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Appendix A: Stochastic discount factor

This Appendix provides the derivation for the stochastic discount factor for the agent’s
problem

Vt = max
Ct

[
(1 −β)ΥtC1−η

t +β{
Et

[
V

1−γ
t+1

]} 1−η
1−γ ] 1

1−η � (A.1)

Wt+1 = (Wt −Ct)Rc�t+1� (A.2)

Guess that the solution is Vt = φtWt for some coefficients φt , then the agent’s problem
becomes

φtWt = max
Ct

[
(1 −β)Hη−1

t C
1−η
t +β{

Et
[
(φt+1Wt+1)

1−γ]} 1−η
1−γ ] 1

1−η �

Substitute inWt+1 from the constraint (A.2)

φ
1−η
t = max

Ct

[
(1 −β)Hη−1

t

(
Ct

Wt

)1−η
+β

(
1 − Ct

Wt

)1−η{
Et

[
(φt+1Rc�t+1)

1−γ]} 1−η
1−γ

]
� (A.3)
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Take the first-order condition w.r.t. Ct , we get

(1 −β)Hη−1
t

(
Ct

Wt

)−η
= β

(
1 − Ct

Wt

)−η{
Et

[
(φt+1Rc�t+1)

1−γ]} 1−η
1−γ � (A.4)

Use the first-order condition to substitute out the expectation term in (A.3) to solve φt ,

φt = (1 −β) 1
1−ηH−1

t

(
Ct

Wt

)− η
1−η
�

Substitute back to the FOC in (A.4), and and use the budget constraint to get the pricing
equation

1 = βϑEt

[(
H
η−1
t+1

H
η−1
t

)ϑ(
Ct+1

Ct

)−ηϑ
Rϑc�t+1

]
�

Therefore, the pricing kernel is

Mt+1 = βϑ
(
H
η−1
t+1

H
η−1
t

)ϑ(
Ct+1

Ct

)−ηϑ
Rϑ−1
c�t+1�

and the log SDF is

mt+1 =ϑ ln(β)+ϑ
υt+1 −ηϑ
ct+1 + (ϑ− 1)rc�t+1� (A.5)

Appendix B: Dynamics of the state vector

B.1 General model

The dynamics of the Gaussian state vector gt driving 
ct and πt are

gt+1 = μg +Φggt +Φghht +Σghεh�t+1 +Σg�tεg�t+1� εg�t+1 ∼ N(0� I)�

Σg�tΣ
′
g�t = Σ0�gΣ

′
0�g +

H∑
i=1

Σi�gΣ
′
i�ghit�

εh�t+1 = ht+1 − Et[ht+1|ht]�

where the volatility dynamics are a noncentral gamma process. They can be written as a
Gamma distribution and a Poisson distribution

ht+1 = Σhwt+1�

wi�t+1 ∼ Gamma(νh�i + zi�t+1�1)� i= 1� � � � �H� (B.1)

zi�t+1 ∼ Poisson
(
e′
iΣ

−1
h ΦhΣhwt

)
� i= 1� � � � �H� (B.2)

This is a discrete-time, multivariate Cox, Ingersoll, and Ross (1985) process. To guarantee
positivity and existence of ht , the process requires Σh > 0, Σ−1

h ΦhΣh > 0 and the Feller
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condition νh�i > 1 for i= 1� � � � �H. The conditional mean and variance of the process are

Et[ht+1|ht] = Σhνh +Φhht� (B.3)

Vt[ht+1|ht] = Σh�tΣ
′
h�t

= Σh diag(νh)Σ′
h +Σh diag

(
2Σ−1

h Φhht
)
Σ′
h� (B.4)

where Σh is a H ×H matrix of scale parameters, Φh is a H ×H matrix of autoregressive
parameters, and the intercept is equal to Σhνh. The unconditional mean and variance of
ht are μ̄h = (IH −Φh)

−1Σhνh and Σ̄hΣ̄′
h = (IH −Φh)

−1Σh diag(νh)Σ′
h(IH −Φh)

−1�′. The
unconditional mean of gt is μ̄g = (IG −Φg)−1(μg +Φghμ̄h). The transition density of ht
is

p(ht+1|ht� νh�Φh�Σh) = ∣∣Σ−1
h

∣∣ H∏
i=1

(
e′
iΣ

−1
h ht+1

) νh�i−1
2

(
e′
iΣ

−1
h Φhht

)− νh�i−1
2

× exp

(
−

H∑
i=1

e′
iΣ

−1
h ht+1 + e′

iΣ
−1
h Φhht

)

× Iνh�i−1

(
2
√(

e′
iΣ

−1
h ht+1

)(
e′
iΣ

−1
h Φhht

))
� (B.5)

where Iν(x) is the modified Bessel function. The Laplace transform needed to solve the
model with recursive preferences and for pricing assets is

Et
[
exp

(
u′ht+1

)] = exp

(
H∑
i=1

e′
iΣ

′
hu

1 − e′
iΣ

′
hu

e′
iΣ

−1
h Φhht −

H∑
i=1

νh�i log
(
1 − e′

iΣ
′
hu

))
�

which exists only if e′
iΣ

′
hu < 1 for i = 1� � � � �H. Further properties of the univariate pro-

cess are developed by Gouriéroux and Jasiak (2006).

B.2 Long run risk with 2 stochastic volatility factors

In the paper, we include estimation results for a model with 2 stochastic volatility factors:

πt+1 = π̄t +
√
ht�πεπ1�t+1�


ct+1 = c̄t +
√
ht�cεc1�t+1�

π̄t+1 = μπ +φππ̄t +φπ�cc̄t + σπ
√
ht�πεπ2�t+1�

c̄t+1 = μc +φc�ππ̄t +φcc̄t + σc�π
√
ht�πεπ2�t+1 + σc

√
ht�cεc2�t+1�

This model maps into the general companion form as follows:

gt =

⎛
⎜⎜⎜⎝
πt

ct
π̄t
c̄t

⎞
⎟⎟⎟⎠ � Zc =

⎛
⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎠ � Zπ =

⎛
⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎠ � μg =

⎛
⎜⎜⎜⎝

0
0
μπ
μc

⎞
⎟⎟⎟⎠ � μ̄g =

⎛
⎜⎜⎜⎝
μ̄π
μ̄c
μ̄π
μ̄c

⎞
⎟⎟⎟⎠ �
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Φg =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
0 0 φπ φπ�c
0 0 φc�π φc

⎞
⎟⎟⎟⎠ � Φgh =

⎛
⎜⎜⎜⎝

0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎠ �

Σgh =

⎛
⎜⎜⎜⎝

0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎠ � Σ0�g =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ � Σ1�g =

⎛
⎜⎜⎜⎜⎝

1√
1200

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠ �

Σ2�g =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0
1√

1200
0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠ � Σ3�g =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 0
1√

1200
0

0 0
σc�π√
1200

0

⎞
⎟⎟⎟⎟⎟⎟⎠
�

Σ4�g =

⎛
⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
1√

1200

⎞
⎟⎟⎟⎟⎠ �

We have scaled these matrices by 1/
√

1200 during estimation so that the volatility fac-

tors ht are roughly the same magnitude as the Gaussian factors gt . For the volatility pro-

cesses, the matrices are

μ̄h =
(
μ̄h�π
μ̄h�c

)
� νh =

(
νh�π
νh�c

)
� Φh =

(
φπ 0
0 φc

)
�

Σh =
(
σh�π 0

0 σh�c

)
�

During estimation, we parameterize the model in terms of the unconditional mean of

volatilities μ̄h.

Gaussian model For the Gaussian model, we keep everything the same as above except

for the scale matrix which is equal to

Σ0�g =

⎛
⎜⎜⎜⎝
σπ1 0 0 0

0 σc1 0 0
0 0 σπ2 0
0 0 σc�π σc2

⎞
⎟⎟⎟⎠ �

while Σi�g = 0 for i > 0, and μ̄h� νh = 0,Φh = 0, Σh = 0.
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B.3 Long run risk with 4 stochastic volatility factors

In previous versions of the paper, we estimated models with four volatility factors:

πt+1 = π̄t +
√
ht�π1επ1�t+1� επ1�t+1 ∼ N(0�1)�


ct+1 = c̄t +
√
ht�c1εc1�t+1� εc1�t+1 ∼ N(0�1)�

π̄t+1 = μπ +φππ̄t +φπ�cc̄t +
√
ht�π2επ2�t+1� επ2�t+1 ∼ N(0�1)�

c̄t+1 = μc +φc�ππ̄t +φcc̄t + σc�π
√
ht�π2επ2�t+1 +

√
ht�c2εc2�t+1� εc2�t+1 ∼ N(0�1)�

Below, we report estimation results for this model as well. This model maps into the

general form as follows:

gt =

⎛
⎜⎜⎜⎝
πt

ct
π̄t
c̄t

⎞
⎟⎟⎟⎠ � Zc =

⎛
⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎠ � Zπ =

⎛
⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎠ � μg =

⎛
⎜⎜⎜⎝

0
0
μπ
μc

⎞
⎟⎟⎟⎠ � μ̄g =

⎛
⎜⎜⎜⎝
μ̄π
μ̄c
μ̄π
μ̄c

⎞
⎟⎟⎟⎠ �

Φg =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
0 0 φπ φπ�c
0 0 φc�π φc

⎞
⎟⎟⎟⎠ � Φgh =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ �

Σgh =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ � Σ0�g =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ � Σ1�g =

⎛
⎜⎜⎜⎜⎜⎝

1√
12,000

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ �

Σ2�g =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0
1√

12,000
0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ � Σ3�g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 0
1√

12,000
0

0 0
σc�π√
12,000

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
�

Σ4�g =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0
1√

12,000

⎞
⎟⎟⎟⎟⎟⎠ �

We have scaled these matrices by 1/
√

12,000 so that the volatility factors ht are roughly

the same magnitude as the Gaussian factors gt . For the volatility processes, the matrices
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are

μ̄h =

⎛
⎜⎜⎜⎝
μ̄h�π1

μ̄h�c1

μ̄h�π2

μ̄h�c2

⎞
⎟⎟⎟⎠ � νh =

⎛
⎜⎜⎜⎝
νh�π1

νh�c1

νh�π2

νh�c2

⎞
⎟⎟⎟⎠ � Φh =

⎛
⎜⎜⎜⎝
φπ1 0 0 0

0 φc1 0 0
0 0 φπ2 0
0 0 0 φc2

⎞
⎟⎟⎟⎠ �

Σh =

⎛
⎜⎜⎜⎝
σh�π1 0 0 0

0 σh�c1 0 0
0 0 σh�π2 0
0 0 0 σh�c2

⎞
⎟⎟⎟⎠ �

During estimation, we parameterize the model in terms of the unconditional mean of
volatilities μ̄h.

Appendix C: Recursive preferences model solution

C.1 Solution for rc�t+1

In order to simplify the expressions, we introduce the following notation:

Z1 = (1 −η)Zc + κ1Dg�

Z2 = −γZc + (ϑ− 1)κ1Dg�

Z3 = Σ′
gh

(
(1 −η)Zc + κ1Dg

) + κ1Dh

= Σ′
ghZ1 + κ1Dh�

Z4 = Σ′
gh

(−γZc + (ϑ− 1)κ1Dg
) + (ϑ− 1)κ1Dh

= Σ′
ghZ2 + (ϑ− 1)κ1Dh�

where the vectors Zc , Zπ are selection vectors and the vectorsDg andDh are part of the
price to consumption ratio pct =D0 +D′

ggt +D′
hht .

Step 1: Campbell–Shiller approximation Let pct = ln( PtCt ) be the log price to consump-
tion ratio. The return on the consumption asset is

rc�t+1 ≡ ln
(
Pt+1 +Ct+1

Pt

)
= ln(Ct+1)+ ln

(
Pt+1 +Ct+1

Ct+1

)
− ln(Pt)

= ln(Ct+1)− ln(Ct)+ ln
(

1 + Pt+1

Ct+1

)
− ln(Pt)+ ln(Ct)

= 
ct+1 −pct + ln
(
1 + exp(pct+1)

)
�

Take a first-order Taylor expansion of the function f (x)= ln(1 + exp(x)) around x̄:

rc�t+1 ≈ 
ct+1 −pct + ln
(
1 + exp(p̄c)

) + exp(p̄c)
1 + exp(p̄c)

(pct+1 − p̄c)

= κ0 + κ1pct+1 −pct +
ct+1� (C.1)
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where κ0 = ln(1 + exp(p̄c))− κ1p̄c and κ1 = exp(p̄c)
1+exp(p̄c) .

Step 2: Solve for the price/consumption ratio The real pricing kernel in (A.5) prices the
consumption asset:

1 = Et
[
exp(mt+1 + rc�t+1)

] = Et
[
exp

(
ϑ ln(β)+ϑ
υt+1 −ηϑ
ct+1 +ϑrc�t+1

)]
= exp

(
ϑ ln(β)+ϑκ0 −ϑpct

)
Et

[
exp

(
ϑ
υt+1 +ϑ(1 −η)
ct+1 +ϑκ1pct+1

)]
� (C.2)

where we have used (C.1). Conjecture a solution for the price to consumption ratio

pct =D0 +D′
ggt +D′

hht (C.3)

for unknown coefficients D0, Dg and Dh. Substitute the guess and the dynamics of 
ct
and the preference shock into (C.2),

1 = exp
(
ϑ ln(β)+ϑκ0 +ϑκ1D0 −ϑpct +ϑΛ1(gt)

)
(C.4)

× exp
(
ϑZ′

1
(
μg +Φggt +Φghht −Σgh(Σhνh +Φhht)

))
(C.5)

× Et
[
exp

((
ϑΛ2(gt)+ϑΣ′

g�tZ1
)′
εg�t+1

)]
Et

[
exp

(
ϑZ′

3ht+1
)]
� (C.6)

Calculate the expectations using the Laplace transform

0 = ϑ ln(β)+ϑκ0 +ϑκ1D0 −ϑpct +ϑΛ1(gt)

+ϑZ′
1
(
μg +Φggt +Φghht −Σgh(Σhνh +Φhht)

)
+ ϑ2

2
(
Λ2(gt)+Σ′

g�tZ1
)′(
Λ2(gt)+Σ′

g�tZ1
)

−
H∑
i=1

νh�i ln
(
1 − e′

iΣ
′
hϑZ3

) +
H∑
i=1

e′
iΣ

′
hϑZ3

1 − e′
iΣ

′
hϑZ3

e′
iΣ

−1
h Φhht�

The solution exists if e′
iΣ

′
hϑZ3 < 1 for i= 1� � � � �H. Solve for pct by plugging in the values

of Λ1(gt) and Λ2(gt) and cancel terms

pct = ln(β)+ κ0 + κ1D0

+Z′
1
(
μg +Φggt +Φghht −Σgh(Σhνh +Φhht)

)
−ηϑZ′

1(λ0 + λggt)

+ ϑ

2
Z′

1Σg�tΣ
′
g�tZ1 − 1

ϑ

H∑
i=1

νh�i log
(
1 − e′

iΣ
′
hϑZ3

) +
H∑
i=1

e′
iΣ

′
hZ3

1 −ϑe′
iΣ

′
hZ3

e′
iΣ

−1
h Φhht�

We now solve for the coefficients. BothD0 andDg are analytical

D0 = 1
(1 − κ1)

[
ln(β)+ κ0 +Z′

1(μg −ΣghΣhνh −ηϑλ0)

− 1
ϑ

H∑
i=1

νh�i ln
(
1 − e′

iΣ
′
hϑZ3

) + ϑ

2
Z′

1Σ0�gΣ
′
0�gZ1

]
�
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Dg = (
IG − κ1(Φg −ηϑλg)′

)−1
(Φg −ηϑλg)′(1 −η)Zc�

A solution for Dg only exists when (IG − κ1(Φg − ηϑλg)) is invertible. The vector Dh is
the solution to the system of equations

Dh = (Φgh −ΣghΦh)′Z1 + ϑ

2
(ιH ⊗Z1)

′Σ̃gΣ̃′
g(IH ⊗Z1)

+
H∑
i=1

e′
iΣ

′
hZ3

1 −ϑe′
iΣ

′
hZ3

Φ′
hΣ

−1�′
h ei� (C.7)

where Σ̃gΣ̃′
g is a GH ×GH block diagonal matrix with Σi�gΣ′

i�g along the diagonal. This
cannot be solved in closed form in the general case. However, if Σh andΦh are lower tri-
angular, then it can be calculated in closed form recursively for i= 1� � � � �H. We discuss
the analytical solution of this equation in more detail in Appendix C.2.

Step 3: Solve for the fixed point During estimation, we determine the value of p̄c and the
log-linearization constants κ0 and κ1 as a function of the model parameters by solving
the fixed-point problem (averaging of (C.3)),

0 = p̄c−D0(p̄c)−Dg(p̄c)′μ̄g −Dh(p̄c)′μ̄h�
where the coefficientsD0,Dg andDh are functions of p̄c through κ0 and κ1. The param-
eters μ̄g and μ̄h are the unconditional means of gt and ht .

Step 4: Substitute the solution into the SDF If the fixed-point problem has a solution,
then the return on the consumption asset is

rc�t+1 ≈ κ0 + κ1
(
D0 +D′

ggt+1 +D′
hht+1

) − (
D0 +D′

ggt +D′
hht

) +
ct+1

by substituting (C.3) into (C.1). We can now write the log-SDF as a function of the r.v.’s
εg�t+1 and ht+1 by substituting this, consumption growth 
ct , and the preference shock
into (A.5)

mt+1 = ϑ ln(β)+ (ϑ− 1)
(
κ0 − (1 − κ1)D0

) − (ϑ− 1)D′
ggt

− (ϑ− 1)D′
hht +ϑΛ1(gt)+Z′

2
(
μg +Φggt +Φghht −Σgh(Σhνh +Φhht)

)
+ (
ϑΛ2(gt)+Σ′

g�tZ2
)′
εg�t+1 +Z′

4ht+1�

C.2 Analytical solution ofDh

The H × 1 vector of loadings Dh are a system of H equations in H unknowns in (C.7).
They can be solved analytically when bothΦh and Σh are lower triangular by recursively
solving one equation after another. We will consider the simpler case when they are both
diagonal. Under this assumption, each equation is independent of one another and they
simplify to

Dh�i = D̄i + (Z̄3�i + κ1Dh�i)Φh�i

1 −ϑΣh�i(Z̄3�i + κ1Dh�i)
� i= 1� � � � �H� (C.8)
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whereΦh�i and Σh�i are the ith diagonal elements and D̄i, Z̄3�i are the ith elements of the
following quantities:

D̄ = (Φgh −ΣghΦh)′Z1 + ϑ

2
(ιH ⊗Z1)

′Σ̃gΣ̃′
g(IH ⊗Z1)�

Z̄3 = Σ′
ghZ1�

Each loading (C.8) for i= 1� � � � �H is a quadratic equation

0 = κ1ϑΣh�iD
2
h�i +Dh�i(κ1Φh�i − κ1ϑΣh�iD̄i − 1 +ϑΣh�iZ̄3�i)

+ D̄i(1 −ϑΣh�iZ̄3�i)+ Z̄3�iΦh�i� (C.9)

The solutions are

Dh�i = ±((
(κ1Φh�i − κ1ϑΣh�iD̄i − 1 +ϑΣh�iZ̄3�i)

2

− 4κ1ϑΣh�i
[
D̄i(1 −ϑΣh�iZ̄3�i)+ Z̄3�iΦh�i

])1/2)
/(2κ1ϑΣh�i)

− (κ1Φh�i − κ1ϑΣh�iD̄i − 1 +ϑΣh�iZ̄3�i)

2κ1ϑΣh�i
� (C.10)

A real solution exists as long as the discriminant is greater than or equal to zero. If the
discriminant is greater than zero, there are two solutions. Only one solution leads to a
sensible value. This is the value with a negative sign; see also Campbell, Giglio, Polk, and
Turley (2018) for the ICAPM model.

Appendix D: Bond prices

Define

Z5 =Z4 −Σ′
ghZπ

in addition to Z1–Z4 defined in Appendix C.1.

D.1 Real bonds

We will guess and verify that the solution for zero coupon bonds is

P(n)t = exp
(
ān + b̄′

n�ggt + b̄′
n�hht

)
for some unknown coefficients ān and b̄n�g and b̄n�h.

For a maturity n = 1, the payoff is guaranteed to be P(0)t+1 = 1 in the next period,

in which case P(1)t = Et[Mt+1]. Using standard techniques for affine bond pricing in
discrete-time (see Creal and Wu (2015)), we find that at maturity n= 1 the bond loadings
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are

ā1 = ln(β)−ηZ′
c(μg −ΣghΣhνh −ηϑλ0)

−
H∑
i=1

νh�i log
(
1 − e′

iΣ
′
hZ4

) + (ϑ− 1)
ϑ

H∑
i=1

νh�i log
(
1 − e′

iΣ
′
hϑZ3

)

− (ϑ− 1)ϑ
2

Z′
1Σ0�gΣ

′
0�gZ1 + 1

2
Z′

2Σ0�gΣ
′
0�gZ2�

b̄1�g = −(Φg −ηϑλg)′ηZc�
b̄1�h = −(Φgh −ΣghΦh)′ηZc�

+
(
H∑
i=1

e′
iΣ

′
hZ4

1 − e′
iΣ

′
hZ4

e′
iΣ

−1
h Φh

)′
− (ϑ− 1)

(
H∑
i=1

e′
iΣ

′
hZ3

1 −ϑe′
iΣ

′
hZ3

e′
iΣ

−1
h Φh

)′

+ 1
2
(IH ⊗Z2)

′Σ̃gΣ̃′
g(ιH ⊗Z2)− (ϑ− 1)ϑ

2
(IH ⊗Z1)

′Σ̃gΣ̃′
g(ιH ⊗Z1)�

where bond prices only exist if e′
iΣ

′
hZ4 < 1 for i= 1� � � � �H. At maturity n, we use the fact

that P(n)t = Et[exp(mt+1)P
(n−1)
t+1 ]. The bond loadings are

ān = ān−1 + ā1 +
H∑
i=1

νh�i log
(

1 − e′
iΣ

′
hZ4

1 − e′
iΣ

′
h

(
Σ′
ghb̄n−1�g + b̄n−1�h +Z4

))

+ (μg −ΣghΣhνh −ηϑλ0)
′b̄n−1�g + 1

2
b̄′
n−1�gΣ0�gΣ

′
0�gb̄n−1�g + b̄′

n−1�gΣ0�gΣ
′
0�gZ2�

b̄n�g = (Φg −ηϑλg)′b̄n−1�g + b̄1�g�

b̄n�h = (Φgh −ΣghΦh)′b̄n−1�g + b̄1�h

+
(
H∑
i=1

( e′
iΣ

′
h

(
Σ′
ghb̄n−1�g + b̄n−1�h +Z4

)
1 − e′

iΣ
′
h

(
Σ′
ghb̄n−1�g + b̄n−1�h +Z4

) − e′
iΣ

′
hZ4

1 − e′
iΣ

′
hZ4

)
e′
iΣ

−1
h Φh

)′

+ 1
2
(IH ⊗ b̄n−1�g)

′Σ̃gΣ̃′
g(ιH ⊗ b̄n−1�g)+ (IH ⊗Z2)

′Σ̃gΣ̃′
g(ιH ⊗ b̄n−1�g)�

Real yields are y(n)t = an + b′
n�ggt + b′

n�hht with an = − 1
n ān, bn�g = − 1

n b̄n�g and bn�h =
− 1
n b̄n�h.

D.2 Nominal bonds

Similar to the solution for the real bond, we guess and then verify. The solution for zero

coupon nominal bonds is P$�(n)
t = exp(ā$

n + b̄$�′
n�ggt + b̄$�′

n�hht) for some unknown coeffi-

cients ā$
n and b̄$

n�g and b̄$
n�h. For maturity n= 1, the payoff is guaranteed to be P$�(0)

t+1 = 1
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in the next period, in which case P$�(1)
t = Et[M$

t+1]. The solutions are

ā$
1 = ln(β)− (ηZc +Zπ)′(μg −ΣghΣhνh −ηϑλ0)

+ (ϑ− 1)
ϑ

H∑
i=1

νh�i log
(
1 − e′

iΣ
′
hϑZ3

) −
H∑
i=1

νh�i log
(
1 − e′

iΣ
′
hZ5

)

− (ϑ− 1)ϑ
2

Z′
1Σ0�gΣ

′
0�gZ1 + 1

2
Z′

2Σ0�gΣ
′
0�gZ2 + 1

2
Z′
πΣ0�gΣ

′
0�gZπ −Z′

2Σ0�gΣ
′
0�gZπ�

b̄$
1�g = −(Φg −ηϑλg)′(ηZc +Zπ)�
b̄$

1�h = −(Φgh −ΣghΦh)′(ηZc +Zπ)

− (ϑ− 1)

(
H∑
i=1

e′
iΣ

′
hZ3

1 −ϑe′
iΣ

′
hZ3

e′
iΣ

−1
h Φh

)′
+

(
H∑
i=1

e′
iΣ

′
hZ5

1 − e′
iΣ

′
hZ5

e′
iΣ

−1
h Φh

)′

+ 1
2
(IH ⊗Zπ)′Σ̃gΣ̃′

g(ιH ⊗Zπ)− (IH ⊗Z2)
′Σ̃gΣ̃′

g(ιH ⊗Zπ)

+ 1
2
(IH ⊗Z2)

′Σ̃gΣ̃′
g(ιH ⊗Z2)− (ϑ− 1)ϑ

2
(IH ⊗Z1)

′Σ̃gΣ̃′
g(ιH ⊗Z1)�

where bond prices only exist if e′
iΣ

′
hZ5 < 1 for i= 1� � � � �H. At longer maturities n, we use

the fact that P$�(n)
t = Et[exp(m$

t+1)P
$�(n−1)
t+1 ]. The bond loadings are

ā$
n = ā$

n−1 + ā$
1 + (μg −ΣghΣhνh −ηϑλ0)

′b̄$
n−1�g

+
H∑
i=1

νh�i log
(

1 − e′
iΣ

′
hZ5

1 − e′
iΣ

′
h

(
Σ′
ghb̄

$
n−1�g + b̄$

n−1�h +Z5
)
)

+ 1
2
b̄$�′
n−1�gΣ0�gΣ

′
0�gb̄

$
n−1�g + b̄$

n−1�gΣ0�gΣ
′
0�g(Z2 −Zπ)�

b̄$
n�g = (Φg −ηϑλg)′b̄$

n−1�g + b̄$
1�g�

b̄$
n�h = (Φgh −ΣghΦh)′b̄$

n−1�g + b̄$
1�h

+
(
H∑
i=1

( e′
iΣ

′
h

(
Σ′
ghb̄

$
n−1�g + b̄$

n−1�h +Z5
)

1 − e′
iΣ

′
h

(
Σ′
ghb̄

$
n−1�g + b̄$

n−1�h +Z5
) − e′

iΣ
′
hZ5

1 − e′
iΣ

′
hZ5

)
e′
iΣ

−1
h Φh

)′

+ 1
2
(
IH ⊗ b̄$

n−1�g

)′
Σ̃gΣ̃

′
g

(
ιH ⊗ b̄$

n−1�g

) + (
IH ⊗ b̄$

n−1�g

)′
Σ̃gΣ̃

′
g

(
ιH ⊗ (Z2 −Zπ)

)
�

Nominal yields are y$�(n)
t = a$

n+b$�′
n�ggt +b$�′

n�hht with a$
n = − 1

n ā
$
n, b$

n�g = − 1
n b̄

$
n�g and b$

n�h =
− 1
n b̄

$
n�h. The nominal short term interest rate is

r$
t = y$�(1)

t = a$
1 + b$�′

1�ggt + b$�′
1�hht � (D.1)
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Appendix E: Proof of propositions

E.1 General case

Define the fixed-point problem

κ1 = exp(p̄c)
1 + exp(p̄c)

�

κ0 = ln
(
1 + exp(p̄c)

) − κ1p̄c�

D′
g = (1 −η)Z′

c(Φg −ϑηλg)
(
I − κ1(Φg −ϑηλg)

)−1
�

Z1 = (1 −η)Zc + κ1Dg�

Z3 = Σ′
gh

(
(1 −η)Zc + κ1Dg

) + κ1Dh�

Dh = (Φgh −ΣghΦh)′Z1 + ϑ

2
(ιH ⊗Z1)

′Σ̃gΣ̃′
g(IH ⊗Z1)

+
H∑
i=1

e′
iΣ

′
hZ3

1 −ϑe′
iΣ

′
hZ3

Φ′
hΣ

−1�′
h ei�

(1 − κ1)D0 = ln(β)+ κ0 +Z′
1(μg −ΣghΣhνh −ηϑλ0)

− 1
ϑ

H∑
i=1

νh�i ln
(
1 − e′

iΣ
′
hϑZ3

) + ϑ

2
Z′

1Σ0�gΣ
′
0�gZ1�

f (p̄c) =D0 +D′
gμ̄g +D′

hμ̄h

which is solved if p̄c = f (p̄c).

Assumptions The vector of coefficients Dh is a solution to the system of nonlinear
equations in (C.7). The system of equations does not necessarily have a real solution
for a given parameter vector θ.

In the special case when Σh and Φh are diagonal, each loading (C.8) reduces to a
quadratic equation given by (C.9) that can be solved separately for each element i. The
solutions are in (C.10). The fixed-point problem only has a solution when Dh�i is real.
The coefficientDh�i is real if and only if the parameters satisfy

(κ1Φh�i − κ1ϑΣh�iD̄i − 1 +ϑΣh�iZ̄3�i)
2 − 4κ1ϑΣh�i

[
D̄i(1 −ϑΣh�iZ̄3�i)+ Z̄3�iΦh�i

] ≥ 0

for i= 1� � � � �H.
In order to solve for the price to consumption ratio pct , the conditional expectation

in (C.6) must exist. This condition is

ϑe′iΣ
′
h

[
Σ′
gh

(
(1 −η)Zc + κ1Dg

) + κ1Dh
]
< 1� i= 1� � � � �H� (E.1)

This defines another set of restrictions across the parameters θ of the model.
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Proof of Proposition 1 First, derive the limiting property for p̄c→ −∞: limp̄c→−∞ κ1 =
0 and limp̄c→−∞ κ0 = 0. In this case, both D0 and Dh are finite due to ϑe′iΣ

′
hZ3 < 1 in

Assumption 1. Therefore, p̃c is finite, so limp̄c→−∞(p̄c − p̃c)→ −∞.

Next, derive the limiting property for p̄c → ∞: limp̄c→∞ κ1 = 1 and limp̄c→∞ κ0 = 0.

This implies Dg is finite as long as the eigenvalue of (Φg − ϑηλg) for consump-

tion growth is smaller than 1. Dh is finite due to ϑe′iΣ
′
hZ3 < 1. And limp̄c→∞(1 −

κ1)D0 = limp̄c→∞ ln(β) + Z′
1(μg − ΣghΣhνh − ηϑλ0) − 1

ϑ

∑H
i=1 νh�i ln(1 − e′

iΣ
′
hϑZ3) +

ϑ
2Z

′
1Σ0�gΣ

′
0�gZ1. The right hand side is finite due to ϑe′iΣ

′
hZ3 < 1. Therefore,

limp̄c→∞ κ1 = 1 leads to an infinite D0. The condition limp̄c→∞D0 → −∞ implies

limp̄c→∞(p̄c − p̃c) → ∞, which together limp̄c→−∞(p̄c − p̃c) → −∞ guarantees there

exists a solution for the fixed-point problem.

With κ1 < 1, the condition limp̄c→∞D0 → −∞ is equivalent to

β < lim
p̄c→∞ exp

[
−

(
Z′

1(μg −ΣghΣhνh −ηϑλ0)

− 1
ϑ

H∑
i=1

νh�i ln
(
1 − e′

iΣ
′
hϑZ3

) + ϑ

2
Z′

1Σ0�gΣ
′
0�gZ1

)]
�

Therefore, the boundary condition is

β̄ = exp

[
−

(
Z∞′

1 (μg −ΣghΣhνh −ηϑλ0)

− 1
ϑ

H∑
i=1

νh�i ln
(
1 − e′

iΣ
′
hϑZ

∞
3

) + ϑ

2
Z∞′

1 Σ0�gΣ
′
0�gZ

∞
1

)]
�

where

Z∞
1 = (1 −η)Zc +D∞

g �

D∞′
g = (1 −η)Z′

c(Φg −ϑηλg)
(
I − (Φg −ϑηλg)

)−1
�

Z∞
3 = Z̄∞

3 +D∞
h �

Z̄∞
3 = Σ′

ghZ
∞
1 �

D∞
h�i = −1

2

(
Φh�i − 1
ϑΣh�i

− D̄∞
i + Z̄∞

3�i

)

−
√

1
4

(
Φh�i − 1
ϑΣh�i

− D̄∞
i + Z̄∞

3�i

)2
− 1
ϑΣh�i

[
D̄∞
i

(
1 −ϑΣh�iZ̄∞

3�i

) + Z̄∞
3�iΦh�i

]
�

D̄∞ = (Φgh −ΣghΦh)′Z∞
1 + ϑ

2
(
ιH ⊗Z∞

1
)′
Σ̃gΣ̃

′
g

(
IH ⊗Z∞

1
)
�
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E.2 Special case with Gaussian dynamics

The fixed-point problem simplifies to

κ1 = exp(p̄c)
1 + exp(p̄c)

�

κ0 = ln
(
1 + exp(p̄c)

) − κ1p̄c�

D′
g = (1 −η)Z′

cΦ
Q$

g

(
I − κ1Φ

Q$

g

)−1
�

Z1 = (1 −η)Zc + κ1Dg�

D0(1 − κ1) = ln(β)+ κ0 +Z′
1μ

∗
g + 1

2
ϑZ′

1Σ0�gΣ
′
0�gZ1�

p̃c =D0 +D′
gμ̄g

which is solved if p̄c = p̃c.
First, the condition in Proposition 1 becomes

β< lim
p̄c→∞ exp

(
−Z′

1μ
∗
g − 1

2
ϑZ′

1Σ0�gΣ
′
0�gZ1

)
� (E.2)

and β̄ simplifies to

β̄= exp
[
−

(
Z∞′

1 μ∗
g + ϑ

2
Z∞′

1 Σ0�gΣ
′
0�gZ

∞
1

)]
�

where

Z∞
1 ≡ lim

p̄c→∞Z1(p̄c)= (1 −η)Zc +D∞
g �

D∞′
g ≡ lim

p̄c→∞Dg(p̄c)
′ = (1 −η)Z′

cΦ
Q$

g

(
I −ΦQ$

g

)−1
�

Proof of Corollary 1

1. The condition (E.2) is guaranteed byZ∞′
1 μ∗

g ≤ 0 andϑ< 0 for any β≤ 1. And 1−γ
1−ψ >

0 is equivalent to ϑ< 0,

2. A stronger condition is

β≤ 1< lim
p̄c→∞ exp

(
−Z′

1μ
∗
g − 1

2
ϑZ′

1Σ0�gΣ
′
0�gZ1

)
�

which can be simplified to

γ > 1 + 2Z′
c

(
I −ΦQ$

g

)−1
μ∗
g

Z′
c

(
I −ΦQ$

g

)−1
Σ0�gΣ

′
0�g

(
I −ΦQ$�′

g

)−1
Zc
� if ψ> 1�

γ < 1 + 2Z′
c

(
I −ΦQ$

g

)−1
μ∗
g

Z′
c

(
I −ΦQ$

g

)−1
Σ0�gΣ

′
0�g

(
I −ΦQ$�′

g

)−1
Zc
� if ψ< 1�
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hence γ̄(θP� θλ)= 1 + 2Z′
c(I−ΦQ$

g )−1μ∗
g

Z′
c(I−ΦQ$

g )−1Σ0�gΣ
′
0�g(I−ΦQ$�′

g )−1Zc
, does not depend on ψ.

3. We have dϑ
dγ = − 1

1−η ,
dD∞′

g

dγ = 0 and
dZ∞′

1
dγ = dD∞′

g

dγ = 0. Hence, the derivative of ln β̄
w.r.t. γ is

d ln β̄
dγ

= 1
2(1 −η)Z

∞′
1 Σ0�gΣ

′
0�gZ

∞
1

d ln β̄
dγ = 1

β̄

dβ̄
dγ implies that the two derivatives have the same sign. Therefore, for ψ>

1, then dβ̄
dγ > 0; for ψ< 1, then dβ̄

dγ < 0.

Appendix F: Numerical illustrations

F.1 Model with two volatility factors

Figure S1 provides numerical illustrations of Proposition 1 and Corollary 1.1 The top
row takes a special case without stochastic volatility or preference shock. The upper
left panel provides a demonstration for part 2 of Corollary 1, where we set β = 0�9998.
A similar pattern holds for other values of β ≤ 1 as well. Dots indicate the existence of
a solution, and stars imply no solution. The dashed lines mark the boundaries ψ = 1
and γ = γ̄ = 146�5. Consistent with part 2 of Corollary 1, when γ and ψ are both big-
ger than their corresponding boundaries (upper right quadrant) or both smaller than
the boundaries (lower left quadrant), a solution exists. The top right panel illustrates
part 3 of Corollary 1, with ψ = 0�8. As prescribed by the Corollary, when ψ < 1, we see
a downward sloping line that separates the parameter space for (β, γ) into feasible and
infeasible regions. The larger the value of risk aversion γ gets, the smaller the discount
rate β needs to be to remain in a region with a valid solution.

While the top panels brings a visualization for Corollary 1, the bottom panels
demonstrate how restrictive the space looks in the benchmark setting. The upper-left
and lower-right regions of the bottom left panel remain infeasible as before with simi-
lar intuition as Gaussian models. The difference is now the upper-right region becomes
infeasible in addition to the earlier regions in order to satisfy Assumption 1. This empha-
sizes that in stochastic volatility models both the intertemporal elasticity of substitution
and risk aversion need to be modest. We find although the lower left region is still feasi-
ble, the region is much smaller. Forψ= 0�97, γ cannot exceed 4�8. Forψ= 0�52, γ cannot
exceed 6�9. For comparison, the upper bound for γ in the Gaussian case marked by the
line is 146�5.

The implications are two-fold. First, much of the economics literature evaluates a
model’s success according to whether or not it can produce a small value for the risk
aversion parameter γ. We need to interpret this result with caution. As we show, for
stochastic volatility models, a small value of γ is required to satisfy the constraints of
the model. Second, stochastic volatility models have much smaller feasible regions of

1The parameters used to make the plots are taken from the estimates in Table S1 of the Appendix.
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Figure S1. Feasible and infeasible regions of the parameter space. Feasible (dots) and infea-
sible (stars) regions of the parameters space for the model with 2 stochastic volatility factors.
Dashed lines are the theoretical bounds derived in Corollary 1 part 2. The top row is a simplified
Gaussian model without stochastic volatility: θP is taken from the estimates of this model, and
λg = 0. The bottom row shows our benchmark model with stochastic volatility. Parameters θP are
taken from Table S1. θλ is taken from the global solution of the model. Left: parameter space for
(γ�ψ) with β= 0�9998. Right: Parameter space for (γ�β) with ψ= 0�8.

the parameter space, and they are more likely to encounter numerical problems and
boundaries.

The bottom right panel is similar to the upper right plot. Again the downward sloping
line that divides the regions indicates that with the intertemporal elasticity of substitu-
tion less than 1, an agent needs to be less patient as their risk aversion increases. The
difference is that the feasible region again is much smaller. For example, for γ = 244, β
can be as big as 0�9996 in the Gaussian model, but it will not be able to exceed 0�93 in the
SV setting.

F.2 Model with four volatility factors

In previous versions of the paper, we estimated a model with four stochastic variance
factors. This model is described in detail in Appendix B.3. We performed the same nu-
merical illustration for this model. The results are reported in Figure S2. The only differ-
ence between these figures and the figures from the previous subsection are the values
of ψ. This figure has ψ = 0�7 instead of ψ = 0�8, which reflects the estimated value of ψ
between the two models. Otherwise, the graphs are almost identical.
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Figure S2. Feasible and infeasible regions of the parameter space. Feasible (dots) and infeasi-
ble (stars) regions of the parameters space. Dashed lines are the theoretical bounds derived in
Corollary 1, part 2. The top row is a simplified model without stochastic volatility: θP is taken
from the estimates of this model, and λg = 0. The bottom row shows our benchmark model with
stochastic volatility. Parameters θP are taken from Table S1. θλ is taken from the global solution
of the model for the bottom left, and local solution for the bottom right. Left: parameter space
for (γ�ψ) with β= 0�9998. Right: Parameter space for (γ�β) with ψ= 0�7.

Appendix G: Estimation of macroeconomic factors

We quantify the distribution of the latent macroeconomic factors related to consump-

tion growth and inflation by Bayesian methods. We use a particle Gibbs sampler which

is an MCMC algorithm that uses a particle filter to draw from distributions that are in-

tractable; see Creal and Wu (2017) for an application on interest uncertainty, and Creal

(2012) for a survey on particle filtering.

Given a prior distribution p(θP) for the P parameters in the stochastic process

πt+1 = π̄t +
√
ht�πεπ1�t+1� (G.1)


ct+1 = c̄t +
√
ht�cεc1�t+1� (G.2)

π̄t+1 = μπ +φππ̄t +φπ�cc̄t + σπ
√
ht�πεπ2�t+1� (G.3)

c̄t+1 = μc +φc�ππ̄t +φcc̄t + σc�π
√
ht�πεπ2�t+1 + σc

√
ht�cεc2�t+1 (G.4)



18 Creal and Wu Supplementary Material

we sample from the joint posterior distribution

p
(
θP� g1:T �h0:T |m1:T

) ∝ p(
m1:T |g1:T �h0:T �θP

)
p

(
g1:T |h0:T �θP

)
p

(
h0:T |θP)

p
(
θP

)
� (G.5)

where mt = (
ct�πt) and xt:t+k = (xt� � � � � xt+k). Starting with an initial value for the pa-
rameters θP�(0), the particle Gibbs sampler draws from this distribution by iterating for
j = 1� � � � �M between the two full conditional distributions

(g1:T �h0:T )(j) ∼ p
(
g1:T �h0:T |m1:T �θP�(j−1))� (G.6)

θP�(j) ∼ p
(
θP|m1:T �g

(j)
1:T �h

(j)
0:T

)
� (G.7)

This produces a Markov chain whose stationary distribution is the posterior (G.5). The
models for consumption growth and inflation above are nonlinear, non-Gaussian state
space models. In these models, the full conditional distribution of the latent state vari-
ables given the data and model’s parameters (G.6) is not easy to sample. The particle
Gibbs sampler overcomes this limitation by using a particle filter to jointly sample paths
of the state variables (g1:T �h0:T ) in large blocks. Consequently, it improves the mixing
of the MCMC algorithm and the efficiency with which the Markov chain explores the
parameter space; see also Creal and Tsay (2015) for a longer discussion.

Using the particle Gibbs sampler, we estimate the long-run risk model of consump-
tion and inflation in Appendix B.2 (and Appendix B.3). Posterior means and standard
deviations for the parameters of the model are in Table S1. The unconditional means
of consumption growth and inflation measured in annualized percentage points are
μ̄c × 1200 = 1�68 and μ̄π × 1200 = 3�96, respectively. Both expected consumption growth
and expected inflation are highly autocorrelated, with posterior mean estimates of
φπ = 0�984 and φc = 0�90. The estimated eigenvalues of the autocovariance matrix Φg
are 0�975 and 0�961, respectively, indicating a high degree of persistence in their condi-
tional means.

In Figure S3, we plot the prior and posterior distributions for key parameters of the
model. Relative to the prior, the unconditional means still have considerable uncer-
tainty. This is natural given the high degree of persistence each series has. The posteri-
ors forφπ andφc�π contract significantly relative to the prior. In the literature, a negative
value ofφc�π is important for generating an upward sloping yield curve. While the poste-
rior mean is still slightly negative (see Table S1), it is not statistically significant given the
posterior standard deviation is 5 times larger than the point estimate. Figure S3 shows
that the posterior for φc�π is reasonably symmetric around zero. In the paper, we show
that our model is able to generate an upward sloping yield curve when φc�π is either
negative or positive.

Posterior mean estimates (in blue) of the latent state variables together with their
10% and 90% uncertainty bands are plotted in Figure S4. There is considerable variation
in the long-run risk factor c̄t of consumption growth (top left). It shows a noticeable
decline during each recession, with the largest decline during the Great Recession. The
pattern replicates the long run risk in the literature.
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Table S1. Estimates of time series parameters for consumption growth and inflation.

Prior μπ μ̄π φπ φπ�c –
– 0�0033 0�975 0

(0�708e−3) (0�10) (0�05)
μc μ̄c φc�π φc σc�π
– 0�0015 0 0�90 0�00

(0�750e−3) (0�05) (0�10) (3�5)
μ̄h�π φh�π σh�π

1�08e−5 0�975 7�45e−5

(6�57e−6) (0�009) (4�123e−6)

μ̄h�c φh�c σh�c
1�08e−5 0�975 7�45e−5

(6�57e−6) (0�009) (4�123e−6)

Posterior μπ μ̄π φπ φπ�c –
−0�0940e−3 0�0029 0�9926 0�0798
(0�9295e−4) (0�564e−3) (0�0158) (0�0421)

μc μ̄c φc�π φc σc�π
0�1011e−3 0�0014 −0�0056 0�9407 −1�516
(0�7147e−4) (0�268e−3) (0�0119) (0�0325) (0�0177)

μ̄h�π φh�π σh�π
0�0476e−4 0�9755 0�0626e−6

(0�1257e−5) (0�0070) (0�1759e−8)

μ̄h�c φh�c σh�c
0�1205e−4 0�9811 0�1013e−6

(0�2845e−5) (0�0058) (0�5024e−8)

Note: Prior (top) and posterior (bottom) mean and standard deviation (in parentheses) of our benchmark two factor volatil-
ity model. Consumption growth and inflation are measured in monthly percentage changes. Multiplying the variables by 1200
translates them into annualized percentage points. For example, the unconditional means of consumption growth and infla-
tion measured in annualized percentages are μ̄c × 1200 = 1�8 and μ̄π × 1200 = 3�96, respectively.

G.1 Four factor volatility model

In previous versions of the paper, we estimated a model with four volatility factors

πt+1 = π̄t +
√
ht�π1επ1�t+1� επ1�t+1 ∼ N(0�1)�


ct+1 = c̄t +
√
ht�c1εc1�t+1� εc1�t+1 ∼ N(0�1)�

π̄t+1 = μπ +φππ̄t +φπ�cc̄t +
√
ht�π2επ2�t+1� επ2�t+1 ∼ N(0�1)�

c̄t+1 = μc +φc�ππ̄t +φcc̄t + σc�π
√
ht�π2επ2�t+1 +

√
ht�c2εc2�t+1� εc2�t+1 ∼ N(0�1)�

This model has 2 volatility factors for similar to those found by Stock and Watson (2007)
and Creal (2012). The main conclusions of the paper are the same for this model. In
this section of the Appendix, we repeat the same results of previous sections for this
model. These results are in Figures S5, S6, S7, and Tables S2 and S3. We do not provide
extensive comments on the results because they are largely the same. We do note that
the estimates of stochastic volatility from this model of inflation are similar to those
found by Stock and Watson (2007) and Creal (2012).
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Figure S3. Priors and posteriors. Empirical pdf for prior distributions (blue bars) and posterior
distributions (red bars). Top left: mean of inflation μ̄π × 1200; top middle: φπ ; top right: φπ�c ;
bottom left: mean of consumption growth μ̄c × 1200; bottom middle: φc�π ; bottom right: φc .

Appendix H: Conditional sharpe ratios

The excess return is

rx(n)�(n−1)�$
t+1 = ā$

n−1 + b̄$�′
n−1�g[μg +Φggt +Φghht +Σghεh�t+1 +Σg�tεg�t+1]

+ b̄$�′
n−1�h[Σhνh +Φhht + εh�t+1]

− ā$
n − b̄$�′

n�ggt − b̄$�′
n�hht + ā$

1 + b̄$�′
1�ggt + b̄$�′

1�hht�

The expected value or risk premium of the asset is

Et
[
rx(n)�(n−1)�$
t+1

] = ā$
n−1 − ā$

n + ā$
1 + b̄$�′

n−1�gμg + b̄$�′
n−1�hΣhνh

+ (
Φ′
gb̄

$
n−1�g − b̄$

n�g + b̄$
1�g

)′
gt

+ (
Φ′
ghb̄

$
n−1�g +Φ′

hb̄
$
n−1�h − b̄$

n�h + b̄$
1�h

)′
ht�

This is only a function of gt if the preference shock is in the model λg �= 0. The condi-
tional variance of the return is

Vt
[
r
(n)�(n−1)�$
t+1

] = Vt
[(
b̄

$�′
n−1�gΣgh + b̄$�′

n−1�h

)
εh�t+1

] +Vt
[
b̄

$�′
n−1�gΣg�tεg�t+1

]
= (
b̄$�′
n−1�gΣgh + b̄$�′

n−1�h

)
Σh�tΣ

′
h�t

(
b̄$�′
n−1�gΣgh + b̄$�′

n−1�h

)′

+ b̄$�′
n−1�gΣg�tΣ

′
g�t b̄

$
n−1�g�
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Table S2. Estimates of time series parameters for consumption growth and inflation.

Prior μπ μ̄π φπ φπ�c –
– 0�0033 0�975 0

(0�708e−3) (0�10) (0�05)
μc μ̄c φc�π φc σc�π
– 0�0015 0 0�90 0�00

(0�750e−3) (0�05) (0�10) (3�5)
μ̄h�π2 φh�π2 σh�π2 μ̄h�π1 φh�π1 σh�π1

1�97e−7 0�975 1�70e−11 4�04e−6 0�975 6�23e−9

(9�20e−7) (0�009) (2�51e−11) (5�08e−6) (0�009) (5�35e−10)

μ̄h�c2 φh�c2 σh�c2 μ̄h�c1 φh�c1 σh�c1

3�77e−8 0�975 1�30e−12 1�08e−5 0�975 1�02e−8

(8�32e−8) (0�009) (1�73e−12) (6�57e−6) (0�009) (1�57e−9)

Posterior μπ μ̄π φπ φπ�c –
−0�096e−4 0�0031 0�978 0�057
0�734e−4 (0�497e−3) (0�014) (0�033)
μc μ̄c φc�π φc σc�π

0�856e−4 0�0014 −0�002 0�941 −0�394
(0�592e−4) (0�278e−3) (0�010) (0�029) (0�190)
μ̄h�π2 φh�π2 σh�π2 μ̄h�π1 φh�π1 σh�π1

0�269e−6 0�984 0�317e−9 0�333e−5 0�989 0�724e−8

(0�091e−6) (0�007) (0�120e−9) (0�077e−5) (0�004) (0�0729e−8)

μ̄h�c2 φh�c2 σh�c2 μ̄h�c1 φh�c1 σh�c1

0�664e−6 0�980 0�340e−10 0�891e−5 0�992 0�137e−7

(0�372e−6) (0�009) (0�169e−10) (0�216e−5) (0�003) (0�225e−8)

Note: Prior (top) and posterior (bottom) mean and standard deviation (in parentheses) of the four factor volatility model.
Consumption growth and inflation are measured in monthly percentage changes. Multiplying the variables by 1200 translates
them into annualized percentage points. For example, the unconditional means of consumption growth and inflation mea-
sured in annualized percentages are μ̄c × 1200 = 1�68 and μ̄π × 1200 = 3�72, respectively.

Using the conditional mean and variance expressions, we can calculate the conditional
Sharpe ratio of log-returns from

s
(n)�$
t ≡

[
Et

(
r
(n)�$
t+1

) − r$
t + 1

2
Vt

(
r
(n)�$
t+1

)]
/

√
Vt

(
r
(n)�$
t+1

)
which is the same expression as the paper.

Appendix I: MCMC and particle filters

I.1 MCMC

Our MCMC algorithm is the particle Gibbs (PG) sampler. It iterates between two broad
steps: (i) drawing the latent state variables (g1:T �h0:T ) conditional on the model’s pa-
rameters; and (ii) drawing the model’s parameters θP given the latent state variables. We
make heavy use of the fact that the model is a conditionally linear Gaussian state space
model.

I.1.1 Conditionally linear, Gaussian state space form Conditional on h0:T , the model is
a linear, Gaussian state space model. We write the model using the state space form of
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Figure S4. Estimated dynamics of consumption growth and inflation for the two factor volatil-
ity model. Posterior mean (smoothed) estimates of the factors with their 10% and 90% uncer-
tainty bands for the two factor volatility model. All values are multiplied by 1200. Top left: ex-
pected cons. growth c̄t ; Top right: expected inflation π̄t ; Bottom left: standard dev. of expected
cons. growth

√
ht�c ; Bottom right: standard dev. of expected inflation

√
ht�π .

Durbin and Koopman (2012) given by

Yt = Zgt + d+η∗
t � η∗

t ∼ N(0�H)� (I.1)

gt+1 = Tgt + ct +Rε∗
t+1� ε∗

t+1 ∼ N(0�Qt)� (I.2)

Figure S5. Level and slope. Top panel: level defined as average of yields across all maturities.
Bottom panel: slope defined as the 5-year minus 3-month yield. Dashed line: data; solid line:
mean estimate; dashed-dotted line: 10th percentile; dotted line: 90th percentile. Y -axis: annual-
ized percentage points.
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Figure S6. Priors and posteriors. Empirical pdf for prior distributions (blue bars) and posterior
distributions (red bars). Top left: mean of inflation μ̄π × 1200; top middle: φπ ; top right: φπ�c ;
bottom left: mean of consumption growth μ̄c × 1200; bottom middle: φc�π ; bottom right: φc .

where Yt = (
ctπt)′. The models in this paper can be placed in this state space form as

Z =
(
Zc
Zπ

)
� T =Φg� d = 02×1� H = 02×2�

ct = μg +Φghht +Σghεh�t+1 Qt = Σg�tΣ′
g�t �

For some models, there are free, estimable parameters in the matrices (μg�Φgh�Σgh). We
can place these in the state vector. This allows any free parameters in (μg�Φgh�Σgh) to

Table S3. Unconditional yield curves.

3 12 24 36 48 60 level slope

data 4�94 5�33 5�54 5�72 5�88 5�98 5�57 1�04

SV w/ preference shock 4�91 5�27 5�63 5�85 5�92 5�84 5�57 0�93
local 4�95 5�20 5�49 5�74 5�95 6�13 5�58 1�18
10th 4�91 5�25 5�60 5�81 5�88 5�79 5�54 0�88
90th 4�96 5�15 5�43 5�70 5�96 6�20 5�57 1�24

Gaussian w/ preference shock 5�08 5�25 5�47 5�69 5�89 6�09 5�58 1�01
SV w/o preference shock 5�64 5�63 5�61 5�59 5�57 5�56 5�60 −0�08

Note: Average nominal yields in annualized percentage points across time in the data (first row), our benchmark model
with both stochastic volatility and preference shock (second to fifth rows), model without stochastic volatility (sixth row), and
model without preference shock (last row) for maturities of 3–60 months. Each column corresponds to one maturity. The last
two columns are the average level of yields across all 6 maturities, and the slope is defined as the difference between the 60-
month and 3-month yields.
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Figure S7. Estimated dynamics of consumption and inflation for the four factor volatility
model. Posterior mean (smoothed) estimates of the factors with their 10% and 90% uncertainty
bands. All values are multiplied by 1200. Top left: expected cons. growth c̄t ; Top right: expected
inflation π̄t ; Middle left: standard dev. of expected cons. growth ht�c2 ; Middle right: standard dev.
of expected inflation ht�π2 ; Bottom left: standard dev. of unexpected cons. growth ht�c1 . Bottom
right: standard dev. of unexpected inflation ht�π1 .

be drawn jointly with the state variables g1:T . It also allows us to marginalize over them
when drawing other parameters; see Creal and Wu (2017) for discussion.

I.1.2 Drawing the state variables We draw (g1:T �h0:T ) from their full conditional dis-
tribution in two steps:

g1:T ∼ p
(
g1:T |Y1:T �h0:T �θP

)
�

h0:T ∼ p
(
h1:T |Y1:T �g1:T �θP

)
�
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We draw g1:T conditional on h0:T from the conditionally linear, Gaussian state space
model (I.1) and (I.2) using a forward filtering backward sampling algorithm or simula-
tion smoother; see, for example, Durbin and Koopman (2002). Conditional on the draw
for g1:T , we draw h0:T using a particle Gibbs sampler.

There are two PG samplers developed in the literature. The original PG sampler of
Andrieu, Doucet, and Holenstein (2010) with the backward-sampling pass developed by
Whiteley (2010); see Creal and Tsay (2015). And, the PG sampler with ancestor sampling
(PGAS) of Lindsten, Jordan, and Schön (2014). The former algorithm is simple to imple-
ment. We describe its implementation here.

Let J be the total number of particles. In our work, we select J = 100. The PG sampler
starts with a set of existing particles h(1)0:T that were drawn from the previous iteration.

For t = 1� � � � �T , run:

• For j = 2� � � � � J, draw from a proposal: (ht�ht−1)
(j) ∼ q(ht�ht−1|gt−1:t � θP).

• For j = 1� � � � � J, calculate the importance weight:

w
(j)
t ∝ p

(
gt |gt−1�h

(j)
t �h

(j)
t−1� θ

P
)
p

(
h
(j)
t |h(j)t−1� θ

P
)

q
(
h
(j)
t �h

(j)
t−1|gt−1:t � θP

) �

• For j = 1� � � � � J, normalize the weights: ŵ(j)t = w
(j)
t∑J

j=1w
(j)
t

.

• Conditionally resample the particles {h(j)t }Jj=1 with probabilities {ŵ(j)t }Jj=1. In this

step, the first particle h(1)t always gets resampled and may be randomly duplicated.

Implementation of the PG sampler is different than a standard particle filter due to the
“conditional” resampling algorithm used in the last step. We use the conditional multi-
nomial resampling algorithm from Andrieu, Doucet, and Holenstein (2010).

In the original PG sampler, the particles {h(j)t }Jj=1 are stored for t = 1� � � � �T and a sin-

gle trajectory is sampled using the probabilities from the last iteration {ŵ(j)T }Jj=1. An im-
portant improvement upon the original PG sampler was introduced by Whiteley (2010),
who suggested drawing the path of the state variables from the discrete particle approx-
imation using the backwards sampling algorithm of Godsill, Doucet, and West (2004).
On the forwards pass, we store the normalized weights and particles {ŵ(m)t �h

(m)
i�t }Mm=1 for

t = 1� � � � �T . We draw a path of the state variables (h∗
1� � � � �h

∗
T ) from this discrete distri-

bution.
At t = T , draw a particle h∗

T = h(j)T with probability ŵ(j)T .
For t = T − 1� � � � �0, run:

• For j = 1� � � � � J, calculate the backwards weights: w(j)t|T ∝ ŵ(j)t p(h∗
t+1|h(j)t � θ).

• For j = 1� � � � � J, normalize the weights: ŵ(j)t|T = w
(j)
t|T∑J

j=1w
(j)
t|T

.

• Draw a particle h∗
t = h(j)t with probability ŵ(j)t|T .
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The draw h0:T = (h∗
0� � � � �h

∗
T ) is a draw from the full-conditional distribution. In prac-

tice, when the dimensionH of ht is high, the number of particles J required for satisfac-
tory performance can be quite large. In this case, we can separate each element of the
state vector hi�t for i= 1� � � � �H and draw them one at a time.

I.1.3 Drawing the parameters We block the parameters into groups that are highly cor-
related. These groups can be separated into parameters governing the dynamics of gt
and the parameters that enter the dynamics of volatility ht .

1. Drawing parameters in μ̄g,Φgh, Σgh: We place these parameters in the state vector
and draw them jointly with the Gaussian state variables.

2. Drawing parameters in Φg, Σ0�g: We use the independence Metropolis–Hastings
algorithm. Conditional on the volatility state variables h0:T , the model is a linear,
Gaussian state space model (I.1) and (I.2). We maximize the likelihood using the
Kalman filter and calculate the Hessian at the posterior mode. We then draw from
a Student’s t proposal distribution with mean equal to the posterior mode and co-
variance matrix equal to the inverse Hessian at the mode.

3. Drawing parameters of the volatility process μ̄h, Φh, Σh: We use an independence
Metropolis–Hastings step. When drawing these parameters, we can marginalize
out the Gaussian state variables using the Kalman filter. Conditional on the remain-
ing parameters of the model (which we omit), the target distribution of νh, Φh, Σh
can be written as

p(μ̄h�Φh�Σh|Y1:T �h0:T )

∝ p(Y1:T |h0:T � μ̄h�Φh�Σh)p(h0:T |μ̄h�Φh�Σh)p(μ̄h�Φh�Σh)�
where p(Y1:T |h0:T � μ̄h�Φh�Σh) is the likelihood from the Kalman filter, p(h0:T |μ̄h�
Φh�Σh) is the transition density of the volatility process (B.5). We maximize this
target density and calculate the Hessian at the posterior mode. We then draw from
a Student’s t-proposal distribution with mean equal to the posterior mode and co-
variance matrix equal to the inverse Hessian at the mode.

For Gaussian models, we draw the free parameters in Σ0�g instead of μ̄h,Φh, Σh.

I.2 Particle filter

To estimate the structural parameters (β�γ�ψ) and the preference parameters θλ, we
run cross-sectional regressions on filtered and/or smoothed estimates of the factors. In
order to calculate the filtered estimates of the state variables, we use a particle filter.
The particle filter we implement is the mixture Kalman filter of Chen and Liu (2000).
Let gt|t−1 denote the conditional mean and Pt|t−1 the conditional covariance matrix of
the one-step ahead predictive distributionp(gt |Y1:t−1�h0:t−1;θ) of a conditionally linear,
Gaussian state space model. Similarly, let gt|t denote the conditional mean and Pt|t the
conditional covariance matrix of the filtering distribution p(gt |Y1:t � h0:t;θ). Conditional
on the volatilities h0:T , these quantities can be calculated by the Kalman filter.
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Let J denote the number of particles and let Yt = (πt�
ct) be N × 1. The particle
filter then proceeds as follows:

At t = 0, for i= 1� � � � � J, set w(i)0 = 1
J and

• Draw h(i)0 ∼ p(h0;θ) and calculate Σ(i)g�0Σ
(i)�′
g�0 .

• Set g(i)1|0 = μ̄g +Φghh̄(i)0 , P(i)1|0 = Σ(i)g�0Σ(i)�′g�0 .

• Set �0 = 0.

For t = 1� � � � �T do:
STEP 1: For i= 1� � � � � J:

• Draw from the transition density: h(i)t+1 ∼ p(ht+1|h(i)t ;θ) given by

z
(i)
j�t+1 ∼ Poisson

(
e′
jΣ

−1
h Φhh

(i)
t

)
� j = 1� � � � �H�

w(i)j�t+1 ∼ Gamma
(
νh�j + z(i)j�t+1�1

)
� j = 1� � � � �H�

h(i)t+1 = Σhw
(i)
t+1�

• Calculate c(i)t andQ(i)t using h(i)t :

c(i)t =Φghh
(i)
t +Σghε(i)h�t+1�

Q(i)t = Σ(i)g�tΣ
(i)�′
g�t �

• Run the Kalman filter:

v(i)t = Yt −Zg(i)t|t−1 − d�
F(i)t = ZP(i)t|t−1Z

′ +H�
K(i)t = P(i)t|t−1Z

′(F(i)t )−1
�

g(i)t|t = g(i)t|t−1 +K(i)t v(i)t �
P
(i)
t|t = P

(i)
t|t−1 −K(i)t ZP(i)t|t−1�

g
(i)
t+1|t = Tg

(i)
t|t + c(i)t �

P(i)t+1|t = TP(i)t|t T
′ +RQ(i)t R′�

• Calculate the weight:
log(w(i)t )= log(ŵ(i)t−1)− 0�5N log(2π)− 0�5 log |F(i)t | − 1

2v
(i)′
t (F

(i)
t )

−1v
(i)
t .

STEP 2: Calculate an estimate of the log-likelihood: �t = �t−1 + log(
∑J
i=1w

(i)
t ).

STEP 3: For i = 1� � � � � J, calculate the normalized importance weights: ŵ(i)t =
w
(i)
t∑J

j=1w
(j)
t

.
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STEP 4: Calculate the effective sample size Et = 1∑J
j=1(ŵ

(j)
t )

2
.

STEP 5: If Et < 0�5J, resample {g(i)t+1|t � P
(i)
t+1|t � h

(i)
t+1}Ji=1 with probabilities ŵ(i)t and set

ŵ(i)t = 1
J .

STEP 6: Increment time and return to STEP 1.
Within the particle filter, we use the residual resampling algorithm of Liu and Chen

(1998). We set J = 100,000.
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