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Abstract

This paper considers a moral hazard problem where the agent can choose any

output distribution with a support in a given compact set. The agent’s effort-cost

is smooth and increasing in first-order stochastic dominance. To analyze this model,

we develop a generalized notion of the first-order approach applicable to optimization

problems over measures. We demonstrate each output distribution can be imple-

mented and identify those contracts that implement that distribution. These con-

tracts are characterized by a simple first-order condition for each output that equates

the agent’s marginal cost of changing the implemented distribution around that out-

put with its marginal benefit. Furthermore, the agent’s wage is shown to be increasing

in output. Finally, we consider the problem of a profit-maximizing principal and pro-

vide a first-order characterization of principal-optimal distributions.
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1 Introduction

Perhaps the most celebrated conclusion of the literature on moral hazard is that optimal

compensation schemes are designed to reward the agent for those output realizations that

are informative about the target level of effort (see, e.g., Holmström, 1979 and 2017).

Because larger outputs are not necessarily more informative than smaller ones, optimal

wage schemes are often non-monotone in output.1 These results are typically derived in

models in which the action space of the agent is restricted to be either a binary or a one-

dimensional set. In this paper, we put forward a model where the agent can flexibly choose

any output distribution and re-examine the aforementioned conclusions of the literature.

We demonstrate that, in such flexible models, optimal wage schemes are not motivated

by the informativeness of the output. Instead, they simply compensate the agent for his

marginal cost of choosing the target distribution. More precisely, optimal contracts are

constructed so that the target distribution satisfies a generalized first-order condition: the

marginal cost and marginal benefit of changing the probability of any given output must

be equal. Moreover, wage schemes are always increasing in output as long as the agent’s

cost of choosing a distribution is monotone in first-order stochastic dominance.

In the specific model of this paper, there is a single agent. After receiving a wage

contract, the agent can choose any output distribution with support in a given compact

subset of R+. The agent’s payoff is additively separable in her utility from wage and the

(effort-) cost associated with the selected distribution. Moreover, the agent has limited

liability, so the wage must be weakly positive. We make two assumptions about the costs

of output distributions. First, the cost is monotone in first-order stochastic dominance.

That is, if a distribution first-order stochastically dominates another one then it costs

more. Second, this cost is Gateaux differentiable. We explain the notion of Gateaux

differentiability in detail below. For most of our results, we do not need to specify the

principal’s preferences. Indeed, our main objective is to derive predictions regarding the

wage contracts that incentivize the agent.

To illustrate our model and results, considering the following example is useful.

Example 1. Suppose the agent can choose any distribution with support in {0, 1}.
The cost of choosing the distribution that specifies probability p of the output realization

one is c (p), where c is an increasing and convex function. The agent’s utility from wage

1To guarantee wages are increasing, the distributions available to the agent must satisfy the monotone

likelihood property.
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is given by the increasing function u : R+ → R.

The cost function of this example satisfies our monotonicity and smoothness assump-

tions whenever c is increasing and differentiable. For each distribution p∗, we next describe

those contracts that implement p∗. Fix a wage scheme w : {0, 1} → R+ and let m denote

the agent’s utility from w (0), that is, m = u (w (0)). When presented with w, the agent

maximizes pu (w (1)) + (1− p)m − c (p) with respect to p. The agent chooses p∗ if it

satisfies the corresponding first-order condition, that is,

u (w (1)) = c′ (p∗) +m. (1)

For each constant m, the previous equation characterizes a wage scheme that implements

p∗. The agent’s limited-liability constraint determines the smallest m for which such

a wage scheme is feasible. This observation suggests several implications. First, the

principal can implement any distribution p by a wage contract satisfying equation (1).

Second, unlike in the classical Holmström model, the cost-minimizing wage-scheme is

not motivated by the information content of the output. Instead, it simply equates the

agent’s marginal cost of a distribution with his marginal benefit. Third, the wage scheme

is always weakly increasing on the support of the implemented distribution.2 Our paper

demonstrates that all these results generalize to any flexible moral hazard problem as

long as the aforementioned two assumptions, monotonicity and smoothness, are satisfied.

Our first main result is that any distribution can be implemented by an appropriate

wage schedule. The key to this result is to develop a notion of the first-order approach

based on Gateaux differentiability. Roughly speaking, Gateaux differentiability means

the difference between the cost of a given distribution, say, µ, and that of another nearby

distribution can be well approximated by the difference between the expectations of a

function, cµ, according to the two distributions. Moreover, the function cµ depends only

on the given distribution µ and it is called the Gateaux derivative of c at µ. We show

a wage scheme, w, implements a distribution µ∗, if the agent’s utility from wage is the

sum of the Gateaux derivative at µ∗ and a constant at each output realization, x, on the

support of the distribution and less elsewhere. That is,

u (w (x)) = cµ∗ (x) +m (2)

2If the wage is larger at 0 than at 1, the agent chooses p = 0, so the value 1 is not in the support of

the implemented distribution.
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for each x ∈ supp(µ∗). Note this equation generalizes equation (1) of the example. Intu-

itively, this condition guarantees the agent has no incentive to modify the target distribu-

tion µ∗ by relocating the probability mass across different output levels. The derivation

of equation (2) relies neither on the agent’s full flexibility of choosing a distribution nor

on the monotonicity of the associated costs. Indeed, it is a necessary condition for imple-

mentation as long as the agent can arbitrarily modify the target distribution locally and

his cost function is smooth around the target distribution.

We make two remarks related to equation (2). First, this condition does not have a

counterpart in standard moral hazard models. If the agent cannot choose a distribution

flexibly, any change in effort has a global effect on the output distribution. Therefore, the

incentive constraint requires the agent’s expected utility gain from a different effort not

to exceed the associated marginal cost of effort (e.g., equation (6) in Holmström, 1979).

This, however, is an ex ante constraint that involves taking expectations according to

the target distribution. In sharp contrast, the agent in our model can modify the target

distribution around any given output without affecting it elsewhere. Consequently, there

is an incentive constraint for each output, see equation (2). Each such constraint requires

the agent’s marginal benefit from increasing the likelihood of a given output to be the

same as the marginal cost of doing so. Our second and related remark is that equation (2)

implies that for each distribution µ, the incentive compatibility requirement determines

the wage scheme that implements µ up to a constant. In a sense, this trivializes the

principal’s problem of identifying the optimal (cost-minimizing) wage contract among the

incentive compatible ones: the principal can choose only the aforementioned constant

which, in turn, is pinned down by the limited liability constraint.

We consider the main take-away from our analysis to be the observation that if the

agent can choose distributions flexibly, optimal wage contacts are not motivated by the

information content of the output. To explain this, recall that in moral hazard models,

incentive compatibility typically follows from ensuring local deviations are not profitable.

In standard problems, such deviations can change the relative likelihood of different out-

puts in a limited way, and informativeness is defined with respect to these limitations.

For example, when effort is one-dimensional, there is only one local deviation, and in-

formativeness of an output can be measured by the relative likelihood of that output

under the target distribution and under that deviation. By contrast, when the agent can

choose output distributions flexibly, he can use local deviations to manipulate the relative

likelihood of any collection of outputs in an arbitrary manner. Consequently, in flexible

4



moral hazard problems, there is no useful notion of informativeness around which one can

design the agent’s contract.3 Instead, incentive-compatible wage schemes must eliminate

the agent’s desire to re-allocate probability mass across outputs. To do so, the optimal

contract effectively reimburses the agent for the marginal cost of producing each output.

Let us now turn our attention to the monotonicity of the wage schemes. Recall

that in standard principal-agent models with hidden action, cost-minimizing wages are

monotone in output only under strong assumptions on the feasible output distributions,

namely, they must satisfy the monotone likelihood ratio property. By contrast, in our

flexible moral hazard model, the monotonicity of the wage scheme follows directly from

the agent’s incentives whenever the agent’s costs are monotone. More precisely, if a

wage scheme implements a certain distribution, this wage scheme is (weakly) increasing

over the outputs generated by that distribution. This result is a rather obvious and

can be explained as follows. Suppose the wage is larger at a small output level than at

other higher outputs. Then the agent would never choose a distribution that specifies

positive probability on those higher outputs. The reason is that the agent can modify

the distribution by moving the probability mass from those higher outputs to the low

output. On the one hand, this modification increases the agent’s expected wage, because

the wage conditional on the low output exceeds the wage conditional on any of those high

output levels. On the other hand, the modified distribution is first-order stochastically

dominated by the original one, so it is cheaper to the agent.

We conclude our analysis by considering the principal’s problem of finding the profit-

maximizing distribution and the corresponding optimal contract. To extend the afore-

mentioned first-order approach to the principal’s profit-maximization problem, we need

to make a stronger smoothness assumption. Roughly speaking, this assumption requires

the agent’s cost function to be twice differentiable. We then characterize the first-order

condition corresponding to the principal’s problem. Finally, we illustrate how this first-

order condition can be used to derive properties of the principal-optimal distribution. For

example, we provide sufficient conditions under which this distribution is degenerate.

3Of course, even in flexible models, observing output x indicates that the agent choice has x in its

support. The agent’s wage must be sufficiently low whenever the output is not in the support of the

target distribution. However, the information conveyed by observing x is not useful except in this very

limited way.
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Related Literature. First and foremost, our paper is related to the literature on

principal-agent problems under moral hazard (Mirrlees, 1976 and Holmström, 1979). In

the canonical model the principal offers a wage contract, and then the agent chooses a

(typically) one-dimensional action that determines the distribution of output. The opti-

mal contract is shaped by the information content of the output, as well as a trade-off

between incentives and insurance. See Holmström (2017) and Georgiadis (2022) for re-

views. Instead, the agent can choose any output distribution in our model.

As Example 1 highlights, more restrictive ways of enriching the standard moral hazard

model with flexible production have been studied before. An early instance is Holmstrom

and Milgrom (1987) who, among other things, consider a locally flexible model in which

both the principal and the agent have CARA utility functions and effort costs are mon-

etary.4 They show that the set of contracts implementing any interior distribution can

be parameterized by the agent’s certainty equivalent. A few more recent studies have

additively-separable costs and more general preferences, but impose other restrictions,

such as a finite output space, mean-measurable costs, or requiring costs to come from the

f -divergence family (e.g., Diamond, 1998; Mirrlees and Zhou, 2006; Bonham, 2021; Bon-

ham and Riggs-Cragun, 2023; Mattsson and Weibull, 2022).5 All of these papers derive a

version of the first order condition (2) for their setting. As mentioned above, this condi-

tion pins down the agent’s contract up to a constant. Hence, one could use these studies

to conclude that informativeness plays a diminished role in their specialized environments.

Our contribution to this literature is the general treatment of the flexible moral hazard

problem. Indeed, it is the generality of our model that allows us to conclude that flexible

production, rather than any specific restriction, is what results in the optimal contract’s

shape being determined by the agent’s incentives rather than the informativeness of the

output. Our generality also enables the analysis of various properties of interest, which

may be impeded by imposing particular structures on the underlying environment. This

is exemplified by the case of monotonicity, which can be studied in our model, but not by

4Hellwig (2007) extends Holmstrom and Milgrom’s (1987) analysis by allowing for boundary solutions.

He explicitly characterizes the optimal wage scheme, and shows it is non-decreasing in output.
5Another related paper within this vane is Hébert (2018), who studies security design by an en-

trepreneur who can flexible control output. That paper assumes risk neutrality and that costs belong to

the f -divergence family. A few other related papers consider models with partial flexibility. In particular,

Barron, Georgiadis, and Swinkels (2020) study a version of the Holmström (1979) model where the agent

can costlessly add risk to the realized output, whereas Palomino and Prat (2003) allows the agent to

control the first two moments of the output distribution.
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models with cost functions that either require it (e.g., mean-measurable costs) or exclude

it (such as with f -divergence). And, indeed, none of the existing models explore the

implications of monotonicity on the set of incentive compatible contracts.

Our paper is also related to the literature on robust contracting, see for example Car-

roll (2015), Carroll (2019) for a review, Antic (2022) and Antic and Georgiadis (2022).

Like our paper, this literature imposes only minimal restrictions on the technology avail-

able to the agent. Their premise, however, is that the principal has limited knowledge

regarding the technology and evaluates contracts according to the worst-case scenario. In

contrast, the agent’s cost of choosing any distribution is common knowledge in our model.

2 Model

There is an agent who can produce any output distribution with support in a compact

subset X of R+.
6 Throughout, we let x := min X and x̄ := max X denote the lowest

and highest possible outputs, respectively. Let M denote the set of Borel probability

measures on X. The agent’s payoff is additively separable in the utility from wage and

the effort cost of producing. The utility function from money, u : R+ → R, is strictly

increasing, continuous, unbounded and it is normalized so that u (0) = 0. The agent’s

cost of producing µ ∈ M is C(µ), where C : M → R+ is a weak*-continuous and

convex function. So, if the agent chooses µ ∈ M and receives wage w then his payoff is

u (w)− C (µ). Moreover, the agent is an expected-payoff maximizer.

Before the agent decides which distribution to produce, he receives a wage contract.

A wage contract is a measurable mapping from realized outputs to monetary compen-

sations. The agent has limited liability so every contract must specify weakly positive

wages. To ensure the agent’s payoff is well-defined, we also require the agent’s con-

tract to be bounded from above. Let W denote the set of such contracts, that is,

W = {w| w : X → R+, supw(X) < ∞}.
We next argue that assuming the convexity of C is without loss. Indeed, since the

agent may randomize, the cost of any distribution should be evaluated by the expected

cost of the cheapest randomization that generates it, resulting in a convex cost function.

We state two further assumptions on the cost of production. First, we assume that

6The output is assumed to be positive only for the sake of economic interpretation of our model. All

our results hold as long as X ⊆ R. As will become apparent, we can allow X to be unbounded if we

instead impose that the Gateaux derivative cµ is bounded for all µ.
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producing more in the sense of first-order stochastic dominance costs more.7

Assumption 1. (monotonicity) If the distribution µ first-order stochastically domi-

nates µ′ then C(µ) ≥ C(µ′).

Our second assumption ensures that the cost function is smooth.

Assumption 2. (smoothness) The function C is Gateaux differentiable, which

means that every µ admits a continuous function cµ : X → R such that

lim
ϵ↘0

1

ϵ

[
C(µ+ ϵ(µ′ − µ))− C(µ)

]
=

∫
cµ (x) (µ

′ − µ) (dx)

for all µ′ ∈ M. The function cµ is referred to as the (Gateaux) derivative of C.8

Let us make a few remarks regarding Assumption 2. First, if cµ is a derivative of C

at µ, then so is cµ + k for any constant k ∈ R. It is therefore without loss to normalize

cµ (x) = 0. Second, whenever Assumption 2 holds, Assumption 1 is equivalent to cµ being

increasing for all µ (see Cerreia-Vioglio, Maccheroni, and Marinacci, 2017, for example).

And third, when there are only n outputs, X = {x1, . . . , xn}, C becomes a mapping from

the n-dimensional simplex to R+. In this case, Assumption 2 is equivalent to the usual

notion of differentiability, and one can express cµ in terms of the partial derivatives of

C. More specifically, let C ′
i(µ) denote the partial derivative of C with respect to the

probability of output i at the distribution µ, and suppose x1 = x is the lowest output.

Then one can express the Gateaux derivative of C as cµ(xi) = C ′
i(µ)− C ′

1(µ).
9

Our goal is to analyze the set of those distributions which can be implemented and

characterize the wage contracts which implement them. More formally, for each w ∈ W,

the measure µ ∈ M is called w-incentive compatible (w-IC) if the agent finds it optimal

to produce µ after he receives the contract w. Note that if the wage contract is w and

the agent chooses µ ∈ M, then his payoff is

U(µ,w) =

∫
u ◦ w(x)µ (dx)− C(µ).

7If the agent can dispose output freely and privately, his effective cost function satisfies this mono-

tonicity property, see Innes (1990) for a discussion.
8Our definition of Gateaux differentiability comes from the decision-theory literature (e.g., Hong, Karni,

and Safra, 1987; Cerreia-Vioglio, Maccheroni, and Marinacci, 2017). Our results continue to hold if we

require cµ only to be measurable and bounded. One only needs to modify the proof of Corollary 2, since

the cited result of Cerreia-Vioglio, Maccheroni, and Marinacci (2017) no longer applies. Instead, one needs

to appeal to Lemma 3 (see appendix), which obtains a similar result for the case where cµ is bounded and

measurable.
9Consequently, when X is finite, Assumption 2 holds Lebesgue almost everywhere for all cost functions

(see Rockafellar, 1970, Theorem 25.4).
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So, the measure µ is w-IC if U(µ,w) = supµ′∈M U(µ′, w). We say µ is implementable

whenever it is w-IC for some w ∈ W.

We emphasize that for most of our results, we do not need both assumptions above. For

example, even if neither of these assumptions hold, the set of implementable distributions

is large.

Theorem 1 The set of distributions that are implementable is dense.

Proof. See the Appendix.

To prove the above theorem, we identify each measure in M with its corresponding

CDF. By equipping the set of CDFs with the L2-norm, we recast C as a convex and

lower-semicontinuous function over a Banach space. To conclude the proof, we show one

can implement every CDF at which the subdifferential of C is non-empty, a condition

which holds over a dense set of the cost function’s domain by the Brondsted-Rockafellar

theorem (Brøndsted and Rockafellar, 1965).

We conclude this section by providing an example for the agent’s cost function, C,

which satisfies our assumptions. We will use this example to illustrate many of our results

throughout the paper.

Example 2. Let c : X → R+ be an increasing and continuous function with c(x) = 0.

Furthermore, let K : R → R. be an increasing, convex, and differentiable function. If the

agent’s cost function is defined by

C(µ) = K

(∫
c(x) µ(dx)

)
, (3)

then it satisfies Assumptions 1 and 2. Indeed, by the Chain Rule, this function is Gateaux

differentiable, with the derivative given by

cµ(x) = K ′
(∫

c(y) µ(dy)

)
c(x). (4)

3 Main Results

3.1 Monotone Wages

Our first result establishes that the monotonicity of C (Assumption 1) implies the mono-

tonicity of any wage scheme on the support of the distribution it implements.
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Definition 1 The contract w ∈ W is µ-increasing if for all x ∈ X,

µ
({

x′ ∈ X : x < x′, w
(
x′
)
< w (x)

})
= 0.

That is, w is µ-increasing if for every x, the probability that µ generates a higher

output that gives the agent a lower wage is zero. We are ready to state our first result.

Proposition 1 If Assumption 1 holds and µ ∈ M is w-IC then w is µ-increasing.

The proof of the proposition is established along the same arguments described in

the Introduction. We show that if w is not µ-increasing, then the measure µ can be

modified by moving probability from high outputs at which the wage is low to a low

output realization at which the wage is high. This new measure is cheaper to the agent

and generates higher expected utility, that is, µ was not w-IC.

Proof. Suppose, by contradiction, that w is not µ-almost increasing. Then there exists

x ∈ X such that µ (Sx) > 0, where

Sx =
{
x′ ∈ X : x′ > x,w

(
x′
)
< w (x)

}
.

Let µ′ ∈ M be a modification of µ so that all the mass from the set Sx is moved to x.

Formally, for each Borel set A,

µ′ (A) =

{
µ (A\Sx) + µ (Sx) if x ∈ A,

µ (A\Sx) otherwise.

Since x < x′ for all x′ ∈ Sx and µ (Sx) > 0, it follows that µ strictly first-order stochasti-

cally dominates µ′. Finally, note that

U(µ,w) ≤
∫

u ◦ w(x)µ (dx)− C(µ′) <

∫
u ◦ w(x)µ′ (dx)− C(µ′) = U(µ′, w),

where the weak inequality follows from Assumption 1 and the fact that µ first-order

stochastically dominates µ′ and the strict inequality follows because w (x) > w (x′) for

each x′ ∈ Sx and µ (Sx) > 0. This inequality chain implies that U(µ,w) < supµ′∈M U(µ′, w),

that is, µ is not w-IC, a contradiction.

Note that Proposition 1 does not rule out that the agent’s wage is non-monotone over

outputs that never arise under the implemented distribution. Nevertheless, it turns out

that one can adjust the agent’s wage following those outputs so as to make it mono-

tone without impacting incentives. We refer the reader to the Appendix for the formal

statement and proof.
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3.2 Implementability

Next, we explore the consequences of Assumption 2. The following lemma develops a no-

tion of the first-order approach based on Gateaux differentiability. In particular, it proves

necessity and sufficiency of a first-order condition for maximization. The first-order ap-

proach is then applied to characterize the agent’s optimal distribution for a given wage

contract. In turn, this leads to our main result: each distribution can be implemented

and the corresponding wage scheme is determined by the aforementioned first-order con-

dition.10

To understand how the statement of the next lemma is related to the first-order

condition familiar from one-dimensional calculus, consider the problem of maximizing

vx − c(x) on [0, 1], where v ∈ R+, and c is a convex, differentiable function. Then

x∗ ∈ (0, 1) solves this problem if and only if it satisfies the first-order condition v = c′(x∗).

An equivalent way of stating it is that x∗ ∈ (0, 1) solves the problem if and only if x∗

also solves maxx∈[0,1][vx − c′(x∗)x]. In what follows, we generalize this latter condition

for Gateaux differentiable cost functions.

Lemma 1 For a bounded and measureable v : X → R, and µ∗ ∈ M,

µ∗ ∈ argmax
µ∈M

∫
v(x)µ (dx)− C(µ)

if, and only if

µ∗ ∈ argmax
µ∈M

∫
(v(x)− cµ∗(x))µ (dx) .

We note that the convexity of the function C plays a role only in the “if” part of the

proof. That is, the first-order condition would be necessary even if C was not convex.11

Proof. We first prove that the first order-condition is necessary. Fix any µ̃ ∈ M.

For all ϵ ∈ (0, 1), define µϵ := µ∗ + ϵ(µ̃ − µ∗), which is in the convex set M. If µ∗ ∈
argmaxµ∈M

[∫
v(x)µ (dx)− C(µ)

]
then

0 ≥ 1

ϵ

[∫
v(x) (µϵ − µ∗)(dx)

]
−1

ϵ
[C(µϵ)− C(µ∗)] =

∫
v(x) (µ̃−µ∗)(dx)−1

ϵ
[C(µϵ)− C(µ∗)]

10Recall that Theorem 1 only states that, absent Assumption 2, the set of implementable distributions

is dense.
11 We also note that an identical proof shows the lemma continues to hold if one replaces M with any

convex subset, M̄ ⊆ M.
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where the inequality follows from µ∗ being a maximizer and the equality is implied by the

definition of µϵ. Observe that, since C is Gateaux differentiable at µ∗, the last expression

of the previous displayed inequality chain converges to∫
[v(x)− cµ∗(x)] (µ̃− µ∗)(dx),

as ϵ goes to zero.

We now show that the first-order condition is sufficient when C is convex. To that

end, we first claim that

C(µ)− C(µ∗) ≥
∫

cµ∗(x) (µ− µ∗)(dx) (5)

holds for all µ. To prove this inequality, note that the convexity of C means that

1

ϵ
[C(µ∗ + ϵ(µ− µ∗))− C(µ∗)]

is decreasing in ϵ ∈ (0, 1). Letting (ϵn)n∈N be a decreasing sequence in (0, 1) converging

to zero, we have

C(µ)− C(µ∗) ≥ 1

ϵn
[C(µ∗ + ϵn(µ− µ∗))− C(µ∗)]

n→∞−−−→
∫

cµ∗ d(µ− µ∗).

Therefore, if µ∗ satisfies the first order condition, the following must hold for every µ:

0 ≥
∫

(v − cµ∗) (x) (µ− µ∗) (dx) ≥
∫

v(x) (µ− µ∗) (dx)− [C(µ)− C(µ∗)],

where the first inequality follows from the fact that µ∗ satisfies the first-order condition,

that is, µ∗ ∈ argmaxµ∈M
[∫

(v(x)− cµ∗(x))µ (dx)
]
. The second inequality is just (5).

Finally, the previous inequality chain implies µ∗ ∈ argmaxµ∈M
[∫

v(x)µ (dx)− C(µ)
]
.

Next, we apply the previous lemma to the agent’s problem of choosing a distribution.

To this end, for each µ ∈ M, let m∗(µ) = inf{m : minx∈X cµ(x) +m ≥ 0} and for each

m ≥ m∗(µ), define

wµ,m (x) := u−1 (cµ(x) +m) .

The next proposition states that the wage contract wµ,m implements µ for each m ≥ m∗.

Proposition 2 Suppose that C satisfies Assumption 2. Then, the measure µ ∈ M is

w-IC if, and only if,

w(x)

= wµ,m (x) if x ∈ Y,

≤ wµ,m (x) otherwise,

holds for some m ≥ m∗(µ) and some Y ⊆ X with µ(Y ) = 1.
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Proof. Observe that the agent’s objective,
∫
u ◦ w(x)µ (dx) − C(µ′), is concave and

Gateaux differentiable in µ′. Therefore, Lemma 1 implies that µ is w-IC if and only if µ

satisfies the agent’s first-order condition, that is, µ solves

max
µ′

∫
(u ◦ w(x)− cµ (x))µ

′ (dx) .

which is equivalent to [u ◦ w(x)− cµ(x)] ≤ supx∈X [u ◦ w(x)− cµ(x)] =: m holding with

equality µ-almost surely. The proposition follows from rearranging this inequality and

noting that u−1 is strictly increasing. Finally, note that m ≥ m∗(µ) must hold because

of limited liability.

We now show that the previous proposition implies that every µ ∈ M can be imple-

mented, and that the contract

w∗
µ := wµ,m∗(µ)

is a cost-minimizing contract among those that implement µ.12

Corollary 1 Suppose C satisfies Assumption 2, and fix any µ ∈ M. Then µ is w∗
µ-IC.

Moreover, for any other w ∈ W for which µ is w-IC, w ≥ w∗
µ holds µ-almost surely.

We point out that the cost-minimizing wage scheme implementing any µ is uniquely

determined µ-almost everywhere. For sets that arise with zero probability under µ, the

cost-minimizing contract can be defined arbitrarily as long as it is weakly smaller than

w∗
µ.

Proof. That µ is w∗
µ-IC follows immediately from Proposition 2. The same proposition

also implies that every w ∈ W for which µ is w-IC, there exists some m ≥ m∗ (µ) such

that w = wµ,m µ-almost surely. Since wµ,m (x) = u−1 (cµ(x) +m), m ≥ m∗ (µ), and u−1

is strictly increasing, it follows that wµ,m ≥ wµ,m∗(µ) = w∗
µ.

To conclude this section, we consider what happens when the cost function C satisfies

both Assumptions 1 and 2. We show that, in this case, w∗
µ is increasing, and so one can

obtain a more explicit characterization of a cost-minimizing contract.

Corollary 2 Suppose C satisfies Assumptions 1 and 2. Then,

w∗
µ (x) = u−1 (cµ (x)) .

12Note that w∗
µ is well-defined, because X is compact, cµ is continuous, and u is a continuous, un-

bounded, and strictly increasing function satisfying u(0) = 0.
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is a cost-minimizing contract among those that implement µ. Moreover, w∗
µ is increasing

everywhere.

Proof. We first note that Assumption 1 implies that cµ is increasing (see e.g., Cerreia-

Vioglio, Maccheroni, and Marinacci, 2017). Since u−1 is also increasing, u−1(cµ(x)+m) ≥
0 if and only if this inequality holds at x = 0. Therefore, the normalizations, u(0) = 0

and cµ(x) = 0, imply that m∗
µ = 0. Consequently, w∗

µ(x) = u−1(cµ(x)) and this function

is increasing.

We now revisit the example of Section 2 and compute the cost-minimizing wage con-

tract for each distribution. We also show that in the special case where the agent’s

marginal cost is constant (i.e., cµ does not depend on µ), the cost-minimizing wage does

not depend on the implemented distribution.

Example 2. (continued.) Recall that the agent’s cost function is defined by (3)

and its Gateaux derivative is given by (4). Moreover, this cost function is monotone.

Therefore, an immediate consequence of the previous corollary is that, for each µ, the

cost minimizing wage is given by the following equation:

w∗
µ(x) = u−1

(
K ′
(∫

c(y) µ(dy)

)
c(x)

)
. (6)

This equation has some interesting implications in the special case where the agent’s

marginal cost is constant and equal to 1, that is, the function K is the identity function,

K(x) = x.

In this case K ′ = 1, and so equation (6) simplifies to w∗
µ(x) = u−1 (c(x)) for all output

distributions. In other words, this wage scheme is the cost-minimizing one for each dis-

tribution. Notice this contract results in the agent getting a net utility of zero regardless

of the output, since

u(w∗
µ(x))− c(x) = u(u−1 (c(x)))− c(x) = 0.

More generally, the above indifference holds whenever K is affine. For non-affine K, the

cost minimizing contract w∗
µ depends on µ through equation (4), and gives the agent

positive rents. To see why the agent’s rents are positive, suppose K(0) = 0, which is

without loss (one can always subtract K(0) from K without changing the analysis). For

every distribution µ, let Iµ :=
∫
cµ(x) µ(dx). Then the agent’s expected utility from

14



distribution µ under the contract w∗
µ defined in equation (4) can be written as∫

u(w∗
µ(x)) µ(dx)− C(µ) = K ′(Iµ)Iµ −K (Iµ) =

∫ Iµ

0

[
K ′(Iµ)−K ′(z)

]
dz,

which is strictly larger than zero whenever K is non-affine on the interval [0, Iµ].

4 Profit Maximization

In this section, we turn our attention to the principal’s problem of finding the profit-

maximizing distribution and the corresponding contract. We assume the principal’s payoff

is x − w if output is x and she pays wage w to the agent, and that she is an expected

payoff-maximizer. We first make a further assumption on the cost function C which

roughly requires it to be twice differentiable. Then we show that a consequence of this

assumption is that the principal’s profit as a function of the implemented distribution µ

is also Gateaux differentiable, and characterize a first-order condition corresponding to

the principal’s problem. Finally, we illustrate how this first-order condition can be used

to make meaningful statements about the principal-optimal distribution and contract.

Let us now state the aforementioned assumption which essentially requires the Gateaux

derivative of C to be Gateaux differentiable.

Assumption 3. The cost function is Gateaux differentiable, with µ 7→ cµ(·) being

weak*-to-supnorm continuous. Moreover, for every µ, a continuous function hµ : X×X →
R exists such that for all µ̃ ∈ M,

lim
ϵ↘0

1

ϵ

[
cµ+ϵ(µ̃−µ)(·)− cµ(·)

]
=

∫
hµ (·, y) (µ̃− µ) (dy) ,

where convergence is according to the sup norm, ∥ · ∥∞.

We now describe the problem of a profit-maximizing principal. In order to maxi-

mize her profit, the principal chooses an output distribution and a wage contract which

implements it. Formally, the principal’s program can be written as

max
µ∈M,w∈W

∫
[x− w(x)]µ(dx), subject to µ is w-IC.

Of course, if a pair (µ,w) solves this problem then the wage scheme w is cost-minimizing

among those that implement µ. For each µ ∈ M, let W (µ) be the expected cost-

minimizing wage implementing µ.13 Then, the principal’s program can be rewritten

13Recall that, by Corollary 2, W (µ) =
∫
[w∗

µ(x)]µ(dx).
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as

max
µ∈M

[∫
x µ(dx)−W (µ)

]
. (7)

We call a distribution µ∗ principal-optimal, if it solves this maximization problem.

We aim to provide a partial characterization of a principal-optimal distribution in

two steps. First, we compute the Gateaux derivative of the function W . And second, we

appeal to Lemma 1 to derive a necessary first-order condition for µ to be principal-optimal.

To this end, suppose u is a continuously differentiable function with a strictly positive

derivative, and define the function κ∗µ : X → R as follows

κ∗µ (x) =

∫
hµ (y, x)

u′
(
w∗
µ(y)

) µ (dy) .

To interpret κ∗µ, note that hµ(y, x) represents the change in the marginal cost of producing

output y associated with a slight increase in the probability of output x. Multiplying

hµ(y, x) by the ratio 1/u′(w∗
µ(y)) converts the change in the agent’s marginal cost to

a change in the agent’s monetary wage. Thus, κµ(x) gives the marginal change in the

agent’s expected compensation associated with an increase in the probability of output

x.

The next theorem describes the Gateaux derivative of the principal’s expected-wage

payments under the cost-minimizing contract as a function of the induced output distri-

bution.

Lemma 2 Suppose C satisfies Assumptions 1 and 3 and u is a continuously differen-

tiable function with a strictly positive derivative. Then the function W is continuous and

Gateaux differentiable with derivative

w∗
µ (x) + κ∗µ (x) .

Each term in the Gateaux derivative, w∗
µ(x) + κ∗µ(x), expresses a different force that

impacts the principal’s expected payments when she shifts the implemented output distri-

bution away from µ. The first term, w∗
µ(x), is the wage the agent receives when generating

an output of x. The second term, κ∗µ(x), expresses the impact on the agent’s expected

compensation due to the change in the cost-minimizing contract that arises from changing

the probability of output x.

We are now ready to characterize the first-order condition describing a principal-

optimal distribution. Recall that Lemma 1 developed a first-order approach for a class
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of maximization problems. Substituting v(x) = x and C(µ) = W (µ) into the statement

of the lemma, and noting that W is Gateaux differentiable (by Lemma 2), it becomes

clear that the “if” part of the statement of Lemma 1 is applicable to the principal’s

profit maximization problem (7). Since W may not be convex, the “only if” part is not

applicable, so the following theorem provides only a necessary condition for optimality.

Theorem 2 Suppose C satisfies Assumptions 1 and 3, and that u is a continuously

differentiable function with a strictly positive derivative. Then, a principal-optimal µ∗

exists and

suppµ∗ ⊆ argmax
x∈X

[πµ∗(x)] , (8)

where πµ(x) := x− w∗
µ (x)− κ∗µ (x) .

Proof. Note that, by Lemma 2, the principal’s objective function in (7) is continuous.

Since the domain M is compact, the existence of a principal-optimal distribution follows.

As mentioned above, equation (8) is implied by the “if” part of the statement by Lemma 1.

Let us return to Example 2 to illustrate how to compute the derivative of the princi-

pal’s expected profit for each distribution.

Example 2.(continued.) Recall that C is given by (3) and that we have already char-

acterized w∗
µ in equation (6). By the previous theorem, in order to derive the derivative

of the principal’s expected profit, it remains to compute κ∗µ. To this end, assume that K

is twice continuously differentiable. Then C also satisfies Assumption 3, where

hµ(x, y) = K ′′
(∫

c(z) µ(dz)

)
c(x)c(y).

Furthermore, whenever u is a continuously differentiable with a strictly positive derivative,

κ∗µ(x) = K ′′
(∫

c(z)µ(dz)

)[∫
c(y)

u′
(
w∗
µ(y)

)µ(dy)] c(x). (9)

Let us now return to the general analysis and demonstrate that the condition in (8)

can be used to deduce properties of the principal’s optimal distribution and the corre-

sponding wage contract. Observe that this condition depends on the function πµ, which

we characterized in terms of the agent’s utility function u and cost function C. The next

corollary establishes relationships between the shape of πµ and the support of the optimal

distribution.
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Corollary 3 Suppose Assumptions 1 and 3 hold, X = [x, x], and that u is a continuously

differentiable function with a strictly positive derivative.

(i) If πµ is strictly quasiconcave for every µ with more than one output, the principal

optimal distribution has at most one output in its support.

(ii) If πµ is strictly quasiconvex for every µ that includes some non-extreme output

x ∈ (x, x̄) in its support, the principal optimal distribution is supported on {x, x̄}.

(iii) If wµ+κµ is a non-affine analytic function whenever µ is not discrete, the principal

optimal distribution is discrete.

Proof. As explained above, if µ is principal optimal, it must be supported on the set of

outputs that maximize πµ. Part (i) then follows from observing that this set can have at

most one output whenever πµ is strictly quasiconcave. Part (ii) follows from noting that

a strictly quasiconvex function over a compact interval is maximized at the interval’s end

points. For Part (iii), observe that wµ + κµ being a non-affine analytic function means

the function x 7→ [πµ(x)−maxπµ(X)] is a non-zero analytical function. Therefore, by

the identity theorem, the set

argmax
x∈X

[πµ(x)] = {x ∈ X : πµ −maxπµ(X) = 0}

cannot have any accumulation points in (x, x̄). The conclusion follows.

Let us illustrate each part of the previous corollary by considering various specifica-

tions of Example 2.

Example 2.(continued.) Note that Theorem 2 implies the derivative of the principal’s

expected profit is πµ(x) = x−w∗
µ(x)− κ∗µ(x), where w∗

µ and κ∗µ are given by (6) and (9),

respectively. SupposeX is an interval, the agent is risk neutral, and u(x) = x, so u′(·) = 1.

Then if c is strictly convex, πµ is strictly concave (hence strictly quasiconcave), and so part

(i) implies it is always optimal to induce a single output. If c is strictly concave instead,

part (ii) implies the principal optimal distribution has at most two outputs, because πµ

is strictly (quasi-)convex. Finally, if we replace the convexity or concavity assumptions

with the postulate that c is a non-affine analytic function, the same holds for πµ, in which

case the principal optimal distribution must be discrete by part (iii).

Corollary 3 is particularly useful when either part (i) or part (ii) holds. In these cases,

the principal’s program reduces to a one dimensional optimization problem. To see this,
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suppose first that Corollary 3’s assumptions hold and that πµ is strictly quasiconcave for

every µ. By Corollary 3, the principal optimal distribution has only one output. Letting

δx be the distribution generating output x with probability 1, it follows that the principal

optimal output distribution must solve

max
x∈X

[x− wδx(x)] . (10)

Suppose now instead that πµ is strictly quasiconvex for every µ. Applying Corollary 4,

the principal optimal distribution takes the form µp := pδx̄+(1− p)δx for some p ∈ [0, 1],

and so one can write the principal’s problem as

max
p∈[0,1]

[
(1− p)x+ px̄− pwµp

(x̄)
]
.14 (11)

Hence, the principal’s problem reduces to finding the optimal probability p with which to

generate the highest output, just as in the binary output example.

Finally, we reconsider our running example with a risk-averse agent.

Example 2. (continued.) Suppose X = [0, x̄], c(x) = xγ , K(a) = a1+λ/(1 + λ), and

u(y) = yρ for γ, λ, and ρ all strictly positive, and ρ < 1. In this case, simple algebra

reveals that w∗
µ(x) equals a positive constant times xγ/ρ, whereas κ∗µ(x) is some positive

constant times xγ , with both constants being strictly positive whenever µ ̸= δ0. Hence, if

γ ≤ ρ, πµ(x) = x−(w∗
µ(x)+κ∗µ(x)) is strictly convex for all µ ̸= δ0, and so (by Corollary 3,

part (ii)) the optimal distribution takes the form µp = pδx̄ + (1 − p)δ0, where p solves

the program detailed in (11). If x̄ = 1, then wµp
(0) = 0 and wµp

(1) = pλ/ρ, and so the

principal’s program becomes

max
p∈[0,1]

[
p− p

λ+ρ
ρ

]
.

Clearly, the above objective is concave, and so one can solve for the optimal p using the

principal’s first order condition, the solution to which is

p∗ =

[
ρ

λ+ ρ

] ρ
λ

.

If γ ≥ 1 > ρ, πµ is strictly concave, and so part (i) of Corollary 3 implies the optimal

distribution induces a single output x∗, which is determined by the program in (10). The

objective in this program is given by x−x
γ
ρ
(1+λ)

. Since γ > ρ and λ > 0, this objective is

14Recall wµ(x) = u−1(cµ(x)) = u−1(0) = 0.
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strictly concave, and so the optimal x∗ is equal to the lower of x̄ and the solution to the

first order condition; that is, x∗ = min{x̄, [ρ/γ(1 + λ)]ρ/[γ(1+λ)−ρ]}.
Finally, if ρ < γ < 1, πµ is neither always concave nor always convex. However, it is

apparent that the function w∗
µ+κ∗µ is a non-affine analytical function whenever µ assigns

positive probability to any output strictly larger than 0. As such, one can apply part

(iii) of Corollary 3 to obtain that, in this case, the principal optimal distribution must be

discrete.

5 Conclusion

Our goal in this paper was to explore the consequences of the agent’s flexibility in gen-

erating output distributions in moral hazard problems. We emphasize that our model is

stylized and abstracts from many constraints agents may face in applications. We recog-

nize that, in practice, agents may have only limited flexibility of generating output. In

fact, some output distributions may not be feasible even if it is first-order stochastically

dominated by a feasible one. That is, such distributions would be infinitely costly, so,

even our monotonicity assumption would not necessarily hold.

We now discuss the degree to which our analysis applies to models where the agent

is restricted to using a convex set M̄ ⊆ M of distribution. As noted in footnote 11,

replacing M with M̄ does not alter the validity of Lemma 1. Therefore, one can still

use the lemma to characterize the wage-schemes that implement any given distribution

µ. The applicability of the the rest of our logic, however, depends on M̄ and the target

distribution µ. For example, for the results of Section 3, we only need local flexibility.15

Our logic also applies (with some minor modifications) to some cases without local flexi-

bility. For a demonstration, suppose the agent faces a lower bound on the probability of

each event.16 In this case, one can apply our logic by reformulating the problem: instead

of viewing the agent as choosing from a constrained set of distributions, think of the

agent as flexibly choosing how to allocate the excess probability above the lower bound.

With this formulation in hand, one can replicate our analysis with the obvious modifica-

tions. Nevertheless, there are many restrictions on which our analysis remains silent. For

instance, one cannot use our tools in most specifications of the Holmström (1979) model.

15That is, µ and M̄ must be such that for every distribution µ′ ∈ M, some ϵ > 0 exists for which

µ+ ϵ(µ′ − µ) ∈ M̄ is feasible.
16Specifically, there is some µ ∈ M and some b ∈ (0, 1) such that M̄ =

{
µ ∈ M : µ ≥ bµ

}
.
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Throughout the paper, we assumed the agent has limited liability. Instead, the lit-

erature on moral hazard often considers an outside option. In what follows, we explain

how our results change if contracts are subject to a participation constraint but the agent

has deep pockets.17 Recall that the characterization of incentive compatible contracts,

Proposition 2, does not depend on such constraints and it states that these contracts

differ only by a constant. The limited liability constraint then pinned down the value of

this constant at the cost-minimizing wage scheme, see Corollary 2. If the agent has an

outside option but no limited liability, then the constant is determined by the binding

participation constraint. Therefore, a key determinant of optimal contracts is still the

Gateaux derivative of the implemented distribution.

Our analysis is based on a generalized notion of the first-order approach. We demon-

strated that, unlike in the classical model, the cost-minimizing contract is not motivated

by the information content of the output regarding the target distribution. Instead, opti-

mal contracts are constructed so that the target distribution satisfies a simple first-order

condition which equates the agent’s marginal cost of changing the distribution locally

with its marginal benefit. We also showed that optimal wage contracts are monotone

whenever the agent’s cost function is increasing in first-order stochastic dominance. Fi-

nally, we applied our first-order approach to the principal’s profit maximization problem

and provided a partial characterization of principal-optimal output distributions.
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A Proofs Appendix

Proof of Theorem 1.

We begin with some notation. Let F̄ be the set of CDFs over X̄ = coX = [x, x̄],

endowed with the topology of convergence in distribution, and M̄ the set of Borel measures

over X̄, endowed with its weak* topology. It is well known that the mapping taking every

F ∈ F to its induced measure µF—i.e., the measure such that µF [0, x] = F (x) for all

x—is a linear homeomorphism between F̄ and M̄. By Theorem 1 of Wang (1993), F̄ can

be viewed as a subspace of the Banach space L2
(
X̄, λ

)
, where λ is the Lebesgue measure.

Let F be the set of CDFs whose support is contained in X, and define the function

Ĉ : L2
(
X̄, λ

)
→ R ∪ {∞}

ϕ 7→

C
(
µϕ

)
if ϕ ∈ F

∞ otherwise.

Given a CDF F ∈ F , define the subdifferential of Ĉ at F as

∂Ĉ (F ) =

{
ϕ ∈ L2

(
X̄, λ

)
: Ĉ (φ) ≥ Ĉ (F ) +

∫
ϕ (x) (φ− F ) (x)λ (dx) ∀φ ∈ L2

(
X̄, λ

)}
.

In general, ∂Ĉ might be empty. Let FI =
{
F ∈ F̄ : ∂Ĉ (F ) ̸= ∅

}
be the set of all CDFs

at which ∂Ĉ is non-empty. Since F is convex, and C is convex and continuous, it follows

Ĉ is convex and lower semicontinuous. Noting Ĉ is also proper, it follows from the

Brondsted-Rockafellar Theorem (Brøndsted and Rockafellar, 1965) that FI is dense in F .

Given µ ∈ M, define Fµ to be the CDF such that µFµ
= µ. To conclude the proof, we

argue µ is implementable whenever Fµ ∈ FI (observe this set is dense due to F and M
being homeomorphic). Indeed, let ϕ ∈ ∂Ĉ (Fµ), and define Φ (x) :=

∫ x
0 ϕ (x̃) dx̃, where

the integral is viewed as a Riemann-Stieltjes integral. Note

w (x) := u−1 (maxΦ (X)− Φ (x))

is well-defined because maxΦ (X)− Φ (x) ∈ u (R+) for all x. Then for every µ′ ∈ M,

C
(
µ′) = Ĉ

(
Fµ′
)
≥ Ĉ (Fµ) +

∫
ϕ (x)

(
Fµ′ − Fµ

)
(x) dx

= Ĉ (Fµ)−
∫ (

Fµ′ − Fµ

)
(x) Φ (dx)

= Ĉ (Fµ)−
∫

Φ (x)
(
Fµ′ − Fµ

)
(dx)

= C (µ) +

∫
(−Φ) (x)

(
µ′ − µ

)
(dx) ,
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where the inequality follows from ϕ ∈ ∂Ĉ (Fµ), and the penultimate equality follows from

integration by parts. Thus, we have

µ ∈ arg max
µ′∈M

∫
(−Φ) (x)µ′ (dx)− C

(
µ′)

= arg max
µ′∈M

∫
(maxΦ (X)− Φ) (x)µ′ (dx)− C

(
µ′)

= arg max
µ′∈M

∫
u (w (x))µ′ (dx)− C

(
µ′) ,

as required.

Proof of Lemma 2. Observe first that, by Corollary 2, W (µ) =
∫
[w∗

µ(x)]µ(dx). We

begin by showing that

µ 7→
∫

w∗
µ(x)µ(dx) =

∫
u−1 ◦ cµ(x)µ(dx)

is continuous. To this end, take any sequence (µn)n∈N that converges to some limit µ∞.

We first claim that

lim
n→∞

∥w∗
µn

− w∗
µ∞

∥∞ = 0. (12)

To prove this claim, fix some ϵ > 0, take T := [min cµ∞(X) − ϵ,max cµ∞(X) + ϵ], and

let S := u−1(T ) =
[
u−1

(
min cµ∞(X)− ϵ

)
, u−1

(
max cµ∞(X) + ϵ

)]
. Note that because

u has a continuous and strictly positive derivative, b̄ := mins∈S [u
′(s)] is well defined and

strictly positive, and so one can apply the Inverse Function Theorem to obtain that, for

all t ∈ T , du−1

dt (t) = 1
u′(u−1(t))

is well-defined, strictly positive, and bounded from above

by b̄. Therefore, the Mean Value Theorem implies that

|u−1(t)− u−1(t′)| ≤ b̄|t− t′| for all t, t′ ∈ T. (13)

To conclude the proof of the claim, fix some η < min{ϵ, ϵ/b̄}. By Assumption 3, an N ∈ N
exists such that ∥cµn

− cµ∞∥∞ < η for all n > N . Therefore, all such n, cµn
(x) must be

in T for all x ∈ X, and

∥w∗
µn

− w∗
µ∞

∥∞ = ∥u−1(cµn
)− u1(cµ∞)∥∞ ≤ b̄∥cµn

− cµ∞∥ ≤ b̄η < ϵ,

where the first inequality follows from (13), and the last from choice of η. Since ϵ was

arbitrary, we have proven the claim that (12) holds.
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Armed with (12) one can prove
∫
w∗
µ(x)µn(dx)

n→∞−−−→
∫
w∗
µ∞

(x)µ∞(dx) using the

following inequality chain:∣∣∣∣∫ w∗
µn
(x)µn(dx)−

∫
w∗
µ∞

(x)µ∞(dx)

∣∣∣∣ ≤ ∣∣∣∣∫ [w∗
µn
(x)− w∗

µ∞
(x)
]
µ∞(dx)

∣∣∣∣+ ∣∣∣∣∫ w∗
µ∞

(x)(µn − µ∞)(dx)

∣∣∣∣
+

∣∣∣∣∫ [w∗
µn
(x)− w∗

µ∞
(x)
]
(µn − µ∞)(dx)

∣∣∣∣
≤
∫ ∣∣∣w∗

µn
(x)− w∗

µ∞
(x)
∣∣∣µ∞(dx) +

∫ ∣∣∣w∗
µ∞

(x)
∣∣∣ (µn − µ∞)(dx)

+

∫ ∣∣∣w∗
µn
(x)− w∗

µ∞
(x)
∣∣∣ (µn − µ∞)(dx)

n→∞−−−→ 0,

where convergence of the first and third term follow from (12), and convergence of the

middle term following from µn → µ∞ and
∣∣∣w∗

µ∞
(·)
∣∣∣ being continuous.

Next, we prove that µ 7→
∫
w∗
µ(x)µ(dx) is a Gateaux differentiable function admitting

w∗
µ + κ∗µ(x) as its derivative. To this end, fix some µ̃ ∈ M, and let µϵ = µ + ϵ (µ̃− µ).

Observe

1

ϵ

[∫
w∗
µϵ

(x)µϵ (dx)−
∫

w∗
µ (x)µ (dx)

]
=

∫
w∗
µ (x) (µ̃− µ) (dx) +

∫
1

ϵ

[
w∗
µϵ

− w∗
µ

]
(x)µ (dx)

+

∫ [
w∗
µϵ

− w∗
µ

]
(x) (µ̃− µ) (dx) .

Since the last term converges to zero as ϵ ↘ 0 by continuity of w∗
µ, it is enough to show

that

lim
ϵ↘0

∫
1

ϵ

[
w∗
µϵ

− w∗
µ

]
(x)µ (dx) =

∫
κ∗µ(y) (µ̃− µ) (dy) .

We now argue that, to show the above equality, it is sufficient to find a function ϕ : X → R
that is integrable with respect to (µ̃− µ), and an ϵ̄ ∈ (0, 1) such that

∣∣∣w∗
µϵ

− w∗
µ

∣∣∣ ≤ ϕ for

all ϵ ∈ (0, ϵ̄). To see why, note limϵ↘0

∥∥cµϵ
(x)− cµ (x)

∥∥
∞ = 0 holds by Assumption 3,

and so

lim
ϵ↘0

(
u−1

(
cµϵ

(x)
)
− u−1 (cµ (x))

cµϵ
(x)− cµ (x)

)
=

1

u′ ◦ u−1 (cµ (x))
=

1

u′
(
w∗
µ(x)

) .
It follows that, for every x,

lim
ϵ↘0

1

ϵ

(
w∗
µϵ

(x)− w∗
µ (x)

)
= lim

ϵ↘0

1

ϵ

(
cµϵ

(x)− cµ (x)
)(u−1

(
cµϵ

(x)
)
− u−1 (cµ (x))

cµϵ
(x)− cµ (x)

)

=

∫
hµ (x, y)

u′
(
w∗
µ(x)

) (µ̃− µ) (dy) .
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Therefore, if a function ϕ as described above exists, the Lebesgue Dominated Convergence

Theorem would imply that

lim
ϵ↘0

∫
1

ϵ

[
w∗
µϵ

− w∗
µ

]
(x)µ (dx) =

∫
lim
ϵ↘0

1

ϵ

[
w∗
µϵ

− w∗
µ

]
(x)µ (dx)

=

∫
hµ (x, y)

u′
(
w∗
µ(x)

) (µ̃− µ) (dy)µ(dx)

=

∫
hµ (x, y)

u′
(
w∗
µ(x)

)µ(dx) (µ̃− µ) (dy) =

∫
κ∗µ(y) (µ̃− µ) (dy) ,

as required.

We now find such a ϕ. Fix some η > 0, and note that Assumption 3 implies there is

some ϵ̄ ∈ (0, 1) such that for all ϵ ∈ (0, ϵ̄) and all x,

∣∣cµϵ
(x)− cµ (x)

∣∣ ≤ ∣∣∣∣∫ hµ (x, y) (µ̃− µ) (dy)

∣∣∣∣+ η.

Let

c̄ = max
x∈X

[
cµ (x) +

∣∣∣∣∫ hµ (x, y) (µ̃− µ) (dy)

∣∣∣∣] ,
and take

b = max
y∈[0,c̄+η]

(
u−1

)′
(y) = max

y∈[0,c̄+η]

1

u′ ◦ u−1 (y)
,

which is finite and strictly positive, because u−1 is continuous and u′ is strictly positive

and continuous. Observe that, for every ϵ < ϵ̄, and every x, the Mean Value Theorem

implies there is some a ∈ co
{
cµ (x) , cµϵ

(x)
}
⊆ [0, c̄+ η] such that

u−1
(
cµϵ

(x)
)
− u−1 (cµ (x))

cµϵ
(x)− cµ (x)

=
(
u−1

)′
(a) ≤ b.

Therefore, for all ϵ < ϵ̄ and every x,∣∣∣∣1ϵ (w∗
µϵ

(x)− w∗
µ (x)

)∣∣∣∣ =
∣∣∣∣∣1ϵ (cµϵ

(x)− cµ (x)
)(u−1

(
cµϵ

(x)
)
− u−1 (cµ (x))

cµϵ
(x)− cµ (x)

)∣∣∣∣∣
≤ 1

ϵ

∣∣cµϵ
(x)− cµ (x)

∣∣ ∣∣∣∣∣u−1
(
cµϵ

(x)
)
− u−1 (cµ (x))

cµϵ
(x)− cµ (x)

∣∣∣∣∣
≤ b

ϵ

∣∣cµϵ
(x)− cµ (x)

∣∣ ≤ b

(∫
hµ (x, y) (µ̃− µ) (dy)

)
+ η.

Thus, setting ϕ (x) = η +
∫
bhµ (x, y) (µ̃− µ) (dy) gives the desired function. This con-

cludes the proof.
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Monotonicity of Gateaux Derivative. Next, we prove a result that is required for

generalizing Corollary 2 for the case in which Assumption 2 is relaxed to make cµ bounded

and measurable (see footnote 8 in the main text).

Lemma 3 Suppose C : M → R is such that, for every µ there is a bounded measurable

function cµ : [0, 1] → R and

lim
ϵ↓0

1

ϵ

[
C(µ+ ϵ(µ′ − µ))− C(µ)

]
=

∫
cµ (x) (µ

′ − µ) (dx)

for all µ′ ∈ M. If C also satisfies Assumption 1, then cµ is increasing.

Proof. Fix any y, z ∈ X such that y > z. Observe that, for any ϵ ∈ [0, 1], the distribution

µϵ,y := µ+ ϵ(δy − µ) first order dominates µϵ,z := µ+ ϵ(δz − µ), where δy and δz are the

distributions that respectively generate the outputs y and z for sure. We therefore obtain

the following inequality chain:

0 ≤ 1

ϵ

[
C(µϵ,y)− C(µϵ,z)

]
=

1

ϵ

[
C(µϵ,y)− C(µ)

]
+

1

ϵ

[
C(µ)− C(µϵ,z)

]
ϵ↘0−−→

∫
cµ(x)(δy − µ)(dx)−

∫
cµ(x)(δz − µ)(dx)

=

∫
cµ(x)(δy − δz)(dx) = cµ(y)− cµ(z).

The result follows.

Increasing Wages without Differentiability Proposition 1 shows that, under As-

sumption 1, (w, µ) is IC only if the wage w is µ-increasing. This result leaves open the

possibility that the wage is non-increasing in outputs that never arise under µ. Corol-

lary 2 shows one can close this gap if C also satisfies Assumption 2. In this part of the

Appendix closes this gap without using Assumption 2. Specifically, we prove the following

Theorem.

Theorem 3 Suppose (w, µ) is IC and C satisfies Assumption 1. Then a w̄ ∈ W exists

such that w̄ is increasing, w̄ = w µ-almost surely, and (w̄, µ) is IC.

Before proving the theorem, we present the following Lemma, which generalizes Propo-

sition 1. In what follows, all measurability statements are made with respect to the Borel

σ-algebra.
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Lemma 4 Suppose Assumption 1 holds and (w, µ) is IC. Let f : X → X be a measurable

function such that f(x) ≤ x for all x. Then w(x) ≥ w(f(x)) µ-almost surely.

Proof. By way of contradiction, suppose µ{x : w(x) < w(f(x))} > 0. Define

g(x) =

x if w(x) ≥ w(f(x)),

f(x) if w(x) < w(f(x)).

Note that w and f are measurable, and so g is measurable as well. Let ν := µ◦g−1 be the

push-forward measure of g—that is, for every Borel Y ⊂ X, ν(Y ) = µ(g−1(Y )). Since µ

first order stochastically dominates ν, C(ν) ≤ C(µ). Moreover,∫
w(x)(ν − µ)(dx) =

∫
(w(g(x))− w(x))µ(dx) > 0,

where the strict inequality follows from our contradiction assumption. Thus, we have that∫
w(x)ν(dx)− C(ν) >

∫
w(x)µ(dx)− C(µ),

which contradicts (w, µ) being IC.

Define the function w̄ : X → R+ via

w̄(x) := supw ({y ∈ X : y ≤ x}) .

Note w̄ is increasing, and therefore measurable. Moreover, because w is bounded, w̄ is

bounded as well.

Lemma 5 For every ν ∈ M and every ϵ > 0, a measurable function f : X → X exists

such that f(x) ≤ x for all x, and w ◦ f(x) ≥ [̄w(x)− ϵ] ν-almost surely.

Proof. Fix ϵ > 0. Define g1 : X ×X → R2 via g1(x, y) = (w̄(x), w(y)), and g2 : R2 → R
via g(a, b) = 1b≥(a−ϵ). Note g1 and g2 are both (Borel) measurable, and so h(x, y) =

g2 ◦ g1(x, y) is a measurable function from X ×X to R.
Define the correspondence H : X ⇒ X via

H(x) = {y : w(y) ≥ w̄(x)− ϵ} = {y : (x, y) ∈ h−1(1)}.

Notice that graph(H) = h−1(1), which is a measurable subset of X × X. Therefore, H

has a measurable graph. By Aliprantis and Border (2006), Corollary 18.26, a measurable

function f : X → X exists such that f(x) ∈ H(x) on a ν-almost sure set X̃ ⊂ X. Editing

f(x) such that f(x) = x on the complement of X̃ delivers the result.
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Proof of Theorem 3. Since w̄ is obviously increasing, we need only to show that

w̄ = w µ-almost surely, and that (w̄, µ) is IC. We first claim that w̄ = w µ-almost

surely. Since w̄ ≥ w by definition, to prove the claim it suffices to show that w̄ ≤ w

µ-almost surely. Suppose µ{x : w̄(x) > w(x)} > 0. Then some ϵ > 0 exists such that

µ{x : w(x) + ϵ < w̄(x)} > 0. Let f : X → X be the measurable function from Lemma 5

that satisfies f(x) ≤ x for all x, and w ◦ f(x) ≥ [w̄(x)− 0.5ϵ] µ-almost surely. Then,

0 < µ{x : w(x) + ϵ < w̄(x)} = µ{x : w(x) < w̄(x)− ϵ < w ◦ f(x)}

≤ µ{x : w(x) < w ◦ f(x)} = 0,

where the first equality follows from w ◦f(x) ≥ [w̄(x)−0.5ϵ] µ-almost surely, and the last

equality from Lemma 4. It follows µ{x : w̄(x) > w(x)} = 0, meaning w̄ = w µ-almost

surely.

Next, we claim that (w̄, µ) is IC. Suppose by way of a contradiction some ν ∈ M and

ϵ > 0 exist such that∫
w̄(x)ν(dx)− C(ν) >

∫
w̄(x)µ(dx)− C(µ) + ϵ.

Let g : X → X be such that g(x) ≤ x for all x, and that w ◦ g ≥ [w̄ − ϵ] ν-almost surely

(such a g exists by Lemma 5). Define ν̃ = ν ◦g−1 to be the push-forward measure defined

by ν and g—i.e., ν̃(Y ) = ν ◦g−1(Y ) for all Borel Y . We claim ν̃ delivers the agent strictly

higher utility under w than µ does, thereby contradicting that (w, µ) is IC. This claim is

implied by the following inequality chain:∫
w(x)ν̃(dx)− C(ν̃) ≥

∫
[w̄(x)− ϵ] ν(dx)− C(ν̃) ≥

∫
w̄(x)ν(dx)− C(ν)− ϵ

>

∫
w̄(x)µ(dx)− C(µ) =

∫
w̄(x)µ(dx)− C(µ),

where the first inequality comes from w ◦ g ≥ w̄ − ϵ holding ν-almost surely, the second

inequality from ν first order stochastically dominating ν̃, the third inequality from the

contradiction assumption, and the equality from w̄ = w µ-almost surely. Thus, we have

shown (w, µ) is IC. The proof is now complete.
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