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APPENDIX A: ADDITIONAL DATA ANALYSIS
A.1 Details on complexity notions and behavioral responses

Figure A.1 provides a detailed view of the relationship between each of the complexity
notions considered in the paper and extraction rates. It includes a separate panel for
each complexity notion, plotting the rank value of the complexity metric on the x-axis
and the mean extraction rate for each DGP on the y-axis. A dashed line plots a LOESS fit
to the raw data. A corresponding figure for articulation rates is provided in Figure A.2,
revealing similar patterns.!

Table 3 and Table 4 show the data in tabular form. First, in Table 3, we report met-
rics for our Implementation and Relational notions, which do not vary by input/output
string across data sets. We also include mean extraction rates, articulation rates, and
decision times. We provide these for the Unique treatment only, because there are mul-
tiple (sometimes a great many) rationalizing DGPs in the Multiple treatment. Second, in
Table 4, we present string/sequence notions for each of the data sets in the Unique treat-
ment (we do not use string/sequence notions in our analysis of the Multiple treatment).
In this table, for each DGP, we assign a number to each of the four data sets used in the
experiment (i.e., 1, 2, 3, or 4) and affix this identifier to the name of the corresponding
DGP. Once again, for each data set we also include mean extraction rates, articulation
rates, and decision times.

A.2 Structural model

In order to understand what types of models subjects tend to extract when multiple are
available, we estimate a structural model of model-selection adapted from structural

Chad Kendall: chadkend@marshall.usc.edu
Ryan Oprea: roprea@gmail . com

1Because it is not clear how to cardinally interpret many of these complexity notions, we focus entirely
on their ordinal explanatory value by normalizing all of our notions to their ordinal ranks. For instance,
although our design varies the number of states between 2 and 3, we normalize them to vary between 1 and
2, by rank.
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FIGURE A.l. Average extraction rate as a function of complexity metrics. Notes: Data is from
792 choices made in the Unique treatment. Each panel corresponds to one of our 14 complex-
ity metrics. Each pictures the relationship between the rank ordering of the complexity metric
(x-axis) and the mean rate of extraction (y-axis) across DGPs. Note that for the data set/string
measures these averages aggregate over multiple data sets, producing fractional values for the
rank ordering.
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FIGURE A.2. Average articulation rate as a function of complexity metrics. Nofes: Data is from
792 choices made in the Unique treatment. Each panel corresponds to one of our 14 complex-
ity metrics. Each pictures the relationship between the rank ordering of the complexity metric
(x-axis) and the mean rate of articulation (y-axis) across DGPs. Note that for the data set/string
measures these averages aggregate over multiple data sets, producing fractional values for the
rank ordering.
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TABLE 3. Measures for implementation and relational complexity notions by DGP, unique treat-
ment.

DGP Extraction Time Articulation States Transitions Machine Mutual Sensitivity Partition Sparsity

A2 0.758 39.097 0.687
H2 0.354 60.824 0.202
12 0.636 46.735 0.556
S2 0.222 72.502 0.192
A3 0.727 60.231 0.556
H3 0.293 67.498 0.081
I3 0.222 62.844 0.152
S3 0.051  102.901 0.02

0.385 0
0.637 10,908
0.693 8190
0.387 90,114
0.371 0
12 0.414 7344
16 0.569 8188
19 0.364 60,060 1000 1000

W W wwiNh NN
DO WS s W
© NN W

W N DN WD
N =N =N

Note: Extraction, Time, and Articulation variables show averages from the data. The remaining column gives correspond-
ing complexity metrics for Implementation and Relational notions.

models of strategy choice from the experimental repeated games literature, specifically
the Strategy Frequency Estimation Method (SFEM) developed by Dal B6 and Fréchette
(2011). For each task, we estimate the proportion of subjects extracting each model. As
in SFEM, we allow for random deviations between the actual output of the model and
a subject’s guess: y;y, (m*) = I{m;s;(m*) + yeis; > 0}, where I() is the indicator function.
yist indicates the observed guess by subject i, on task s, in period ¢, where guesses of x
are coded as 0, and guesses of y are coded as 1. mis:(mX) is the actual output for model,
mk, coded as —1 for x and 1 for y. €ist is an error term that is assumed independent
across subjects, tasks, and periods, and vy;; parameterizes the probability of a mistake.
We assume that the error term has a logistic functional form such that it results in the
standard logistic form for the likelihood that subject i matches model m* on task s:

X 1 Yist 1 1=yise
pis(m)zn(i_mm(mk)) (7”) ,

T "14e s 14+e i

where T is the number of periods (guesses). Allowing each subject to match a different
model on each task, the overall log-likelihood we estimate is given by

c= ;;m(z (i) ), m

K

where § is the number of tasks, I is the number of subjects, and K; is the number of
consistent machines on task s. 7(m*) are the main parameters of interest, represent-
ing the fraction of subjects that best match each model, m*, in task s. We estimate the
mixture model, (1), with the Expectation-Maximization (EM) algorithm, which provides
better convergence properties than maximum likelihood.? We allow the “noise” param-
eter, vjs, to vary by task to reflect the fact that some tasks are more difficult than others.
We ran the estimation both with a homogeneous (across subjects) vy, for each task and

2We estimate with 50 different starting points and choose the maximum likelihood across runs, but each
run gives very similar estimates.
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TABLE 4. Measures for string/sequence complexity notions by the data set used in the unique
treatment.

Data set Extraction Time Articulation Entropy_In Entropy_Out LZIn LZOut ApproxIn ApproxOut String_Sensit

A2-1 0.708 43.967 0.708 0.679 0.69 4 3 0.353 —0.008 0
A2-2 0.72 37.936 0.76 0.637 0.69 5 3 0.648 —0.008 0
A2-3 0.833 31.629 0.667 0.679 0.69 6 3 0.667 —0.008 0
A2-4 0.769 42.612 0.615 0.693 0.69 5 3 0.248 —0.008 0
H2-1 0.375 57.275 0.417 0.693 0.617 4 5 0.471 0.33 13
H2-2 0.48 68.948 0.16 0.679 0.666 6 6 0.471 0.371 17
H2-3 0.083 56.342 0.042 0.679 0.666 6 4 0.592 0.241 16
H2-4 0.462 60.427 0.192 0.693 0.617 6 6 0.471 0.33 14
12-1 0.708 58.079 0.667 0.693 0.69 4 5 0.471 0.576 12
12-2 0.68 38.444 0.6 0.679 0.69 6 6 0.592 0.519 12
12-3 0.542 45.188 0.458 0.679 0.69 5 4 0.592 0.519 12
12-4 0.615 45.665 0.5 0.637 0.666 6 5 0.583 0.519 12
S2-1 0.167 56.762 0.208 0.693 0.69 4 6 0.31 0.576 78
S2-2 0.4 85.068 0.32 0.679 0.69 6 5 0.667 0.519 78
S2-3 0.083 64.667 0.083 0.679 0.69 5 4 0.471 0.63 78
S2-4 0.231 82.181 0.154 0.679 0.666 5 6 0.471 0.519 78
A3-1 0.792 69.9 0.75 0.637 0.617 4 4 0.592 —0.016 0
A3-2 0.72 59.108 0.6 0.562 0.617 6 4 0.438 —0.016 0
A3-3 0.75 47.175 0.542 0.679 0.617 6 4 0.471 —0.016 0
A3-4 0.654 64.438 0.346 0.693 0.617 5 4 0.604 —0.016 0
H3-1 0.5 67.504 0 0.679 0.429 5 4 0.533 0.492 8
H3-2 0.16 69.052 0.2 0.562 0.54 5 3 0.438 0.381 16
H3-3 0.208 55.212 0.083 0.679 0.429 4 4 0.31 0.492 11
H3-4 0.308 77.338 0.038 0.637 0.429 6 3 0.592 0.492 10
I3-1 0.083 60.062 0.083 0.679 0.429 6 4 0.667 0.287 9
13-2 0.32 54.54 0.12 0.679 0.54 5 3 0.471 0.313 12
I3-3 0.125 59.812 0.125 0.637 0.617 4 5 0.592 0.653 14
13-4 0.346 76.196 0.269 0.679 0.54 6 5 0.592 0.591 13
S3-1 0.042  114.888 0.042 0.693 0.54 5 5 0.416 0.39 42
S3-2 0.04 102.872 0.04 0.679 0.666 5 4 0.474 0.428 60
S3-3 0.042 72.725 0 0.679 0.666 3 5 0.004 0.345 54
S3-4 0.077  119.719 0 0.679 0.666 6 5 0.471 0.519 52

Note: Extraction, Time, and Articulation variables show averages from the data. The remaining column gives correspond-
ing complexity metrics for string/sequence notions.

with heterogeneous v;s. The results are very similar across the two specifications but we
report the results for the heterogeneous model because a likelihood ratio test rejects the
homogeneous model in its favor.

A.3 Logit analysis

For robustness, we reconduct analysis from the main text that is supported by chi-
squared tests using logit regressions. This includes results 1, 2, and 5. For both the
Unique and Multiple treatment, we ran logit regressions that include (i) subject and pe-
riod fixed effects and (ii) standard errors clustered at the subject level. For each treat-
ment, we ran the following three specifications:
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e Null: Includes only fixed effects.
e DGP: Includes dummy variables for DGPs/tasks.
e DGP+Data set includes dummy variables for DGPs/tasks and also data sets.

First, we produce alternative evidence for result 1 by comparing the Bayesian Infor-
mation Criterion (BIC) between the Null and DGP specifications. The BIC is a standard
metric for examining whether additional parameters improve the explanatory value of
a model while penalizing for the number of parameters to avoid overfitting. The BIC for
the DGP specification is lower than for the Null specification (1157 vs. 1434), indicating
that taking account of variation in the DGP is important for statistically understanding
extraction rates. Thus, this analysis supports our claim that extraction rates vary mean-
ingfully across DGPs.

Second, we produce alternative evidence for result 2 by comparing the BIC between
DGP and DGP+Data set. We find that the BIC for DGP+Data set is not lower than that
for DGP (1212 vs. 1157), suggesting that variation across DGPs is more important than
variation across data sets for accounting for variation in extraction rates.

Finally, in Figure A.3, we plot coefficient estimates of the task dummies for both
Unique and Multiple from the DGP specification and include 95% confidence intervals.
Unsurprisingly, the point estimates look similar to Figure 1. However, the standard error
bars give us additional evidence in support of Results 1 and 5. First, nonoverlap in con-
fidence intervals across many pairwise comparisons of DGPs in the Unique treatment,

-
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F1GURE A.3. Marginal effects from logit analysis of extraction rates. Notes: Results are from two
logit regressions (one for Unique, another for Multiple) that include (i) dummy variables for each
task and (ii) subject and period fixed effects. Standard errors are clustered at the subject level.
Error bars indicate 95% confidence intervals.
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shows that extraction rates statistically differ across DGPs. Second, comparing Unique
and Multiple, tasks 12, I3, and H3 have nonoverlapping confidence intervals, suggesting
that extraction rates differ across Unique and Multiple treatments. This finding exactly
matches that using chi-squared tests reported in the main text in the discussion sur-
rounding result 5.

A.4 Additional figures
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F1GURE A.4. Correlation between complexity metrics and articulation/extraction. Notes: This is
aversion of Figure 6 with raw correlations plotted rather than their absolute values.

APPENDIX B: DETAILS ON COMPLEXITY NOTIONS
B.1 Partition complexity

Lipman (1995) describes a general model of bounded rationality based on limited abili-
ties to process information. A decision maker that is trying to learn a state of the world
observes a series of inputs, but may not fully process the information contained in those
inputs. In particular, Lipman (1995) describes a class of partitional models in which the
decision maker partitions the state of the world into several elements, where a finer
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partition corresponds to more fully processing information. Our partitions complexity
measure builds upon this general idea. Intuitively, models which require more of the in-
formation in the data set to be processed (i.e., a finer partition) may be more difficult to
infer.

In our setting, both the state of the world and the “input” that the decision-maker
processes can be taken to be the observed data set: the ordered set of the inputs and out-
puts up to time 7: h” = {vg, uy, v1, ua, ..., vr_1, ur}, where v, € V denotes an output of
the model and u; € U an input.® The information contained in the data set is processed
to determine the subsequent output, vy. In what follows, we define a model-based mea-
sure of complexity, allowing T — oco0.*

We assume that decision makers process the data set by looking for patterns: recur-
ring combinations of inputs and past outputs that lead to the same output. Formally, we
define a subdata set, h' = {vy, uy, vi, uz, ..., vi—1, us} with t € {1, 2, ..., T}. Let a generic
element of the subdata set be denoted e, € {u;, v;}. We denote a subset of 4’ by S. A pat-
tern, denoted S — v is then defined to be a mapping from some S to a constant v, such
that v; = v for all of the subdata sets in the data set, except for perhaps the subdata
sets given by r =1, ..., ¢’ for some finite #'. Examples of simple patterns are u; = a — x,
vi_3=x— x,and u; = a, v;_; = x — x.

A set of patterns forms a partition of the set of subdata sets if each subdata set is asso-
ciated with one and only one pattern in the set. We denote such a set of patterns, R* ¢ R
where R is the set of all possible sets of patterns. Our partitions complexity measure is
then taken to be the minimum number of partition elements in any R* € R: models,
which require more patterns to describe the data set require more information process-
ing, and are therefore more complex. For example, 12 can be described by two patterns,
uy=a— x and u; = b — y. A3 can also be described by two patterns, v;_3 = x — x and
v,—3 =y — y. S2 requires four patterns, each of which maps a value of v;_; and a value
of u; to an output.

It is important to note that in constructing a partition of the set of subdata sets
through patterns as defined, we are not allowing for any partition. For example, one par-
tition that is ruled out is “all of the subdata sets for which v; = x and all of the subdata
sets for which v; = y.” Although a possible partition, this partition is not particularly use-
ful in thinking about the complexity of a model because it leads to a complexity measure
of two for all models. Put another way, to construct this partition, a decision maker must
infer the model, which if allowable, can tell us nothing about how difficult a model is to
infer.

In limiting to patterns as defined, it may not always be possible to construct a par-
tition with a finite number of patterns. It turns out though that for the eight models we
study, finite partitions can be constructed for seven of the them.® Importantly, given that

3This construction is similar to the description in Lipman (1995) of the history of a repeated game as
both the state of the world and the input. In his formulation, a strategy partitions the history and more
complex strategies use finer partitions.

4A model-based measure is somewhat easier to work with than a measure based on a data set of finite
length because it avoids having to deal with exceptions that may occur at the beginning of the data set.

583 is the exception, requiring a countably infinite number of simple patterns. It requires one to look for
the pattern, “if the input is b and the output was x when the third most recent input of b occurred, the next
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only one of models requires an infinite number of partitions, our partitions complexity
measure can still be used to rank the eight machines. Thus, although we could allow for
more complex patterns, simpler patterns are sufficient for our purposes.® In addition,
allowing for more complex patterns would significantly increase the algorithmic com-
plexity of finding the partition with the minimum number of elements. In fact, even with
relatively simple patterns, it is a nontrivial problem.

B.2 Sparsity complexity

Gabaix (2014) provides a general framework for studying standard optimization prob-
lems in economics when decision makers must pay costs to attend to inputs to the op-
timization process. In his framework, the decision maker first decides which inputs to
attend to by comparing the attention cost to an approximation of the value of the in-
put. He shows that decision makers will optimally consider only a sparse set of inputs,
ignoring those with relatively little value. A natural complexity measure inspired by this
framework, then is the number of inputs a decision maker must attend to (i.e., must
avoid ignoring) in order to behave optimally. In our setting, the complexity of a model is
the number of input/output elements in the data set the DM must examine in order to
correctly apply the model correctly. In our operationalization, each element of the data
set is a potential input that might be processed, and our measure of complexity is the
number of elements in the data set that must be attended to in order to correctly predict
the output. For example, A2 requires the DM to attend to v;_, only to guess the next out-
put and is therefore one of the simplest possible models. S2 is more complex, requiring
the DM to attend to both u; and v;—; in order to predict. As with partitions complexity,
S3, is the only one of our DGPs out of the eight that we study for which there is no finite
set of elements that will always predict the output, and we code it as maximally complex
under this metric.

B.3 Algorithms for determining complexity measures

We discuss the algorithm used to find partition complexity. Sparsity complexity is de-
termined at the same time because once each partition that can describe the model
is identified, both the number of patterns in the partition and the number of data set
elements used in constructing the patterns are known. Partition complexity is the mini-
mum number of patterns in any partition and sparsity complexity is the minimum num-
ber of elements in any partition.

We take a brute force approach to finding the partition with the minimum number
of elements. For a given number, 7, time periods, we form all the possible partitions
with the subset of elements, {vr_,_1, ur_-, ..., v7_1, ur}. If a partition cannot be found,

output will be x,” which when restricted to simple patterns, requires a partition with a countably infinite
set of simple patterns due to the fact that an arbitrary number of a inputs can occur between b inputs.

6In the selection treatment analysis, several of the models consistent with the data sets also require a
countably infinite number of simple patterns so that we cannot rank all consistent models. However, for
each of the eight data sets, at least one model can be characterized by a finite number of patterns. As we are
only interested in whether or not the simplest model is most often selected, this suffices.
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we set partition complexity to infinity and otherwise set it to the number of patterns
in the smallest partition. We cannot search over all partitions as 7 — oo and, therefore,
cannot guarantee we have found the partition of minimum size. However, v = 3 appears
to be sufficient in the sense that the complexity measures do not change for a sample
of larger values. Intuitively, the minimum number of patterns should use only elements
from the most recent three periods for automata with at most three states, but given all
the ways in which partitions can be formed, we have been unable to prove this formally.
Proposition 1 does show though that if a partition cannot be formed using elements
from the two most recent periods, then adding a finite number of prior elements does
not help. So, we can be certain that the cases in which we set the partition complexity to
infinity do indeed require an infinite number of patterns.

ProposiTiON 1. Ifthe subset of elements, v;_2, u;_1, ..., uy, does not produce a partition
with a finite number of elements, then incorporating an additional finite set of prior ele-
ments does not either.

Prookr. For any 1- or 2-state automaton, v;—; and u;, always produce a partition with
at most four elements because the output, v;_1, directly maps to the current state of the
automaton which, together with the input, determines the next state and output. For
3-state automata in which two states map to the same output, v;_; and u, are no longer
sufficient. Without loss of generality, assume a single state corresponds to the output, y,
and two states, x1 and x2, correspond to x. For v; not to be determined by some subset
of past elements, it must be the case that the state of the automaton is indeterminate
after the subset because if the state is uniquely determined, then so is the output, v;.

For the subset of v;_», u;_1, v;—1, and u;, not to determine the automaton state, it
must be the case that either x; and x, both transition back to themselves on the same
input, or that the each transitions to the other on the same input. To see this, suppose to
the contrary that neither of these conditions holds. Then for each input, u, either one of
the x states transitions to the other and the other transitions back to itself, or one or both
of the x states transitions to y. In the first case, v;_1 and u; = u uniquely determines the
state, and in the second case, the subset of v;_, u;_1, v;—1, and u; uniquely determines
the state.

Finally, if x; and x; transition back to themselves on the same input, «, then no finite
number of past outputs and inputs necessarily determines the state because u could
repeat indefinitely. Similarly, if each of x; and x, transitions to the other on the same
input, u, then no finite number of past outputs and inputs necessarily determine the
state. Therefore, no partition with a finite number of elements exists. O

APPENDIX C: DESIGN DETAILS
C.1 Data sets used in the design

In this section, we provide all of the data sets used in the experiment, discuss how they
were selected, and use examples to illustrate how data sets in Unique could be used to
uniquely determine the automaton while those in Multiple could not.
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TaBLE 5. Data sets used in the unique treatment.

Input String

Output String

A2-1
A2-2
A2-3
A2-4
12-1
12-2
12-3
12-4
H2-1
H2-2
H2-3
H2-4
S2-1
S2-2
S2-3
S2-4
A3-1
A3-2
A3-3
A3-4
I3-1
I3-2
I3-3
13-4
H3-1
H3-2
H3-3
H3-4
S3-1
S3-2
S3-3
S3-4

000011011010111001011110
000111001000001100101011
010111100011110011100110
110011100100000100111011
111101001000000011101101
011010011101001101010011
010110010111010111000100
010011011111000110001101
111100010100001000100110
100111100101111100000101
010110111001001111001001
100111011000100000100100
111010100100010100010011
011010001111100111001111
000110101100001011010010
010101110000110000110001
111101010011101100110111
010001100000101000000110
100101111001010110010100
000111101001010011111000
100111010000111001101100
100100110111010110011001
111101001101011101111101
101110011010111111101110
110111100001010010101001
100111110111100110110001
111110100100000010011110
101001101111101010111000
101010111000110001010010
001111010110011110011111
101010101011110101111110
100111100101011001000100

0101010101010101010101010
0101010101010101010101010
0101010101010101010101010
0101010101010101010101010
0111101001000000011101101
0011010011101001101010011
0010110010111010111000100
0010011011111000110001101
0101000010100001000100100
0100101000101010100000101
0010100101001001010001001
0100101010000100000100100
0101100111000011000011101
0010011110101000101110101
0000100110111110010011100
0011001011111011111011110
0100100100100100100100100
0100100100100100100100100
0100100100100100100100100
0100100100100100100100100
0000011000000011000100100
0000000010011000010001000
0011100000100001100111100
0000110001000011111100110
0010010000000000000000000
0000010010010000010010000
0010010000000000000001000
0000000100100100000010000
0110000100000100000011100
0001001100011100100001001
0110000110001000110010011
0111001000001100001111000

Note: For inputs, 0 was represented as ¢ and 1 as b in the experiment; for out-
puts, 0 was represented as x and 1 as y.

First, Table 5 lists the data sets used in the Unique treatment. We selected these data

11

sets using an algorithm that selected input/output pairs that could only be rationalized

by a single (unique) nontrivial finite automaton of less than four states. To the extent
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TABLE 6. Data sets used in the multiple treatment.

Input String Output String
A2 100100101101111101011000 0101010101010101010101010
12 101011111110000011001100 0101011111110000011001100
H2 001011101011110100010110 0001010101010100100010100
S2 101000111110100010010111 0110000101011000011100101
A3 010010011000100110011001 0100100100100100100100100
I3 110110100010100110111110 0010010000000000010011110
H3 100000110111100000101001 0000000010010000000000000
S3 100100111100110000011000 0111000010000100000001111

Note: For inputs, 0 was represented as « and 1 as b in the experiment; for out-
puts, 0 was represented as x and 1 as y.

possible, we also selected data sets that were ranked differently according to the various
string measures of complexity.

For instance, consider S2-1 a data set produced by the S2 DGP. Subjects observe
the first 12 inputs and first 13 outputs (including the initial 0) in part 1 before making
guesses. In this case, each of the first three inputs of 1 cause the state to flip. This rules
out the alternative DGP of 12, but up to this point the strings are also consistent with A2
or H2. The next zero input causes the output to stay at 1, which then rules out A2 and
H2. In this way, the strings shown in part 1 similarly rule out all other nontrival finite
automata of less than four states.

Second, Table 6 shows the data sets used in the Multiple treatment. Here, our algo-
rithm deliberately selected data sets that are rationalizable by more than one (multiple)
nontrivial finite automata of less than four states. Furthermore, we attempted to ensure
the different data sets (i) were rationalizable by different numbers of automata in this
class and (ii) provided variation in how each of the rationalizable machines was ranked
according to the various model measures of complexity.

For instance, consider the data set generated with 12. The first twelve inputs and
thirteen outputs shown to subjects in part 1 (prior to making guesses) are consistent
with 12, but are also consistent with a version of H2 in which a zero always switches
the output and a one always outputs a one (H2 instead switches when the input is one
but outputs a zero when the input is zero). This particular string is also consistent with
several 3-state machines.

APPENDIX D: INSTRUCTIONS TO SUBJECTS

The same instructions were provided to subjects in both treatments. Each set of bullet
points corresponds to a different page in the instructions and bullets were revealed to
subjects one-by-one. Subjects were required to correctly answer comprehension ques-
tions, reproduced below, before proceeding to the experiment.
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Instructions
e We will start by providing you with INSTRUCTIONS for the study.

e We will ask you COMPREHENSION QUESTIONS to check that you understand the
instructions. You should be able to answer all of these questions correctly.

e Please read and follow the instructions closely and carefully.

e If you COMPLETE the main parts of the study, you will receive a GUARANTEED
PAYMENT of $2.50.

e In addition, your CHOICES in the DECISIONS portion of the study will result
in PERFORMANCE-BASED EARNINGS. You will experience several TASKS worth
REAL MONEY. Your points from ONE OF THE TASKS will be randomly selected by
computer and will be converted into an additional payment.

Inputs and Outputs

e The experiment will consist of several separate TASKS. Each task will consist of a
series of PERIODS. The screen will look like this:

Part 1: Observe how the computer produces outputs for this task.

Inputs: abaabaabaaaa
LALiLiddllll
QOutputs: XYXYXXYXXYXY

e In every period, we will show you an INPUT (a letter in red) followed by an OUTPUT
(aletter in blue) as in the screen above.

e The periods are shown on your screen from left to right—each horizontal location is
a different period. In order to help you remember that outputs come AFTER inputs
in each period, we draw a little arrow from inputs to outputs in each period.

e The computer uses a RULE to decide on outputs each period. That rule may depend
on the current and/or past inputs or it may not depend on the inputs at all. You will
not know. Most importantly, the rule is not random.

e Although outputs may depend on inputs, inputs never depend on outputs (the in-
puts were selected before the experiment began).

e Comprehension question: Which of the following is true?
1. Inputs come before outputs in each period.
2. Outputs come before inputs each period.
3. Inputs and outputs happen at the same time each period.
e Comprehension question: The rule the computer uses to determine outputs:

1. israndom.
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2. is arule that always depends on inputs.

3. isarule that never depends on inputs.

4. is arule that may or may not depend on inputs.
Making Guesses

e In part 1 of each task, we will show you a set of inputs and outputs (one at a time)
for 12 periods to help you get a sense of how outputs are determined. Then, in part
2 of the task, we will have a series of 12 additional periods in which we will show you
inputs and have you try to GUESS the correct output.

Part 2: Now guess the remaining outputs by typing your guesses.

Inputs: abaabaabaaaaabbbaaa
JILLLLLLlliiiiiilll

Outputs: XYXYXXYXXYyXYyX

Guesses: XYXXYX

The screen will look like the image above. In the first 12 periods, you make no guess
but just observe the process, as it automatically happens. In the last 12 periods, you
make a guess each period after each new input appears.

To make your guess, just type (on your keyboard) the letter of the output that you

think comes next (outputs can only be “x” or “y”). The more periods in which you
correctly guess the outputs, the higher your BONUS.

o IMPORTANT. The rule the computer uses to determine outputs will stay the same
throughout the task. But it may change from task to task. So, do not assume that
the way outputs are determined is the same for every task!

e IMPORTANT. The rule the computer uses to determine outputs does not depend
on your guesses. The set of inputs and outputs was determined ahead of time and
does not respond at all to what you do in the experiment.

After the last task, the computer will randomly select one task and pay you a bonus
of $0.35 for each output you correctly guessed in that task.

Comprehension question: My guesses influence the inputs and outputs in the ex-
periment

1. False
2. True
3. Itdepends

e Comprehension question: The rule determining outputs
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1. changes throughout each task and across tasks.
2. is the same throughout each task, but changes from task to task.
3. is the same throughout each task and across tasks.

Giving Advice, Describing the Rule

e At the end of each task, when you are done making your guesses, we will have you
give advice to another participant who will face a similar task in the future.

e The future participant will not experience part 1 of the task and will see a different
set of inputs than you did in part 2.

e However, the rule the computer uses to determine inputs will be exactly the same
as in your task. That means, you can only help the future participant by trying your
best to describe the rule you think the computer used during the task.

e In part 3 of the task, we will therefore give you a box to type the rule you think the
computer used to determine outputs.

e The better job you do in describing the rule, the more money you can earn. With
10% likelihood, we will show what you typed to a future participant. This will be a
sophisticated participant—a graduate student in a quantitative field. You will earn
$0.35 for every letter that participant gets right. That means, the better job you do
of accurately describing the rule, the more money you will earn on average in the
experiment.

e Comprehension question: I earn money in part 3 of the task by describing to a
future participant

1. what my guesses were.
2. the rule the computer uses in the task.
3. how people are paid in the experiment.
e Comprehension question: IfI do a good job of describing the rule,
1. it will have no impact on anything so I shouldn’t bother.
2. it may help another participant earn more money.

3. it may may help another participant earn more money, AND the more they
earn the greater my bonus will be.
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