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Abstract

When does society eventually learn the truth, or take the correct action, via
observational learning? In a general model of sequential learning over social
networks, we identify a simple condition for learning dubbed excludability. Ex-
cludability is a joint property of agents’ preferences and their information. We
develop two classes of preferences and information that jointly satisfy exclud-
ability: (i) for a one-dimensional state, preferences with single-crossing dif-
ferences and a new informational condition, directionally unbounded beliefs;
and (ii) for a multi-dimensional state, intermediate preferences and subex-
ponential location-shift information. These applications exemplify that with
multiple states “unbounded beliefs” is not only unnecessary for learning, but
incompatible with familiar informational structures like normal information.
Unbounded beliefs demands that a single agent can identify the correct action.
Excludability, on the other hand, only requires that a single agent must be able
to displace any wrong action, even if she cannot take the correct action.

1. Introduction

This paper concerns the classic sequential observational or social learning model
initiated by Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992). There
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is an unknown payoff-relevant state (e.g., product quality). Each of many agents
has homogeneous preferences over her own action and the state (e.g., all prefer
products of higher quality). Agents act in sequence, each receiving her own pri-
vate information about the state and observing some subset of her predecessors’
actions. The central economic question is about asymptotic learning: do Bayesian
agents eventually learn to take the correct action (e.g., will the highest quality prod-
uct eventually prevail)?

One would anticipate that whether there is social learning depends on the com-
bination of agents’ preferences and their information structure. But, at least for
finite action sets, economists have largely emphasized the latter dimension alone.1

The reason is inextricably tied to focusing on models with two states. With only
two states, there is social learning given any (nontrivial) preferences if and only
if there is learning for all preferences. For, with two states, even the former re-
quires private signals/beliefs to be unbounded (Smith and Sørensen, 2000; Ace-
moglu, Dahleh, Lobel, and Ozdaglar, 2011). Unbounded beliefs says that given
any full-support prior it should be possible for a single private signal, however
unlikely it is, to make an agent arbitrarily close to certain about the true state.

With multiple—i.e., more than two—states, unbounded beliefs still character-
izes learning for all preferences (Arieli and Mueller-Frank, 2021).2 However, it is
now a very demanding condition. Consider, for instance, the canonical example
of normal information: the state is ! 2 ⌦ ⇢ R and agents’ signals are drawn in-
dependently from a normal distribution with mean ! and fixed variance. With
only two states, there is unbounded beliefs because a very high signal makes one
arbitrarily convinced of the high state, while a very low signal makes one arbi-
trarily convinced of the low state. But with multiple states, normal information
fails unbounded beliefs: given any full-support prior, there is an upper bound on

1 Unless noted otherwise, our introduction should be understood as referring to the canonical
sequential social learning model with a finite action set, homogeneous preferences, and no direct
payoff externalities. It is well recognized that variations in those aspects can also matter for social
learning; see for example, Lee (1993) on infinite action spaces, Avery and Zemsky (1998) and Eyster,
Galeotti, Kartik, and Rabin (2014) on endogenous prices or congestion costs, and Goeree, Palfrey,
and Rogers (2006) on heterogeneous preferences.

2 Arieli and Mueller-Frank (2021, Theorem 1) refer to the condition as “totally unbounded be-
liefs”. They establish their result for a complete network, i.e., when each agent observes the actions
of all predecessors. A by-product of our analysis is to establish it for general networks (Corollary 1
in Section 3).
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how certain one can become about any non-extremal state based on observing one
signal.3 Is social learning doomed with multiple states for familiar information
structures like normal information?

Our paper shows that the answer is no. With multiple states, whether society
eventually learns to take the correct action depends on the interplay of prefer-
ences and information. Crucially, learning can obtain under standard preferences
with familiar information structures that fail unbounded beliefs. Figure 1 illus-
trates an example of normal information with state space ⌦ = {1, 2, 3}, action set
A = {a1, a2}, and a uniform prior µ0. The failure of unbounded beliefs is reflected
in the set of posteriors, represented by the black curve, being bounded away from
state 2’s vertex. For concreteness, suppose that each agent observes all predeces-
sors’ actions. In Figure 1a, preferences violate single crossing—defined formally in
Section 4—because action a1 is optimal in both states 1 and 3, whereas a2 is optimal
in state 2. Here, learning fails: since action a1 is optimal after any signal the first
agent receives, society is stuck with all agents taking a1. By contrast, in Figure 1b,
agents have single-crossing preferences; specifically an agent who takes action ai

gets the quadratic-loss utility �(i � !)2. Now, at any belief at which learning the
state would be useful (i.e., a belief that puts positive probability on both state 1,
where a1 is optimal, and either state 2 or 3, where a2 is optimal), no single action
is optimal after all signals. This property yields social learning; see Theorem 1 in
Section 3.

Excludability. Our paper develops a simple joint condition on information and
preferences, which we call excludability, that is not only sufficient for social learning
on general observational networks (satisfying a mild condition known as expand-
ing observations), but in a sense also necessary; see Theorem 2 in Section 3.

Roughly speaking, excludability requires that for each pair of actions, a and a
0,

a single agent must be able to receive a signal that makes her arbitrarily convinced
that a is better than a

0, no matter which (full-support) belief she starts with. Put
differently, information must be able to distinguish the set of states in which a is
better than a

0 from the set in which a
0 is better than a. Excludability implies that

society can never get stuck on a wrong action: if an action is suboptimal at the true
state, then some agent will receive a private signal convincing her not to take that

3 So binary states is special because all states are extreme states. There is nothing exceptional
about normal information violating unbounded beliefs; see Remark 2 in Section 3.
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Figure 1: Belief simplex for state space ⌦ = {1, 2, 3}. The curve depicts the set of posteriors
for a single agent under normal information with prior µ0. The action set is A = {a1, a2}
and each agent’s utility is u(a,!). The shaded regions depict optimal actions under uncer-
tainty.

action. We establish that this property of displacing wrong actions leads to social
learning. Notably, an agent can displace wrong actions even if she cannot take the
correct action, i.e., the optimal action at the true state. (See Figure 2 in Section 3
for a concrete example.) We view the distinction of social learning arising from the
individual capacity to displace wrong actions rather than to discover the correct
action as a key insight; this distinction cannot be seen with only two states, where
the two notions are equivalent.

Excludability provides a useful perspective on existing ideas in the literature.
For instance, as detailed in Section 3, an information structure yields excludability
for all preferences if and only if that information structure has unbounded beliefs.
But more importantly, we can use excludability to deduce weaker informational
conditions that yield social learning for canonical classes of preferences.4

Single-crossing preferences. Our leading application of excludability is to pref-
erences with single-crossing differences (SCD). Here we show that learning obtains
when the information structure satisfies directionally unbounded beliefs (DUB). SCD
is a familiar property (Milgrom and Shannon, 1994) that is widely assumed in eco-

4 Although this approach of obtaining more tenable conditions by restricting preferences to some
broad class is novel to social learning, it is classical in other areas of economics. For instance, first-
order stochastic dominance is weakened to second-order by restricting to concave (and increasing)
utility functions.
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nomics: it captures settings in which there are no preference reversals as the state
increases. By contrast, DUB appears to be a new condition on information struc-
tures, although Milgrom (1979) utilizes a related property in the context of auction
theory. Like SCD, DUB is formulated for a (totally) ordered state space. It requires
that for any state ! and any prior that puts positive probability on !, there exist
both: (i) signals that make one arbitrarily certain that the state is at least !; and
(ii) signals that make one arbitrarily certain that the state is at most !. Crucially,
no signal need make one arbitrarily certain about ! (unlike unbounded beliefs).
For the normal information structure discussed earlier, requirements (i) and (ii)
are met for any state by arbitrarily high and arbitrarily low signals, respectively.

Proposition 1 in Section 4 shows that SCD preferences and DUB information
are jointly sufficient for excludability, and hence learning. For a direct intuition on
the SCD-DUB interplay, consider normal information again. There are preferences
(like those in Figure 1a) under which society can get stuck at some belief at which
agents are taking an incorrect action, but only a strong signal about an interme-
diate state would change the action—alas no such signal is available. However,
under SCD preferences (like those in Figure 1b), if knowing that the state is some
intermediate ! would change the action, then so would knowing that the state is
at least ! or at most !. Normal information, or more generally DUB, guarantees
that there are strong signals approximating such knowledge.

Intermediate preferences. Our second application in Section 4 is to intermedi-
ate preferences in multidimensional spaces (Grandmont, 1978), where the state is
! 2 Rd and the action is a 2 Rd. These subsume both constant-elasticity-of-
substitution preferences common in many areas of economics and Euclidean pref-
erences invoked in political economy and communication/delegation models.

Using excludability, we show that social learning obtains under intermediate
preferences so long as information is given by a subexponential location-shift family.
Location-shift families are widely-used information structures: for some density
g : Rd

! Rd, the signal distribution in any state ! is given by g(s� !). Loosely, the
subexponential condition requires that the tail of g must be thin enough, eventually
decreasing faster than an exponential rate. We establish that this thin-tails prop-
erty combined with intermediate preferences yields excludability. Notably, mul-
tidimensional normal information (i.e., normally distributed signals with mean
equal to the state and some fixed covariance matrix) satisfies the subexponential
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requirement.

Methodology. A significant contribution of our paper is also methodological. We
develop an approach to tackle learning, and more generally, asymptotic social wel-
fare with multiple states in general observational networks. Theorem 1 in Section 3
is the backbone by which we tie learning to excludability. Theorem 1 reduces
the complex dynamic problem of social learning in networks to a much simpler
“static” problem. The theorem says that there is learning if and only if every sta-
tionary belief has adequate knowledge. A stationary belief is one at which there is
an action that is optimal no matter an agent’s signal, and an adequate-knowledge
belief is one at which there is an action that is optimal no matter the state in the
belief’s support. Excludability is a simple sufficient—and necessary, in a sense
explained later—condition for all stationary beliefs to have adequate knowledge.

Theorem 1 itself is a consequence of Theorem 3 in Section 5, which provides
a welfare lower bound even when learning fails. The theorem roughly says that
for any preferences and information (and given expanding observations), agents
eventually obtain at least their cascade utility. Cascade utility is the minimum ex-
pected utility an agent can get from any Bayes-plausible distribution of stationary
beliefs. Theorem 3 implies that learning obtains when the cascade utility equals
the utility obtained from taking the correct action in each state, which leads to
Theorem 1.

Related literature. A number of papers on sequential Bayesian social learning
only consider the complete observational network: each agent observes all her
predecessors’ actions. For that case and with binary states, Smith and Sørensen
(2000) show that, given any nontrivial preferences, there is learning if and only if
beliefs are unbounded. For the complete network but with multiple states, Arieli
and Mueller-Frank (2021) show that unbounded beliefs—which they call “totally
unbounded beliefs”—is sufficient for learning, and also necessary if learning must
obtain no matter society’s preferences.5 The approach of both Smith and Sørensen
(2000) and Arieli and Mueller-Frank (2021) rests on the social belief—an agent’s
belief based on observing her predecessors’ actions, before observing her own

5 The early work of Bikhchandani, Hirshleifer, and Welch (1992) allowed for multiple states, but
they only identified failures of learning because they implicitly restricted attention to “bounded
beliefs”; more precisely, they assumed finite signals with full-support distributions.

6



signal—being a martingale in the complete network.
Gale and Kariv (2003) and Çelen and Kariv (2004) depart from the complete

network, noting that martingale methods now fail. Both these papers also depart
from the canonical setting in other ways, however: in Gale and Kariv (2003) agents
choose actions repeatedly, while in Çelen and Kariv (2004) private signals are not
independent conditional on the true state. Acemoglu, Dahleh, Lobel, and Ozdaglar
(2011) provide a general treatment of observational networks in an otherwise clas-
sical setting. But they only allow for binary states and binary actions. They intro-
duce the condition of expanding observations, explaining that this property of the
network is necessary for learning. They establish that it is also sufficient for learn-
ing with unbounded beliefs. Building on Banerjee and Fudenberg (2004), a key
contribution of Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) is to use a welfare
improvement principle to deduce learning; this approach works even though mar-
tingale arguments fail. Lobel and Sadler (2015) introduce a notion of “information
diffusion” and use the improvement principle to establish information diffusion
even when learning fails.

The analysis in both Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) and Lo-
bel and Sadler (2015) relies on their binary-state binary-action structure.6 We be-
lieve ours is the first paper to consider the canonical sequential social learning
problem with general observational networks and general state and action spaces.
At a methodological level, we develop a novel analysis based on continuity and
compactness—rather than monotonicity or other properties that are specific to bi-
nary states or actions—that uncovers the fundamental logic underlying a general
improvement principle.

Substantively, our focus on multiple states and actions allows us to shed light
on how preferences and information jointly shape social learning. As already
noted, their interplay in determining learning has not received attention in the
prior literature because of its focus on binary states. The only exception we are
aware of is Arieli and Mueller-Frank (2021, Theorem 3), discussed in Section 3;
their result assumes a special utility function and is only for the complete network.

6 Banerjee and Fudenberg (2004) and Smith and Sørensen (2020) consider “unordered” random
sampling models that also only allow for binary states and actions.
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2. Model

There is a countable state space ⌦, endowed with the discrete topology, and
standard Borel spaces of actions A and signals S. We allow each of these three sets
to be finite or infinite. An information or signal structure is given by a collection
of probability measures over S, one for each state, denoted by F (·|!). Assume that
for any ! and !

0, F (·|!) and F (·|!0) are mutually absolutely continuous. It follows
that each F (·|!) has a density f(·|!); more precisely, this is the Radon-Nikodym
derivative of F (·|!) with respect to some reference measure that is mutually abso-
lutely continuous with every F (·|!0). Without further loss of generality we assume
f(·|·) > 0, so that no signal rules out any state.

The game. At the outset, a state ! is drawn from a common prior probabil-
ity mass function µ0 2 �⌦.7 Then, an infinite sequence of agents, indexed by
n = 1, 2, . . ., sequentially select actions. An agent n observes both a private sig-
nal sn drawn from f(·|!) and the actions of some subset of her predecessors Bn ✓

{1, 2, . . . , n � 1}, and then chooses her action an 2 A. Agents’ private signals are
drawn independently conditional on the state, and no agent observes either the
state or any of her predecessors’ signals. Each observational neighborhood Bn is
stochastically generated according to a probability distribution Qn over all subsets
of {1, 2, . . . , n � 1}, assumed to be independent across n, independent of the state
!, and independent of any private signals. The distributions (Qn)n2N constitute
the observational network structure and are common knowledge, but the realized
neighborhood Bn is the private information of agent n.

Agent n’s information set thus consists of her signal sn, neighborhood Bn, and
the actions chosen by the neighbors (ak)k2Bn .8 Let In denote the set of all possible
information sets for agent n. A strategy for agent n is a (measurable) function
�n : In ! �A.

All agents are expected utility maximizers and have common preferences that
depend only on their own action and the state, represented by the utility function
u : A ⇥ ⌦ ! R. We assume that utility is bounded: there is u � 0 such that

7 For any topological space X , �X denotes the set of Borel probability measures over X .
8 While we assume that each agent observes the identities of her neighbors as well as their cho-

sen actions, the Conclusion explains how our analysis extends to various cases of “random sam-
pling” in which neighbors’ identities are not observed. Our analysis also applies if agents receive
arbitrary information about their predecessors’ realized neighborhoods.
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|u(·, ·)|  u.
We study the Bayes Nash equilibria—hereafter simply equilibria—of this game.

We assume that for every belief there is an optimal action, so that an equilibrium
exists.9

Remark 1. Appendix A describes a more general setting in which our main results
are proved. For example, ⌦ can be a closed subset of R and each u(a, ·) piecewise
continuous with A finite. We also do not require the signal distributions to be
mutually absolutely continuous.

Adequate learning. The full-information expected utility given a belief µ is the
expected utility under that belief if the state will be revealed before an action is
chosen:

u
⇤(µ) :=

X

!2⌦

max
a2A

u(a,!)µ(!).

Given a prior µ0 and a strategy profile �, agent n’s utility un is a random variable.
Let E�,µ0 [un] be agent n’s ex-ante expected utility. We say there is adequate learning if
for every prior µ0 and every equilibrium �, E�,µ0 [un] ! u

⇤(µ0). In words, adequate
learning requires that given any prior and equilibrium, no matter which state is
realized, eventually agents take actions that are arbitrarily close to optimal in that
state.10 We say there is inadequate learning if adequate learning fails.11

We will also be interested in situations in which agents choose from a subset
of actions, referred to as a choice set.12 We say that there is (in)adequate learning for
a choice set Ã ✓ A if there is (in)adequate learning when agents are restricted to
choose from actions in Ã.

9 Existence of optimal actions is assured under standard assumptions, e.g., if A is compact and
u(·, ·) is suitably continuous. We also note that as there are no direct payoff externalities, strategic
interaction is minimal: any �n affects other agents only insofar as affecting how n’s successors
update about signal sn from the observation of action an. Hence, we could just as well adopt
(weak) Perfect Bayesian equilibrium or refinements.

10 Our notion of adequate learning is different from Arieli and Mueller-Frank’s (2021), who re-
quire learning for all utility functions. Following Aghion, Bolton, Harris, and Jullien (1991), we use
“adequate” to signify that learning the state precisely is not necessary when some action is optimal
in multiple states.

11 That we deem learning to be inadequate if there is some equilibrium in which learning fails,
rather than in every equilibrium, is innocuous given that there is no strategic interaction (cf. fn. 9).
On the other hand, the issue of whether learning fails at every prior rather than only at some priors
is substantive. We return to this issue in our Conclusion.

12 We restrict attention to choice sets such that for every belief there is an optimal action.
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Expanding observations. As observed by Acemoglu, Dahleh, Lobel, and Ozdaglar
(2011), a necessary condition for adequate learning is that the network structure
has expanding observations:

8K 2 N : lim
n!1

Qn (Bn ✓ {1, . . . , K}) = 0. (1)

The reason is that a failure of expanding observations means that for some K 2 N,
there is an infinite number of agents each of whom, with probability uniformly
bounded away from 0, observes at most actions a1, . . . , aK . In that event, the agent
cannot do better than choosing her action based on only K + 1 signals.

Accordingly, we assume expanding observations. Leading examples of net-
work structures with expanding observations include: (i) the classic complete net-
work in which each agent’s neighborhood is all her predecessors (formally, Qn(Bn =

{1, . . . , n � 1}) = 1); (ii) each agent only observes her immediate predecessor
(Qn(Bn = {n � 1}) = 1); and (iii) each agent observes a random predecessor
(Qn(Bn = {k}) = 1/(n� 1) for all k 2 {1, . . . , n� 1}).

3. Characterizations of Learning

3.1. Stationary Beliefs and Adequate Knowledge

The key to all our results on learning is Theorem 1 below, which simplifies the
question of adequate learning to a “one-shot updating” property of beliefs. To state
that result, we require two concepts concerning the value of information.

For any belief µ 2 �⌦, let c(µ) := argmaxa2A Eµ[u(a,!)] denote the set of op-
timal actions under that belief. Abusing notation, for a degenerate belief on state
! we write c(!). Denoting the posterior after signal s when starting from belief µ
by µs, we say that belief µ is stationary if there is a 2 c(µ) such that a 2 c(µs) for µ-
a.e. signal s. We say that belief µ has adequate knowledge if there is a 2 c(µ) such that
a 2 c(!) for all ! 2 Suppµ. So a belief is stationary if an agent holding that belief
does not benefit from observing a signal from the given information structure.13

On the other hand, a belief has adequate knowledge if the agent would not benefit
from observing a signal from any information structure, in particular learning the
state.

13 Some readers may find it helpful to note that in their setting, Smith and Sørensen (2000) refer
to stationary beliefs as “cascade beliefs”.
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Any adequate-knowledge belief, such as a belief that puts probability one on a
single state, is stationary. In general, there can be stationary beliefs without ade-
quate knowledge, as seen in Figure 1a.

Theorem 1. There is adequate learning if and only if all stationary beliefs have adequate
knowledge.

Theorem 1 provides a characterization of adequate learning that holds regard-
less of the observational network structure, given our maintained assumption of
expanding observations. Its “only if” direction is straightforward because our no-
tion of learning considers all priors: if the prior is stationary and has inadequate
knowledge, then society is stuck with all agents taking the prior-optimal action
even though it is suboptimal in some states. More important and subtle is the
theorem’s “if” direction. It is inspired by earlier results, particularly Arieli and
Mueller-Frank (2021, Lemma 1) and Lobel and Sadler (2015, Theorem 1), but the
logic in the current general setting of arbitrary networks and multiple states and
actions is novel. We defer this logic to Section 5, instead turning now to how we
can build on Theorem 1 for a more practicable characterization of learning. In par-
ticular, we seek a more transparent condition on the combinations of preferences
and information that yield adequate learning.

3.2. Excludability

A key notion is whether information allows an agent to become arbitrarily sure
about a subset of states ⌦0 relative to another subset ⌦00. To make that precise,
let µs(⌦0) denote the posterior on states ⌦0 induced by belief µ and signal s, and
Prµ(S 0) be the probability of signal set S 0 induced by belief µ.

Definition 1. A set ⌦0 is distinguishable from another set ⌦00 if for any " > 0 and
µ 2 �(⌦0

[ ⌦00) with µ(⌦0) > 0, it holds that Prµ(s : µs(⌦0) > 1� ") > 0.

Note that ⌦0 is distinguishable from ⌦00 if and only if every ! 2 ⌦0 is distin-
guishable from ⌦00. Moreover, if ⌦0 is distinguishable from ⌦00, then every subset
of ⌦0 is distinguishable from every subset of ⌦00. The following observation essen-
tially reinterprets distinguishability directly in terms of the signal structure rather
than posteriors.
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Lemma 1. ⌦0 is distinguishable from ⌦00 if for every !
0
2 ⌦0 and " > 0, there is a positive-

probability set of signals S 0 such that

8!
00
2 ⌦00

, 8s 2 S
0 :

f(s|!00)

f(s|!0)
< ".

Conversely, this condition is also necessary if ⌦00 is finite.

We emphasize that the set S 0 in the lemma cannot depend on !
00
2 ⌦00; for ⌦0 to

be distinguished from ⌦00, each !
0
2 ⌦0 must be distinguished from all !00

2 ⌦00

simultaneously. Consider the example of normal information: ⌦ ⇢ R and sig-
nals are normally distributed on R with mean ! and fixed variance. When ⌦ =

{1, 2, 3}, state 2 is distinguishable from 1 because f(s|1)/f(s|2) ! 0 as s ! 1,
and state 2 is distinguishable from 3 because f(s|3)/f(s|2) ! 0 as s ! �1.
But state 2 cannot be distinguished from both 1 and 3 simultaneously, because
min{f(s|1)/f(s|2), f(s|3)/f(s|2)} is bounded away from 0.

Distinguishability of each state from its complement is the condition of un-
bounded beliefs; this is termed “totally unbounded beliefs” by Arieli and Mueller-
Frank (2021) and is the multi-state extension of the two-state notion introduced by
Smith and Sørensen (2000). But with multiple states, unbounded beliefs is incom-
patible with familiar information structures.

Remark 2. Under any monotone likelihood ratio property (MLRP) information struc-
ture, no state ! is distinguishable from {!

0
,!

00
} with !

0
< ! < !

00.14 Consequently,
if |⌦| > 2, unbounded beliefs fails under the MLRP.

Fortunately, learning only requires certain subsets of states to be distinguished
from each other. For any two actions a1 and a2, let the preferred set ⌦a1,a2 := {! :

u(a1,!) > u(a2,!)} be the set of states in which a1 is strictly preferred to a2.

Definition 2. A utility function and an information structure jointly satisfy exclud-
ability if for every a1 and a2, ⌦a1,a2 is distinguishable from ⌦a2,a1 .

Excludability is a joint condition on preferences and information. It requires
that for any pair of actions, a single agent can become arbitrarily certain that one
action is strictly better than the other, starting from any belief that does not exclude

14 For ordered state and signals spaces, the MLRP holds if 8s0 > s and 8!0 > !, f(s|!0)/f(s|!) 
f(s0|!0)/f(s0|!).
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that event. Since excludability is defined using preferred sets, it is straightforward
to deduce which sets must be distinguishable for any given preferences; Lemma 1
then provides a set of likelihood-ratio conditions on the information structure,
without reference to beliefs.

Unbounded beliefs implies excludability for any preferences. Conversely, if un-
bounded beliefs fails, then there is some state !

⇤ that is not distinguishable from
its complement, and excludability fails when preferences are such that for some a1

and a2, ⌦a1,a2 = {!
⇤
} while ⌦a2,a1 = ⌦ \ {!

⇤
}. Hence, excludability for all prefer-

ences is equivalent to unbounded beliefs. But with multiple states, excludability
can be substantially weaker for any given (class of) preferences, as developed in
Section 4.15 This matters because:

Theorem 2. Excludability implies adequate learning for every choice set. If excludability
fails and the number of states is finite, then there is inadequate learning for some choice set.

(See Theorem 20 in the appendix for a more general version of Theorem 2 that
does not require finiteness in the second statement. Hereafter, for brevity, we leave
it as implicit that it is Theorem 20 rather than Theorem 2 we are invoking when
discussing the necessity of excludability for learning in an infinite state space.)

Excludability is sufficient for adequate learning because it ensures that wrong
actions can always be “displaced”, which by Theorem 1 is the key to social learn-
ing. More precisely, excludability guarantees that, no matter the choice set, all
stationary beliefs have adequate knowledge. Suppose a belief µ has inadequate
knowledge, so that c(µ) 6= c(!⇤) for some state !⇤

2 Suppµ. (For simplicity, assume
c(µ) and c(!⇤) are singletons.) Excludability implies that preferred set ⌦c(!⇤),c(µ) is
distinguishable from ⌦c(µ),c(!⇤). Hence, with positive probability, an agent who
starts with belief µ will obtain a posterior that puts arbitrarily large probability
on ⌦c(!⇤),c(µ) relative to ⌦c(µ),c(!⇤), in which event she strictly prefers c(!⇤) to c(µ).
Consequently, µ is not stationary.

We highlight that excludability does not guarantee that a wrong action can al-
ways be displaced by the correct action. In other words, even though excludability
guarantees that given any wrong action—say, c(µ) when the true state is !

⇤—a

15 With only two states, ⌦ = {!1,!2}, excludability under any given nontrivial preferences is
equivalent to unbounded beliefs. (Nontrivial means that no action is optimal at all states.) For,
there must be actions a1 and a2 such that ⌦a1,a2 = {!1} and ⌦a2,a1 = {!2}; excludability requires
these sets to be mutually distinguishable, which is unbounded beliefs.
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single agent can receive a signal convincing her that c(µ) is worse than the correct
action c(!⇤), there may be no signal that leads the agent to take c(!⇤). When there
are two states and finite actions, always being able to displace a wrong action and
always being able to take the correct action are equivalent, as they both reduce
to unbounded beliefs. But more generally, it is displacing wrong actions that is
fundamental for learning.

To illustrate the point concretely, consider the example depicted in Figure 2.
There are three states and three actions, ⌦ = A = {1, 2, 3}. The signal structure and
preferences are detailed in the figure’s caption. The correct action in each state ! is
a = !. Importantly, unbounded beliefs fails yet there is excludability.16 Let agent
n’s social belief be her belief about the state given only the history of her neighbors’
actions, prior to observing her own private signal. When each agent observes all
predecessors’ actions, Figure 2 shows two representative numerically-simulated
paths of social beliefs given the true state ! = 2. The social belief starts at the prior,
marked by a star in the figure, and then evolves as agents take actions, as indicated
by either of the arrowed paths. There is a range of beliefs, shaded in grey, such that
for any social belief in that range no signal can lead an agent to take the correct
action 2. As the prior is in this range, the first agent necessarily takes a wrong action:
either 1 (which occurs in the red path) or 3 (the blue path). Nevertheless, even
though no agent can take the correct action 2 for a while, society never gets stuck
at a wrong action: given that an agent’s predecessor chose a 2 {1, 3}, there are
signals (very high if a = 1 and very low if a = 3) that convince the agent that a is
worse than the correct action 2, and hence the agent will not take action a. At some
point, after enough switching between actions 1 and 3, the social belief is driven
outside the grey region and it becomes possible for an agent to take the correct
action 2. Eventually, society settles on that action.

Turning to necessity in Theorem 2: for a fixed choice set, all stationary beliefs
can have adequate knowledge (and hence there is adequate learning, by Theo-
rem 1) even absent excludability. But when excludability fails, there is some pre-
ferred set ⌦a1,a2 that cannot be distinguished from ⌦a2,a1 . If ⌦ is finite, this means

16 Unbounded beliefs fails because under normal information the middle state is not distinguish-
able from its complement. Excludability can be verified by checking distinguishability of the pre-
ferred sets for each pair of actions; alternatively, we note that the preferences satisfy single-crossing
differences (SCD), and as explained in Subsection 4.1, SCD and normal information imply exclud-
ability.
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Figure 2: Two simulated social belief paths—one in red and one in blue—in a complete
network. There are three states labeled 1, 2, 3, and there is normal information (with
standard deviation 1.2). There are three actions with respective state-contingent utilities
(1, 0,�0.3), (0, 0.2, 0), and (�0.3, 0, 1). The optimal action under uncertainty is delineated
by the dashed lines. The true state is 2, and society starts with the prior (0.35, 0.1, 0.55),
marked by the black star. The grey shaded region indicates beliefs at which no single sig-
nal can lead to state 2’s correct action. On each path, a dot represents the social belief after
an agent has acted, and arrows indicate the sequencing.

that when the choice set is {a1, a2}, a belief that puts small probability on ⌦a1,a2

relative to ⌦a2,a1 is stationary and has inadequate knowledge. Hence, Theorem 1
implies that excludability is necessary for learning when we seek learning for all
choice sets. The following example illustrates these points using an infinite action
set for convenience.

Example 1. Consider ⌦ = {0, 1}, A = [0, 1], and u(a,!) = �(a� !)2. This is an ex-
ample of “responsive preferences” (Lee, 1993; Ali, 2018). Fix any nontrivial signal
structure and any observational network structure satisfying expanding observa-
tions.

Adequate learning obtains by Theorem 1, because the only stationary beliefs
have certainty on one of the two states. For, given any nondegenerate belief, with
positive probability the posterior-optimal action will be different from the prior-
optimal action, as the uniquely optimal action equals the posterior expected state.
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However, excludability is equivalent to the signal structure having unbounded
beliefs, as for any a1 < a2, ⌦a1,a2 = {0} and ⌦a2,a1 = {1}. So excludability is not
necessary for adequate learning at choice set A. But absent excludability there
is inadequate learning at any non-singleton finite choice set. For, there is then
some state such that any prior that puts probability close to 1 on that state will be
stationary, but this prior has inadequate knowledge. ⇤

The choice-set variation required by Theorem 2 comes “for free” when we seek
an informational condition that ensures learning for a broad-enough class of pref-
erences. Specifically, it is sufficient that for any utility function in the class and any
choice set, there is another utility function that is identical on that set but makes all
other actions dominated. Since the class of all preferences has this property, and
excludability for all preferences is equivalent to the information structure having
unbounded beliefs, Theorem 2 immediately implies:

Corollary 1. An information structure yields adequate learning for all preferences if and
only if it has unbounded beliefs.

This corollary extends results from the prior literature, which are either for the
complete network (Arieli and Mueller-Frank, 2021, Theorem 1) or general net-
works but with only two states (Acemoglu, Dahleh, Lobel, and Ozdaglar, 2011,
Theorem 2).

To our knowledge, the only prior exception to unbounded beliefs driving learn-
ing with a discrete action space is the interesting example of Arieli and Mueller-
Frank (2021, Theorem 3). They consider the complete network and a special utility
function, which they call “simple utility”, in which the payoff is 1 if the action
matches the state and 0 otherwise. For this case, they show that pairwise distin-
guishability—for any pair of states, each is distinguishable from the other—is suf-
ficient for learning. This result also follows from Theorem 2; indeed, the theorem
implies that learning obtains for general observational networks. For, under sim-
ple utility, the preferred sets for actions a1 6= a2 are just {a1} and {a2}, which means
excludability is equivalent to pairwise distinguishability.

4. Applications

Excludability permits a study of informational conditions that assure adequate
learning for broad and widely-used classes of preferences. This section presents
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two such applications: one with a one-dimensional state, and one with a multi-
dimensional state.

4.1. Learning in a One-Dimensional World

In this subsection we assume a totally ordered state space: for simplicity, ⌦ ⇢ R.
A function h : ⌦ ! R is single crossing if either: (i) for all ! < !

0, h(!) > 0 =)

h(!0) � 0; or (ii) for all ! < !
0, h(!) < 0 =) h(!0)  0. That is, a single-crossing

function switches sign between strictly positive and strictly negative at most once.

Definition 3. Preferences represented by u : A⇥ ⌦ ! R have single-crossing differ-
ences (SCD) if for all a and a

0, the difference u(a, ·)� u(a0, ·) is single crossing.

SCD is an ordinal property closely related to notions in Milgrom and Shannon
(1994) and Athey (2001), but, following Kartik, Lee, and Rappoport (2023), the for-
mulation is without an order on A.17 Ignoring indifferences, SCD requires that the
preference over any pair of actions can only flip once as the state changes mono-
tonically. SCD is widely satisfied in economic models; in particular, it is assured
by supermodularity of u.

The key informational condition is that of distinguishing upper and lower sets
from each other. More precisely, we require that for any !, {!0 : !0

� !} and {!
0 :

!
0
< !} are distinguishable from each other, and {!

0 : !0
> !} and {!

0 : !0
 !}

are distinguishable from each other. But since a set ⌦0 is distinguishable from ⌦00 if
and only if each ! 2 ⌦0 is distinguishable from ⌦00, we can simplify as follows.

Definition 4. An information structure has directionally unbounded beliefs (DUB) if
every ! is distinguishable from {!

0 : !0
< !} and also from {!

0 : !0
> !}.

Crucially, DUB does not require any state ! to be distinguishable from any
subset of states containing both a higher and a lower state than !. Rather, using
Lemma 1, we can view DUB as only requiring that for any state !, there are signals
that are arbitrarily more likely in ! relative to all !0

< !, and also other signals that
are arbitrarily more likely in ! relative to all !0

> !.
A leading example of DUB information is normal information. More gener-

ally, for any MLRP information structure, DUB can be easily checked because it

17 SCD is equivalent to there existing some order on A with respect to which Athey’s (2001) “weak
single-crossing property of incremental returns” holds.
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reduces to pairwise distinguishability.18 We note that when A is finite, pairwise
distinguishability is inescapable (even without the MLRP) for adequate learning
in any rich-enough class of preferences.19

Our main result in this subsection is:

Proposition 1. If preferences have SCD and the information structure has DUB, then
there is adequate learning. Conversely, if the information structure violates DUB and
there are at least two actions, then there are SCD preferences for which there is inadequate
learning.

The result says that not only is DUB a sufficient informational condition for ad-
equate learning under any SCD preferences, but it also necessary to assure learning
for all SCD preferences.

Here is the logic for sufficiency. Recall that ⌦a,a0 denotes the states in which
action a is strictly preferred to a

0. SCD implies non-reversal of strict preferences:
for any a and a

0, either inf ⌦a,a0 � sup⌦a0,a or inf ⌦a0,a � sup⌦a,a0 . DUB says that
every upper (resp., lower) set of states and its strict lower (resp., strict upper) set
are distinguishable from each other. Therefore, SCD and DUB together guarantee
excludability, and so Proposition 1’s first statement follows from Theorem 2.

We would like to caution against the following intuition. Under SCD prefer-
ences, any inadequate-knowledge belief µ has distinct optimal actions at the ex-
treme states of µ’s support. DUB information then guarantees learning because
the extreme states can be distinguished from their complements, and so µ is not
stationary. While valid for finite states, this is not a generally applicable intuition.
Indeed, the following example shows that pairing DUB with distinct optimal ac-
tions at all states is not a robust principle for learning.

18 Regardless of the MLRP, DUB implies pairwise distinguishability. To see why the converse is
true given the MLRP, consider the case of finite states. Note that for any !0 > !, f(s|!0)/f(s|!) !
1 as s ! supS (the ratio is increasing by MLRP, and it diverges by pairwise distinguishability);
similarly, the ratio goes to 0 as s ! inf S. Hence, for any !0 and " > 0, the condition in Lemma 1 is
met for ⌦0 = {!0

} and ⌦00 = {!00 : !00 < !0
} when S0 is any sufficiently small upper set of signals,

while for ⌦00 = {!00 : !00 > !0
} the condition is met when S0 is any sufficiently small lower set.

For an infinite state space, the intuition is the same but we appeal to the monotone convergence
theorem.

19 “Rich-enough” here means that for any two states, there is a preference in the class such that
the optimal actions in those two states are disjoint.
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Example 2. Let ⌦ = Z and A = Z[{a
⇤
}. In any state !, the utility from any integer

action a is given by quadratic loss, u(a,!) = �(a � !)2, whereas the action a
⇤ is a

“safe action”, u(a⇤,!) = �" for a small constant " > 0.20 So any action ! is uniquely
optimal in state ! but worse than the safe action a

⇤ in every other state. Plainly,
SCD is violated.

Consider normal information. There are full-support priors µ such that the
posterior probability µs(!) is uniformly bounded away from 1 across signals s and
states ! (see Supplementary Appendix SA.3 for details). For any such prior, for
small enough " > 0, the safe action a

⇤ is optimal after every signal. In other words,
any such prior is stationary but has inadequate knowledge. So Theorem 1 implies
inadequate learning. ⇤

The argument for the necessity of DUB in Proposition 1 is as follows. Take
any state !

⇤, any two actions a1 6= a2, and consider the following SCD utility:
for all ! < !

⇤, u(a1,!) = 1 and u(a2,!) = 0; for all ! � !
⇤, u(a1,!) = 0 and

u(a2,!) = 1; and otherwise u(a,!) = �1. Since all actions except a1 and a2 are
dominated and can be ignored, Theorem 2 implies that for there to be adequate
learning, ⌦a1,a2 = {! : ! < !

⇤
} and ⌦a2,a1 = {! : ! � !

⇤
} must be distinguishable.

In particular, !⇤ is distinguishable from its lower set. An analogous argument
shows that !

⇤ is distinguishable from its upper set. Since !
⇤ is arbitrary, DUB

holds.
While our main point in this subsection is that DUB is the correct informational

condition for adequate learning under SCD preferences, it is also worth noting
that for any preferences violating SCD, one can show that there are DUB infor-
mation structures—e.g., normal information—with inadequate learning at some
choice set. In this sense SCD and DUB are a minimal pair of sufficient conditions.

4.2. Learning in a Multi-Dimensional World

We now turn to a multi-dimensional environment: A,⌦ ⇢ Rd for some inte-
ger d � 1.21 For instance, A = {1, 2, 3}2 can represent a set of feasible policies,
⌦ = {1, 2, 3}2 society’s ideal policy, and individuals have quadratic-loss prefer-

20 Strictly speaking, quadratic-loss utility with ⌦ = Z violates our maintained assumption of
bounded utility, but we ignore that to keep the example succinct.

21 We view any x 2 Rd as a column vector and denote its transposition by x0 and its standard
Euclidean norm by kxk.
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ences u(a,!) = �ka � !k
2. Is there a natural class of information structures for

which learning obtains?
More generally, consider the following class of preferences:

Definition 5. Preferences are intermediate if for all a1 6= a2, either ⌦a1,a2 = ; or
⌦a1,a2 = ⌦ or there are h 2 Rd and c 2 R such that ⌦a1,a2 = {! : h · ! > c}.

Introduced by Grandmont (1978), intermediate preferences have preferred sets
that are either trivial or half spaces; so if !,!

0
2 ⌦a1,a2 , then for any � 2 (0, 1)

and !
00 = �! + (1 � �)!0

2 ⌦, it holds that !00
2 ⌦a1,a2 . A leading family, sub-

suming quadratic-loss preferences, is weighted Euclidean preferences: u(a,!) =

�l((a � !)0W (a � !)), for some d ⇥ d symmetric positive definite matrix W and
strictly increasing loss function l : R+ ! R+.22 Another salient example, discussed
by Caplin and Nalebuff (1988, Section 5), is the constant-elasticity-of-substitution

utility u(a,!) =
⇣Pd

i=1 !(i)(a(i))r
⌘1/r

where a(i) and !(i) denote the respective i-th
coordinates, and r 6= 0 is a parameter.

Turning to information, we focus on the familiar class of location-shift informa-
tion structures: S = Rd and there is a density g : Rd

! R++, called the standard
density, such that f(s|!) = g(s� !). We restrict attention to standard densities that
are uniformly continuous. The following property will be crucial.

Definition 6. A location-shift information structure is subexponential if there are
p > 1 and M > 0 such that g(s) < exp(�ksk

p) for all ksk > M .

A subexponential density has a thin tail in the sense that it eventually decays
strictly faster than the exponential density. Our leading example of a subexponen-
tial location-shift information structure is multivariate normal information: there is
some covariance matrix ⌃ such that the distribution of signals in state ! is N (!,⌃).
Here the standard density is that of N (0,⌃), and Definition 6 is verified by taking
any exponent p 2 (1, 2) and any large M > 0. Subexponential information can fail
unbounded beliefs; for example, this is the case for normal information when ⌦

22 To confirm that these are intermediate preferences, note that by simple algebraic manipulation,

(a1 � !)0W (a1 � !)� (a2 � !)0W (a2 � !) = (a1 � a2)
0W (a1 + a2 � 2!).

Hence, ! 2 ⌦a1,a2 if and only if (a1 � a2)0W (a1 + a2 � 2!) > 0, or equivalently, h · ! > c where
h = 2(a2 � a1)0W and c = (a2 � a1)0W (a1 + a2).
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contains non-extreme states, i.e., there is some state in the interior of the convex
hull of ⌦.

The main result of this subsection is:

Proposition 2. If preferences are intermediate and the information structure is subexpo-
nential location-shift, then there is adequate learning.

The result follows from Theorem 2 and the next lemma, which says that all half
spaces are distinguishable from their complements under subexponential location-
shift information. Since the nontrivial preferred sets for intermediate preferences
are half spaces, the lemma implies that this combination of preferences and infor-
mation yields excludability.

Lemma 2. For a subexponential location-shift information structure, the sets {! : h ·! >

c} and {! : h · ! < c} are distinguishable from each other for any h 2 Rd and c 2 R.

The exponent p being strictly larger than 1 in the definition of subexponential
is essential for the lemma. To see that, consider the double-exponential standard
density g(s) = c ·exp(�ksk) with c > 0 a constant of integration. This density is not
subexponential, and indeed the conclusion of Lemma 2 fails: no two states ! 6= !

0

are distinguishable from each other because f(s|!0)/f(s|!) = g(s� !
0)/g(s� !) 

exp (k!0
� !k) for any signal s. The failure of pairwise distinguishability implies

inadequate learning even with a binary state when the action set is discrete and
preferences are nontrivial.

We can provide an intuition for Lemma 2 by considering a bivariate normal
standard density, g(s) = exp (�s

0⌃s/2) /
p
2⇡ with ⌃ a 2 ⇥ 2 covariance matrix.

Take an arbitrary hyperplane h, as illustrated in Figure 3. We seek to distinguish
the half space to the right of h from its complementary half space to the left. It is
sufficient to distinguish an arbitrary single state !1 to the right of h from all the
states to the left. Figure 3 shows how to construct a sequence of signals verifying
that distinguishability. For a sequence of cn ! 0, select sn on the iso-density ellipse
of level cn given state !1 so that the direction of h is tangent with the ellipse at
sn. For all n, the “ellipsoid distance” between sn and !1,

p
(sn � !1)0⌃(sn � !1), is

then smaller than the ellipsoid distance between sn and any state to the left of h
(such as !2 and !3) by some fixed amount. Due to the normal distribution being
subexponential, as cn ! 0 the likelihood ratio g(sn�!)

g(sn�!1)
! 0 uniformly across ! to

the left of h.
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Figure 3: The logic underlying Lemma 2 for a bivariate normal standard density. We seek
to distinguish !1 from the solid black line. The ellipses are iso-density signals of a given
level at the states !1, !2, and !3. As sn grows along the dotted line, corresponding to lower
iso-density levels, min{f(sn|!2)/f(sn|!1), f(sn|!3)/f(sn|!1)} ! 0.

We make two further comments regarding Proposition 2. First, in the one-
dimensional environment of Subsection 4.1, SCD is more or less equivalent to pre-
ferred sets being half spaces, and DUB is equivalent to the distinguishability of half
spaces from their complements in the sense of Lemma 2. Proposition 2 can thus be
viewed as an extension of Proposition 1 to a multi-dimensional world; the restric-
tion to location-shift information allows us to unpack the kind of information that
yields the requisite half-space distinguishability.

Second, a location-shift information structure does not have to be subexponen-
tial to guarantee learning for all intermediate preferences. But it can be shown that
if the standard density g : Rd

! R is superexponential in the sense that there are
p 2 (0, 1) and M > 0 such that g(s) � exp(�ksk

p) for all ksk > M , then learning
fails for all nontrivial intermediate preferences when A is finite.

22



5. Theorem 1 and a General Welfare Bound

We now return to the general characterization of adequate learning, Theorem 1,
to explain how it is derived. The theorem is best understood as a corollary of a
welfare bound regardless of whether there is learning. Stating that result requires
some notation. Abusing notation, let

u(µ) := max
a2A

X

!

u(a,!)µ(!)

be an agent’s expected utility when she takes an optimal action under belief µ.
Recalling that µs denotes the posterior given a belief µ and signal s, let

I(µ) :=

 
X

!2⌦

Z

S

u(µs) dF (s|!)µ(!)

!
� u(µ)

be the expected utility improvement from observing a private signal at belief µ.
Observe that I(µ) = 0 for any stationary belief µ. We write �BP

⇢ ��⌦ to denote
the set of Bayes-plausible distributions of beliefs: ' 2 �BP

() E'[µ] = µ0.
Again abusing notation, we write u(') := E'[u(µ)] for the expected utility of an
agent under the distribution of beliefs ', and analogously write I(') := E'[I(µ)].
It follows that

�S :=
�
' 2 �BP : I(') = 0

 

is the set of Bayes-plausible distributions of beliefs that are supported on the set
of stationary beliefs. (We have suppressed the dependence of �BP and �S on the
prior µ0.)

Building on a notion mentioned by Lobel and Sadler (2015), we can now define
the cascade utility level as

u⇤(µ0) := inf
'2�S

u(').

In words, u⇤(µ0) is the lowest utility level that an agent can get if her Bayes-
plausible distribution of beliefs is supported on stationary beliefs. Our welfare
bound is that eventually all agents are assured a utility level of at least u⇤(µ0).
More precisely:

Theorem 3. In any equilibrium �, lim infn E�,µ0 [un] � u⇤(µ0).
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The “if” direction of Theorem 1 readily follows from Theorem 3: when all sta-
tionary beliefs have adequate knowledge, a correct action is taken almost surely for
any distribution of stationary beliefs, hence u⇤(µ0) = u

⇤(µ0), and we have adequate
learning.

The conclusion of Theorem 3 would be straightforward if we were assured that
agents eventually hold stationary beliefs. However, there are networks (with ex-
panding observations) in which with positive probability the beliefs of an infinite
number of agents are bounded away from the set of stationary beliefs; see Exam-
ple SA.1 in Supplementary Appendix SA.1.

Instead, we prove Theorem 3 via an improvement principle, as suggested by
Banerjee and Fudenberg (2004) and developed by Acemoglu, Dahleh, Lobel, and
Ozdaglar (2011) and others. The foundation in our general setting is a novel
compactness-continuity argument. First, Lemma 4 in the appendix establishes that
�BP is compact when both �⌦ and ��⌦ are endowed with the Prohorov metric
generated from the metric on ⌦. The idea when ⌦ is countable is that although the
prior µ0 can be supported on an infinite set, it must concentrate an arbitrarily large
mass on only finitely many states. Consequently, for any � > 0, there is a finite
subset of states ⌦0 such that any Bayes-plausible distribution of beliefs puts at least
1�� probability on beliefs that put at least 1�� probability on ⌦0. Using Prohorov’s
Theorem, we then deduce that �BP is compact. Second, we show that the utility
function u(') and the improvement function I(') are continuous (Lemma 5 in the
appendix), and thus uniformly continuous on �BP .

Now consider any "-neighborhood of the set of Bayes-plausible distributions
supported on stationary beliefs, call it (�S)". If an agent’s distribution of beliefs is
in (�S)", then her ex-ante expected utility is at least close to u⇤, as u(') � u⇤ on �S

and u(') is uniformly continuous. On the other hand, if the distribution is not in
(�S)", then there is some strictly positive minimum utility improvement that the
agent obtains (as the complement of (�S)" is closed, hence compact, and I(') is
continuous).

We can then apply an improvement principle. The idea is as follows, where
we consider deterministic networks for simplicity. Expanding observations guar-
antees that we can partition society into “generations” such that an agent in one
generation observes a predecessor who is in either the previous generation or the
current generation. We inductively argue that the lowest ex-ante utility in each
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generation is either close to u⇤ or increases by a fixed amount compared to the pre-
vious generation. Consider an agent’s distribution of social beliefs, '. Her utility
u(') must be at least the lowest ex-ante expected utility of the previous generation,
because the current agent can just mimic the agent with the largest index she ob-
serves.23 Then, as explained in the previous paragraph, either u(') is at least close
to u⇤ (when ' is in (�S)"), or the agent can improve upon u(') by at least some fixed
amount. Thus, the lowest ex-ante expected utility in each generation increases by
a fixed amount until it becomes at least close to u⇤. Since " was arbitrary, it follows
that eventually all agents’ utility must be higher than a level arbitrarily close to u⇤,
which is the conclusion of Theorem 3.

Although previous authors have deduced versions of Theorem 1 and Theo-
rem 3 in special environments, what allows us to establish these two general re-
sults is our novel proof methodology. We highlight two distinctions with Lobel
and Sadler (2015, Theorem 1), which is the most related existing result to The-
orem 3. They consider a binary-state binary-action model. In that setting, they
establish a welfare bound of “diffusion utility”, which is the utility obtained by a
hypothetical agent who observes an information structure that contains only the
strongest signals (an “expert agent”, in their terminology). Our cascade utility is
more fundamentally tied to when learning stops, as it is defined using stationary
beliefs. It is not hard to see that in general, no matter the number of states or ac-
tions, cascade utility is always at least as high as (the natural extension of) diffusion
utility; Remark 5 in Appendix C elaborates. Typically the ranking will be strict, al-
though Lobel and Sadler (2015) note that cascade and diffusion utilities coincide in
their binary-state binary-action setting. Methodologically, Lobel and Sadler’s ar-
gument for a minimum improvement, like that of Acemoglu, Dahleh, Lobel, and
Ozdaglar (2011), owes to certain monotonicity that does not extend beyond their
binary-binary setting.

Remark 3. Our approach to proving Theorem 3 can be adapted to address belief
convergence. Since expanding observations is compatible with the observational
network having multiple components, one cannot expect the social belief to con-

23 With stochastic networks, the fact that an agent can obtain any observed predecessor’s ex-ante
expected utility through mimicking relies on our assumption that players’ observation neighbor-
hoods are drawn independently. Otherwise, whether a player has observed some predecessor may
correlate with that predecessor realizing a lower utility.
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verge even in probability.24 Furthermore, there can be a positive probability that
the social belief is not eventually even in a neighborhood of the set of stationary be-
liefs, as already noted. Nevertheless, there are reasonable conditions under which
convergence to the stationary set does obtain. Consider deterministic networks
and assume that society can be covered by finitely many subsequences such that
in each subsequence agent nk observes nk�1. Then, denoting agent n’s (random)
social belief by µn, it holds that for all " > 0, limn!1 Pr(µn 2 S

") = 1, where S
"

denotes the "-neighborhood of the set of stationary beliefs. See Proposition SA.1
in Supplementary Appendix SA.1. We note that this result applies, in particular,
to the immediate-predecessor network and the complete network. The latter is
special because the social belief is then a martingale, which is assured to converge
almost surely by the martingale convergence theorem. For this case, Arieli and
Mueller-Frank (2021, Lemma 1) have established that the limit is stationary.

Remark 4. Theorem 3 can be used to quantify how a failure of excludability impacts
welfare. Proposition SA.2 in Supplementary Appendix SA.2 provides a formal re-
sult in this vein. In particular, that result implies a sense in which an environ-
ment with “approximate excludability” ensures that, eventually, agents’ ex-ante
expected utilities are close to the full-information utility.

6. Concluding Remarks

This paper has studied a general model of sequential social learning on obser-
vational networks. Our main theme has been how learning turns jointly on pref-
erences and information when there are multiple states. We close by commenting
on certain aspects of our approach.

First, our model assumes “non-anonymous sampling”, i.e., whenever an agent
sees the action of some predecessor, she knows the identity of that predecessor.
However, our methodology extends to anonymous sampling, i.e., when each agent
observes only the frequencies of actions in their realized neighborhood, as in Smith
and Sørensen (2020). Our results apply in that case when expanding observations
(condition (1)) holds for the “induced network structure” (Q̃n)n2N where each Q̃n

24 Consider an observational network consisting of two disjoint complete subnetworks: every
odd agent observes only all odd predecessors, and symmetrically for even agents. Given any
specification in which learning would fail on a complete network—such as the canonical binary
state/binary action herding example—there is positive probability of the limit belief among odd
agents being different from that among even agents.
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is defined by first drawing a neighborhood Bn according to Qn and then uniform-
randomly drawing a single agent from Bn. Appendix A (fn. 28) explains why.
Interestingly, the condition coincides with Smith and Sørensen’s (2020) “non-over-
sampling” requirement. Note that expanding observations for the induced net-
work (Q̃n) is more demanding than expanding observations for (Qn); this is not
surprising since agents have less information when they cannot observe identi-
ties. Nevertheless, the requirement is satisfied, for example, when each agent ob-
serves the action of a uniform-randomly drawn predecessor or the actions of all
predecessors—in either case, not observing their identities. But the requirement is
violated when each agent n observes either agent 1 or agent n� 1, but doesn’t ob-
serve the identity (whereas expanding observations holds here when the identity
is observed).

Second, the notion of learning we have adopted considers all possible priors.
While this strengthens our sufficiency results, it correspondingly weakens our ne-
cessity results. With only two states, learning at any single (nondegenerate) prior
is equivalent to learning at all priors. Our earlier working paper (Kartik, Lee, Liu,
and Rappoport, 2022, Supplementary Appendix SA.1) provides some analysis con-
cerning the extent to which this is true with multiple states.

Third, our analysis has not touched on the speed of learning/welfare con-
vergence. For binary states and the complete network, Rosenberg and Vieille
(2019) deduce the condition on the likelihood of extreme posteriors that determines
whether learning is, in certain senses, efficient; they point out that their condition
is violated by normal information. See Hann-Caruthers, Martynov, and Tamuz
(2018) as well.

Lastly, our work only addresses Bayesian learning with correctly specified agents.
There is a large literature on non-Bayesian social learning, surveyed by Golub and
Sadler (2016). There has also been recent interest in (mis)learning among misspec-
ified Bayesian agents; see, for example, Frick, Iijima, and Ishii (2020) and Bohren
and Hauser (2021).
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Appendices

Appendix A contains the proofs for Theorems 1–3. Appendix B contains the
proofs of Proposition 1 and Lemma 2 (which proves Proposition 2). Appendix C
contains the proof of Lemma 1 and Remark 5 on cascade vs. diffusion utility .

A. Backbone Results

In this section, we prove our three theorems in the following setting, which is
more general than that described in the main text:

• The action space and signal space (A,A), (S,S) are standard Borel spaces;

• The state space ⌦ is equipped with a metric d and its Borel sigma-algebra,
B(⌦), such that (⌦, d) is a sigma-compact Polish space;25

• The utility function u(a,!) has absolute value uniformly bounded by u and it
is pointwise equicontinuous when regarded as a collection of functions of !
indexed by a; moreover, for every belief (Borel probability distribution over
⌦), there exists an optimal action;

• The information/signal structure F (·|!) is a Markov kernel from (⌦,B(⌦)) to
(S,S) that is continuous in ! in the total variation (TV) sense;

• The network structure is given by Q ⌘ (Qn)n2N, where each Qn is a prob-
ability measure over all neighborhoods, i.e., all subsets of {1, 2, . . . , n � 1},
independent across n, independent of the state !, and independent of any
private signals.

25 That is, (⌦, d) is a complete and separable metric space that can be represented as a countable
union of compact sets.
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When ⌦ is countable as in the main text, we endow it with the discrete metric
so that the sigma-compactness and continuity requirements are trivially satisfied.

Discontinuous utilities. While we make a continuity assumption on preferences,
our main results hold for utilities satisfying the following condition that permits
discontinuities (cf. Remark 1):

Condition 1. There is a countable partition of ⌦ into Borel sets Bi and pointwise
equicontinuous functions vi : ⌦ ! R uniformly bounded by u such that vi|Bi = u.

To obtain our results for such utilities, we can define a new state space ⌦̃ as a
disjoint union: ⌦̃ :=

F
⌦i, where each ⌦i is a copy of ⌦. Choose any metric on ⌦̃

that induces the disjoint union topology. Define a utility ũ on ⌦̃ by ũ|⌦i := vi for
each i. It follows that ⌦̃ is sigma-compact Polish and ũ is pointwise equicontinuous
and uniformly bounded. The information structure is defined such that on each ⌦i

it is the same as before. Using our results for the new setting, one can deduce
Theorems 1–3 for the original setting.26

A.1. Overarching Probability Space and Beliefs

We now formalize the overarching probability space over all realizations of the
state, signals, observation neighborhoods, and actions. We also define formal ob-
jects corresponding to agents’ social and posterior beliefs and distributions of be-
liefs.

Overarching probability space. Our probability space is constructed from three
components: the Markov kernel F and probability space (⌦,B(⌦), µ0); the network
structure Q ⌘ (Qn)n2N; each agent n’s strategy �n(·|aBn , Bn) as a Markov kernel
from (A|Bn|,A|Bn|) to (A,A) for each realization of neighborhood Bn.

Taken together, for the first n agents, we can define a probability space that de-
scribes the joint distribution of their neighborhoods, signals, actions, and the states.
Since all these elements lie in standard Borel spaces, the Kolmogorov Extension
Theorem guarantees existence of an overarching probability space (H1,H1,P)
that is consistent with each finite probability space (i.e., up to each agent n). We
suppress the dependence of P on � and µ0.

26 More specifically, the results in the original setting are equivalent to the corresponding results
in the new setting restricted to priors/beliefs that put zero probability on the added states ⌦i\Bi.
We can use our methodology to derive Theorems 1–3 in the new setting for such restricted beliefs.
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Beliefs. Given this overarching probability space, agent n’s social belief (i.e., her
belief after observing her neighbors and their actions, but before observing her
private signal) is P(·|aBn , Bn) and her posterior belief is P(·|aBn , Bn, sn). These be-
liefs are well-defined because, as a countable product of standard Borel spaces,
the overarching probability space is a standard Borel space, and hence there exist
regular conditional probabilities (Durrett, 2019, Theorem 4.1.17).

Distribution of beliefs. We denote by �⌦ the space of beliefs (Borel probability
measures on ⌦) equipped with the Prohorov metric, and by ��⌦ the space of
belief distributions (Borel probability measures on �⌦) also equipped with the
Prohorov metric.

The social belief of agent n, µn, as a regular conditional probability, can be re-
garded as a measurable function from (H1,H1,P) to (�⌦,B(�⌦)); see Crauel
(2002, Remark 3.20). As ⌦ is a Polish space, so is �⌦. We define agent n’s distri-
bution of social beliefs, 'n, as the push-forward measure of µn. Hence, 'n 2 ��⌦

since it is by definition a Borel probability measure on �⌦.

A.2. Space of Bayes-Plausible Belief Distributions is Compact

Given a prior µ0 2 �⌦ and a strategy profile �, any agent’s belief distribution
' 2 ��⌦ must be Bayes plausible:

Z

A

µ(A) d'(µ) = µ0(A), 8A 2 B(⌦). (2)

Let �BP
⇢ ��⌦ be the set of Bayes-plausible belief distributions; note that we

suppress the dependence of �BP on µ0.
Our goal is to establish (Lemma 4 below) that even though the set of belief dis-

tributions ��⌦ need not be compact, the subset of Bayes-plausible distributions
�BP is. A key step is the following lemma, which shows that any belief distribution
' 2 �BP has to put a large probability on a compact subset of �⌦.

Lemma 3. Let � > 0 and {⌦i}i2N be a sequence of compact sets with µ0(⌦i) � 1� ( �
2i )

2,
8i. Defining V� := {µ 2 �⌦ : µ(⌦i) � 1� �

2i , 8i}, it holds that:
1. V� is compact;

2. '(µ /2 V�) < �, 8' 2 �BP .

Intuitively, in the lemma’s statement, the set V� contains all beliefs that put
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high probability on a set of states that the prior µ0 ascribes high probability to. The
lemma concludes that the set V� is compact and that any Bayes-plausible belief
distribution must put high probability on V�.

Proof. (Part 1) First, V� is closed. To see this, take any µk ! µ and µk 2 V�. Since
each ⌦i is compact (and thus closed), weak convergence implies

lim sup
k

µk(⌦i)  µ(⌦i), 8i,

which implies µ(⌦i) � 1� �
2i . Thus, µ 2 V�, and hence V� is closed.

Next, the beliefs in V� are tight by definition. Hence, by Prohorov’s theorem,
the closure of V�, which is V� itself, is compact.

(Part 2) Note that '(µ /2 V�) = '([i{µ(⌦c
i) >

�
2i}) 

P
i '(µ(⌦

c
i) >

�
2i ). For each

i 2 N, we view µ(⌦c
i) as a non-negative random variable with distribution induced

by '. Since ' is Bayes plausible, E'[µ(⌦c
i)] = µ0(⌦c

i)  ( �
2i )

2, which implies (using
Markov’s inequality) that '(µ(⌦c

i) >
�
2i ) <

�
2i . This implies that '(µ /2 V�) <

P
i

�
2i = �. Q.E.D.

Given Lemma 3, we can use Prohorov’s theorem again to show:

Lemma 4. �BP is compact.

Proof. First, we prove that �BP is closed. Take any 'k ! ' and 'k 2 �BP , and
want to show that ' 2 �BP , i.e., E'[µ(W )] = µ0(W ), 8W 2 B(⌦).

Take any open set W 2 B(⌦). For any µk ! µ, it holds that µ(W )  lim inf µk(W ).
In other words, µ(W ) (as a function of µ) is lower semi-continuous. By properties
of weak convergence, it follows that E'[µ(W )]  lim inf E'k

[µ(W )] = µ0(W ). That
is, the mean measure of ' ascribes a smaller probability than µ0 to any open set.

Now observe that W c
✓ [x2W cB1/n(x) for any n. Hence,

E'[µ(W
c)]  lim

n
E'[µ([x2W cB1/n(x))]  lim

n
µ0([x2W cB1/n(x)) = µ0(W

c),

where the second inequality is from the previous result applied to open sets [x2W cB1/n(x),
and the last equality follows from W

c = \n [x2W c B1/n(x) (and this equality holds
because W

c is closed). Therefore, E'[µ(W )] = µ0(W ).
Since E'[µ] and µ0 agree on all open sets, and open sets generate B(⌦), E'[µ]

and µ0 agree on all sets in B(⌦). This establishes that ' 2 �BP .
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Finally, ⌦ being sigma-compact implies that for any �, there is an increasing se-
quence of compact sets {⌦i}i2N such that ⌦ = [i⌦i, and this sequence {⌦i} satisfies
the hypotheses in Lemma 3. The lemma guarantees that there is a compact set V�

such that '(V�) < � for all ' 2 �BP , hence �BP is tight. Prohorov’s theorem now
implies that the closure of �BP , which is �BP itself, is compact. Q.E.D.

A.3. Continuity of Various Functions

We next define some functions of interest, some of which were already defined
in the main text but are now defined for the more general setting considered in the
appendix.

Let u(µ) be the expected utility that an agent can get at belief µ:

u(µ) := sup
a2A

Z

⌦

u(a,!) dµ(!).

Let uF (µ) be the expected utility that an agent can get at belief µ, if she can choose
an action after observing her private signal:

u
F (µ) := sup

�:S!A

Z

⌦

Z

S

u(�(s),!) dF (s|!) dµ(!).

Finally, let u⇤(µ) be the full information utility at µ:

u
⇤(µ) :=

Z

⌦

sup
a2A

u(a,!) dµ(!).

Our continuity assumptions on the utility function and the information struc-
ture allow us to prove:

Lemma 5. u, u
F
, u

⇤ are continuous in µ.

To prove Lemma 5, we use Theorem 2.2.8 in Bogachev (2018), which we restate
without proof for our context as the following claim:

Claim 1. Let µk ! µ. If � is a uniformly bounded and pointwise equicontinuous family
of functions on ⌦, then

lim
k

sup
f2�

����
Z

⌦

f dµk �

Z

⌦

f dµ

���� = 0.
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Proof of Lemma 5. By assumption, � := {u(a,!)}a2A, viewed as a family of func-
tions of ! indexed by a, is uniformly bounded and pointwise equicontinuous.

Consider the function u
⇤. Since the supremum of the pointwise equicontinuous

functions u
⇤(!) := supa u(a,!) is continuous in !, the definition of weak conver-

gence implies that u⇤(µ) is continuous in µ.
Now consider the function u. Its continuity follows from

|u(µk)� u(µ)| =

����sup
f2�

Z

⌦

f dµk � sup
f2�

Z

⌦

f dµ

����  sup
f2�

����
Z

⌦

f dµk �

Z

⌦

f dµ

���� ,

which converges to 0 as µk ! µ, by Claim 1.
Lastly, suppose we establish that �F :=

�R
S u(�(s),!) dF (s|!)

 
�:S!A

, as a fam-
ily of functions of ! indexed by �, is pointwise equicontinuous.27 Then, as �F is
uniformly bounded, Claim 1 implies that uF (µ) is continuous, proving the lemma.

To establish the pointwise equicontinuity of �F , observe that 8!,!0 and 8�,

����
Z

S

u(�(s),!) dF (s|!)�

Z

S

u(�(s),!0) dF (s|!0)

���� (3)



����
Z

S

(u(�(s),!)� u(�(s),!0)) dF (s|!)

����+
����
Z

S

u(�(s),!0) dF (s|!)�

Z

S

u(�(s),!0) dF (s|!0)

���� .

Fix any ! and any " > 0. Since {u(a,!)}a2A is pointwise equicontinuous, there
exists �1 such that d(!0

,!) < �1 implies the first term on the right-hand side of in-
equality (3) to be smaller than "/2 (regardless of �(s)). The second term is smaller
than 2udTV (F (·|!), F (·|!0)) (where TV represents total variation), and by the con-
tinuity assumption of the information structure, there exists �2 > 0 such that
d(!0

,!) < �2 implies dTV (F (·|!), F (·|!0)) < "/4u. Therefore, if d(!0
,!) < min{�1, �2},

then the right-hand side of inequality (3) is less than " (regardless of �(s)). It fol-
lows that �F is pointwise equicontinuous. Q.E.D.

Now define the utility improvement I(µ) and the utility gap G(µ) at µ as:

I(µ) := u
F (µ)� u(µ), G(µ) := u

⇤(µ)� u(µ).

By Lemma 5, I(µ) and G(µ) are continuous. Lastly, with an abuse of notation, de-

27 Here we assume � are (measurable) pure strategies for notation clarity. The same argument
works for mixed strategies, in which case � would be Markov kernels.
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fine u(') := E'[u(µ)], I(') := E'[I(µ)], and G(') := E'[G(µ)] as the corresponding
functions over distributions of beliefs. Since u(µ), I(µ), and G(µ) are continuous,
so are u('), I('), and G(').

We note that a belief µ is stationary if and only if I(µ) = 0, and a belief µ has
adequate knowledge if and only if G(µ) = 0. To confirm these points, consider
stationary beliefs. If there is an action that is a.s. optimal regardless of the signal,
then I(µ) = 0. Conversely, if no action is a.s. optimal regardless of the signal, then
for any action there is a positive-probability set of signals for which that action is
strictly suboptimal; hence u

F (µ) > u(µ), and I(µ) > 0. The argument for adequate
knowledge beliefs is similar.

A.4. Proofs for Backbone Results

Logically, Theorem 3 =) Theorem 1 =) Theorem 2. So we prove the results
in that order.

Proof of Theorem 3. We prove the result in two steps. In Step 1 below, we prove
that if agent n’s social belief distribution 'n, which is her belief distribution incor-
porating the observation of her neighborhood’s actions but not her private signal,
is not close to being supported on only stationary beliefs, then her utility E�,µ0 [un],
which is the ex-ante expected utility under equilibrium � after observing the pri-
vate signal, improves from u('n) by some positive amount bounded away from
zero. In Step 2 below, we use the expanding observations assumption to establish
that this minimum improvement propagates through the network until eventually
agents obtain at least arbitrarily close to their cascade utility level.

Step 1: Recall the set of Bayes-plausible belief distributions that are supported
by stationary beliefs, �S := {' 2 �BP : I(') = 0}, and the cascade utility, u⇤ :=

inf'2�S u(').
Take any " > 0, and let (�S)" denote the "-neighborhood of �S . An agent

n’s belief distribution 'n must be Bayes plausible, so 'n 2 �BP . Since u(') is
uniformly continuous on �BP (as u(') is continuous, and �BP is compact), if 'n 2

(�S)", then u('n) � u⇤ � �(") for some �(·) such that �(") ! 0 when " ! 0.
If, on the other hand, 'n 2 �+ := �BP

\(�S)", then I('n) > 0 because 'n puts
positive probability on {µ : I(µ) > 0}. Since (�S)" is open, �+ is a closed subset
of a compact set �BP ; hence �+ is compact, and since I(') is continuous, it attains
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a minimum over �+ at some ' 2 �+. Thus, if 'n 2 �+ the agent obtains an
improvement I('n) � I(') > 0.

Step 2: We will argue that for any " > 0, E�,µ0 [un] � u⇤ � �(") once n is large
enough. Since " is arbitrary, taking " ! 0 implies lim infn E�,µ0 [un] � u⇤, which
completes the proof.

For a given " > 0, let � =
I(')

4u > 0, let N0 = 1, and define Nk for k = 1, 2, . . .

sequentially such that for all n � Nk, Qn(maxb2Bn b < Nk�1) < �. Expanding
observations ensures that such Nk exist.

We claim that, for any agent n � Nk, E�,µ0 [un] � ↵k := min{u⇤ � �("),
kI(')

2 � u}.
Since ↵0 = �u, clearly E�,µ0 [un] � ↵0 for any n � N0. Suppose the claim holds for
all agents n

0
� Nk�1. Take any agent n � Nk. Agent n’s neighborhood is drawn

independently of everything that has happened before, so conditional on agent n
observing an agent n0

� Nk�1, even without her private signal agent n can achieve
a utility of at least ↵k�1 by imitating agent n0. Hence, u('n) � (1��)·↵k�1+�·(�u).28

If 'n 2 (�S)", then by definition u('n) � u⇤ � �("), and thus E�,µ0 [un] � u('n) �

u⇤ � �(") � ↵k. If 'n /2 (�S)", then agent n can improve her utility by at least I('),
and so

E�,µ0 [un] � (1� �)↵k�1 + � · (�u) + I(')

� ↵k�1 +
I(')

2
(because ↵k�1  u and � =

I(')

4u
)

� ↵k.

Since the definition of ↵k implies that there is a finite K such that for all k � K,
↵k = u⇤ � �("), it follows that for all n � NK , E�,µ0 [un] � u⇤ � �("). Q.E.D.

Proof of Theorem 1. The “only if” direction is straightforward. If there is a sta-
tionary belief without adequate knowledge, then when the prior is that belief there
is an equilibrium where each agent ignores her signal and action history and ob-
tains a utility that is strictly below the full-information utility level.

For the ”if” direction, fix any prior µ0 and equilibrium �. Since all stationary
beliefs have adequate knowledge, I(µ) = 0 implies G(µ) = 0. Thus, for any ' 2 �S ,

28 If agents do not observe the identities associated with the observed actions of their predeces-
sors, an agent can uniform-randomly select one of the actions they observe to imitate. So long as
the “induced network structure” (i.e., a network structure (Q̃n) wherein each Q̃n is defined by first
drawing a neighborhood Bn from Qn and then uniform-randomly drawing a single agent from Bn)
satisfies expanding observations, the current proof goes through without change using the induced
network structure.
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'({µ : I(µ) = 0}) = '({µ : G(µ) = 0}) = 1, which implies G(') = u
⇤(')�u(') = 0.

Moreover, because µ0 is the mean measure of ',

u
⇤(') = E'

Z

⌦

sup
a

u(a,!) dµ

�
=

Z

⌦

sup
a

u(a,!) dµ0 = u
⇤(µ0),

which implies u(') = u
⇤(µ0). As a result, u⇤(µ0) = inf'2�S u(') = u

⇤(µ0). It follows
from Theorem 3 that lim infn E�,µ0 [un] � u

⇤(µ0). Since E�,µ0 [un]  u
⇤(µ0) for all

n, it further follows that E�,µ0 [un] ! u
⇤(µ0). As µ0 and � are arbitrarily, we have

adequate learning. Q.E.D.

Next we state and prove a more general version of Theorem 2. For any n 2 N,
define ⌦n

a1,a2 := {! : u(a1,!)� u(a2,!) >
1
n}.

Theorem 2
0
. Excludability implies adequate learning at every choice set. There is inade-

quate learning for choice set {a1, a2} if ⌦a1,a2 is not distinguishable from ⌦n
a2,a1 for some

n.

Note that when ⌦ is finite, or the utility difference between any pair of actions
is bounded away from zero, a failure of excludability is equivalent to the condition
for necessity in the theorem holding for some a1, a2. Hence Theorem 2 is implied
by Theorem 20.

Proof of Theorem 2
0
. (First statement) First note that excludability (under the full

choice set A) implies excludability under any choice subset A0
✓ A. So we fix an

arbitrary A
0
✓ A and show that excludability under that subset implies adequate

learning at that choice subset. In what follows, the domain of actions should be
understood as A0, and we denote a typical element by a

0.
Theorem 1 implies that we need only show that any µ 2 �⌦ with inadequate

knowledge is not stationary. So take any µ 2 �⌦ with inadequate knowledge
and any a

⇤
2 c(µ). Since there is inadequate knowledge, µ([a0⌦a0,a⇤) > 0, i.e.,

there is a positive measure of states where a
⇤ is not optimal. The continuity of

u(a0,!)�u(a⇤,!) implies that ⌦n
a0,a⇤ are open sets for any a

0 and n. Since ⌦ is Polish,
it is second-countable and hence has a countable basis. Therefore, each open set
⌦n

a0,a⇤ , and hence the open set [a0⌦a0,a⇤(= [a0 [n ⌦n
a0,a⇤), is a union of countably

many basic open sets. Since µ([a0⌦a0,a⇤) > 0, at least one basic open set contained
in ⌦n

a0,a⇤ for some a
0 and n has strictly positive measure, i.e., µ(⌦n

a0,a⇤) > 0.
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Now denote µ
0(·) := µ(·|⌦a⇤,a0 [ ⌦n

a0,a⇤) as the corresponding conditional prob-
ability. Since ⌦a0,a⇤ is distinguishable from ⌦a⇤,a0 by excludability, so is ⌦n

a0,a⇤ .29

Therefore, for any " > 0 there exists a set of signals S
0 such that Prµ0(S 0) > 0 and

µ
0
s(⌦

n
a0,a⇤) > 1�" for all s 2 S

0. The utility improvement upon observing any s 2 S
0

by switching from a
⇤ to a

0 is therefore bounded below by ( 1n(1�")�2u")µs(⌦a⇤,a0 [

⌦n
a0,a⇤), as the expected improvement on ⌦\(⌦a⇤,a0[⌦n

a0,a⇤) is nonnegative. For small
" > 0, 1

n(1 � ") � 2u" > 0. Furthermore, integrating µs(⌦a⇤,a0 [ ⌦n
a0,a⇤) over s 2 S

0

yields Prµ0(S 0)µ(⌦a⇤,a0 [ ⌦n
a0,a⇤) > 0. Hence, the ex-ante improvement is bounded

below by ( 1n(1� ")� 2u") Prµ0(S 0)µ(⌦a⇤,a0 [⌦n
a0,a⇤) > 0. It follows that I(µ) > 0, and

thus µ is not stationary.
(Second statement) Suppose there are two actions a1, a2 and an n such that

⌦a1,a2 is not distinguishable from ⌦n
a2,a1 . This means there exists µ 2 �(⌦a1,a2 [

⌦n
a2,a1) with µ(⌦a1,a2) > 0 such that µs(⌦a1,a2)  1 � " for some " > 0 and µ-

a.e. s. Consider µ
0
2 �(⌦a1,a2 [ ⌦n

a2,a1) with a small µ
0(⌦a1,a2) > 0 such that

µ
0(·|⌦a1,a2) = µ(·|⌦a1,a2) and µ

0(·|⌦n
a2,a1) = µ(·|⌦n

a2,a1). Under µ
0, upon observing

signal s, the posterior on ⌦a1,a2 satisfies

µ
0
s(⌦a1,a2)

µ0
s(⌦

n
a2,a1)

=
µs(⌦a1,a2)/µ(⌦a1,a2)

µs(⌦n
a2,a1)/µ(⌦

n
a2,a1)

µ
0(⌦a1,a2)

µ0(⌦n
a2,a1)


1� "

"

µ(⌦n
a2,a1)

µ(⌦a1,a2)

µ
0(⌦a1,a2)

µ0(⌦n
a2,a1)

for µ-a.e. s. Hence, by choosing µ
0 so that µ0(⌦a1,a2 )

µ0(⌦n
a2,a1

) is arbitrarily small, the ratio
µ0
s(⌦a1,a2 )

µ0
s(⌦

n
a2,a1

) can be made arbitrarily small uniformly over s.
Under µ0, after observing s, the expected improvement by switching from a2 to

a1 is bounded above by 2uµ0
s(⌦a1,a2)�

1
nµ

0
s(⌦

n
a2,a1), which is strictly negative when

µ0
s(⌦a1,a2 )

µ0
s(⌦

n
a2,a1

) is small. Therefore, for µ
0-a.e. s, a2 is strictly better than a1, and thus µ

0

is stationary for choice set {a1, a2}. However, since µ
0(⌦a1,a2) > 0, the belief µ0 has

inadequate knowledge. Theorem 1 implies there is inadequate learning for choice
set {a1, a2}. Q.E.D.

B. Applications

We now specialize to the main text’s setting: ⌦ is countable, endowed with the
discrete metric, and F (·|!) are absolutely continuous with respect to each to other,
and so there are densities f(·|!) > 0.

29 In fact, excludability is equivalent to: ⌦n
a1,a2

is distinguishable from ⌦a2,a1 for all a1, a2 and n.
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B.1. SCD Preferences & DUB Information

Proof of Proposition 1. Sufficiency follows directly from Theorem 2. For neces-
sity, first observe that if the information structure fails DUB, then there exists some
state !

⇤ such that !⇤ is not distinguishable from its lower set (or from its upper set,
which has a symmetric argument). Fix any pair of distinct actions a1 and a2, and
define the following SCD preferences: for ! < !

⇤, u(a1,!) = 1 and u(a2,!) = 0; for
! � !

⇤, u(a1,!) = 0 and u(a2,!) = 1; and any other actions are strictly dominated.
It follows that ⌦a2,a1 is not distinguishable from {! : u(a1,!) � u(a2,!) >

1
2}. By

Theorem 20, there is inadequate learning when the choice is {a1, a2}, and since all
other actions are strictly dominated, also for the full choice set A. Q.E.D.

B.2. Intermediate Preferences & Location-Shift Information

The proof of Lemma 2 is more involved than the intuition given in the main
text using Figure 3, because in general one cannot explicitly identify the sequence
of signals that establishes distinguishability of the relevant two sets.

We will use the following claim in proving Lemma 2. For any h, x 2 Rd, let
kxkh := h · x be the “signed distance” of x in direction h, i.e., between x and the
hyperplane {z : h · z = 0}. Note that k · kh is linear, so kx� x

0
kh = kxkh � kx

0
kh.

Claim 2. If a standard density g is subexponential, then for any s with kskh > 0, and
" 2 (0, 1), there is s with ks� skh � 1 such that:

1. sup{s0:ks0�skh�1/kskh}
g(s0)
g(s) < "; and

2. sup{s0:0<ks0�skh<1/kskh}
g(s0)
g(s) < 2.

Proof. Suppose not, to contradiction. Then there exists s with kskh > 0 and " 2

(0, 1) with the following property: for every s with ks � skh � 1, we can find s
0

with ks
0
� skh > 0 such that either (i) ks

0
� skh � 1/kskh and g(s0)

g(s) � ", or (ii)
0 < ks

0
� skh < 1/kskh and g(s0)

g(s) � 2. For an arbitrary choice of s0 given s, we
define ks := ks

0
� skh. That means, for each s with ks � skh � 1, we have ks > 0

and a signal s0 with ks
0
� skh = ks such that either (i) g(s0)

g(s) � " � "
kskskh (because

kskskh � 1), or (ii) g(s0)
g(s) � 2 > "

kskskh (because " < 1).
We construct a sequence of signals (si)1i=1. First, take any s1 such that ks1�skh =

1. Then, for all i > 1, take any si given si�1 as explained in the previous paragraph.
Note that for all i, ksi � si�1kh = ksi�1 , so ksikh = (kskh + 1) +

Pi�1
j=1 ksj .
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First, suppose that
P1

i=1 ksi = 1, so that limi!1 ksikh = 1. It holds that for all
si, g(si)

g(s) �
g(s1)
g(s) "

(ksi�1+···+ks1 )kskh = g(s1)
g(s) "

(ksikh�kskh�1)kskh , which in turn implies that

(ksikh � kskh � 1)kskh log(") + log(g(s1))  log(g(si)). (4)

However, since g is subexponential, and ksikh  ksikkhk, there is p > 1 such that
for all large enough i,

log(g(si)) < �

✓
ksikh

khk

◆p

. (5)

The left-hand side of inequality (4) is linear in ksikh while the right-hand side of
inequality (5) has exponent p > 1, so for large enough i these inequalities are in
contradiction.

Next, suppose instead limi!1 ksikh < 1. Then there is N such that for all
i � N , we have ksi < 1/kskh and thus g(si+1)

g(si)
� 2. It follows that limi!1

g(si)
g(sN ) �

limi!1 2i�N = 1. This contradicts the boundedness of g (being a density, g is
bounded because it is uniformly continuous). Q.E.D.

Proof of Lemma 2. Without loss, we only prove that {! : h · ! > c} is distinguish-
able from {! : h · ! < c}.

We use Claim 2 iteratively to construct a signal sequence (s⇤i )
1
i=1. Choose any s

⇤
1

with ks
⇤
1kh > 0, and for i > 1, choose any s

⇤
i such that ks⇤i � s

⇤
i�1kh � 1 that satisfies

(i) sup{s0:ks0�s⇤i kh�1/ks⇤i�1kh}
g(s0)
g(s⇤i )

<
1

i�1 and (ii) sup{s0:0<ks0�s⇤i kh<1/ks⇤i�1kh}
g(s0)
g(s⇤i )

< 2. This
construction is well-defined by Claim 2, with limi!1 ks

⇤
i kh = 1.

As noted after Definition 1, it is sufficient to prove that any ! 2 {! : h · ! > c}

is distinguishable from {! : h · ! < c}.30 So take any such ! and µ with µ(!) > 0.
Define si := s

⇤
i + !. It follows that for all i,

k! � !kh < 0 =)
f(si|!)

f(si|!)
=

g(si � !)

g(si � !)
=

g(s⇤i + (! � !))

g(s⇤i )
< 2, (6)

and
k! � !kh  �

1

ks
⇤
i�1kh

=)
f(si|!)

f(si|!)
=

g(s⇤i + (! � !))

g(s⇤i )
<

1

i� 1
, (7)

30 We note that this uses the assumption of countable states.
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and thus,

µ({! : h · ! < c}|si)

µ(!|si)


P
k!�!kh<0 µ(!)f(si|!)

µ(!)f(si|!)

<
1

i� 1

P
k!�!kh�1/ks⇤i�1kh

µ(!)

µ(!)
+ 2

P
�1/ks⇤i�1kh<k!�!kh<0 µ(!)

µ(!)
.

(8)

The last expression can be taken arbitrarily small because ks
⇤
i�1kh ! 1 as i ! 1.

It remains only to show that the above argument holds for a positive measure
of signals rather than just a single si. Since g is uniformly continuous, there is
a neighborhood of si, say Si, over which (6) and (7) hold with slightly relaxed
bounds; for instance, the bounds can be relaxed to 4 and 2/(i� 1), respectively.
This establishes the analog of inequality (8) for all signals in Si with the relaxed
bounds. Since we have assumed g(·) > 0, each Si has positive measure, so we
conclude ! is distinguishable from {! : h · ! < c}. Q.E.D.

C. Other Material

Proof of Lemma 1. As noted before the lemma, ⌦0 is distinguishable from ⌦00 if
and only if each !

0
2 ⌦0 is distinguishable from ⌦00. So fix any !

0
2 ⌦0.

We first prove that if the lemma’s condition holds, then !
0 is distinguishable

from ⌦00. Take any probability measure µ 2 �({!0
} [ ⌦00) such that µ(!0) > 0. By

assumption, for any " > 0 there exists a positive-probability set of signals S
0 such

that f(s|!00)
f(s|!0) < ", 8!

00
2 ⌦00

, 8s 2 S
0. It follows that for all s 2 S

0,

µ(!0
|s) =

f(s|!0)µ(!0)P
!̃2{!0}[⌦00 f(s|!̃)µ(!̃)

=
µ(!0)

µ(!0) +
P

!̃2⌦00
f(s|!̃)
f(s|!0)µ(!̃)

>
µ(!0)

µ(!0) + "
.

Since for any " > 0 we can find a positive-probability set of signals S
0 satisfying

the above inequality, we conclude that for any " > 0, Prµ(s : µs(⌦0) > 1� ") > 0.
We next prove that if !0 is distinguishable from ⌦00, and ⌦00 is finite, then the

lemma’s condition holds. Consider any µ uniformly distributed over {!
0
} [ ⌦00.

The distinguishability of !0 from ⌦00 implies that for every " > 0 there is a positive-
probability set of signals S

0 such that 8s 2 S
0 we have

P
!̃2⌦00 f(s|!̃)
f(s|!0) < ", and so

f(s|!̃)
f(s|!0) < " for every !̃ 2 ⌦00. Q.E.D.
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Remark 5. Lobel and Sadler’s (2015) definition of diffusion utility is tailored to their
binary-binary model. In general, we can define it as the highest utility an agent can
obtain from any Bayes-plausible distribution of beliefs that is supported on the set
of feasible posteriors (i.e., those available under the given information structure
and the prior); call the corresponding signal structure the expert signal structure.

Let us now argue that diffusion utility is lower than cascade utility. Notice
that diffusion utility must be lower than first drawing a posterior from an arbi-
trary Bayes-plausible distribution of stationary beliefs and then drawing a signal
from the expert signal structure, because this “combined” signal structure is Black-
well more informative than just the expert signal structure. But in the combined
structure, the expert signal has no value by definition of stationary beliefs, and so
the combined signal structure provides a utility equal to that from the (arbitrary
Bayes-plausible) distribution of stationary belief distributions.

Diffusion utility and cascade utility coincide with two states and two actions,
as noted by Lobel and Sadler’s (2015). But adding even one action can break this
coincidence, e.g., if the third action is a “safe” action—one that is optimal only for
some interval of interior beliefs—that shrinks the set of stationary beliefs. For a
starker example, recall Example 1 with ⌦ = {0, 1}, A = [0, 1], and u(a,!) = �(a �

!)2. Any nontrivial information structure leads to learning, with the stationary
beliefs being just 0 and 1. So the cascade utility is the full-information utility of 0,
whereas diffusion utility will be strictly lower absent unbounded beliefs.
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