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Appendix A: Asymptotic problem

In this Appendix, we describe how to derive the asymptotic homogeneous problem in an
abstract dynamic programming setting. For the notation, we follow Ma and Stachurski
(2021). Let

• X be a set called the state space;

• A be a set called the action space;

• � : X �A be a nonempty correspondence called the feasible correspondence;

• g : X ×A→ X be a function called the law of motion;

• V be a subset of all functions from X to R ∪ {−∞} called the set of candidate value
functions;

• Q : X ×A× V → R∪ {−∞} be a map called the state-action aggregator.

Then we say that the value function v ∈ V satisfies the Bellman equation if

v(x) = max
a∈�(x)

Q
(
x, a, v

(
g(x, a)

))
(A.1)

for all x ∈X .

Definition A.1 (Asymptotic homogeneity). We say that the dynamic programming
problem is asymptotically homogeneous if it has the following properties:

• X =X1 ×X2, where R+ ⊂X1 ⊂ R;

• �(x) = �1(x1, x2 ) × �2(x2 ), where x = (x1, x2 ) ∈ X1 × X2 and R
d+ ⊂ �1(x1, x2 ) ⊂ R

d

for some d;
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• g(x, a) = g1(x1, x2, a1, a2 ) × g2(x2, a2 ), where x = (x1, x2 ) ∈ X1 × X2 and (a1, a2 ) ∈
�1(x1, x2 ) × �2(x2 );

• limλ→∞ 1
λ�1(λx1, x2 ) = �̃1(x1, x2 ) exists for (x1, x2 ) ∈X1 ×X2;

• limλ→∞ 1
λg1(λx1, x2, λa1, a2 ) = g̃1(x1, x2, a1, a2 ) exists for (x1, x2 ) ∈ X1 × X2 and

(a1, a2 ) ∈ �1(x1, x2 ) × �2(x2 );

• limλ→∞ 1
λQ(λx1, x2, λa1, a2, λv) = Q̃(x1, x2, a1, a2, v) exists.

Lemma A.2. Suppose that the dynamic programming problem is asymptotically homo-
geneous. Then

(i) �̃1 is homogeneous of degree 1 in x1: for any λ > 0, we have

�̃1(λx1, x2 ) = λ�̃1(x1, x2 ).

(ii) g̃1 is homogeneous of degree 1 in (x1, a1 ): for any λ > 0, we have

g̃1(λx1, x2, λa1, a2 ) = λg̃1(x1, x2, a1, a2 ).

(iii) Q̃ is homogeneous of degree 1 in (x1, a1, v): for any λ > 0, we have

Q̃(λx1, x2, λa1, a2, λv) = λQ̃(x1, x2, a1, a2, v).

Proof. By the definition of �̃1, for any λ > 0, we have

�̃1(λx1, x2 ) = lim
λ′→∞

1

λ′�1
(
λ′λx1, x2

)
= λ lim

λ′→∞
1

λ′λ
�1

(
λ′λx1, x2

) = λ�̃1(x1, x2 ).

The proofs of the other claims are similar.

When the dynamic programming problem is asymptotically homogeneous, we de-
fine the asymptotic problem as follows.

Definition A.3. Suppose that the dynamic programming problem is asymptotically
homogeneous. Then the Bellman equation of the asymptotic problem corresponding to
(A.1) is defined by

v(x1, x2 ) = max
(a1,a2 )∈�̃1(x1,x2 )×�2(x2 )

Q̃
(
x1, x2, a1, a2, v

(
g̃1(x1, x2, a1, a2 ), g2(x2, a2 )

))
. (A.2)

The following lemma shows that we can reduce the dimension of the asymptotic
problem by 1.

Lemma A.4. Suppose that the dynamic programming problem is asymptotically homo-
geneous. Consider the following “normalized” Bellman equation:

ṽ(x2 ) = max
(a1,a2 )∈�̃1(1,x2 )×�2(x2 )

Q̃
(
1, x2, a1, a2, g̃1(1, x2, a1, a2 )ṽ

(
g2(x2, a2 )

))
. (A.3)
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If (A.3) has a solution ṽ(x2 ), then v(x1, x2 ) = x1ṽ(x2 ) is a solution to the asymptotic Bell-
man equation (A.2). Furthermore, letting ã = (ã1, ã2 ) be the policy function of the nor-
malized Bellman equation (A.3), the policy function a = (a1, a2 ) of the asymptotic Bell-
man equation (A.2) is given by a1(x1, x2 ) = x1ã1(x2 ) and a2(x1, x2 ) = ã2(x2 ).

Proof. Immediate by multiplying both sides of (A.3) by x1 > 0 and using the homo-
geneity of �̃1, g̃1, Q̃ established in Lemma A.2.

The following proposition shows that if a dynamic programming problem is asymp-
totically homogeneous, then the value function and policy functions are asymptotically
linear. (The statement and proof are somewhat heuristic but see Ma and Toda (2021) for
a rigorous treatment for the case of an income fluctuation problem.)

Proposition A.5. Suppose that the dynamic programming problem is asymptotically
homogeneous. Suppose that the Bellman equation (A.1) has a solution v(x), and it can be
computed by value function iteration starting from v(x) ≡ 0. Then under some regularity
conditions, the value function and policy functions are asymptotically linear: we have

v(x1, x2 ) = x1ṽ(x2 ) + o(x1 ),

a1(x1, x2 ) = x1ã1(x2 ) + o(x1 ),

a2(x1, x2 ) = ã2(x2 ) + o(x1 )

as x1 → ∞, where ṽ(x2 ), ã1(x2 ), and ã2(x2 ) are defined as in the normalized Bellman
equation (A.3).

Proof. Define the operator T : V → V by the right-hand side of (A.1). Let v(0) ≡ 0 and
v(k) = Tv(k−1) = Tk0. Let us show by induction that

lim
λ→∞

1
λ
v(k)(λx1, x2 ) = ṽ(k)(x1, x2 )

exists. If k= 0, the claim is trivial since v(0) ≡ 0. Suppose the claim holds for some k− 1.
Then by Lemma A.2, we obtain

1
λ
v(k)(λx1, x2 )

= 1
λ

(
Tv(k−1))(λx1, x2 )

= max
(a1,a2 )∈

1
λ�1(λx1,x2 )×�2(x2 )

Q

(
λx1, x2, λa1, a2, v(k−1)

(
λ

1
λ
g1(λx1, x2, λa1, a2 ), g2(x2, a2 )

))
.

Using the asymptotic homogeneity of �1, g1, Q established in Lemma A.2, the asymp-
totic homogeneity of v(k−1), and assuming that we can interchange the limit and maxi-
mization (e.g., assuming enough conditions to apply the maximum theorem), it follows
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that v(k) is asymptotically homogeneous. Since by assumption v(k) → v as k→ ∞ point-
wise, assuming that the limit of k → ∞ and λ → ∞ can be interchanged (which is the
case if v(k) converges to v monotonically, which is often the case in particular appli-
cations), then v is asymptotically homogeneous in the sense that limλ→∞ 1

λv(λx1, x2 )
exists.

Now that asymptotic homogeneity of v is established, from (A.1) we obtain

v(λx1, x2 ) = max
a∈�(λx1,x2 )

Q
(
λx1, x2, a, v

(
g(λx1, x2, a)

))
.

Dividing both sides by λ > 0 and letting λ → ∞, using the asymptotic homogeneity of
�1, g1, Q, and v, we obtain the asymptotic Bellman equation (A.2). Thus if in particular
(A.3) has a unique solution ṽ(x2 ), by Lemma A.4 it must be

lim
λ→∞

1
λ
v(λx1, x2 ) = x1ṽ(x2 ).

Consequently, setting x1 = 1 and λ = x1, we obtain v(x1, x2 ) = x1ṽ(x2 )+o(x1 ). The proof
for the policy functions is similar.

Appendix B: Proofs

Proposition B.1. The asymptotic Euler equation

c̄
−γ
s = (1 −p)R1−γβs

S∑
s′=1

pss′
[
(1 − c̄s )c̄s′

]−γ
(B.1)

admits a (necessarily unique) positive solution {c̄s}Ss=1 if, and only if the spectral condition

(1 −p)R1−γρ(DP ) < 1 (B.2)

holds, where D = diag(β1, � � � , βS ) is the diagonal matrix of discount factors and ρ(A)
denotes the spectral radius (largest absolute value of all eigenvalues) of the matrix A.

Proof. Setting xs = c̄
−γ
s , (B.1) can be rewritten as

xs =
(

1 +
(

(1 −p)R1−γβs

S∑
s′=1

pss′xs′

)1/γ)γ

.

Setting x= (x1, � � � , xS )′, we can express this equation as

x = (
1 + (Kx)1/γ)γ , (B.3)

where K = (1 − p)R1−γDP , D = diag(β1, � � � , βS ), and powers are applied entrywise. By
Proposition 14 of Ma and Toda (2021) (see also discussions in Toda (2019) and Borovička
and Stachurski (2020)), (B.3) has a positive solution if, and only if ρ(K) < 1, in which
case the solution is unique. Since ρ(K) = (1 −p)R1−γρ(DP ), a necessary and sufficient
condition for the existence of a solution is the spectral condition (B.2).
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Proposition B.2. If Gt+1 ≤ 1 always, then (B.5) does not have a solution z > 0. If M(z)
is finite for all z > 0, P is irreducible, and

pss Pr(Gt+1 > 1 | st = st+1 = s) > 0 (B.4)

for some s, then the equation

(1 −p)ρ
(
P 
M(z)

) = 1 (B.5)

has a unique solution z = ζ > 0.

Proof of Proposition B.2. If Gt+1 ≤ 1 always, then by

Mss′(z) = E
[
Gz

t+1 | st = s, st+1 = s′
]
, (B.6)

we have

Mss′(z) = E
[
Gz

t+1 | st = s, st+1 = s′
] ≤ 1

for all z ≥ 0. Therefore (1 − p)ρ(P 
 M(z)) ≤ (1 − p)ρ(P ) = 1 − p < 1, so (B.5) does not
have a solution z > 0.

Suppose that M(z) is finite for all z > 0 and P is irreducible. Define A(z) = P 
M(z).
Define the S×S matrix B(z) by Bss(z) = pssMss(z) > 0 for the s satisfying the assumption
pss Pr(Gt+1 > 1 | st = st+1 = s) > 0, and 0 for all other entries. Then clearly A(z) ≥ B(z) ≥
0 entrywise, so

∞ > ρ
(
P 
M(z)

) = ρ
(
A(z)

) ≥ ρ
(
B(z)

) = pss E
[
Gz

t+1 | st = st+1 = s
] → ∞

as z → ∞. Since (1−p)ρ(P
M(0)) = (1−p)ρ(P ) = 1−p< 1, by the intermediate value
theorem there exists z = ζ > 0 such that (B.5) holds. Uniqueness is proved in Beare and
Toda (2022).

Proposition B.3. Suppose the law of motion for asymptotic agents is the random growth
model wt+1 = Gt+1wt . Let M(z) = (Mss′(z)) be the matrix of conditional moment gener-
ating functions (B.6) and ζ > 0 be the Pareto exponent that solves (B.5). Let π̄ be the left
Perron vector of P 
 M(ζ ) normalized such that

∑S
s=1 π̄s = 1. Then π̄ is the top tail type

distribution:

lim
w→∞ Pr(st = s | wt > w) = π̄s . (B.7)

Furthermore, the conditional top tail exit probability is given by

lim
w→∞ Pr(wt+1 ≤w | wt > w, st = s) = 1 − (1 −p) E

[
min

{
1, Gζ

t+1

} | st = s
]
. (B.8)

Proof of Proposition B.3. Suppose {wt } is a stationary solution to

wt =
{
Gtwt−1 with probability 1 −p,

X with probability p,
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where X is a positive random variable with bounded support.1 Then for large w> 0, we
have

Pr
(
st = s′, wt > w

) = Pr
(
st = s′

)
Pr

(
wt > w | st = s′

)

=
S∑

s=1

(1 −p) Pr(st−1 = s)pss′ EG

[
Pr(wt−1 >w/Gt | st−1 = s, Gt )

]
,

where the expectation over G is taken conditional on (st−1, st ) = (s, s′ ). We know from
Beare and Toda (2022) that Pr(wt > w | st = s) ∼ csw

−ζ for some constant cs > 0 when w

is large. Hence setting πs = Pr(st = s), we can write the above equation as

πs′cs′w
−ζ ∼

S∑
s=1

(1 −p)πspss′ E
[
cs(w/Gt )−ζ | st−1 = s, st = s′

]
.

Multiplying both sides by wζ and letting w → ∞, the approximation becomes exact and
we obtain

πs′cs′ =
S∑

s=1

(1 −p)πscspss′Mss′(ζ ),

where Mss′ is the conditional moment generating function of logG in (B.6). Expressing
this in matrix form, we obtain

y ′ = y ′(1 −p)P 
M(ζ ),

where y ′ = (π1c1, � � � , πScS ). Therefore y is the left eigenvector of (1 −p)P 
M(ζ ) corre-
sponding to the eigenvalue 1. Using the Bayes rule, the distribution of states conditional
on being in the tail is

Pr(st = s | wt > w) = Pr(st = s, wt > w)
Pr(wt > w)

∼ πscsw
−ζ

N∑
s=1

πscsw
−ζ

= ys
S∑

s=1

ys

,

so π̄ is the normalized left Perron vector of P 
M(ζ ).
By a similar argument, the probability that a type s agent remains in the top tail is

Pr(wt+1 >w | wt > w, st = s)

= (1 −p) Pr(wt > w/Gt+1 | wt > w, st = s)

= (1 −p)
Pr(wt > w/Gt+1, wt > w, st = s)

Pr(wt > w, st = s)

= (1 −p)
Pr

(
wt > max

{
1, G−1

t+1

}
w, st = s

)
Pr(wt > w, st = s)

1More generally, it suffices to assume that E[Xζ+ε] < ∞ for some ε > 0.
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∼ (1 −p)
E

[
πscs

(
max

{
1, G−1

t+1

}
w

)−ζ | st = s
]

πscsw
−ζ

= (1 −p) E
[
min

{
1, Gζ

t+1

} | st = s
]
.

Therefore (B.8) holds.

Proposition B.4. Let a < c < a+b
2 . Then the exponential grid with shift parameter s =

c2−ab
a+b−2c has median grid point c.

Proof of Proposition B.4. Suppose we would like to specify the median grid point
as c ∈ (a, b). Since the median of the evenly-spaced grid on [log(a + s), log(b + s)] is
1
2 (log(a+ s) + log(b+ s)), we need to take s >−a such that

c = exp
(

1
2

(
log(a+ s) + log(b+ s)

)) − s

⇐⇒ c + s =
√

(a+ s)(b+ s)

⇐⇒ (c + s)2 = (a+ s)(b+ s)

⇐⇒ c2 + 2cs + s2 = ab+ (a+ b)s + s2

⇐⇒ s = c2 − ab

a+ b− 2c
.

Note that in this case

s + a= c2 − ab

a+ b− 2c
+ a= (c − a)2

a+ b− 2c
,

so s + a is positive if, and only if a < c < a+b
2 . Therefore, for any such c, there exists an

exponential grid with median point c.

Appendix C: Theoretical properties of analytical model

In this Appendix, we analytically characterize the equilibrium of the model in Section 5
of the paper. We consider the firm’s problem, the single agent problem, and the existence
of a stationary equilibrium.

C.1 Firm’s problem

The firm’s problem

max
K,L≥0

[
−K + 1

Rt

(
AtF(K, L) −ωtL+ (1 − δ)K

)]
, (C.1)

is static. Suppressing the time subscript and noting that the production function is
Cobb–Douglas AF(K, L) =AKαL1−α, the first-order conditions of the profit maximiza-
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tion problem are

ω=AFL(K, L) = A(1 − α)(K/L)α,

R− 1 + δ=AFK(K, L) =Aα(K/L)α−1.

Solving for the capital-labor ratio, we obtain

(
R− 1 + δ

Aα

) 1
α−1 = K

L
=

(
ω

A(1 − α)

) 1
α

. (C.2)

In particular, the wage ω and gross risk-free rate R are related as

ω =A
1

1−α (1 − α)

(
R− 1 + δ

α

) α
α−1

. (C.3)

C.2 Single agent problem

For simplicity, we first consider a single agent problem without mortality risk (p= 0) and
general minimum consumption, income, and gross risk-free rate {c̄t , yt , Rt }∞t=0. Thus the
optimization problem becomes

maximize E0

∞∑
t=0

(
t−1∏
i=0

βsi

)
log(ct − c

¯t
)

subject to at+1 =Rt+1(at − ct + yt ),

where at is financial wealth at the beginning of time t excluding labor income, Rt+1 is
risk-free rate from time t to t + 1, and ct is consumption. The agent takes {c

¯t
, yt , Rt }∞t=0

as given (perfect foresight). For survival, we assume 0 ≤ c
¯t
< yt for all t.

We can solve this problem as follows. First, define the “surplus” consumption xt =
ct − c

¯t
. Then the objective function is the standard log utility and the budget constraint

becomes

at+1 =Rt+1(at − xt − c
¯t

+ yt ) =Rt+1(at − xt + ỹt ),

where ỹt := yt − c
¯t

> 0 is “disposable income” after financing the minimum consump-
tion c

¯t
. To convert the problem to a homogeneous problem, we define the “human

wealth” ht to satisfy

ht+1 =Rt+1(ht − ỹt ),

so

ht =
∞∑
i=0

(
i∏

�=1

Rt+�

)−1

ỹt+i, (C.4)

where we use the convention
∏0

�=1 Rt+� = 1. Using the budget constraint and the defi-
nition of human wealth, we obtain

wt+1 =Rt+1(wt − xt ),
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where wt = at + ht is total (financial plus human) wealth. Now the problem reduces to

maximize E0

∞∑
t=0

(
t−1∏
i=0

βsi

)
logxt

subject to wt+1 = Rt+1(wt − xt ) ≥ 0,

which is a homogeneous problem. Because wt = at +ht ≥ 0, the natural borrowing con-
straint is then

at ≥ −ht , (C.5)

where the human wealth ht is defined by (C.4).
Let Vt,s(w) be the value function in period t given state s and wealth w. The Bellman

equation is then

Vt,s(w) = max
x

{
logx+βs E

[
Vt+1,s′

(
Rt+1(w − x)

) | s]}.

Guess that the value function takes the form Vt,s(w) = At,s +Bs logw for some constants
At,s, Bs, with Bs > 0 depending only on s. The first-order condition is

0 = 1
x

−βs E[Bs′ | s]
1

w − x
⇐⇒ x= w

1 +βs E[Bs′ | s]
.

Substituting this x into the Bellman equation and comparing the coefficients of logw,
we obtain

Bs = 1 +βs E[Bs′ | s].

Setting B = (B1, � � � , BS )′ and expressing using a matrix, we obtain

B = 1 +DPB ⇐⇒ B = (I −DP )−11,

where D = diag(� � � , βs , � � �) is the diagonal matrix with sth diagonal element βs . The
optimal consumption rule is then x = w/Bs in state s. The case with constant β cor-
responds to D = β and P = 1, so B = 1/(1 − β) and the optimal consumption rule is
x = (1 −β)w, as is well known. See the Online Appendix in Toda (2019) for a more com-
plete analysis.

Let ms = 1/Bs < 1 be the asymptotic marginal propensity to consume in state s.
Substituting the optimal consumption rule x = msw into the budget constraint, we get
wt+1 =Rt+1(1 −mst )wt , or

at+1 = Rt+1(1 −mst )(at + ht ) − ht+1

= Rt+1
(
(1 −mst )at −mstht + ỹt

)
after using the definition of human wealth in (C.4). Note that the savings (capital hold-
ings) in period t is given by

kt+1 = at − xt + ỹt = at+1

Rt+1

= (1 −mst )at −mstht + ỹt .
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If the agent is subject to mortality risk, then all the above derivations are valid by replac-
ing βs, R with the effective discount factor β̃s = βs(1 − p) and effective gross risk-free
rate R̃t =Rt/(1 −p). We collect these results into the following proposition.

Proposition C.1. Consider an agent with log utility, labor endowment 1, discount fac-
tor (βs ) with transition probability matrix P = (pss′ ), birth/death probability p, and min-
imum consumption ratio φ. Suppose that (1 −p)ρ(DP ) < 1, where D= diag(� � � , βs , � � �),
and let B = (I − (1 −p)DP )−11 � 1 and ms = 1/Bs < 1.

Let the sequence of wage and gross risk-free rate {ωt , Rt }∞t=0 be given, R̃t = Rt/(1 −p),
and assume lim supt→∞ωt < ∞ and lim inft→∞ R̃t > 1. Then the optimal consumption of
the agent is given by

ct =mst (at + ht ) +φωt , (C.6)

where

ht = (1 −φ)
∞∑
i=0

(
i∏

�=1

R̃t+�

)−1

ωt+i. (C.7)

The law of motion for financial wealth is

at+1 = R̃t+1
(
(1 −mst )at −mstht + (1 −φ)ωt

)
. (C.8)

C.3 Aggregation

We aggregate the individual behavior and characterize the aggregate quantities. Since
the minimum consumption is proportional to labor income, the disposable income of
an agent is

ỹt = (1 −φ)ωt . (C.9)

We denote aggregate quantities by capital letters. By (C.7), the human wealth satis-
fies

ht = ỹt + 1

R̃t+1
ht+1 = ỹt + 1 −p

Rt+1
ht+1. (C.10)

By (C.8), the law of motion at time t for financial wealth and type is

(a, s) �→
{(

R̃t+1
(
(1 −ms )a−msht + ỹt

)
, s′

)
with probability (1 −p)pss′ ,(

0, s′
)

with probability pπs′ .

Letting At,s be the aggregate financial wealth held by type s agents at time t and aggre-
gating the law of motion for financial wealth, we obtain

At+1,s′ =
S∑

s=1

(1 −p)pss′R̃t+1
(
(1 −ms )At,s −msπsht +πsỹt

)
.
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Letting At = (At,1, � � � , At,S )′ and M = diag(� � � , ms , � � �), we can express the above equa-
tion as

At+1 = (1 −p)R̃t+1P
′((I −M )At − htMπ + ỹtπ

)
= Rt+1P

′((I −M )At − htMπ + ỹtπ
)
. (C.11)

The vector of aggregate capital holdings of type s agents at the end of time t is then

Kt+1 = At+1/Rt+1 = P ′((I −M )At − htMπ + ỹtπ
)
. (C.12)

Multiplying the vector 1 from the left as inner product and noting that P1 = 1 and 1′π =
1, aggregate capital is

Kt+1 = 1′((I −M )At − htMπ
) + ỹt .

C.4 Stationary equilibrium

The following theorem establishes the existence of a stationary equilibrium.

Theorem C.2 (Existence). Let everything be as in Proposition C.1 and define the diago-
nal matrix M = diag(� � � , ms , � � �). If

P ′(I −M )π ≥ (1 −p)ρ
(
P ′(I −M )

)
π, (C.13)

then a stationary equilibrium exists.

Proof. If a stationary equilibrium with gross risk-free rate R exists, by (C.2) it must be
R> 1 − δ. Setting ht = h in (C.10), we obtain

h= ỹ

1 − 1 −p

R

,

where R> 1 −p is necessary for convergence. By (C.11), we obtain

A = RP ′((I −M )A − hMπ + ỹπ
)
.

For convergence, we need Rρ(P ′(I − M )) < 1 ⇐⇒ R < 1/ρ(P ′(I − M )) is necessary, in
which case

A = (
I −RP ′(I −M )

)−1
RP ′(I −M )(ỹI − hM )π

= (1 −φ)ω

1 − 1 −p

R

(
I −RP ′(I −M )

)−1
R

(
P ′(I −M )π − 1 −p

R
π

)
.

The vector of aggregate capital supply K = (K1, � � � , KS )′ is therefore

K = (1 −φ)ω
R− 1 +p

(
I −RP ′(I −M )

)−1(
RP ′(I −M )π − (1 −p)π

)
. (C.14)
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Define the lower and upper bounds on R by

R
¯

= max{1 −p, 1 − δ} ≤ 1,

R̄= 1/ρ
(
P ′(I −M )

)
> 1,

where we have used ms ∈ (0, 1) and ρ(P ) = 1. Define the excess demand function of
aggregate capital by

f (R) =
(
R− 1 + δ

Aα

) 1
α−1 − 1′K,

where K is as in (C.14) and ω is as in (C.3). Clearly, f is continuous on (R
¯

, R̄). If we
can show f (R

¯
+) > 0 and f (R̄−) < 0, then by the intermediate theorem there exists R ∈

(R
¯

, R̄) and we obtain a stationary equilibrium.
First, consider the behavior of f as R ↓ R

¯
. If 1 − δ > 1 −p, then R

¯
= 1 − δ and

(
R− 1 + δ

Aα

) 1
α−1 → ∞,

1′K → finite value

as R ↓ R
¯

, so f (R) → ∞. If 1 − δ ≤ 1 −p, then R
¯

= 1 −p. Noting that ms ∈ (0, 1) and π is
the left Perron vector of P , it follows that

R
¯
P ′(I −M )π − (1 −p)π = (1 −p)

(
P ′(I −M )π −π

)
= −(1 −p)P ′Mπ � 0.

Therefore by (C.14),

(
R− 1 + δ

Aα

) 1
α−1 ≥ 0,

1′K → −∞

as R ↓ R
¯

, so f (R) → ∞.
Next, consider the behavior of f as R ↑ R̄. Let us show that the inequality in (C.13) is

strict for at least one entry. Suppose not. Then

P ′(I −M )π = (1 −p)ρ
(
P ′(I −M )

)
π.

Multiplying the left Perron vector v of the irreducible nonnegative matrix P ′(I −M ) and
dividing by (v′π )ρ(P ′(I − M )) > 0, we obtain the contradiction 1 = 1 − p. Now letting
R ↑ R̄, the entries of (I −RP ′(I −M ))−1 diverge to ∞ and

RP ′(I −M )π − (1 −p)π → 1

ρ
(
P ′(I −M )

)P ′(I −M )π − (1 −p)π > 0

as we have just shown, so 1′K → ∞. Therefore f (R) → −∞.
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The following theorem shows that the stationary wealth distribution has a Pareto
upper tail.

Theorem C.3 (Pareto exponent). Suppose pss > 0 for all s. Then the stationary equilib-
rium wealth distribution has a Pareto upper tail with exponent ζ > 1 that solves

(1 −p)R̃zρ
(
P(I −M )(z)) = 1. (C.15)

Proof. Let R ∈ (R
¯

, R̄) be the equilibrium gross risk-free rate. By (C.8), the asymptotic
gross growth rate of financial wealth is R̃(1−ms ) in state s. Let us show that R̃(1−ms ) > 1
for some s. Suppose not. Then R̃(I −M ) ≤ I, so

RP ′(I −M )π − (1 −p)π = (1 −p)R̃P ′(I −M )π − (1 −p)π

≤ (1 −p)P ′Iπ − (1 −p)π = 0,

where we have used the fact that P ′π = π. Then K ≤ 0 by (C.14), and hence f (R) > 0,
which contradicts the equilibrium condition f (R) = 0.

Now let

λ(z) = (1 −p)R̃zρ
(
P(I −M )(z)).

Then

λ(1) = (1 −p)R̃ρ
(
P(I −M )

) = Rρ
(
P ′(I −M )

) =R/R̄ < 1.

Since pss > 0 for all s and R̃(1 − ms ) > 1 for some s, by Proposition B.2 λ(z) = 1 has a
unique solution ζ ∈ (1, ∞), which is the Pareto exponent of the wealth distribution.

Appendix D: Simulation

One may argue that the numerical issues discussed throughout the paper are specific to
the particular algorithm that involves truncation, and other solution methods such as
simulation (Aiyagari (1994), Krusell and Smith (1998)) may not be subject to those issues.
As we see below, however, the situation is equally problematic. Simulation-based meth-
ods essentially use the law of large numbers to evaluate the market clearing condition.
Suppose we simulate I agents and compute the sample mean of wealth 1

I

∑I
i=1 wi. The

question is how fast the sample mean converges to the population mean. If the Pareto
exponent ζ exceeds 2, then wealth has finite variance and we can apply the central limit
theorem. In this case, the sample mean converges at rate I1/2. If ζ < 2 on the other hand,
it is well known that the rate of convergence to the stable law is only I1−1/ζ . Therefore
solving a model accurately may require an impractically large number of agents.

As an illustration, Table D.1 shows the order of error Imax{−1/2,1/ζ−1} in the sample
mean for various sample size I and Pareto exponent ζ. If ζ ≥ 2 and we use 10,000 agents
(the number used in Aiyagari (1994)), then the order of the error in the sample mean
is 10,000−1/2 = 1/100 = 1%. However, the error order is much larger if the Pareto expo-
nent is smaller. With ζ = 1.5 (a typical number for the wealth distribution according to
Vermeulen (2018)), the error order with 10,000 agents is 4.6%, which is substantial. If
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Table D.1. Order of error Imax{−1/2,1/ζ−1} in sample mean.

Sample size I

Pareto exponent ζ

≥ 2 1.5 1.3 1.1

100 = 1 1.00000 1.00000 1.00000 1.00000
102 0.10000 0.21544 0.34551 0.65793
104 0.01000 0.04642 0.11938 0.43288
106 0.00100 0.01000 0.04125 0.28480
108 0.00010 0.00215 0.01425 0.18738
1010 0.00001 0.00046 0.00492 0.12328

the Pareto exponent is 1.1 (a typical number for the firm size distribution, which obeys
Zipf’s law (Axtell (2001))), then even with ten billion agents (I = 1010), which is about
the same order of magnitude as the world population, the error order is still 12.3%. To
drive the error down to 1%, quite a modest number, the required sample size for ζ = 1.1

is I = 100
ζ

ζ−1 = 1022 (ten sextillion), which is about the same order of magnitude as the
number of stars in the universe or sand grains on earth.2 Therefore we cannot expect to
solve such models accurately using simulation.

Appendix E: Matlab files

The Matlab files for implementing the Pareto extrapolation algorithm can be down-
loaded from https://github.com/alexisakira/Pareto-extrapolation. There are three main
functionalities for Pareto extrapolation:

• getZeta.m

• getQ.m

• getTopShares.m

In addition, expGrid.m constructs an exponential grid and example.m contains a sim-
ple example.

E.1 Pareto exponent

getZeta.m computes the Pareto exponent using the Beare and Toda (2022) formula.
The usage is

[zeta,typeDist] = getZeta(PS,PJ,V,G,zetaBound),

where

• PS is the S × S transition probability matrix of exogenous states indexed by s =
1, � � � , S,

2http://www.abc.net.au/science/articles/2015/08/19/4293562.htm

https://github.com/alexisakira/Pareto-extrapolation
http://www.abc.net.au/science/articles/2015/08/19/4293562.htm


Supplementary Material Pareto extrapolation 15

• PJ is the S2 × J matrix of conditional probabilities of transitory states indexed by
j = 1, � � � , J,

• V is the S × S matrix of conditional survival probabilities,

• G is the S2 × J matrix of gross growth rates,

• zetaBound is a vector (ζ
¯

, ζ̄ ) that specifies the lower and upper bounds to search
for the Pareto exponent (optional),

• zeta is the Pareto exponent, and

• typeDist is the probability distribution of types in the upper tail.

The S2 rows in PJ and G should be ordered such that

(
s, s′

) = (1, 1), � � � , (1, S); � � � ; (s, 1), � � � , (s, S); � � � ; (S, 1), � � � , (S, S).

If PS= P = (pss′ ), PJ= (πss′j ), V= (vss′ ), and G= (Gss′j ), then the Pareto exponent z = ζ

is the solution to

ρ
(
P 
 V 
M(z)

) = 1,

where ρ is the spectral radius and M(z) = (Mss′(z)),

Mss′(z) =
J∑

j=1

πss′jG
z
ss′j ,

and 
 is the Hadamard (entrywise) product.
PJ must be either 1 × J, S × J, or S2 × J. If it is 1 × J, it assumes πss′j = πj depends

only on j. If it is S × J, it assumes πss′j = πsj depends only on (s, j).
V must be either 1 × 1 or S × S. If it is 1 × 1, it assumes vss′ = v is constant.
G must be either S × J or S2 × J. If it is S × J, it assumes Gss′j = Gsj depends only on

(s, j).

E.2 Joint transition probability matrix

getQ.m computes the SN × SN joint transition probability matrix Q = (qsn,s′n′ ) and the
stationary distribution π = (πsn ) for the exogenous state s and wealth. The usage is

[Q,pi] = getQ(PS,PJ,V,x0,xGrid,gstjn,Gstj,zeta),

where

• PS, PJ, V are the same as in getZeta.m,

• x0 is the initial wealth of newborn agents,

• xGrid is the 1 ×N grid of wealth (size variable) wn,

• gstjn is the S2 × JN matrix of law of motion for wealth gss′j(wn ),
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• Gstj is the S2 × J matrix of asymptotic slopes of law of motion Gss′j (optional),

• zeta is the Pareto exponent (optional),

• Q is the SN × SN joint transition probability matrix, and

• pi is the SN × 1 stationary distribution.

The JN columns of gstjn must be ordered such that the first N columns correspond
to j = 1, the next N columns correspond to j = 2, and so on. Gstj is the same as G
in getZeta.m. If unspecified, it uses the slope of the law of motion between the two
largest grid points. If zeta is unspecified, it calls getZeta.m to compute.

gstjnmust be either S×JN or S2 ×JN . If it is S×JN , it assumes gss′j(wn ) = gsj(wn )
depends only on (s, j, n).

E.3 Top wealth shares

getTopShares.m computes the top wealth shares. The usage is

topShare = getTopShares(topProb,wGrid,wDist,zeta),

where

• topProb is the vector of top probabilities to evaluate top shares,

• wGrid is the 1 ×N vector of wealth grid,

• wDist is the 1 ×N vector of wealth distribution, and

• zeta is the Pareto exponent (optional).

Given the stationary distribution π computed using getQ.m, one can compute the
wealth distribution as πn = ∑S

s=1 πsn. If zeta is unspecified, getTopShares.m uses
spline interpolation to compute top wealth shares.

E.4 Exponential grid

expGrid.m constructs an N-point exponential grid on the interval (a, b]. The usage is

grid = expGrid(a,b,c,N),

where

• a, b are endpoints,

• c is the median point satisfying a < c < a+b
2 , and

• N is the number of grid points.

We exclude the lower endpoint a because it is often an absorbing state, but it is straight-
forward to modify the code to construct a grid on [a, b] if necessary.
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