
ONLINE APPENDIX: BIAS-AWARE INFERENCE IN FUZZY
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Claudia Noack Christoph Rothe

A. PROOF OF THEOREM 4
We begin by using arguments similar to that of Abadie and Imbens (2006, Theorem 6) to
show that

sM(hM) = ŝM(hM)(1 + oP,F(1)). (A.1)

To simplify the presentation, we suppress various quantities’ dependence on c in this proof.
For example, we write ŝ2M(hM) instead of ŝ2M(hM(c), c), etc. We also define

qi(hM) =
wi(hM)2∑n

i=1 wi(hM)2σ2
M,i

,

so that
∑n

i=1 qi(hM)σ̂2
M,i = ŝ2M(hM)/s2M(hM). We note that maxi=1,...,n qi(hM) = oP,F(1) and∑n

i=1 qi(hM) = OP,F(1) by the same arguments as in the proof of Theorem 2, and the fact that
the variance terms σ2

M,i are uniformly bounded and bounded away from zero, respectively.
The proof for the case that Assumption LL1 holds is rather straightforward. As the

kernel has compact support by Assumption 1, and hM is bounded as a function of n, the
number of support points at which qi(hM) > 0 is finite. It follows that

∑n
i=1 1{Xi = x}

tends to infinity for all support points x with qi(hM) > 0 if Xi = x. Moreover, it holds that

max
i:qi(hM )>0

|σ̂2
M,i − σ2

M,i| = oP,F(1).

Since
∑n

i=1 qi(hM) = OP,F(1) and qi(hM) is positive, the statement of the theorem then
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follows because∣∣∣∣ ŝ2M(hM)

s2M(hM)
− 1

∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

qi(hM)(σ̂2
M,i − σ2

M,i)

∣∣∣∣∣ ≤ max
i:qi(hM )>0

|σ̂2
M,i − σ2

M,i| ·
n∑

i=1

qi(hM) = oP,F(1).

Now suppose that Assumption LL2 holds. In this case there are no ties in the data, and
each unit has exactly Ri = R nearest neighbors, with probability 1. We thus define the R×2

matrix X̃−i = (X̃ ′
r1
, . . . , X̃ ′

rR
)′, where r1, . . . , rR are the indices of the R nearest neighbors of

unit i, and X̃i = (1, Xi), let Hi = X̃i(X̃
′
−iX̃−i)

−1X̃ ′
i, and write vj(Xi) = X̃i(X̃

′
−iX̃−i)

−1X̃ ′
−iej

with ej the jth R-dimensional unit-vector. With Wi a generic random variable, we also write
W

∧

i = Wi −
∑

j∈Ri
vj(Xi)Wj. In the following, we use repeatedly that∑

j∈Ri

vj(Xi) = 1,
∑
j∈Ri

vj(Xi)(Xj −Xi) = 0, and
∑
j∈Ri

vj(Xi)
2 = Hi,

which follows from basic algebra. Next, note that the variance estimators σ̂2
M,i, i = 1, . . . , n,

are all well-defined with probability one, as the running variable is continuously distributed
with a bounded density function. Also, recall that Mi = Yi− cTi and E(Mi|Xi) = µM(Xi) =

µY (Xi)− cµT (Xi), put εi = Mi − µM(Xi), and note that εi = εY,i − cεT,i = (Yi − µY (Xi))−
c(Ti − µT (Xi)). The variance estimators can then be written as

σ̂2
M,i =

M

∧2
i

1 +Hi

=
1

1 +Hi

(
µ

∧

M(Xi) + εi −
∑
j∈Ri

vj(Xi)εi

)2

.

It then suffices to show the following:∣∣∣∣∣
n∑

i=1

qi(hM)(σ2
M,i − E[σ̂2

M,i|Xn])

∣∣∣∣∣ = oP,F(1) and (A.2)∣∣∣∣∣
n∑

i=1

qi(hM)(σ̂2
M,i − E[σ̂2

M,i|Xn])

∣∣∣∣∣ = oP,F(1), (A.3)

We begin by noting that (A.2) follows from the triangle inequality and the fact that∑n
i=1 qi(hM) = OP,F(1) if

max
i=1,...,n

|σ2
M,i − E[σ̂2

M,i|Xn]| = oP,F(1). (A.4)
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To show (A.4), note that

E
[
σ̂2
M,i|Xn

]
=

1

1 +Hi

E

(µ∧M(Xi) + εi −
∑
j∈Ri

vj(Xi)εj

)2

|Xn


=

1

1 +Hi

(
µ

∧

M(Xi)
2 + σ2

M,i +
∑
j∈Ri

vj(Xi)
2σ2

M,j

)

= σ2
M,i +

1

1 +Hi

(
µ

∧

M(Xi)
2 +

∑
j∈Ri

vj(Xi)
2(σ2

M,j − σ2
M,i)

)
.

Here the second equality holds because εi and εj are independent if i ̸= j, and are zero
in expectation; and the third equality holds because

∑
j∈Ri

vj(Xi)
2 = Hi. As the running

variable density is uniformly bounded away from zero, it follows from the proof of Theorem 6
in Abadie and Imbens (2006) that

xmax ≡ max
i=1,...,n

max
r∈Ri

|Xi −Xr| = oP,F(1). (A.5)

Since σ2
M,i is uniformly Lipschitz continuous with some constant Lσ by Assumption 1, we

then have that

max
i

1

1 +Hi

(∑
j∈Ri

vj(Xi)
2(σ2

M,j − σ2
M,i)

)
≤ Lσxmax max

i

1

1 +Hi

(∑
j∈Ri

vj(Xi)
2

)

≤ Lσxmax max
i

Hi

1 +Hi

= oP,F(1).

To show (A.4), it thus only remains to show that

max
i

1

1 +Hi

µ

∧

M(Xi)
2 = oP,F(1). (A.6)

To do so, note that

max
i∈{1,...,n}

(
µM(Xi)−

∑
j∈Ri

vj(Xi)µM(Xj)

)

= max
i∈{1,...,n}

(
µM(Xi)−

∑
j∈Ri

vj(Xi)

(
µM(Xi) + µ′

M(Xi)(Xj −Xi) +
1

2
µ′′
M(X̊i,j)(Xj −Xi)

2

))

=
1

2
max

i∈{1,...,n}

∑
j∈Ri

vj(Xi)µ
′′
M(X̊i,j)(Xj −Xi)

2.
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Here the first equality follows from a second order expansion, with X̊i,j some value be-
tween Xi and Xj, where j ∈ Ri; and the second equality follows as

∑
j∈Ri

vj(Xi) = 1 and∑
j∈Ri

vj(Xi)(Xj −Xi) = 0. We then find that

max
i∈{1,...,n}

1

1 +Hi

µ

∧

M(Xi)
2 =

1

4
max

i∈{1,...,n}

1

1 +Hi

(∑
j∈Ri

vj(Xi)µ
′′
M(X̊i,j)(Xj −Xi)

2

)2

≤ R

4
max

i∈{1,...,n}

1

1 +Hi

∑
j∈Ri

vj(Xi)
2µ′′

M(X̊i,j)
2(Xj −Xi)

4

≤ RB2
Mx4

max

4
max

i∈{1,...,n}

1

1 +Hi

(∑
j∈Ri

vj(Xi)
2

)
= oP,F(1).

Here first inequality follows from Cauchy-Schwarz as the cardinality of Ri is R; and the
second inequality follows as all the terms of the sum are positive, µ′′(X̊i,j)

2 is bounded
by B2

M , and (Xj − Xi)
4 ≤ x4

max for all i and j ∈ Ri. The final equality follows because∑
j∈Ri

vj(Xi)
2 = Hi, and Hi/(1 + Hi) ≤ 1 for all i ∈ {1, . . . , n}, and xmax = oP,F(1). This

completes the proof of the statement (A.2).
To show that (A.3) holds, write q̃i(hM) = qi(hM)(1 +Hi)

−1. Note that since |q̃i(hM)| ≤
|qi(hM)|, it follows from Theorem A.1 that maxi=1,...,n q̃i(hM) = oP,F(1) and

∑n
i=1 q̃i(hM) =

OP,F(1). We write this quantity the sum of five terms:

n∑
i=1

qi(hM)(σ̂2
M,i − E[σ̂2

M,i|Xn])

=
n∑

i=1

q̃i(hM)(ε2i − σ2
M,i) +

n∑
i=1

q̃i(hM)
∑
j∈Ri

v2j (Xi)(ε
2
j − σ2

M,j)

+ 2
n∑

i=1

q̃i(hM)εi
∑
j∈Ri

vj(Xi)εj + 2
n∑

i=1

q̃i(hM)µ

∧

M(Xi)εi − 2
n∑

i=1

q̃i(hM)µ

∧

M(Xi)
∑
j∈Ri

vj(Xi)εj

≡ G1 +G2 + 2G3 + 2G4 + 2G5.

It is easy to see that these five terms all have mean zero conditional on Xn. It thus suffices
to show that their second moments converge uniformly over the function class F to zero. In
the following derivations, we write C for a generic positive constant whose value might differ
between equations.
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For the first term, we have that

V(G1|Xn) =
n∑

i=1

q̃i(hM)2E[(ε2i − σ2
M,i)

2|Xn] ≤ C max
i=1,...,n

q̃i(hM) ·
n∑

i=1

q̃i(hM) = oP,F(1),

where the inequality follows from the bound on the fourth moment of εi and q̃i(hM) being
positive, and the last equality follows since maxi=1,...,n q̃i(hM)

∑n
i=1 q̃i(hM) = oP,F(1).

We now turn to the second term, and note that by independent sampling

V(G2|Xn) =
n∑

i=1

n∑
l=1

q̃l(hM)q̃i(hM)
∑
j∈Ri

∑
k∈Rl

v2k(Xl)v
2
j (Xi)E

[
(ε2j − σ2

M,j)(ε
2
k − σ2

M,k)|Xn

]
=

n∑
i=1

∑
l:Ri∩Rl ̸=∅

q̃l(hM)q̃i(hM)
∑
j∈Ri

∑
k∈Rl

v2k(Xl)v
2
j (Xi)E

[
(ε2j − σ2

M,j)(ε
2
k − σ2

M,k)|Xn

]
≤

n∑
i=1

∑
l:Ri∩Rl ̸=∅

q̃l(hM)q̃i(hM)
∑
j∈Ri

∑
k∈Rl

v2k(Xl)v
2
j (Xi)E

[
(ε2j − σ2

M,j)
2|Xn

]
.

Using that εi has bounded fourth moments, that
∑

k∈Rl
v2k(Xi) = Hi, and that Hi/(1+Hi) ≤

1 for all i ∈ {1, . . . , n}, we further deduce that

V(G2|Xn) ≤ C
n∑

i=1

qi(hM)
∑

l:Ri∩Rl ̸=∅

ql(hM).

Finally, note that the cardinality of the set {l : Ri ∩ Rl ̸= ∅}, which contains the indices of
those units that share at least one common R-nearest neighbor with unit i, is bounded by
3R + 1 (this can be seen through a simple counting exercise). We thus have that

V(G2|Xn) ≤ C

n∑
i=1

qi(hM)(3R + 1) max
j∈{1,...,n}

qj(hM) = oP,F(1).

We now consider the third term, which satisfies

V(G3|Xn) =
n∑

i=1

n∑
k=1

q̃i(hM)q̃k(hM)
∑
j∈Ri

∑
l∈Rk

vj(Xi)vl(xg)E[εiεjεkεl|Xn].

To proceed, note that E[εiεjεkεl|Xn] = 0 unless the four indices involved in this expression
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can be grouped into two pairs that each have the same value. This means that

V(G3|Xn) ≤ C

n∑
i=1

∑
j∈Ri

q̃i(hM)2vj(Xi)
2 +

∑
j∈Ri:i∈Rj

q̃i(hM)q̃j(hM)vi(Xj)vj(Xi)


≤ C max

i∈{1,...,n}
q̃i(hM)

n∑
i=1

q̃i(hM)
∑
j∈Ri

vj(Xi)
2

= C max
i∈{1,...,n}

q̃i(hM)
n∑

i=1

qi(hM)
Hi

1 +Hi

= oP,F(1).

For the fourth and fifth term, we can use arguments similar to those used for the three
previous terms to show that that

V(G4|Xn) ≤ CB2
Mx4

max

n∑
i=1

q̃i(hM)2 = oP,F(1);

V(G5|Xn) ≤ CB2
Mx4

max max
i∈{1,...,n}

(
qi(hM)

Hi

1 +Hi

) n∑
i=1

q̃i(hM) = oP,F(1).

This completes the proof of the statement (A.3); and thus (A.1) holds, as claimed.
To complete our proof, we still need show that

ŝM(ĥM) = ŝM(hM)(1 + oP,F(1)), (A.7)

as this together with (A.1) implies the statement of Theorem 4. Under Assumption LL1,
this follows from arguments similarly to those in the proof of Lemma A.1, and under As-
sumption LL2 follow from arguments analogous to those in the proof of Theorem E.1 in
Armstrong and Kolesár (2020). We omit the details for brevity.

B. MORE GENERAL BANDWIDTH CHOICES
In the main body of the paper, the local linear regression estimators τ̂M(h, c) = τ̂Y (h)−cτ̂T (h)

on which our bias-aware AR CSs are based use the same bandwidth on each side of the cutoff,
and also the same bandwidth for estimating τY and τT ; and the second derivatives of µY

and µT are bounded in absolute value by the same respective constant on either side of the
cutoff. These features can all easily be relaxed. In particular, we can define a more general
Hölder-type class of functions as

FH(B+, B−) = {f1(x)1{x ≥ 0} − f0(x)1{x < 0} : ∥f ′′
1 ∥∞ ≤ B+, ∥f ′′

0 ∥∞ ≤ B−},
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define the class F δ
H(B+, B−) similarly, and then seek to obtain bias-aware AR CSs that are

honest uniformly over (µY , µT ) ∈ FH(BY+, BY−)×F0
H(BT+, BT−), based on the local linear

regression estimator

τ̂M(h, c) =
n∑

i=1

(wi,+(hY+)− wi,−(hY−))Yi − c
n∑

i=1

(wi,+(hT+)− wi,−(hT−))Ti,

where h = (hT+, hT−, hY+, hY−) is a vector of side- and function-specific bandwidths, and
the weights wi,+(h) and wi,−(h) are as defined in the beginning of Appendix A in the main
body of the paper. With such a setup, the explicit expression for the bound on the absolute
value of the conditional bias of τ̂M(h, c) is

bM(h, c) = −BY+

2

n∑
i=1

wi,+(hY+)X
2
i −

|c|BT+

2

n∑
i=1

wi,+(hT+)X
2
i

+
BY−

2

n∑
i=1

wi,−(hY−)X
2
i +

|c|BT−

2

n∑
i=1

wi,−(hT−)X
2
i ,

and the conditional standard deviation of τ̂M(h, c) is

sM(h, c) =

(
n∑

i=1

(wi,+(hY,+)− wi,−(hY−))
2 σ2

Y,i + c2
n∑

i=1

(wi,+(hT+)− wi,−(hT−))
2 σ2

T,i

−2c
n∑

i=1

(wi,+(hY+)− wi,−(hY−)) (wi,+(hT+)− wi,−(hT−)) σY T,i

)1/2

,

with σ2
Y,i = V(Yi|Xi), σ2

T,i = V(Ti|Xi), and σY T,i = C(Yi, Ti|Xi) being conditional variance
and covariance terms. A feasible standard error ŝM(h, c) can be obtained by substituting
nearest-neighbor estimates of the latter terms into the above expression for sM(h, c). Letting
ĥM(c) be a feasible estimate of hM(c) = argminh cv1−α(rM(h, c)) · sM(h, c), with rM(h, c) =

bM(h, c)/sM(h, c), a generalization of our proposed bias-aware AR CS for θ is then given by

Cα
ar =

{
c : |τ̂M(ĥM(c), c)| ≤ cv1−α(r̂M(ĥM(c), c))ŝM(ĥM(c), c))

}
.

A theoretical analysis of this CS would follow arguments that are fully analogous to those in
the analysis of the CS in the main body of this paper, which only uses a single bandwidth,
and would yield fully analogous results.
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Figure S1: Mean (dots) and interquartile range (bars) of simulated ROT1 (black) and ROT2
(red) “rule-of-thumb” estimates of bound on absolute second derivative for σ2 ∈ {0, .1, . . . , 1} and
µY (x) = x2 (left panel) and µY (x) = x2 − x4 (right panel)

C. PROPERTIES OF RULE-OF-THUMB SMOOTHNESS BOUNDS
In this appendix, we study the properties of two data-driven rules-of-thumb (ROT) for
selecting the smoothness constants BY and BT , which are both based on fitting global
polynomial specifications on either side of the cutoff. For simplicity, we focus on the case of
BY , but the arguments apply analogously to the case of BT . To describe the two methods,
let gk(x) = (1, x, . . . , xk,1{x ≥ 0},1{x ≥ 0}x, . . . , 1{x ≥ 0}xk)⊤ be a vector of polynomials,
define the function

µ̃Y,k(x) = gk(x)
⊤γ̂k, with γ̂k = argmin

γ

n∑
i=1

(Yi − gk(Xi)
⊤γ)2,

and write X for the range of the realizations of the running variable.Armstrong and Kolesár
(2020) then consider fourth-order polynomials, and propose the ROT value

B̂Y,ROT1 = sup
x∈X

|µ̃′′
Y,4(x)|.

Imbens and Wager (2019) mention a ROT in which the maximal curvature implied by a
quadratic fit is multiplied by some moderate factor, say 2, to guard against overly optimistic
values, yielding the rule-of-thumb value

B̂Y,ROT2 = 2 sup
x∈X

|µ̃′′
Y,2(x)|.

We refer to these estimators ROT1 and ROT2 in the following. Both Armstrong and Kolesár
(2020) and Imbens and Wager (2019) caution that the respective rules cannot be expected to
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provide universally adequate smoothness bounds, and should rather serve as a first guidance
that is complemented with other approaches in a sensitivity analysis.

To get a better understanding of the relative properties of these two rules, we conduct
two small Monte Carlo experiments in which the conditional expectation function is either
µY (x) = x2 or µY (x) = x2 − x4. With each function and each σ2 ∈ {0, .1, .2, . . . , 1}, we
conduct 10, 000 runs in which we simulate n = 1, 000 realizations of (Yi, Xi) according to

Yi = µY (Xi) + εi, Xi ∼ U [−1, 1], εi ∼ N(0, σ2), Xi⊥εi,

and calculate both ROT values. If µY (x) = x2, the true smallest upper bound on the absolute
second derivative is BY = 2, whereas if µY (x) = x2−x4, we have that BY = 10. In both cases,
the corresponding values of “population R squared”, defined as R2 = V(µY (Xi))/V(Y ), are
within the range typically encountered in empirical studies.

We start by considering the case µY (x) = x2, for which both a second and a fourth
order polynomial obviously constitute a correct specification, and thus B̂Y,ROT1

p→ BY = 2

and B̂Y,ROT2
p→ 2BY = 4 as n → ∞. While one might therefore expect ROT1 to perform

better than ROT2 rule in this setup, our results, summarized in the left panel of Figure S1,
show that this is not the case. The distribution of ROT1’s results depends strongly on the
error variance, and tends to produce vast over-estimates of BY . For σ2 = 1, for example,
the average across simulation runs is 33.58, which exceeds the true bound by a factor of
almost 17. ROT1’s results are also quite volatile. ROT2, on the other hand, is much less
affected by changes in the error variance: its mean across simulation runs increases from 4.01

for σ2 = 0.1 to only 4.74 for σ2 = 1, and its sampling variability is rather small.
Now consider the case µY (x) = x2−x4. We have that B̂Y,ROT1

p→ 10 = BY and B̂Y,ROT2
p→

2.753 ̸= BY as n → ∞, which means that ROT1 consistently estimates BY here, while the
probability limit of ROT2 is about four times smaller than the true smoothness bound. Our
simulation results for this setup are summarized in the right panel of Figure S1. Again,
ROT1 estimates are highly variable, and tend to be much larger than the true smoothness
bound. The discrepancy is not as pronounced as in the previous setup though: for σ2 = 1, for
example, the average across simulation runs is 36.86, which is only 3.6 times larger than BY .
ROT2 is again much less affected by changes in the error variance: its mean across simulation
runs increases from 2.78 for σ2 = 0.1 to only 3.99 for σ2 = 1, and its sampling variability
is rather small. But due to the severe misspecification of a second-order polynomial, these
values tend to severely under-estimate the true smoothness bounds.

These results first of all stress the theoretical point that no data-driven method for
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choosing smoothness bounds can be expected to work well under all circumstances. Still,
our exercise conveys some insight regarding under which condition one rule might be a
better “first guess” than the other. Roughly speaking, the performance patterns of ROT1
can be explained by the fact that its underlying fourth order polynomial specification tends to
produce erratic over-fits if the function µY (x) is rather “simple”, and there is a non-negligible
level of noise in the data. This is much less of an issue with a quadratic model. In practice,
we therefore recommend using ROT2 over ROT1 in settings where one believes that µY is
“close” to being a “moderately” convex or concave function. If this is not the shape one has
in mind there is no obvious ordering of the ROTs, and both should be considered within a
more extensive sensitivity analysis.

D. EXTENSION TO FUZZY REGRESSION KINK DESIGNS
D.1. Description. Our approach to FRD inference described in the main body of the paper
can easily be extended to the cases in which the parameter of interest is the ratio of jumps
in the derivatives (of some order v ≥ 0) of two conditional expectation functions µY (x) =

E(Y |X = x) and µT (x) = E(T |X = x) at the threshold value zero.1 The most prominent
example of such a setup is the Fuzzy Regression Kink Designs (Card et al., 2015), where
the goal is to estimate the ratio of jumps in the first derivatives of these functions. We now
sketch our extension using notation analogous to that in Section 3.

For a generic random variable Wi, we write µ
(v)
W (x) = ∂vE(Wi|Xi = x)/(∂x)v for the

vth derivative of its conditional expectation given Xi; µ
(v)
W,+ = limx↓0 µ

(v)
W (x) and µ

(v)
W,− =

limx↑0 µ
(v)
W (x) denote the left and right limits of the derivatives at the threshold; and τW,v =

µ
(v)
W,+ − µ

(v)
W,− denotes the corresponding jump in µ

(v)
W . Our parameter of interest is θv =

τY,v/τT,v, and the goal is again to construct CSs Cα ⊂ R with correct asymptotic coverage,
uniformly in (µY , µT ) over some function class F :

lim inf
n→∞

inf
(µY ,µT )∈F

P(θv ∈ Cα) ≥ 1− α (D.1)

for some α > 0. We again define F as a smoothness class. Specifically, let

FH,p(B) = {f1(x)1{x ≥ 0} − f0(x)1{x < 0} : ∥f (p+1)
w ∥∞ ≤ B,w = 0, 1}

be the Hölder-type class of real functions that are potentially discontinuous at zero, (p+ 1)-
times differentiable almost everywhere on either side of the threshold, and whose (p + 1)th

1We could in principle allow the two derivatives to be of of different order, but as we are not aware of a
setup that requires this we only consider identical orders here to keep the notation simple.
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derivative is uniformly bounded by some constant B > 0. We also define the class

F δ
H,vp(B) = {f ∈ FH,p(B) : |f (v)

+ − f
(v)
− | > δ},

and assume that (µT , µY ) ∈ F0
H,vp(BT ) × FH,p(BY ) ≡ F . Our CSs for the ratio of jumps

in vth-order derivatives are based on pth order local polynomial regression, where v ≤ p.
Following standard results on the bias properties of local polynomial regression (Fan and
Gijbels, 1996), it is generally recommended to use p = v + 1. For a generic dependent
variable Wi, the local pth order polynomial estimator τ̂W,vp(h) of τW,v is the (p + v + 2)th
component of

argmin
β∈R2p

n∑
i=1

K(Xi/h)(Wi − β⊤(1, Xi, X
2
i /2, . . . , X

p
i /(p!), Zi, ZiXi, . . . , ZiX

p
i /(p!))

2,

where K(·) is a kernel function with support Continuous and h > 0 is a bandwidth. It
follows from standard least squares algebra that this estimator can be written as

τ̂W,vp(h) =
n∑

i=1

wvp,i(h)Wi, wvp,i(h) = wvp,i,+(h)− wvp,i,−(h),

wvp,i,+(h) = e⊤v+1Q
−1
p,+X̃p,iK(Xi/h)1{Xi ≥ 0}, Qp,+ =

n∑
i=1

K(Xi/h)X̃p,iX̃
⊤
p,i1{Xi ≥ 0},

wvp,i,−(h) = e⊤v+1Q
−1
p,−X̃p,iK(Xi/h)1{Xi < 0}, Qp,− =

n∑
i=1

K(Xi/h)X̃p,iX̃
⊤
p,i1{Xi < 0},

with X̃p,i = (1, Xi, X
2
i /2, . . . , X

p
i /(p!))

⊤. We then obtain a bias-aware AR CS for θv by col-
lecting those values of c for which an auxiliary bias-aware CI for τM,v(c) = τY,v − cτT,v

contains zero. To describe the construction, denote the conditional bias and standard
deviation of τ̂M,vp(h, c) =

∑n
i=1 wvp,i(h)Mi(c) given Xn = (X1, . . . , Xn)

′ by bM,vp(h, c) =

E(τ̂M,vp(h, c)|Xn)− τM,vp(c) and sM,vp(h, c) = V(τ̂M,vp(h, c)|Xn)
1/2, respectively. These quan-

tities can be written more explicitly as

bM,vp(h, c) =
n∑

i=1

wvp,i(h)µM(Xi, c)− (µ
(v)
M+(c)− µ

(v)
M−(c)),

sM,vp(h, c) =

(
n∑

i=1

wvp,i(h)
2σ2

M,i(c)

)1/2

,

with σ2
M,i(c) = V(Mi(c)|Xi) the conditional variance of Mi(c) given Xi. The bias depends on

11



(µY , µT ) through the transformation µ
(v)
M = µ

(v)
Y − c · µ(v)

T only, and µ
(v)
Y − cµ

(v)
T ∈ FH,vp(BY +

|c|BT ). Our main contribution is to show that one can bound bM,vp(h, c) in absolute value
over the functions contained in F by

sup
(µY ,µT )∈F

|bM,vp(h, c)| ≤ bM,vp(h, c) ≡ (−1)p−vBY + |c|BT

(p+ 1)!

n∑
i=1

wvp,i(h)X
p+1
i sign(Xi)

v+1,

(D.2)

assuming only that h is such that positive kernel weights are assigned to at least (p+1) data
points on either side of the threshold. An infeasible bias-aware AR CS for our parameter of
interest θv is then given by

Cα
vp = {c : |τ̂M,vp(hM,vp(c), c)| ≤ cv1−α(rM,vp(hM,vp(c), c))sM,vp(hM,vp(c), c)} ,

where hM,vp(c) = argminh cv1−α(rM,vp(h, c))sM,vp(h, c) is again the efficiency-maximizing
bandwidth and rM,vp(h, c) = bM,vp(h, c)/sM,vp(h, c) the “worst case” bias to standard de-
viation ratio. We can then establish the following result.

Theorem D.1. Suppose that Assumptions 1 and either LL1 or LL2 hold. Then Cα
vp is honest

with respect to F in the sense of (D.1).

It is also straightforward to obtain an analogous result for a feasible version of Cα
vp that

uses a valid standard error and an estimate of the optimal bandwidth, under appropriate
regularity conditions.

D.2. Proof of Theorem D.1. The result follows from the same type of arguments as those
used in the proof of Theorem 1 for the FRD case. The only step that requires particular
attention is establishing the validity of the general bias bound in (D.2), as Armstrong and
Kolesár (2020, Theorem B.3) give an explicit expression for the special case p = 1 and v = 0

only. We first establish a preliminary lemma. Let χ = {x0, x1, . . . , xk}, with 0 ≤ x0 ≤ x1 ≤
. . . ≤ xk < h and k ≥ p, be a generic set of at least p + 1 constants from the interval [0, h),
write χ−i = χ \ {xi} for the subset of χ that excludes its ith element, and define

β̂vp(t, χ) =
k∑

i=0

wvp,i,+(h, χ)1{xi ≥ t}(xi − t)p,

where wvp,i,+(h, χ) are local polynomial regression weights analogous to those defined above,
but with χ taking the role of the data Xn.2 Put differently, the term β̂vp(t, χ) is the (v+1)th

2A similar argument applies for the case that −h < xk ≤ · · · ≤ x1 ≤ 0.
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coefficient in a weighted least squares regression of 1{xi ≥ t}(xi − t)p on (1, xi, x
2
i , . . . , x

p
i )

⊤.
This term is well-defined as long as χ contains at least p+ 1 distinct elements.

Lemma D.1. Suppose that either (i) χ has (p+ 1) elements, all which are distinct; or (ii)
χ has at least (p + 2) distinct elements, and β̂vp(t, χ−i) satisfies (D.3) for all i = 1, . . . , |χ|.
Then it holds for all t ∈ R that

β̂vp(t, χ) ≤ 0 if p− v odd and β̂vp(t, χ) ≥ 0 if p− v even. (D.3)

To then establish the bias bound (D.2), note that the bias can be written as

bM,vp(h, c) =

( ∑
i:Xi≥0

wvp,i,+(h)µM(Xi, c)− µ
(v)
M+(c)

)

−

( ∑
i:Xi<0

wvp,i,−(h)µM(Xi, c)− µ
(v)
M−(c)

)
≡ T1 + T2.

Since
∑

i:Xi≥0 wvp,i,+(h)X
v
i = 1 and

∑
i:Xi≥0 wvp,i,+(h)X

j
i = 0 for j ̸= v and j ≤ p by standard

least squares algebra, it follows that

T1 =
∑

i:Xi≥0

wvp,i,+(h)

(
p∑

j=0

1

j!
Xj

i µ
(j)
M (0, c) +

1

p!

∫ Xi

0

µ(p+1)(Xi, c)(Xi − t)jdt

)
− µ

(v)
M+(c)

=
1

p!

∫ ∞

0

µ
(p+1)
M (t, c)β̂vp(t,X+

n ),

where X+
n = {Xi ∈ Xn : 0 ≤ Xi ≤ h}. This expression is clearly maximized in abso-

lute value by any function µM(t, c) whose (p + 1)th derivative is given by µ
(p+1)
M (t, c) =

BMsign(β̂vp(t,X+
n )) for t ≥ 0.

We now construct a collection X+
n,k of subsets of X+

n , with k = p + 1, . . . , n, as follows.
Let X+

n,p+1 be an arbitrary subset of p + 1 distinct elements of X+
n (such a subset exists by

assumption), and let X+
n,k, for k > p + 1, be the union of X+

n,k−1 and an arbitrary element
of X+

n \ X+
n,k−1. Then Lemma D.1 implies that β̂vp(t,X+

n,k) satisfies (D.3) for any k = p +

1, . . . , n. Since X+
n,n = X+

n , this means that sign(β̂vp(t,X+
n )) = (−1)p−v for all t. The

term T1 is thus maximized in absolute value for any function µM such that µM(t, c) =

(−1)p−vBM tp+1sign(t)/((p+ 1)!) for t ≥ 0. A similar reasoning implies that T2 is maximized
for any function µM such that µM(t, c) = (−1)p−vBM tp+1sign(t)/((p+1)!) for t < 0. Together,
these statements prove (D.2).
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D.3. Proof of Lemma D.1. To prove part (i), we denote the unique polynomial of order p
that interpolates the points {(x,1{x ≥ t}(x− t)p)}x∈χ by P (x, χk). Our proof comes down
to determining the sign of its coefficients. To do so, let S(k) = k + |{x ∈ χ : x ≤ t}| be
the sum of k and the number of elements of χ whose value does not exceed t, and consider
subsets of χ of the form χk = {xi ∈ χ : xi ≤ t} ∪ {xi ∈ χ : S(1) ≤ i ≤ S(k)} that contain
those elements of χ whose value does not exceed t, and the k next largest ones. That is,
χ0 = {xi ∈ χ : xi ≤ t}, and χ1 is the union of χ0 and the smallest element of χ that is
larger than t, etc. We also note that if χ is such that S(0) = 0, then β̂vp(t, χ) = (−1)p−v

(
p
v

)
tv

clearly satisfies (D.3). It therefore suffices to restrict attention to sets χ such that S(0) > 0.
It is also easy to see that β̂vS(0)(t, χ0) = 0, and hence satisfies (D.3). It thus remains to show
that if β̂vS(k)(t, χk) satisfies (D.3), so does β̂vS(k+1)(t, χk+1). The statement of the lemma
then follows by induction.

To show the last step, assume that β̂vS(k)(t, χk) satisfies (D.3), and write the polynomial
that interpolates the points {x,1{x ≥ t}(x− t)S(k+1)}x∈χk+1

as

P (x, χk+1)x
v = (x− t)P (x, χk) + ῑp+1

∏
xl∈χk

(x− xl), where (D.4)

ῑk+1 = (xS(k+1) − t)
(
(xS(k+1) − t)S(k) − P (xS(k+1), χk)

) ∏
xl∈χk

1

xS(k+1) − xl

.

We can then express the β̂vS(k+1)(t, χk+1) in terms of the β̂vS(k)(t, χk) by comparing the
appropriate terms on both sides of equation (D.4). This yields that

β̂vS(k+1)(t, χk+1) =
β̂S(k)S(k)(t, χk) + ῑk+1 if v = S(k + 1),

−tβ̂0S(k)(t, χk) + (−1)S(k+1)ῑk+1

∏
0≤j≤S(k)

xj if v = 0,

β̂(v−1)S(k)(t, χk)− tβ̂vS(k)(t, χk) + (−1)S(k+1)−v ῑk+1

∑
M∈MS(k+1)−v

∏
ms∈M

xms else.

where Mv is the set of all subsets M = {m1, . . . ,mv} of {1, . . . , S(k+1)} that contain exactly
v elements. Careful inspection of the last display shows that β̂vS(k+1)(t, χk+1) satisfies (D.3) if
ῑk+1 ≥ 0. We proof this claim by a simple argument about the number of zeros of polynomials.
Let χk\0 = χk\x0. We note that ῑk+1 ≥ 0 if

P (x, χk) < P (x, χk\0 ∪ x) for all x > xS(k). (D.5)
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To show (D.5), we fix some arbitrary xl > xS(k) and consider the two different polynomials
P (x, χk) and P (x, χk\0 ∪ xl). As these polynomials are of degree S(k) and they intersect
S(k)−times at all x ∈ χk\0, they do not intersect for any x /∈ χk\0.

As the set χk was arbitrarily chosen, we note that by the induction argument the intercept
of both polynomials has the same sign such that

sign(P (0, χk)) = sign(P (0, χk\0 ∪ xl)). (D.6)

Using (D.6) together with standard arguments of polynomials and their sign as x → ±∞,
(D.5) is satisfied if |P (0, χk)| ≤ |P (0, χk\0 ∪ xl)|. Polynomials of order S(k), that are
different from (x − t)S(k), can have at most (S(k) + 1) intersections with the function
g(x) = 1{x ≥ t}(x− t)S(k) for t > 0. This reasoning implies that the polynomial P (x, χk\0∪
xl) does not have any intersections with the function g(x) for x ≤ x0, and in particular it
does not have any root for x ≤ x0, so that it has the same sign for all 0 ≤ x ≤ x0. As
P (x0, χk) = 0, we can conclude that |P (x, χk)| ≤ |P (x, χk\0 ∪ xl)| for any x ≤ x0. This
completes our proof of part (i).

To prove part (ii) of the lemma, note that it follows from textbook arguments that

β̂vp(t, χ) = β̂vp(t, χ−i) + (1− li)
−1wvp,i,+(h, χ)ϵ̂i,

where ϵ̂i = 1{xi ≥ t}(xi − t)p −
∑p

v=0 β̂vp(t, χ)x
v
i is the ith regression residual and li =∑p

j=0 wjp,i(χ)x
j
i is the leverage of the ith observation. We first consider the case that

β̂vp(t, χ−i) ≤ 0 for all i, which implies that β̂vp(t, χ) ≤ (1 − li)
−1wvp,i,+(h, χ)ϵ̂i. Since∑|χ|

i=1 wvp,i,+(h, χ)ϵ̂i = 0 and 0 ≤ li < 1 for all i by basic least squares algebra, we know
that (1− li)

−1wvp,i,+(h, χ)ϵ̂i ≤ 0, for at least some i, which in turn means that β̂vp(t, χ) ≤ 0.
The same kind of argument applies to the case that β̂vp(t, χ−i) ≥ 0 for all i.

E. ADDITIONAL SIMULATION RESULTS
In Table S1, we report the coverage rates of the various CSs under consideration for all
nine combinations of outcome and treatment CEFs, as described in the main body of the
paper. In addition, Table S1 shows the average bandwidth across simulation runs chosen
by the various methods for reference. Specifically, for DM CSs it shows the average of the
data-driven bandwidths used to compute the FRD estimator, and for AR CSs it shows the
averages of the bandwidths ĥM(θ) corresponding the the auxiliary CS at the true parameter
value.
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F. NUMERICAL RESULTS WITH OPTIMIZED RDD APPROACH
In this section, we report the results of our empirical application and simulation study for
variants of the considered CSs in which local linear regression is replaced with the optimized
regression discontinuity design estimator of Imbens and Wager (2019), which computes the
minimax linear estimator of an SRD parameter under second derivative bounds via numerical
convex optimization methods. As Imbens and Wager (2019) do not propose a specific method
for inference in FRD designs, we consider the natural adaptations of delta method (DM) and
our Anderson-Rubin type (AR) CSs to their approach.

As outlined in Section 5, to construct a DM CI we first obtain preliminary estimates of
the two SRD parameters τT and τY via two separate optimized SRD estimators with weights
that minimize the respective worst-case MSE. We then compute an optimized SRD CI with
a feasible analogue Ûi of the variable Ui as the outcome. To construct an AR CS, we follow
the arguments outlined in Section 3 and compute an optimized SRD CI for the auxiliary
parameter τY − cτT using Mi(c) = Yi − cTi as outcome and BY + |c|BT as the smoothness
bound. The AR CSs is then the set of all c ∈ R for which the corresponding auxiliary CI
contains zero.

F.1. Empirical Application. We repeat the empirical exercise described in Section 7.1
with the CSs that replace linear regression with the optimized RD estimator described above,
using the same smoothness bounds. Table S3 shows that doing so has no major impact on
the results in this case.

F.2. Simulations. We also repeat the simulations in Section 7.2 with the alternative CSs
based on optimized RD. We again consider the same smoothness bounds. Table S4 shows
the simulated coverage rates. Comparison with the results from the main body of the
paper shows that the coverage rates of the AR CS based on optimized RD and local linear
regression are generally similar when using the same smoothness bounds. However, the
coverage rates of CSs based on the optimized RD are slightly larger than those based on
local linear regressions. A similar reasoning applies to the coverage rates of DM CSs.
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Table S1: Simulated CS coverage (%)
Anderson-Rubin Delta Method

Bias-Aware Bias-Aware
Support TC TC×.5 TC×2 ROT1 ROT2 Naive US RBC TC TC×.5 TC×2 ROT1 ROT2 Naive US RBC

Low curvature of treatment CEF
Low curvature of outcome CEF

Baseline 96.7 91.0 98.4 97.9 92.4 88.7 93.7 94.6 97.9 93.7 99.3 98.9 93.9 94.2 96.0 94.2
Continuous 96.6 92.7 97.4 97.1 94.3 89.6 94.0 94.7 97.2 94.4 98.0 97.8 95.1 94.7 95.4 94.7
{±1,±4, . . . } 95.9 92.6 98.4 97.8 94.4 88.1 93.8 94.6 96.7 93.8 99.3 98.7 95.0 94.0 89.3 94.6
{±1,±7, . . . } 97.8 91.6 100.0 99.6 95.5 78.0 84.8 93.2 98.6 92.3 100.0 99.8 96.0 85.1 77.5 93.1
Moderate curvature of outcome CEF

Baseline 97.3 91.6 98.9 96.4 75.4 56.7 88.6 64.9 96.4 88.7 98.9 93.4 68.7 87.5 94.9 87.2
Continuous 96.7 93.4 97.2 96.0 83.6 68.1 89.3 76.0 96.0 91.6 97.3 94.2 78.9 89.6 94.7 91.2
{±1,±4, . . . } 98.0 92.6 99.9 96.4 84.0 50.1 86.2 63.9 96.9 91.2 99.8 94.0 78.9 86.2 79.8 88.3
{±1,±7, . . . } 99.9 91.0 100.0 99.0 74.4 27.0 43.5 9.8 99.6 87.3 100.0 96.0 69.0 42.4 38.7 32.8
High curvature of outcome CEF

Baseline 96.4 82.5 99.1 88.0 0.9 83.0 87.9 93.6 90.4 70.9 96.2 72.9 0.0 27.4 79.2 50.1
Continuous 95.7 89.8 97.0 93.6 16.9 89.0 93.8 93.9 92.6 84.0 94.7 88.7 0.6 47.8 87.7 77.2
{±1,±4, . . . } 98.2 68.2 100.0 84.3 28.3 20.8 20.7 87.5 94.0 56.6 100.0 69.8 2.4 15.5 15.2 44.9
{±1,±7, . . . } 100.0 12.7 100.0 75.5 0.0 0.5 3.6 1.6 98.9 4.2 100.0 29.3 0.0 0.0 0.3 0.0
Moderate curvature of treatment CEF
Low curvature of outcome CEF

Baseline 96.6 91.1 98.5 97.5 90.1 86.9 93.4 94.0 99.3 96.1 100.0 98.9 91.8 93.8 96.9 94.4
Continuous 96.4 92.5 97.4 96.9 92.8 87.8 93.8 93.9 98.2 95.9 99.0 98.0 93.8 94.8 96.2 94.3
{±1,±4, . . . } 96.0 92.1 98.8 97.5 93.0 85.7 93.2 93.9 98.4 95.4 100.0 98.6 93.9 93.6 88.1 94.5
{±1,±7, . . . } 98.0 90.5 100.0 99.4 93.8 74.2 80.2 91.5 99.8 92.5 100.0 99.7 94.4 80.5 72.4 91.8
Moderate curvature of outcome CEF

Baseline 97.2 88.7 99.2 91.9 36.4 47.6 80.9 58.6 91.1 74.0 98.3 81.9 24.7 73.3 93.0 72.9
Continuous 96.4 92.2 97.3 94.3 59.8 68.6 87.6 78.2 93.7 84.7 96.5 89.3 46.6 84.9 94.5 86.3
{±1,±4, . . . } 98.3 88.8 100.0 92.1 63.5 27.5 71.1 45.6 92.7 81.8 99.0 86.0 46.6 70.7 65.9 71.3
{±1,±7, . . . } 100.0 79.9 100.0 92.1 26.2 1.3 6.5 0.3 95.4 56.0 100.0 78.2 19.8 6.0 5.5 4.7
High curvature of outcome CEF

Baseline 96.5 80.9 99.3 72.2 0.0 84.2 83.1 92.9 82.3 48.8 93.9 33.0 0.0 14.6 69.1 26.0
Continuous 95.8 90.1 97.1 90.5 1.7 89.4 94.1 94.3 89.5 75.9 92.1 77.3 0.0 48.6 85.6 66.0
{±1,±4, . . . } 98.6 52.1 100.0 55.0 6.1 4.9 5.0 84.0 78.7 25.5 100.0 27.9 0.0 1.9 1.9 5.9
{±1,±7, . . . } 100.0 2.7 100.0 6.6 0.0 0.0 2.4 0.0 61.0 0.0 100.0 0.1 0.0 0.0 0.0 0.0
High curvature of treatment CEF
Low curvature of outcome CEF

Baseline 96.4 86.5 98.9 92.9 37.3 72.7 91.0 86.5 96.4 26.4 100.0 91.6 22.3 82.0 98.0 85.2
Continuous 96.0 90.7 97.1 95.1 62.3 80.7 93.0 89.9 98.4 50.7 99.9 96.9 45.1 96.1 99.2 95.6
{±1,±4, . . . } 97.1 87.3 100.0 94.2 67.8 74.8 71.2 89.3 95.9 47.2 100.0 92.9 45.6 73.4 67.7 78.6
{±1,±7, . . . } 99.6 67.2 100.0 95.3 33.6 6.6 7.4 37.7 36.3 17.2 99.9 70.5 20.9 5.9 6.2 18.9
Moderate curvature of outcome CEF

Baseline 96.8 82.1 99.4 73.0 0.0 85.9 84.2 93.4 23.5 0.1 58.5 1.2 0.0 14.2 55.0 16.6
Continuous 95.8 90.1 97.0 90.9 0.8 89.7 94.0 94.4 50.8 2.1 71.3 16.3 0.0 53.0 72.8 58.2
{±1,±4, . . . } 99.0 55.9 100.0 60.5 6.6 5.3 5.1 79.5 12.8 3.7 40.6 5.3 0.0 0.9 0.8 3.9
{±1,±7, . . . } 100.0 5.2 100.0 17.6 0.0 0.0 2.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0 1.0 0.0
High curvature of outcome CEF

Baseline 96.6 81.3 99.4 65.8 0.0 88.2 81.7 94.0 1.2 0.0 50.0 0.0 0.0 7.1 42.9 8.9
Continuous 95.9 90.1 97.1 90.1 0.1 90.4 94.4 94.6 14.5 0.0 68.4 0.0 0.0 47.3 68.6 53.5
{±1,±4, . . . } 98.8 47.3 100.0 48.3 2.9 3.1 2.7 81.9 4.3 0.0 23.2 0.2 0.0 0.2 0.6 0.4
{±1,±7, . . . } 100.0 1.5 100.0 2.7 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0

Notes: Results based on 50,000 Monte Carlo draws for a nominal confidence level of 95%. Columns show results for bias aware approach with true
constants (TC), two times true constants (TC×2), half true constants (TC×.5), and with rule of thumb estimates (ROT1) and (ROT2); naive approach
that ignores bias (Naive); undersmoothing (US); and robust bias correction (RBC).
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Table S2: Simulated average bandwidths
Anderson-Rubin Delta Method

Bias-Aware Bias-Aware
Support TC TC×.5 TC×2 ROT1 ROT2 Naive US RBC TC TC×.5 TC×2 ROT1 ROT2 Naive US RBC

Low curvature of treatment CEF
Low curvature of outcome CEF
Continuous 7.4 9.6 5.7 6.0 9.0 7.2 4.3 7.2 7.2 9.5 5.6 5.9 8.9 5.5 3.3 5.5

Baseline 7.2 9.4 5.3 5.6 8.5 7.7 4.6 7.7 7.0 9.3 5.2 5.5 8.4 5.6 3.3 5.6
{±1,±4, . . . } 6.1 9.2 6.2 5.9 7.8 8.1 4.9 8.1 5.9 9.1 6.1 5.8 7.7 6.2 4.0 6.2
{±1,±7, . . . } 11.0 11.1 11.0 11.0 11.1 12.7 7.6 12.7 11.0 11.1 11.0 11.0 11.0 11.2 7.0 11.2
Moderate curvature of outcome CEF
Continuous 5.2 6.4 4.1 5.5 8.5 8.1 4.8 8.1 5.2 6.6 4.1 5.7 8.8 5.4 3.2 5.4

Baseline 4.7 6.2 3.6 4.9 8.1 7.9 4.7 7.9 4.8 6.4 3.7 5.1 8.4 5.6 3.4 5.6
{±1,±4, . . . } 6.4 5.1 6.4 6.2 7.4 10.0 6.0 10.0 6.3 5.1 6.4 6.1 7.7 5.6 3.9 5.6
{±1,±7, . . . } 11.0 11.0 11.0 11.0 11.1 16.9 10.1 16.9 11.0 11.0 11.0 11.0 11.0 11.2 7.0 11.2
High curvature of outcome CEF
Continuous 3.8 4.8 3.0 4.3 7.7 3.3 2.0 3.3 3.8 4.9 3.0 4.7 8.6 5.4 3.2 5.4

Baseline 3.3 4.3 2.5 3.7 7.0 3.5 2.1 3.5 3.4 4.5 2.5 3.9 8.1 5.4 3.2 5.4
{±1,±4, . . . } 6.1 6.2 6.1 6.4 5.4 4.0 3.9 4.0 5.5 5.5 5.5 5.3 7.2 6.1 4.0 6.1
{±1,±7, . . . } 11.0 11.0 11.0 11.0 11.0 7.1 6.8 7.1 11.0 11.0 11.1 11.0 11.0 11.0 7.0 11.0
Moderate curvature of treatment CEF
Low curvature of outcome CEF

Baseline 6.9 9.0 5.4 5.9 9.0 7.1 4.3 7.1 6.7 8.8 5.2 5.9 8.9 5.6 3.3 5.6
Continuous 6.7 8.8 5.0 5.5 8.5 7.6 4.5 7.6 6.5 8.7 4.8 5.4 8.4 5.1 3.0 5.1
{±1,±4, . . . } 5.4 8.3 6.2 5.9 7.7 8.1 4.8 8.1 5.5 8.3 6.1 5.8 7.7 6.3 4.0 6.3
{±1,±7, . . . } 11.0 11.1 11.0 11.0 11.1 12.7 7.6 12.7 11.0 11.1 11.0 11.0 11.0 9.9 6.9 9.9
Moderate curvature of outcome CEF

Baseline 4.5 5.6 3.6 5.3 8.3 7.1 4.2 7.1 5.0 6.2 3.9 5.7 8.8 5.4 3.2 5.4
Continuous 4.1 5.3 3.1 4.7 7.9 6.4 3.8 6.4 4.4 5.8 3.3 5.1 8.4 5.0 3.0 5.0
{±1,±4, . . . } 6.3 6.2 6.1 6.2 7.2 9.3 5.5 9.3 6.3 6.0 6.4 6.2 7.7 5.9 4.0 5.9
{±1,±7, . . . } 11.0 11.0 11.0 11.0 11.0 17.8 10.6 17.8 11.0 11.0 11.0 11.0 11.0 10.0 6.9 10.0
High curvature of outcome CEF

Baseline 3.4 4.2 2.5 4.5 7.8 2.9 2.0 2.9 3.7 4.8 2.8 5.0 8.8 5.2 3.1 5.2
Continuous 2.9 3.9 2.2 3.7 7.2 3.0 1.8 3.0 3.2 4.4 2.3 4.2 8.4 4.7 2.8 4.7
{±1,±4, . . . } 6.1 6.4 6.1 6.4 5.4 4.0 3.9 4.0 5.4 5.4 5.5 5.4 7.6 6.6 4.0 6.6
{±1,±7, . . . } 11.0 11.0 11.0 11.0 11.0 7.5 6.9 7.5 11.0 11.0 11.0 11.0 11.0 9.7 6.9 9.7
High curvature of treatment CEF
Low curvature of outcome CEF
Continuous 4.9 5.9 3.8 5.2 8.3 5.4 3.2 5.4 6.1 8.1 4.8 5.7 8.9 5.1 3.1 5.1

Baseline 4.4 5.6 3.3 4.6 7.8 5.5 3.3 5.5 5.8 7.9 4.4 5.3 8.4 3.9 2.3 3.9
{±1,±4, . . . } 6.2 6.2 6.2 6.3 6.8 5.9 4.0 5.9 5.7 7.3 5.9 5.8 7.6 5.2 3.9 5.2
{±1,±7, . . . } 11.0 11.0 11.0 11.0 11.0 10.7 7.0 10.7 11.0 11.0 11.0 11.0 11.0 10.0 6.9 10.0
Moderate curvature of outcome CEF

Baseline 3.4 4.2 2.5 4.5 8.1 2.8 2.0 2.8 4.8 6.0 3.8 5.7 8.8 5.0 3.0 5.0
Continuous 2.9 3.9 2.2 3.7 7.4 3.0 1.8 3.0 4.5 5.8 3.5 5.3 8.5 3.8 2.3 3.8
{±1,±4, . . . } 6.1 6.4 6.1 6.4 5.7 4.0 3.9 4.0 6.3 6.3 6.4 6.3 7.9 4.5 3.9 4.5
{±1,±7, . . . } 11.0 11.0 11.0 11.0 11.0 9.0 6.9 9.0 11.0 11.0 11.0 11.0 11.0 10.0 6.9 10.0
High curvature of outcome CEF

Baseline 3.3 4.1 2.5 4.5 8.7 2.6 2.0 2.6 4.5 5.6 3.6 6.0 9.5 4.9 2.9 4.9
Continuous 2.9 3.8 2.2 3.7 7.8 2.9 1.7 2.9 4.7 6.1 3.6 6.1 9.8 3.8 2.3 3.8
{±1,±4, . . . } 6.1 6.4 6.1 6.4 6.2 3.9 3.9 3.9 5.3 5.5 5.4 5.4 10.0 5.7 4.0 5.7
{±1,±7, . . . } 11.0 11.0 11.0 11.0 11.0 7.5 6.9 7.5 11.0 11.0 11.1 11.0 11.0 8.9 6.8 8.9

Notes: Results based on 50,000 Monte Carlo draws for a nominal confidence level of 95%. Columns show results for bias aware approach with true
constants (TC), two times true constants (TC×2), half true constants (TC×.5), and with rule of thumb estimates (ROT1) and (ROT2); naive approach
that ignores bias (Naive); undersmoothing (US); and robust bias correction (RBC).
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Table S3: Results for Empirical Application with Optimized RDD
Smoothness Bound Method Confidence Set

ROT1 (BY = 0.004, BT = 0.008) Optimized AR CS −0.269± 0.359
Optimized DM CS −0.173± 0.330

ROT2 (BY = 0.002, BT = 0.002) Optimized AR CS −0.166± 0.262
Optimized DM CS −0.131± 0.227

Results based on 30,006 data points. All confidence sets have nominal level 95%.
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Table S4: Simulated CS coverage (%) for optimized RDD
Anderson-Rubin Delta Method

Support TC TC×.5 TC×2 ROT1 ROT2 TC TC×.5 TC×2 ROT1 ROT2

Low curvature of treatment CEF
Low curvature of outcome CEF

Baseline 96.8 91.6 98.6 98.1 92.8 100 100 100 100 100
Continuous 96.9 93.5 98.4 98.1 94.7 100 100 100 100 100
{±1,±4, . . . } 97.5 94.8 99.4 99.0 95.9 100 100 100 100 100
{±1,±7, . . . } 98.9 94.8 100 99.8 97.5 100 100 100 100 100
Moderate curvature of outcome CEF

Baseline 98.1 93.0 99.5 97.3 79.0 99.7 55.8 100 88.6 1.3
Continuous 96.8 93.8 97.9 96.3 84.7 73.4 7.6 99.9 55.0 0.1
{±1,±4, . . . } 99.5 95.5 100 98.6 88.8 83.9 1.4 100 51.7 0.0
{±1,±7, . . . } 100 96.6 100 99.8 85.7 86.1 0.0 100 52.3 0.0
High curvature of outcome CEF

Baseline 98.8 92.7 99.5 95.3 9.3 8.3 0.0 68.0 2.2 0.0
Continuous 97.3 93.3 98.9 95.9 43.4 0.7 0.0 16.3 0.4 0.0
{±1,±4, . . . } 100 95.2 100 98.6 49.6 0.0 0.0 30.5 0.0 0.0
{±1,±7, . . . } 100 69.9 100 98.1 0.5 0.0 0.0 100 0.0 0.0
Moderate curvature of treatment CEF
Low curvature of outcome CEF

Baseline 97.0 91.5 98.8 97.9 90.7 100 100 99.2 100 100
Continuous 97.0 93.3 98.4 97.8 93.4 100 100 100 100 100
{±1,±4, . . . } 97.7 94.6 99.6 98.9 95.1 100 100 100 100 100
{±1,±7, . . . } 99.3 94.4 100 99.7 96.6 100 100 100 100 100
Moderate curvature of outcome CEF

Baseline 98.4 91.5 99.5 94.3 45.5 89.9 43.2 98.4 61.6 0.0
Continuous 95.1 92.3 97.8 93.6 65.3 57.3 17.6 92.1 37.2 0.0
{±1,±4, . . . } 99.9 95.5 100 97.5 74.2 77.9 6.3 100 32.7 0.0
{±1,±7, . . . } 100 94.2 100 97.8 45.8 49.0 0.0 100 24.5 0.0
High curvature of outcome CEF

Baseline 98.3 92.6 99.6 89.6 1.3 31.3 2.6 63.9 2.6 0.0
Continuous 96.2 89.2 98.3 90.1 19.0 11.4 0.6 44.7 1.7 0.0
{±1,±4, . . . } 100 94.8 100 93.4 18.3 0.5 0.0 88.5 0.0 0.0
{±1,±7, . . . } 100 53.0 100 52.9 0.0 0.0 0.0 100 0.0 0.0
High curvature of treatment CEF
Low curvature of outcome CEF

Baseline 97.9 89.9 99.6 95.2 46.8 88.5 94.3 86.8 96.3 82.9
Continuous 97.0 92.9 98.5 96.3 69.5 91.6 94.6 87.5 96.4 98.5
{±1,±4, . . . } 99.7 95.2 100 98.8 79.3 100 99.8 99.9 100 99.6
{±1,±7, . . . } 100 89.3 100 99.2 57.4 92.1 28.9 100 99.1 34.0
Moderate curvature of outcome CEF

Baseline 97.1 92.2 99.5 88.7 0.6 30.9 22.4 41.4 21.2 0.0
Continuous 92.9 81.1 96.7 83.5 14.8 25.7 15.7 31.0 18.6 0.2
{±1,±4, . . . } 100 96.2 100 95.8 17.9 24.5 6.6 67.2 9.1 0.4
{±1,±7, . . . } 100 64.1 100 72.6 0.0 0.0 0.0 7.3 0.0 0.0
High curvature of outcome CEF
{±1,±4, . . . } 97.4 92.4 99.7 87.0 0.1 12.8 10.7 15.9 8.5 0.0

Cont.8 93.8 83.9 97.0 84.8 9.4 10.0 8.4 9.1 8.7 0.1
{±1,±4, . . . } 100 95.2 100 93.1 11.1 4.1 1.4 11.3 1.6 0.1
{±1,±7, . . . } 100 50.4 100 44.7 0.0 0.0 0.0 0.0 0.0 0.0

Notes: Results based on 50,000 Monte Carlo draws for a nominal confidence level of 95%. Columns show re-
sults for bias aware approach with true constants (TC), two times true constants (TC×2), half true constants
(TC×.5), and with rule of thumb estimates (ROT1) and (ROT2).
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