Technical Appendix

In this appendix we extensively use a special case of the Fortunin, Kasteleyn and
Ginibre (1971) inequality ' (henceforth FKG) in Harris (1960). This inequality

(adapted to our setting) states that for any probability measure on R, and increasing

functions f(z) and g(z), ff z)du(z >ff Ydp(z fg Ydu(z

Proof of Proposition 2.1

a. Property II = Property I

Var(:z: +z, 1) = var( )+ Var( )—I— QCov(cit,i’tH) < 2var<i"t> (by Property II)

= var(z,, )+ 2cov(i, 7, )< var(z,).

t7 7+
Since var(:f:m) = Var< ) this implies that COV(:B xm) <0,

Hence Property I holds.

b. Property I together with the covariance condition (3) implies Property II.
The proof is by induction.
Let j =1, var(a?t —|—5:t+1) = var( )+var< ) —I—2c0v(a~:t,:§ ) < 2var<:E )

t+1 t+1

(this follows by Property I and the fact that Var<£t> = Var(izm> )

Let j = 2, Var(:it +z,, + a?m)

2
:Z;var(g’étﬂ)—k%ov( ’ t1)+2cov< z, f+2)+ 2c0v( M,fcm)
pn

! We thank Awi Federgruen for bringing the FKG inequality to our attention.



By Property I, 200v<:?:t, ~t+1) <0

and by condition (3), 2cov(:ﬁt, ~t+1) + 2cov<x z ) <0

t? 42

0 L, +2) < 0. Therefore,

Again by Property I, 2COV(
Var(f +7, w) var( ]> 3var(§c’t).

Suppose, by Property I and condition (3), var(j':t +Z,,, +..+ :EH]._l) < jvar(:it)

holds. We show by induction that this implies
var (7, +4,, +..+ 7, ) <(j+1)var(,).

var(:it —Hitﬂ +:Et+2 +...+ i‘tﬂ_)

j—2

:Var(jt+jt+1+"‘+jt+j1>+Var<jt+j>+2§cov )-I-QCOV( ,jfﬂ_)

t+s f+] 1‘+] 1, t

<(j>var( )—i—var( T, +2§COV . f+>+2cov( T, i :EH].)

(by induction)

By Property I, cov(f ) < 0. Thus by condition (3),

t+5-1,7 H—J

j—2
—f—ZEOCOV(xHS,i’M) + QCOV(:iijL, :itﬂ.) <0.

Therefore, since V&I‘(.’Z’Hj) = Var(ff)

var(x +z,  +...+7, ) <j—|—1)var(§;t).

t+1

For I = II, the persistence of the series must rapidly decline.



Proof of Proposition 3.1

The equity price relationship follows from an application of Jensen’s

inequality:

cov(f);ll, ﬁ:) = cov(l%t,lgm) = cov(l%t, aﬁ]%t“):t)
= agp (S B (R) - B(E) B (E)
> afE (X,){E (l%;*a) — E(l%)(E (l::t ))a}, since k' is concave and E(lgta) < <E(]5t)>a

by Jensen’s inequality.

—anm(3){E(R)- (£ (5)) | >0.

Mean aversion in dividends

By (17), cov(cz d >:cov(a(l—ﬁ)/%f%,a(l—ﬁ)l%a A )

t? Tt t4+17 t+1

—(af1-p)) cov[/;;xt, (agies) )\J

(a (1 — ﬁ))z (ozﬁ)a Cov(l%t“ )N\t, Et‘”2Xth+l)

(o1 o) {m (575,

B (R ) B80S )}

t t t ot

=(a(1-8)) (ag) E(Xt+l){E(15;+a2)E(X;+a) —E(kt)E(/\t)E(kt)E()\t)} .

By FKG or the Harris inequality

E(l%t“+a2) > E(Et“)E(Et“2> , and

E(A*) > E(X)E(X’). Thus,



(a(1=8)) (a8)" B(X, ) {B(E) B () —E(kf)E(Af)E(kf)E(Af)} > 0.
c. Derivation of risk free bond price.

tl
ﬁf Jrd}WtJrlt

1 aﬂ LAY -
=p dF (A,
f (1- aﬁ)[aﬁk A] » (..

zgf - : ———dr(},,)

B(A5) i :
Thus, pf = Wkt )\tl’“, where E()\tfl) is constant for all ¢. As a result,
of

we henceforth omit the time subscript from this term.

COV(pt pz‘+1> = cov ﬁE(X?l) ]%ta<lia) th_L ﬁE(Xl)ktﬁa) /\t1+_1
(e) (o)
— ﬁE(X?l) cov(ka “)\1 “ k afi=c ))\17 )
(aﬁ)a 1

= cov[lz;“*ﬁj“,(aﬂ) e AN ] since &, = aBk) .

t+1




t+1 t+1
Since {A;} is i.i.d. and the fact that k; is determined in period ¢ — 1 independent

of A, or A, , we may equivalently write

oo | e et

—E(kt)E(Atl)E(kt)E()\t)E(Al)} .

cov (.7, ) =

141
Let f(k)=k"" and f(k)=k""".
Since both f (k) and [ <k> are increasing functions of k, and f (k;) 1, (k) = k“*”g,
by FKG or the Harris inequality, F (l%t"_“g) >F (l%t‘*_“?)E (l%t“z_“g) .
Similarly,
BN )2 BN ) B(A ).

2

@ 2 )>

Thus, cov(j)f,;ﬁfﬂ>: ( ﬁ)“’ (aﬁ)“’a E(Xt:“ >0
a

The inequality is strict if {Xt} is log-normally distributed. The proof in this

case follows identically.



Proof of Proposition 3.2

Both fi () and f, () are increasing functions of their arguments by assumption.

Hence by FKG or Harris inequality,

[ [ (k. k( +(1-Q)F, —k)dF (F,
> [ [(k,~F)ar(k)dc (X)) x [ [(i(E, X )+(1—-Q)k ~F)dr(E)dG(}) =0

Thus, cov(pt o pf)—cov(l% k )20.
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In the case of pf,

Cov(pf,pf+l> = COV(h(k’t,):) h(lg A )) where h(ﬁt, >‘¢> is given by (10).

14177t +1

= cov(=h(kA), —h(i(E.A) +(1-Q)k.A,))-
In general h(Et, /\t> will be a decreasing function of each of its arguments, as it

is for specification (15). However, if h(/%t, Xt) is a decreasing function

—h(l%t, )\t> is increasing. Furthermore,

cov(h(k, &), bk A )) = cov(<h(E, 8), = h(k,. A ).

t+17 1 t+1 t+1

and the argument above may be applied.



Proof of Proposition 3.3
~e¢ ~e 7a—1 Y ray al &
cov(rt s T ): cov|ak' ™ A, a[aﬁk‘t )\t} A

a—1 ~

—a*(aB)" B B (RN ) - B (RS ) B (R )

(by independence of {):t})

—a*(aB) BN B (R B(Y) - B (5 B(R)B(R) (X)) (A
We wish first to explore constituents of the preceding expression:

Bk ) vs. B(R)B(R).
These expressions are of the general form
E(i%jn*”’l) and E(i%jo)E(/%jl) where 7, <0, 7, <0.
Define 1 = 15:“ , and g(:ﬁt ) =17, 0a/).
.Y

Since (’yl /’yo> > 0, g(ft ) is an increasing function of Z, , and g(ft ) =k".

t

Thus, E(/%jo“’l) = B(7,9(3,))> B(7,)E(9(1,)) = E(l%jo)E(l%jl)

by the FKG or Harris inequality.

Accordingly, E(l%to‘tl) > E(l%t“l)E(l%:‘L“) .

We may thus conclude that expression (TA 1) above is

cov (i, it ) > a* (o) E(X,) {E(/%;“)E(X;) _ E(l%;‘"*l)E( \ )E(le)}
>a*(ap) E(X,,)E ( N;“) {B(x)-B(%)B(%)}
o) B0l 0) - 204l

(by Jensen’s inequality, since A*, 0 < a <1 is a convex function of \)

corl 1, 2 (o) B(5, ) B{5 ) Bl (2(3 )]



Again by Jensen’s inequality, since \“, 0 < a <1 is a concave function of X

t

B(X)-(B(Y,)) <0

t 7 41? t+17?

Hence, Cov(fe T )2 -M, M>0. Cov(ft"’, T )can be negative.

b) cov(fb 7’ )> 0.

t) 1) —

b o~b )
COV(T; ,QH) = CcoVv

cov[l%ta(a1> A (Ozﬁ/;f A )a(a’_l) Xt:l]

2
= (aﬂ)a(wl) % cov( ]%tazfa X;y—l) l%t‘“g’“z )\~:127a ):f:ll)

By the properties of the covariance function and that l%t, )\~t, and )\Nm
are all independent of one another, the RHS expression becomes
—M E(Xgll){E(l%f’ﬂ')E(X;“)} ~ Bk (X B (R B (),
for some positive constant M. Let f, (%) =k and f (/5) = o ; each is a
decreasing function of k, furthermore, f (l%) 1, (l%) = k" which is also
decreasing in k. By the FKG or Harris inequality
E (/5;*3—0') >E (l%fz‘") B (kt) and
BN = B(57) B(Y ).
Thus cov(fb 7l )20.

t? T+l

We have been unable to derive any definitive result for the premium.



Proof of Proposition 4.1

This follows simply from the construction of the derived process {ﬁf B}.
Every period the process {ﬁt } assumes a value above its mean, it is assuming

a value in set ~v*. Furthermore, if the process {7;4 B} is in set 7", then it is
assuming a value above its mean. Thus the average number of periods the

process {ﬁt } is above its mean (ﬁt € *yA)must coincide with the average

number of periods it is in set 7*. Thus ACT{‘:} = ACT{“}AB}. A similar
t Y

identification establishes that ACT”, = ACT/

{3} {5}
Properties of {ﬁ‘w}

We first restrict attention to a consideration of arbitrary two state Markov
chains. We adopt the convention that any measurement of the ‘time to

crossing’ includes the crossing period itself.

A. Consider an arbitrary two state Markov chain with states~,, v, and

transition matrix:

where 0 < ¢ <1 and 0 < ¢,< 1. The associated ergodic probability distribution

(m,m,) satisfies



1
with solution T, =
2—(

B. Suppose the process is in state 7 =, . The average time to crossing to

state 2, ACT, , is given by:

ACT, = inProb 7= | 7= Jor
n=1 in step n the n—1 prior steps

~ n—1 = n ]- 1
=Y (1) = (1= ) o = (1=l —— | = =

n=1 n=1 (]_ — 901) Spl

. 1
Similarly, ACT, = ——
1-o,

Accordingly, the average crossing time, ACT, satisfies

1
ACT =7 ACT +m,ACT, = m, +,
1— i 1— ¥,
_ 1 1- ¢2 1- ¢1 l
= —
2_(¢1+¢2> 1-¢  1-9¢,
cov(y,,
C. We compute corr(ﬁxt,fyfﬂ) = —(% Vi)
/ 0.0
Yo Ten
— E(ﬁltﬁ/FFl) - E(ﬁlt )E(f?t+1)
Yo Yen
Without loss of generality, we assume 7, =1 and ~, = —1, since the

corr(ﬁt,ﬁtH) is determined by the structure of the transition matrix and not

the specific values assumed by 7, 2

? Consider a stochastic process 4, ; then for any a > 0 and any b e R, co7‘r<ﬁt,'§m> = corr(a'?’ +b, 0y + b) .

10



The correlation computation requires the following constituents:

AN I S Il
i) E@,)=1, 2_(¢1+¢2) +%[2<¢1+¢2>
__ %=
2— (¢, +0,)
o ety

_ 1_¢2 _ ¢1_¢2
2=(6,+0)) 2-(8+9)
+ 1_¢1 1 ¢1_¢2 2
2=(a o)) 2-(6+9,)

= > var( 7t+1)
2-(e+)
We can thus assume 5 =1 and 5, = -1, if constants a, b as per the above correlation equality satisfy
. . . . 2
ay +b=1 and ay, +b=—1. The solution to this simple system of equations is a = and
- ,\/l - /YL

b= -1+, /) /(1= /7)-

11



(iv) E(ﬁtﬁm):ZProb(%) "
Y Vi1

(v) cm‘r(f?t, Vo) =

! ¢2>[—2+3(¢ +6,)- 4¢¢>}

2—(¢,+¢,)

¢ — ¢,

1f-4)1-s,)

2-(o+e))

_[-(ar a2 s+ o) 00 -[s o]
if-¢)i-a)

(after considerable simplification)

—4 4+ (8 + 4¢1¢2)[¢1 + sz} —12¢,¢, - 4¢3 B 4¢22
41-¢)(1-0,)




D. Proposition 4.2. To show ACTH} <2 implies cow(’yt, ’?Hl) <0.
We show ACT <2 implies (qﬁl + ¢2> <1

ACT, <2 =
{%}

1 1—-¢, N 1-¢,
—(6+4,) [1-90, 1-9,
The second term in the ACT expression is of the form z + 1 , which assumes
x
a minimum at z =1. Therefore,
—[2]<ACT }<2 or
(6,+4)
2 < 2; equivalently
2=(0+9,) "
1§2—(¢1+¢2) or
(6, +9,) <1
Suppose ¢, = ¢, and (¢1 + ¢2) <1
1— 1— 1— 1—
Then ACT, = ! . < aylmel
1o re) e, ] *[me, T

E. When ¢, = ¢, = ¢, the ACT reduces to
ACT = ——|14+1|=—, and

corr(f?t,ﬁm) =2¢—1 . Thus

13



007’7’(7:’,7:;1) > corr(vi’, ~Y ), if and only if

41
20" —1>2¢" —1, if and only if
¢" > ¢’, if and only if

1 1
>
16" 1-¢

T if and only if

ACT, |
W,

bi}

>ACT; .
vt
F. The region A is computed by searching for the pairs (0, 0) < (gbl, ¢2) < (1, 1)

such that

0ACT /0¢, >0 and OACT /0¢, >0.

The indicated region (Figure 2) was constructed numerically.

Proof of Proposition 5.1

(a) We first offer the proof for {;ﬁf}; {&t } is analyzed similarly, since
d,=((1-8)/8)p;
Cov(ﬁ:’ i):ﬂ) - COV(%H’ ]%HZ)

= COV

~o A ~0 XY X
afke”, aﬁ[aﬁkﬁ e ﬁ} € '“]
~ ¥ 1+a ~ N Yz
= COV[O&ﬁk;}@)\f, (aﬁ> k;"zeﬂ/\,e(ﬂ)\,+ut+l>]
2+«

=(aB) " cov

— ()" B(e B (R p(fet B (R )

~0 & ot (atp)h g
ktue r’ kta 6( ) t .€EL+1)

Let g'(k.\)=k'e", gl >0; g, >0

14



9’ <kt,)\t) = l%'t"ze(a“)ﬁ* , gf > 0; 922 >0
By FKG or the Harris inequality

B(g' (F, 4)9" (R 4)

(b) cov <;5tb, f)fﬂ)

/\t

2 —2 2 (1—a—p
where pf = ﬁe"ﬁ (aﬂ) ]gta*a 6(1 ’)

—2a

o b, D = ez « cov|k® e - ~’7 % O‘ehr - Qe —a—p)(pA+E,,
¢ V(ﬁt ~tb+1) ﬁQ ”< ﬁ) [Et Cant ( 6]% )\)a " gk )}

= 526%2 (aﬂ)_m (ozﬂ)aw cov(/%t“_‘YQe(la” 2 , ]5:2—“36(“_“2)& 6@“!’)@%%))
| M ]
=M [COV ]%’t“*aze(lia*ﬂ)’ir, ]%taz71136((17“2*/3(17&*/]))/{16(1*&*/;)§H1 ]

¢ t

_ Me(l—a*p)zaf/Q {E []%a_ase(aa2+(1+p)(1aﬂ))\~t)] _B (Ea_a2e<1ap)/§/ ) B [lfgv:Q_ase(aa%rp(lap))Xt ]}

If we let g<~t, ~t> _ jro—a? iomn)h

t

and
£, 3) = el eI
then, if a+p <1,

f;( )>0 fz( )>0,gl( )>0 gQ( )>0.

15



By the FKG or the Harris inequality we conclude immediately that

cov(ﬁf, ;5;’+1> >0, provided a+p<1.

Proof of Proposition 5.2

~bh ~b ~b ~b
(a) COV(ﬁ ’T;H—l) - COV(QH,T;H)
2
(a8)
(6% ) ~ 9 1N ~2 —1)X
N 5] € e COV(/{: ae((wﬂ )tak:#l ae(”“ P
—_—
L

N a X Y o— N L. .
But "k, =afk’e” and A, = pA +¢E, ; thus:

t+17?

=T (aﬁ)ata cov[l%taza (ot h , lgt“

3

702

, e&(a‘zfﬂ) 6(‘1'+/’*1)PA7 + (”*’71)5‘“]

=L (aﬁ)a‘LQ COV[]%;IQQ e<a+p71))‘~t , EtalifaQ 6[((12—0)-9-(@.,_,)_1)4)\1 ) 6(a+p1)§t+l]

— 1(ag)" " {E[k{(ﬂﬂ ] —nlE (>)E[l€ T ”

gi(/%,):)<0 gé(/%,):)<0 ifa+p<1
g (kA) <0 g(kA)<0 if atp<l.

) is increasing

16



(by the FKG or the Harris inequality).

Thus, cov(f” 7 )>O.

t? ) —
~€ ~€
o) oorfi )

— J.a—1 ):t J.a—1 )‘~f+1
= cov(agkt e",ak’ e

~ By ~ Iy a—1 5\+§
= cov|ak; 16‘,01(045]6;16‘) e *“]

— coV(Oél%“ e, at g g o h epxﬁgﬁl)
— @ Qa— [.o— XL ot <(,v+p71>)~\t &n
=o' 1cov(kt tet kY e e )
M=>0
=M {E(lglee(a“)x’eg“) —E(Efle&)E(lgtaz“e(a“l)%eg*“)}

— M { B (;Eflgaw )_ B(Re)E (z;;zaew% )} (TA 2)

i) From the proof of Proposition 3.3,
(i)
a1 7 a—1 ~al—a

Bk > B B(R).
(ii) If (a + ,0) >1, then e(aﬂ%, " and ™M are all increasing functions of
):t. Thus, by the FKG or the Harris inequality,

E (e(aﬂ])X’) >F (ex')E (e(aﬂ)l)&) .
Since (TA 2) is equivalent to (TA 3)

= Mo {E(l%t““)E(e(””)x’) - E(i%;l)E(e%)E(/%f“)E(e<“+”‘1)*3)} (TA 3)

17



then by relationship (i), (ii) noted previously, we have

t t+1

cov(fe, 7 )20, provided (a+ p)>1.

Proof of Proposition 5.3 (This result is due to Sergio Villar)

This proof uses the fact that if g~ N(O,U) , then E[exp(gj)] = g

2t

I—p

For the AR(1) process, Var(:ff) =0 |
’ —p

Cov( A )= COV(eXp(@),eXP (P»@ + 5t+1>)

)
= [eXp 7, )Jexp(pf, +£,,,)| - E[exp(zt)}E[exp(p:zt +&,.,)
|

= Blexp(2,,) (E[exp((p + 1)xt)D — Blexp(z,)| E]exp (o3,
= exp| | esp| 0 +1) o | T | e | = e e 12
= exp| 7| x| 5o + 20+ 1) 11_2] = ]]
el ool (1= o[22

2 o 1— o
R o

= exp

18



2

Thus Cov(&,ﬂm) = exp[%

1+(p2+1)

o o
! p2] exp p<72[17p2 —11.
1—p 1—p

Now, clearly, the first element is positive since it is an exponent. Further, since

0-2 [1 _ p?t

>0,
1-p°

we know that the second element is a strictly increasing function of p, reaching
a value of zero at p = 0. Therefore, for p < 0, the expression is negative, while

for p > 0 the expression is positive.
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