any monotone additive statistic
Φ that satisfies a weaker form of betweenness:
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Lemma 7. Suppose Φ is a monotone additive statistic such that Φ(X) = c implies
Φ(Xλc) = c whenever c is a constant. Then either Φ takes the form described by Theorem 4,
or Φ(X) = βmin[X] + (1− β) max[X] for some β ∈ [0, 1].

This result implies Theorem 4 because Φ(X) = βmin[X] + (1− β) max[X] violates the
original betweenness axiom. To see that, let X = 0 and choose any Y supported on ±1.
Then XλY and Y have the same minimum and maximum, so that Φ(XλY ) = Φ(Y ). But
Φ(X) = Φ(Y ) cannot hold for all Y supported on ±1.

The proof of Lemma 7 is in turn based on the following lemma which further relaxes
betweenness:

Lemma 8. Suppose Φ(X) =
∫
RKa(X) dµ(a) has the property that Φ(X) = c implies

Φ(Xλc) ≤ c. Then the measure µ restricted to [0,∞] is either the zero measure, or it is
supported on a single point.

Proof. It suffices to show that if µ puts positive mass on (0,∞], then that mass is supported
on a single point and µ({0}) = 0. For this let N > 0 denote the essential maximum of the
support of µ; that is, N = min{x : µ((x,∞]) = 0}. We allow N =∞ when the support of
µ is unbounded from above, or when µ has a non-zero mass at ∞. For any positive real
number b < N , consider the same random variable Xn,b as in the proof of Lemma 5, given
by

P [Xn,b = n] = e−bn

P [Xn,b = 0] = 1− e−bn.

As shown in the proof of Lemma 5, 1
nKa(Xn,b) is uniformly bounded in [0, 1], and

lim
n→∞

1
n
Ka(Xn,b) = (a− b)+

a
.

Thus if we let cn = Φ(Xn,b), then by the Dominated Convergence Theorem,

lim
n→∞

cn
n

= lim
n→∞

1
n

Φ(Xn,b) = lim
n→∞

∫
R

1
n
Ka(Xn,b) dµ(a) =

∫
(b,∞]

a− b
a

dµ(a).

Denote γ =
∫

(b,∞]
a−b
a dµ(a). This number γ is strictly positive because b < N implies

µ((b,∞]) > 0. We can also assume γ < 1, since otherwise µ must be the point mass at ∞.
Now, as Φ(Xn,b) = cn we know by assumption that Φ(Yn,b) ≤ cn for each n, where Yn,b

is the mixture between Xn,b and the constant cn (in what follows λ is fixed as n varies):

P [Yn,b = n] = λe−bn

P [Yn,b = 0] = λ(1− e−bn)

P [Yn,b = cn] = 1− λ.
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Using limn→∞ cn/n = γ, we have

lim
n→∞

1
n
Ka(Yn,b) = lim

n→∞
1
n

1
a

log
[
λ
(
1− e−bn + e(a−b)n

)
+ (1− λ)ea·cn

]

=



0 if a < 0

(1− λ)γ if a = 0

γ if 0 < a < b
1−γ

a−b
a if a ≥ b

1−γ .

Note that the cutoff point a = b
1−γ is where a − b = aγ. When a is smaller than this,

the dominant term in the bracketed sum above is (1− λ)ea·cn . Whereas for larger a, the
dominant term becomes λe(a−b)·n.

Crucially, limn→∞
1
nKa(Yn,b) ≥ (a−b)+

a holds for every a, with strict inequality for
a ∈ [0, b

1−γ ). Thus again by the Dominated Convergence Theorem,

lim
n→∞

cn
n
≥ lim

n→∞
1
n

Φ(Yn,b) = lim
n→∞

∫
R

1
n
Ka(Yn,b) dµ(a) ≥

∫
(b,∞]

a− b
a

dµ(a).

But we know that the far left is equal to the far right. So both inequalities hold equal, and
in particular limn→∞

1
nKa(Yn,b) = (a−b)+

a holds µ-almost surely.
As discussed, limn→∞

1
nKa(Yn,b) > (a−b)+

a for any a ∈ [0, b
1−γ ). So we can conclude

that µ([0, b
1−γ )) = 0. This must hold for any b ∈ (0, N) and corresponding γ. Letting

b arbitrarily close to N thus yields µ([0, N)) = 0 (since b
1−γ > b). It follows that when

restricted to [0,∞] the measure µ is concentrated at the single point N , as we desire to
show.

Proof of Lemma 7. From Lemma 8, we know that the measure µ associated with Φ can
only be supported on one point in all of [0,∞]. By a symmetric argument, µ also has
at most one point support in all of [−∞, 0]. Thus either µ = δa for some a ∈ R, or µ is
supported on two points {a1, a2} with a1 < 0 < a2. In the former case we are done, so
below we study the latter case where µ has two-point support.

Suppose Φ(X) = βKa1(X) + (1 − β)Ka2(X) for some β ∈ (0, 1) and a1 < 0 < a2. If
a1 = −∞ while a2 <∞, then Φ(X) = βmin[X]+(1−β)Ka2(X). Take any non-constant X
and let c denote Φ(X). Note that sinceKa2(X) > min[X], c = βmin[X]+(1−β)Ka2(X) lies
strictly between min[X] and Ka2(X). Consider the mixture Xλc, then min[Xλc] = min[X],
whereas

Ka2(Xλc) = 1
a2

log
(
λE
[
ea2X

]
+ (1− λ)ea2c

)
<

1
a2

logE
[
ea2X

]
= Ka2(X),

where the inequality uses c < Ka2(X) = 1
a2

logE
[
ea2X

]
and a2 > 0. We thus deduce that

Φ(Xλc) = βmin[Xλc] + (1− β)Ka2(Xλc) < βmin[X] + (1− β)Ka2(X) = c,
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contradicting the betweenness axiom. A symmetric argument rules out the possibility that
a1 > −∞ while a2 =∞.

Hence, either a1 = −∞ and a2 =∞, or a1 ∈ (−∞, 0) and a2 ∈ (0,∞). In the former
case Φ(X) is an average of the minimum and the maximum, so we are again done. It
remains to consider the latter case where a1, a2 are both finite. In this case we will show
that β = −a1

a2−a1
. Once this is shown, we can let a = a2 − a1 so that a1 = −aβ and

a2 = a(1− β). Thus Φ(X) = βK−aβ(X) + (1− β)Ka(1−β)(X) as desired.
Let us take an arbitrary non-constant X, and let

c = Φ(X) = β

a1
logE

[
ea1X

]
+ 1− β

a2
logE

[
ea2X

]
.

For an arbitrary λ ∈ [0, 1], we must also have

c = Φ(Xλc) = β

a1
logE

[
λea1X + (1− λ)ea1c

]
+ 1− β

a2
logE

[
λea2X + (1− λ)ea2c

]
. (15)

Since (15) holds for every λ, we can differentiate it with respect to λ to obtain

0 =
β(E

[
ea1X

]
− ea1c)

a1E [λea1X + (1− λ)ea1c] +
(1− β)(E

[
ea2X

]
− ea2c)

a2E [λea2X + (1− λ)ea2c] .

Plugging in λ = 0 and λ = 1 gives, respectively,

β(E
[
ea1X

]
− ea1c)

a1ea1c
= −

(1− β)(E
[
ea2X

]
− ea2c)

a2ea2c
. (16)

β(E
[
ea1X

]
− ea1c)

a1E [ea1X ] = −
(1− β)(E

[
ea2X

]
− ea2c)

a2E [ea2X ] . (17)

Since c = βKa1(X) + (1− β)Ka2(X), the fact that Ka2(X) > Ka1(X) implies c is strictly
between Ka1(X) and Ka2(X). Thus, using a1 < 0 < a2 we deduce ea1c < E

[
ea1X

]
and

ea2c < E
[
ea2X

]
.

We can therefore divide (16) by (17) to obtain

E
[
ea1X

]
ea1c

=
E
[
ea2X

]
ea2c

.

Plugging this back to (16), we conclude β
a1

= −1−β
a2

, so β = −a1
a2−a1

as we desire to show.
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Online Appendix

D Proof of Theorem 2

The proof is considerably more complex than the proof of Theorem 1, so we break it into
several steps below.

D.1 Step 1: Catalytic Order on LM

We first establish a generalization of Theorem 6 to unbounded random variables. For two
random variables X and Y with c.d.f. F and G respectively, we say that X dominates Y
in both tails if there exists a positive number N with the property that

G(x) > F (x) for all |x| ≥ N.

In particular, X needs to be unbounded from above, and Y unbounded from below.

Lemma 9. Suppose X,Y ∈ LM satisfy Ka(X) > Ka(Y ) for every a ∈ R. Suppose further
that X dominates Y in both tails. Then there exists an independent random variable
Z ∈ LM such that X + Z ≥1 Y + Z.

Proof. We will take Z to have a normal distribution, which does belong to LM . Following
the proof of Theorem 6, we let σ(x) = G(x)− F (x), and seek to show that [σ ∗ h](y) ≥ 0
for every y when h is a Gaussian density with sufficiently large variance. By assumption,
σ(x) is strictly positive for |x| ≥ N . Thus there exists δ > 0 such that

∫N+2
N+1 σ(x) dx > δ,

as well as
∫−N−1
−N−2 σ(x) dx > δ. We fix A > 0 that satisfies eA ≥ 4N

δ .

Similar to (9), we have for h(x) = e−
x2
2V that

e
y2
2V

∫
σ(x)h(y − x) dx =

∫ ∞
−∞

σ(x) · e
y
V
·x · e−

x2
2V dx. (18)

The variance V is to be determined below.
We first show that the right-hand side is positive if V ≥ (N + 2)2 and y

V ≥ A. Indeed,
since σ(x) > 0 for |x| ≥ N , this integral is bounded from below by∫ N

−N
σ(x) · e

y
V
·x · e−

x2
2V dx+

∫ N+2

N+1
σ(x) · e

y
V
·x · e−

x2
2V dx

≥ − 2N · e
y
V
·N + δ · e

y
V
·(N+1) · e−

(N+2)2
2V

= e
y
V
·N · (−2N + δ · e

y
V · e−

(N+2)2
2V )

> 0,
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where the last inequality uses e
y
V ≥ eA ≥ 4N

δ and e−
(N+2)2

2V ≥ e−
1
2 > 1

2 . By a symmetric
argument, we can show that the right-hand side of (18) is also positive when y

V ≤ −A.
It remains to consider the case where y

V ∈ [−A,A]. Here we rewrite the integral on the
right-hand side of (18) as∫ ∞

−∞
σ(x) · e

y
V
·x · e−

x2
2V dx = Mσ( y

V
)−

∫ ∞
−∞

σ(x) · e
y
V
·x · (1− e−

x2
2V ) dx,

where Mσ(a) =
∫∞
−∞ σ(x) · eax dx = 1

aE
[
eaX

]
− 1

aE
[
eaY

]
is by assumption strictly positive

for all a. By continuity, there exists some ε > 0 such that Mσ(a) > ε for all |a| ≤ A. So it
only remains to show that when V is sufficiently large,∫ ∞

−∞
σ(x) · eax · (1− e−

x2
2V ) dx < ε for all |a| ≤ A. (19)

To estimate this integral, note that Mσ(A) =
∫∞
−∞ σ(x) · eAx dx is finite. Since σ(x) >

0 for |x| sufficiently large, we deduce from the Monotone Convergence Theorem that∫ T
−∞ σ(x) · eAx dx converges to Mσ(A) as T →∞. In other words,

∫∞
T σ(x) · eAx dx→ 0.

We can thus find a sufficiently large T > N such that
∫∞
T σ(x) · eAx dx < ε

4 , and likewise∫−T
−∞ σ(x) · e−Ax dx < ε

4 .

As 1− e−
x2
2V ≥ 0 and eax ≤ eA|x| when |a| ≤ A, we deduce that∫

|x|≥T
σ(x) · eax · (1− e−

x2
2V ) dx < ε

2 for all |a| ≤ A.

Moreover, for this fixed T , we have e−
T2
2V → 1 when V is large, and thus∫

|x|≤T
σ(x) · eax · (1− e−

x2
2V ) dx < 2T eAT (1− e−

T2
2V ) < ε

2 for all |a| ≤ A.

These estimates together imply that (19) holds for sufficiently large V . This completes the
proof.

D.2 Step 2: A Perturbation Argument

With Lemma 9, we know that if Φ is a monotone additive statistic defined on LM , then
Ka(X) ≥ Ka(Y ) for all a ∈ R implies Φ(X) ≥ Φ(Y ) under the additional assumption
that X dominates Y in both tails (same proof as for Lemma 1). Below we deduce the
same result without this extra assumption. To make the argument simpler, assume X
and Y are unbounded both from above and from below; otherwise, we can add to them
an independent Gaussian random variable without changing either the assumption or
the conclusion. In doing so, we can further assume X and Y admit probability density
functions.

We first construct a heavy right-tailed random variable as follows:
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Lemma 10. For any Y ∈ LM that is unbounded from above and admits densities, there
exists Z ∈ LM such that Z ≥ 0 and P[Z>x]

P[Y >x] →∞ as x→∞.

Proof. For this result, it is without loss to assume Y ≥ 0 because we can replace Y by |Y |
and only strengthen the conclusion. Let g(x) be the probability density function of Y . We
consider a random variable Z whose p.d.f. is given by cxg(x) for all x ≥ 0, where c > 0 is
a normalizing constant to ensure

∫
x≥0 cxg(x) dx = 1. Since the likelihood ratio between

Z = x and Y = x is cx, it is easy to see that the ratio of tail probabilities also diverges.
Thus it only remains to check Z ∈ LM . This is because

E
[
eaZ

]
= c

∫
x≥0

xg(x)eax dx,

which is simply c times the derivative of E
[
eaY

]
with respect to a. It is well-known that

the moment generating function is smooth whenever it is finite. So this derivative is finite,
and Z ∈ LM .

In the same way, we can construct heavy left-tailed distributions:

Lemma 11. For any X ∈ LM that is unbounded from below and admits densities, there
exists W ∈ LM , such that W ≤ 0 and P[W≤x]

P[X≤x] →∞ as x→ −∞.

With these technical lemmata, we now construct “perturbed” versions of any two
random variables X and Y to achieve dominance in both tails. For any random variable
Z ∈ LM and every ε > 0, let Zε be the random variable that equals Z with probability ε,
and 0 with probability 1− ε. Note that Zε also belongs to LM .

Lemma 12. Given any two random variables X,Y ∈ LM that are unbounded on both sides
and admit densities. Let Z ≥ 0 and W ≤ 0 be constructed from the above two lemmata.
Then for every ε > 0, X + Zε dominates Y +Wε in both tails.

Proof. For the right tail, we need P[X + Zε > x] > P[Y + Wε > x] for all x ≥ N . Note
that Wε ≤ 0, so P[Y +Wε > x] ≤ P[Y > x]. On other hand,

P[X + Zε > x] ≥ P[X ≥ 0] · P[Zε > x] = P[X ≥ 0] · ε · P[Z > x].

Since by assumption X is unbounded from above, the term P[X ≥ 0] ·ε is a strictly positive
constant that does not depend on x. Thus for sufficiently large x, we have

P[X ≥ 0] · ε · P[Z > x] > P[Y > x]

by the construction of Z. This gives dominance in the right tail. The left tail is similar.
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D.3 Step 3: Monotonicity w.r.t. Ka

The next result generalizes the key Lemma 1 to our current setting:

Lemma 13. Let Φ: LM → R be a monotone additive statistic. If Ka(X) ≥ Ka(Y ) for all
a ∈ R then Φ(X) ≥ Φ(Y ).

Proof. As discussed, we can without loss assume X,Y are unbounded on both sides, and
admit densities. Let Z and W be constructed as above, then for each ε > 0, X + Zε

dominates Y +Wε in both tails, and Ka(X + Zε) > Ka(X) ≥ Ka(Y ) > Ka(Y +Wε) for
every a ∈ R, where the inequalities are strict as Z,W are not identically zero.

Thus the pair X + Zε and Y +Wε satisfy the assumptions in Lemma 9. We can then
find an independent random variable V ∈ LM (depending on ε), such that

X + Zε + V ≥1 Y +Wε + V.

Monotonicity and additivity of Φ then imply Φ(X)+Φ(Zε) ≥ Φ(Y )+Φ(Wε), after canceling
out Φ(V ). The desired result Φ(X) ≥ Φ(Y ) follows from the lemma below, which shows
that our perturbations only slightly affect the statistic value.

Lemma 14. For any Z ∈ LM with Z ≥ 0, it holds that Φ(Zε) → 0 as ε → 0. Similarly
Φ(Wε)→ 0 for any W ∈ LM with W ≤ 0.

Proof. We focus on the case for Zε. Suppose for contradiction that Φ(Zε) does not converge
to zero. Note that as ε decreases, Zε decreases in first-order stochastic dominance. So
Φ(Zε) ≥ 0 also decreases, and non-convergence must imply there exists some δ > 0 such
that Φ(Zε) > δ for every ε > 0. Let µε be image measure of Zε. We now choose a sequence
εn that decreases to zero very fast, and consider the measures

νn = µ∗nεn ,

which is the n-th convolution power of µεn . Thus the sum of n i.i.d. copies of Zεn is a
random variable whose image measure is νn. We denote this sum by Un.

For each n we choose εn sufficiently small to satisfy two properties: (i) εn ≤ 1
n2 , and

(ii) it holds that
E
[
enUn − 1

]
≤ 2−n.

This latter inequality can be achieved because E
[
enUn

]
=
(
E
[
enZεn

])n
, and as εn → 0 we

also have E
[
enZεn

]
= 1− εn + εnE

[
enZ

]
→ 1 since Z ∈ LM .

For these choices of εn and corresponding Un, let Hn(x) denote the c.d.f. of Un, and
define H(x) = infnHn(x) for each x ∈ R. Since Hn(x) = 0 for x < 0, the same is true for
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H(x). Also note that each Hn(x) is a non-decreasing and right-continuous function in x,
and so is H(x).

We claim that limx→∞H(x) = 1. Indeed, recall that Un is the n-fold sum of Zεn , which
has mass 1−εn at zero. So Un has mass at least (1−εn)n ≥ (1− 1

n2 )n ≥ 1− 1
n at zero. In other

words, Hn(0) ≥ 1− 1
n . By considering the finitely many c.d.f.s H1(x), H2(x), . . . ,Hn−1(x),

we can find N such that Hi(x) ≥ 1 − 1
n for every i < n and x ≥ N . Together with

Hi(x) ≥ Hi(0) ≥ 1− 1
i ≥ 1− 1

n for i ≥ n, we conclude that Hi(x) ≥ 1− 1
n whenever x ≥ N ,

and so H(x) ≥ 1− 1
n . Since n is arbitrary, the claim follows. The fact that Hn(x) ≥ 1− 1

n

also shows that in the definition H(x) = infnHn(x), the “inf” is actually achieved as the
minimum.

These properties of H(x) imply that it is the c.d.f. of some non-negative random
variable U . We next show U ∈ LM , i.e., E

[
eaU

]
< ∞ for every a ∈ R. Since U ≥ 0, we

only need to consider a ≥ 0. To do this, we take advantage of the following identity based
on integration by parts:

E
[
eaUn − 1

]
= −

∫
x≥0

(eax − 1) d(1−Hn(x)) = a

∫
x≥0

eax(1−Hn(x)) dx.

Now recall that we chose Un so that E
[
enUn − 1

]
≤ 2−n. So E

[
eaUn − 1

]
≤ 2−n for every

positive integer n ≥ a. It follows that the sum
∑∞
n=1 E

[
eaUn − 1

]
is finite for every a ≥ 0.

Using the above identity, we deduce that

a

∫
x≥0

eax
∞∑
n=1

(1−Hn(x)) dx <∞,

where we have switched the order of summation and integration by the Monotone Conver-
gence Theorem. Since H(x) = minnHn(x), it holds that 1−H(x) ≤

∑∞
n=1(1−Hn(x)) for

every x. And thus
E
[
eaU − 1

]
= a

∫
x≥0

eax(1−H(x)) dx <∞

also holds. This proves U ∈ LM .
We are finally in a position to deduce a contradiction. Since by construction the c.d.f.

of U is no larger than the c.d.f. of each Un, we have U ≥1 Un and Φ(U) ≥ Φ(Un) by
monotonicity of Φ. But Φ(Un) = nΦ(Zεn) > nδ by additivity, so this leads to Φ(U) being
infinite. This contradiction proves the desired result.

D.4 Step 4: Functional Analysis

To complete the proof of Theorem 2, we also need to modify the functional analysis step
in our earlier proof of Theorem 1. One difficulty is that for an unbounded random variable
X, Ka(X) takes the value ∞ as a→∞. Thus we can no longer think of KX(a) = Ka(X)
as a real-valued continuous function on R.
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We remedy this as follows. Note first that if Φ is a monotone additive statistic defined
on LM , then it is also monotone and additive when restricted to the smaller domain of
bounded random variables. Thus Theorem 1 gives a probability measure µ on R ∪ {±∞}
such that

Φ(X) =
∫
R
Ka(X) dµ(a)

for all X ∈ L∞. In what follows, µ is fixed. We just need to show that this representation
also holds for X ∈ LM .

As a first step, we show µ does not put any mass on ±∞. Indeed, if µ({∞}) = ε > 0,
then for any bounded random variable X ≥ 0, the above integral gives Φ(X) ≥ ε ·max[X].
Take any Y ∈ LM such that Y ≥ 0 and Y is unbounded from above. Then monotonicity
of Φ gives Φ(Y ) ≥ Φ(min{Y, n}) ≥ ε · n for each n. This contradicts Φ(Y ) being finite.
Similarly we can rule out any mass at −∞.

The next lemma gives a way to extend the representation to certain unbounded random
variables.

Lemma 15. Suppose Z ∈ LM is bounded from below by 1 and unbounded from above,
while Y ∈ LM is bounded from below and satisfies lima→∞

Ka(Y )
Ka(Z) = 0, then

Φ(Y ) =
∫

(−∞,∞)
Ka(Y ) dµ(a).

Proof. Given the assumptions, Ka(Z) ≥ 1 for all a ∈ R, with lima→∞Ka(Z) = ∞.
Let LZM be the collection of random variables X ∈ LM such that X is bounded from
below, and lima→∞

Ka(X)
Ka(Z) exists and is finite. LZM includes all bounded X (in which case

lima→∞
Ka(X)
Ka(Z) = 0), as well as Y and Z itself. LZM is also closed under adding independent

random variables.
Now, for each X ∈ LZM , we can define

KX|Z(a) = Ka(X)
Ka(Z) ,

which reduces to our previous definition of KX(a) when Z is the constant 1. This function
KX|Z(a) extends by continuity to a = −∞, where its value is min[X]

min[Z] , as well as to a =∞
by definition of LZM . Thus KX|Z(·) is a continuous function on R.

Since Φ induces an additive statistic when restricted to LZM , and KX|Z + KY |Z =
KX+Y |Z , we have an additive functional F defined on L = {KX|Z : X ∈ LZM}, given by

F (KX|Z) = Φ(X)
Φ(Z) .

Because Z ≥ 1 implies Φ(Z) ≥ 1, F is well-defined, and F (1) = 1. By Lemma 13, F is
also monotone in the sense that KX|Z(a) ≥ KY |Z(a) for each a ∈ R implies F (KX|Z) ≥
F (KY |Z).
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Likewise we can show F is 1-Lipschitz. Note that KX|Z(a) ≤ KY |Z(a) + m
n is equivalent

to Ka(X) ≤ Ka(Y ) + m
nKa(Z) and equivalent to Ka(X∗n) ≤ Ka(Y ∗n + Z∗m), where we

use the notation X∗n to denote the sum of n i.i.d. copies of X. If this holds for all a, then
by Lemma 13 we also have Φ(X∗n) ≤ Φ(Y ∗n + Z∗m), and thus Φ(X) ≤ Φ(Y ) + m

n Φ(Z) by
additivity. An approximation argument shows that for any real number ε > 0, KX|Z(a) ≤
KY |Z(a) + ε for all a implies Φ(X) ≤ Φ(Y ) + εΦ(Z). Thus the functional F is 1-Lipschitz.

Given these properties, we can exactly follow the proof of Theorem 1 to extend the
functional F to be a positive linear functional on the space of all continuous functions
over R (the majorization condition is again satisfied by constant functions, as KZ|Z = 1).
Therefore, by the Riesz Representation Theorem, we obtain a probability measure µZ on
R such that for all X ∈ LZM ,

Φ(X)
Φ(Z) =

∫
R

Ka(X)
Ka(Z) dµZ(a).

In particular, for any X bounded from below such that lima→∞
Ka(X)
Ka(Z) = 0, it holds

that
Φ(X) =

∫
[−∞,∞)

Ka(X) · Φ(Z)
Ka(Z) dµZ(a),

where we are able to exclude ∞ from the range of integration (this is useful below).
If we define the measure µ̂Z by dµ̂Z

dµZ (a) = Φ(Z)
Ka(Z) ≤ Φ(Z), then since Ka(X) is finite for

a <∞, we have
Φ(X) =

∫
[−∞,∞)

Ka(X) dµ̂Z(a).

This in particular holds for all bounded X, so plugging in X = 1 gives that µ̂Z is a
probability measure. But now we have two probability measures µ and µ̂Z on R that lead
to the same integral representation for bounded random variables, so Lemma 5 implies
that µ̂Z coincides with µ and is supported on the standard real line. Plugging in X = Y

in the above display then yields the desired result.

The next lemma further extends the representation:

Lemma 16. For every X ∈ LM that is bounded from below,

Φ(X) =
∫

(−∞,∞)
Ka(X) dµ(a).

Proof. It suffices to consider X that is unbounded from above. Moreover, without loss
we can assume X ≥ 0„ since we can add any constant to X. Given the previous lemma,
we just need to construct Z ≥ 1 such that lima→∞

Ka(X)
Ka(Z) = 0. Note that E

[
eaX

]
strictly

increases in a for a ≥ 0. This means we can uniquely define a sequence a1 < a2 < · · ·
by the equation E

[
eanX

]
= en. This sequence diverges as n → ∞. We then choose any

increasing sequence bn such that bn > n and anbn > 2n2.
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Consider the random variable Z that is equal to bn with probability e−
anbn

2 for each n,
and equal to 1 with remaining probability. To see that Z ∈ LM , we have

E
[
eaZ

]
≤ ea +

∞∑
n=1

e−
anbn

2 · eabn = ea +
∞∑
n=1

e(a−an2 )·bn .

For any fixed a, an
2 is eventually greater than a + 1. This, together with the fact that

bn > n, implies the above sum converges.
Moreover, for any a ∈ [an, an+1), we have

E
[
eaZ

]
≥ E

[
eanZ

]
≥ P[Z = bn] · eanbn ≥ e

anbn
2 > en2

,

whereas E
[
eaX

]
≤ E

[
ean+1X

]
≤ en+1. Thus

Ka(X)
Ka(Z) =

logE
[
eaX

]
logE [eaZ ] ≤

n+ 1
n2 ,

which converges to zero as a (and thus n) approaches infinity.

D.5 Step 5: Wrapping Up

By a symmetric argument, the representation Φ(X) =
∫

(−∞,∞)Ka(X) dµ(a) also holds for
all X bounded from above. In the remainder of the proof, we will use an approximation
argument to generalize this to all X ∈ LM . We first show a technical lemma:

Lemma 17. The measure µ is supported on a compact interval of R.

Proof. Suppose not, and without loss assume the support of µ is unbounded from above.
We will construct a non-negative Y ∈ LM such that Φ(Y ) =∞ according to the integral
representation. Indeed, by assumption we can find a sequence 2 < a1 < a2 < · · · such
that an → ∞ and µ([an,∞)) ≥ 1

n for all large n. Let Y be the random variable that
equals n with probability e−

an·n
2 for each n, and equals 0 with remaining probability. Then

similar to the above, we can show Y ∈ LM . Moreover, E
[
eanY

]
≥ e

an·n
2 , implying that

Kan(Y ) ≥ n
2 . Since Ka(Y ) is increasing in a, we deduce that for each n,∫

[an,∞)
Ka(Y ) dµ(a) ≥ Kan(Y ) · µ([an,∞)) ≥ n

2 ·
1
n

= 1
2 .

The fact that this holds for an →∞ contradicts the assumption that Φ(Y ) =
∫

(−∞,∞)Ka(Y ) dµ(a)
is finite.

Thus we can take N sufficiently large so that µ is supported on [−N,N ]. To finish
the proof, consider any X ∈ LM that may be unbounded on both sides. For each positive
integer n, let Xn = min{X,n} denote the truncation of X at n. Since X ≥1 Xn, we have

Φ(X) ≥ Φ(Xn) =
∫

[−N,N ]
Ka(Xn) dµ(a)
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Observe that for each a ∈ [−N,N ], Ka(Xn) converges to Ka(X) as n→∞. Moreover, the
fact that Ka(Xn) increases both in n and in a implies that for all a and all n,

|Ka(Xn)| ≤ max{|Ka(X1)|, |Ka(X)|} ≤ max{|K−N (X1)|, |KN (X1)|, |K−N (X)|, |KN (X)|}.

As Ka(Xn) is uniformly bounded, we can apply the Dominated Convergence Theorem to
deduce

Φ(X) ≥ lim
n→∞

∫
[−N,N ]

Ka(Xn) dµ(a) =
∫

[−N,N ]
Ka(X) dµ(a).

On the other hand, if we truncate the left tail and consider X−n = max{X,−n}, then a
symmetric argument shows

Φ(X) ≤ lim
n→∞

∫
[−N,N ]

Ka(X−n) dµ(a) =
∫

[−N,N ]
Ka(X) dµ(a).

Therefore for all X ∈ LM it holds that

Φ(X) =
∫

[−N,N ]
Ka(X) dµ(a).

This completes the entire proof of Theorem 2.

E Omitted Proofs for Section 4

E.1 Proof of Proposition 5

The result can be derived as a corollary of Proposition 6 which we prove below, but we also
provide a direct proof here. We focus on the “only if” direction because the “if” direction
follows immediately from the monotonicity of Ka(X) in a. Suppose µ is not supported
on [−∞, 0], we will show that the resulting monotone additive statistic Φ does not always
exhibit risk aversion. Since µ has positive mass on (0,∞], we can find ε > 0 such that
µ assigns mass at least ε to (ε,∞]. Now consider a gamble X which is equal to 0 with
probability n−1

n and equal to n with probability 1
n , for some large positive integer n. Then

E [X] = 1 and Ka(X) ≥ min[X] = 0 for every a ∈ R. Moreover, for a ≥ ε we have

Ka(X) ≥ Kε(X) = 1
ε

log
(
n− 1
n

+ 1
n

eεn
)
≥ n

2
whenever n is sufficient large. Thus

Φ(X) =
∫
R
Ka(X) dµ(a) ≥

∫
[ε,∞]

Ka(X) dµ(a) ≥ n

2 ε.

We thus have Φ(X) > 1 = E [X] for all large n, showing that the preference represented by
Φ sometimes exhibits risk seeking.

Symmetrically, if µ is not supported on [0,∞], then Φ must sometimes exhibit risk
aversion (by considering X equal to 0 with probability 1

n and equal to n with probability
n−1
n ). This completes the proof.
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E.2 Proof of Proposition 6

We first show that conditions (i) and (ii) are necessary for
∫
RKa(X) dµ1(a) ≤

∫
RKa(Y ) dµ2(a)

to hold for every X. This part of the argument closely follows the proof of Lemma 5.
Specifically, by considering the same random variables Xn,b as defined there, we have the
key equation (11). Since the limit on the left-hand side is smaller for µ1 than for µ2, we
conclude that for every b > 0,

∫
[b,∞]

a−b
a dµ1(a) on the right-hand side must be smaller than

the corresponding integral for µ2. Thus condition (i) holds, and an analogous argument
shows condition (ii) also holds.

To complete the proof, it remains to show that when conditions (i) and (ii) are satisfied,∫
R
Ka(X) dµ1(a) ≤

∫
R
Ka(X) dµ2(a)

holds for every X. Since µ1 and µ2 are both probability measures, we can subtract E [X]
from both sides and arrive at the equivalent inequality∫

R 6=0
(Ka(X)− E [X]) dµ1(a) ≤

∫
R 6=0

(Ka(X)− E [X]) dµ2(a). (20)

Note that we can exclude a = 0 from the range of integration because Ka(X) = E [X]
there. Below we show that condition (i) implies∫

(0,∞]
(Ka(X)− E [X]) dµ1(a) ≤

∫
(0,∞]

(Ka(X)− E [X]) dµ2(a). (21)

Similarly, condition (ii) gives the same inequality when the range of integration is [−∞, 0).
Adding these two inequalities would yield the desired comparison in (20).

To prove (21), we let LX(a) = a ·Ka(X) = logE
[
eaX

]
be the cumulant generating

function of X. It is well known that LX(a) is convex in a, with L′X(0) = E [X] and
lima→∞ L

′
X(a) = max[X]. Then the integral on the left-hand side of (21) can be calculated

as follows:∫
(0,∞]

(Ka(X)− E [X]) dµ1(a) =
∫

(0,∞)
(Ka(X)− E [X]) dµ1(a) + (max[X]− E [X]) · µ1({∞})

=
∫

(0,∞)
(LX(a)− aE [X]) dµ1(a)

a
+ (max[X]− E [X]) · µ1({∞})

Note that since the function g(a) = LX(a)− aE [X] satisfies g(0) = g′(0) = 0, it can be
written as

g(a) =
∫ a

0
g′(t) dt =

∫ a

0

∫ t

0
g′′(b) dbdt =

∫ a

0
g′′(b) · (a− b) db.
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Plugging back to the previous identity, we obtain∫
(0,∞]

(Ka(X)− E [X]) dµ1(a)

=
∫

(0,∞)

∫ a

0
L′′X(b) · (a− b) dbdµ1(a)

a
+ (max[X]− E [X]) · µ1({∞})

=
∫ ∞

0
L′′X(b)

∫
[b,∞)

(a− b) dµ1(a)
a

db+ (L′X(∞)− L′X(0)) · µ1({∞})

=
∫ ∞

0
L′′X(b)

∫
[b,∞)

a− b
a

dµ1(a) db+
∫ ∞

0
L′′X(b) · µ1({∞}) db

=
∫ ∞

0
L′′X(b)

∫
[b,∞]

a− b
a

dµ1(a) db,

where the last step uses a−b
a = 1 when a =∞ > b.

The above identity also holds when µ1 is replaced by µ2. We then see that (21) follows
from condition (i) and L′′X(b) ≥ 0 for all b. This completes the proof.

E.3 Proof of Theorem 5

The “if” direction is straightforward: if �1 and �2 are both represented by a monotone
additive statistic Φ, then they satisfy responsiveness and continuity. In addition, combined
choices are not stochastically dominated because if X �1 X

′ and Y �2 Y
′ then Φ(X) >

Φ(X ′) and Φ(Y ) > Φ(Y ′). Thus Φ(X+Y ) > Φ(X ′+Y ′) and X ′+Y ′ cannot stochastically
dominate X + Y .

Turning to the “only if” direction, we suppose �1 and �2 satisfy the axioms. We
first show that these preferences are the same. Suppose for the sake of contradiction that
X �1 Y but Y �2 X for some X,Y . Then by continuity, there exists ε > 0 such that
Y �2 X + ε. By responsiveness, we also have X �1 Y � Y − ε

2 . Thus X �1 Y − ε
2 ,

Y �2 X + ε, but X +Y is strictly stochastically dominated by Y − ε
2 +X + ε = X +Y + ε

2 ,
contradicting Axiom 4.2.

Henceforth we denote both �1 and �2 by �. We next show that for any X and
any ε > 0, max[X] + ε � X � min[X] − ε. To see why, suppose for contradiction that
X is weakly preferred to max[X] + ε (the other case can be handled similarly). Then
we obtain a contradiction to Axiom 4.2 by observing that X � max[X] + ε

2 ,
ε
4 � 0 but

X + ε
4 <1 max[X] + ε

2 + 0.
Given these upper and lower bounds for X, we can define Φ(X) = sup{c ∈ R : c � X},

which is well-defined and finite. By definition of the supremum and responsiveness, for
any ε > 0 it holds that Φ(X)− ε ≺ X ≺ Φ(X) + ε. Thus by continuity, Φ(X) ∼ X is the
(unique) certainty equivalent of X.

It remains to show that Φ is a monotone additive statistic. For this we show that
X ∼ Y implies X + Z ∼ Y + Z for any independent Z. Suppose for contradiction that
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X + Z � Y + Z. Then by continuity we can find ε > 0 such that X + Z � Y + Z + ε. By
responsiveness, it also holds that Y + ε

2 � Y ∼ X. But the sum (X + Z) + (Y + ε
2) is

stochastically dominated by (Y + Z + ε) +X, contradicting Axiom 4.2.
Therefore, from X ∼ Φ(X) and Y ∼ Φ(Y ) we can apply the preceding result twice

to obtain X + Y ∼ Φ(X) + Y ∼ Φ(X) + Φ(Y ) whenever X,Y are independent, so that
Φ(X + Y ) = Φ(X) + Φ(Y ) is additive. Finally, we show Φ is monotone. Consider any
Y ≥1 X, and suppose for contradiction that X � Y . Then there exists ε > 0 such that
X � Y +ε. This leads to a contradiction since X � Y +ε, ε2 � 0, but X+ ε

2 is stochastically
dominated by Y + ε+ 0.

This completes the proof that both preferences �1 and �2 are represented by the same
certainty equivalent Φ(X), which is a monotone additive statistic.

F Monotone Additive Statistics and the Independence Axiom

In this appendix we discuss the classic independence axiom and what it implies for
preferences represented by monotone additive statistics.

Axiom F.1 (Independence). For all X,Y, Z and all λ ∈ (0, 1), X � Y implies XλZ �
YλZ.

Proposition 8. Suppose a preference � is represented by a monotone additive statistic
Φ(X) =

∫
RKa(X) dµ(a). Then � satisfies the independence axiom if and only if µ is a

point mass at some a ∈ R.

Proof. The “if” direction is relatively straightforward. If a = 0 then Φ(X) = E [X]. In this
case E [X] ≥ E [Y ] does imply

E [XλZ] = λE [X] + (1− λ)E [Z] ≥ λE [Y ] + (1− λ)E [Z] = E [YλZ].

If a > 0 then Φ(X) ≥ Φ(Y ) implies E
[
eaX

]
≥ E

[
eaY

]
and thus

λE
[
eaX

]
+ (1− λ)E

[
eaZ

]
≥ λE

[
eaY

]
+ (1− λ)E

[
eaZ

]
,

so that Φ(XλZ) ≥ Φ(YλZ). A similar argument applies to the case of a < 0. Finally it is
easy to see that max[X] ≥ max[Y ] implies max[XλZ] ≥ max[YλZ] and the same holds for
the minimum. So the above independence axiom holds for a = ±∞ as well.23

We turn to the “only if” direction of the result. By the independence axiom, whenever
c is a constant we have X � c implies Xλc � c and c � X implies c � Xλc. Therefore

23Note however that Φ(X) = max[X] or min[X] would violate a stronger form of independence that
additionally requires X � Y to imply XλZ � YλZ with strict preferences. This is related to the fact that
these extreme monotone additive statistics do not satisfy mixture continuity.
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X ∼ c implies Xλc ∼ c, which allows us to directly apply Lemma 7 from before. It remains
to show that independence rules out Φ(X) = βK−aβ(X) + (1 − β)Ka(1−β)(X) for some
β ∈ (0, 1) and a ∈ (0,∞].

Suppose Φ takes the above form. If a =∞ then Φ(X) = βmin[X] + (1− β) max[X]
for some β ∈ (0, 1). To see that it violates independence, choose X supported on 0 and

1
1−β , and Y = 1 so that Φ(X) = Φ(Y ). But with Z being a sufficiently large constant we
see that XλZ has the same maximum as YλZ, but a strictly smaller minimum. Hence
Φ(XλZ) < Φ(YλZ), contradicting independence.

If instead a ∈ (0,∞), then we can do a similar construction by choosing X and Y

such that Φ(X) > Φ(Y ) but K−aβ(X) < K−aβ(Y ). For example, let Y = 1, and let X be
supported on {0, k}, with P [X = k] = 1

k . Then

Kb(X) = 1
b

logE
[
1− 1

k
+ ebk

k

]
.

For k tending to infinity, Kb(X) tends to zero if b < 0, and to infinity if b > 0. Hence, for
k large enough, X and Y will have the desired property.

Now let Z = n where n is a large positive integer. Then

Kb(Yλn) = 1
b

logE
[
λE
[
ebY
]

+ (1− λ)ebn
]

Kb(Xλn) = 1
b

logE
[
λE
[
ebX

]
+ (1− λ)ebn

]
and so

Kb(Yλn)−Kb(Xλn) = 1
b

log

λE
[
ebY
]

+ (1− λ)ebn

λE [ebX ] + (1− λ)ebn

 .
It easily follows that for fixed λ ∈ (0, 1) and b,

lim
n→∞

Kb(Yλn)−Kb(Xλn) = 0 if b > 0;

lim
n→∞

Kb(Yλn)−Kb(Xλn) = Kb(Y )−Kb(X) if b < 0.

Thus, as n tends to infinity,

lim
n

Φ(Yλn)− Φ(Xλn)

= lim
n
β [K−aβ(Yλn)−K−aβ(Xλn)] + (1− β)

[
Ka(1−β)(Yλn)−Ka(1−β)(Xλn)

]
= β [K−aβ(Yλn)−K−aβ(Xλn)] > 0.

Therefore, for n large enough, we have found X and Y such that Φ(X) > Φ(Y ) but
Φ(Xλn) < Φ(Yλn). This implies X � Y but Xλn ≺ Yλn, which contradicts the indepen-
dence axiom and completes the proof of Proposition 8.
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F.1 Proof of Proposition 1

We now prove Proposition 1 as a corollary of Proposition 8. The first observation is that
under time invariance, strong stochastic dynamic consistency is equivalent to the following
property of the preference �:

Axiom F.2 (Strong Stochastic Stationarity). For every pair of time lotteries (x, T ), (y, S)
and every D ∈ L∞+ not necessarily independent, if (x, Td) � (y, Sd) for almost every
realization d of D, then (x, T +D) � (y, S +D).

Indeed, suppose strong stochastic dynamic consistency is satisfied, and (x, Td) � (y, Sd)
holds for almost every realization d of D. Then by time invariance (x, Td) �t+d (y, Sd) also
holds for almost every d. Strong stochastic dynamic consistency thus implies (x, T +D) �t
(y, S + D) and therefore strong stochastic stationarity. A similar argument shows that
conversely, strong stochastic stationarity also implies strong stochastic dynamic consistency.

For the “only if” direction of Proposition 1, suppose that � is an MSTP that satisfies
strong stochastic stationarity. Let �∗ denote the preference over random times induced by
� when fixing the payoff. That is, T �∗ S if and only if (x, T ) � (x, S) for any and every
x > 0.

Fix any X �∗ Y and any Z ∈ L∞+ , which can be considered as random times. For a
given λ ∈ (0, 1), choose D to be a random variable that is equal to either 0 or 1, with
probability λ and 1 − λ, respectively. Let X̃ be a random variable that conditioned on
D = 0 has the same distribution as X + 1, and conditioned on D = 1 has the same
distribution as Z. Likewise, let Ỹ be a random variable that conditioned on D = 0 has the
same distribution as Y + 1, and conditioned on D = 1 has the same distribution as Z.

By construction X̃D �∗ ỸD for every possible value of D, so by strong stochastic
stationarity X̃+D �∗ Ỹ +D must hold. But X̃+D has the same distribution as (XλZ)+1
while Ỹ +D has the same distribution as (YλZ) + 1, so (XλZ) + 1 �∗ (YλZ) + 1. Since
this is an MSTP, we deduce XλZ �∗ YλZ as the independence axiom requires.

Note that even though �∗ and the associated monotone additive statistic Φ are defined
only for non-negative bounded random variables, it can be extended to all of L∞ as shown
in the proof of Proposition 7. Given additivity, it is easy to see that the extension preserves
independence. So we can assume �∗ and Φ satisfy independence on L∞. This allows us to
apply Proposition 8 and deduce that Φ must have a point-mass mixing measure µ, which
proves the “only if” direction of Proposition 1.

As for the “if” direction, we need to verify that an MSTP represented by V (x, T ) =
u(x) · e−rKa(T ) does satisfy strong stochastic stationarity. First consider a = 0, in which
case the representation simplifies to u(x) · e−E[T ] with the normalization r = 1. If (x, Td) �
(y, Sd) for almost every d, then u(x) · e−E[Td] ≥ u(y) · e−E[Sd], which can be rewritten as
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E [Sd] − E [Td] ≥ log (u(y)/u(x)). Averaging across different realizations d, this implies
E [S] − E [T ] ≥ log (u(y)/u(x)), and thus E [S +D] − E [T +D] ≥ log (u(y)/u(x)). After
rearranging, this yields u(x) · e−E[T+D] ≥ u(y) · e−E[S+D]. So (x, T +D) � (y, S +D) as
demanded by strong stochastic stationarity.

Next consider a > 0. In this case we normalize r = a and adjust u accordingly, to
arrive at an equivalent representation V (x, T ) = u(x)/E

[
eaT

]
. From (x, Td) � (y, Sd) we

obtain u(x) · E
[
eaSd

]
≥ u(y) · E

[
eaTd

]
and thus

u(x) · E
[
ea(Sd+d)

]
≥ u(y) · E

[
ea(Td+d)

]
.

Averaging across different realizations d then yields u(x) · E
[
ea(S+D)

]
≥ u(y) · E

[
ea(T+D)

]
,

which after rearranging gives the desired conclusion V (x, T +D) ≥ V (y, S +D).
If instead a < 0, then we normalize r = −a and recover the usual EDU representation

V (x, T ) = u(x) · E
[
eaT

]
. Essentially the same argument as above applies to this case.

Finally consider a =∞, so that V (x, T ) = u(x) · e−max[T ] after normalizing r = 1. In
this case (x, Td) � (y, Sd) implies max[Sd]−max[Td] ≥ log (u(y)/u(x)), and thus

max[Sd + d]−max[Td + d] ≥ log (u(y)/u(x)) .

Let α = max[S+D] and c = log (u(y)/u(x)) be constants. Then the above implies that for
almost every realization d of D, Td + d ≤ α− c. Thus T +D ≤ α− c almost surely, which
gives max[S +D]−max[T +D] ≥ c. This implies V (x, T +D) ≥ V (y, S +D) as desired.

A similar argument applies to the case of a = −∞, completing the proof.
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