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1. Introduction

This paper develops a fast new solution algorithm for structural estimation of dynamic
programming models with discrete and continuous choices. The algorithm we propose
extends the endogenous grid method (EGM) by Carroll (2006) to discrete-continuous
(DC) models. We refer to it as the DC-EGM algorithm. We embed the DC-EGM algo-
rithm in the inner loop of the nested fixed point (NFXP) algorithm (Rust (1987)), and
show that the resulting maximum likelihood estimator produces accurate estimates of
the structural parameters at low computational cost.

There is an extensive literature on static models of discrete/continuous choice:
a classic example is Dubin and McFadden (1984). However, the focus of our paper is
on dynamic DC models. A classic example is the life-cycle model with discrete retire-
ment and continuous consumption decisions. While there is a well developed literature
on solution and estimation of dynamic discrete choice models, and a separate literature
on estimation of life-cycle models without discrete choices, there has been far less work
on solution and estimation of DC models.1

There is good reason why DC models are much less commonly seen in the literature:
they are substantially harder to solve. The value functions of models with only continu-
ous choices are typically concave and the optimal policy function can be found from the
Euler equation. EGM avoids the need to numerically solve the nonlinear Euler equation
for the optimal continuous choice at each grid point in the state space. Instead, EGM
specifies an exogenous grid over an endogenous quantity (e.g., savings) to analytically
calculate the optimal policy rule (e.g., consumption) and endogenously determine the
predecision state (e.g., beginning-of-period resources).2 DC-EGM retains the main de-
sirable properties of EGM, namely it avoids the bulk of costly root-finding operations
and handles borrowing constraints in an efficient manner.

Dynamic programs that have only discrete choices are substantially easier to solve,
since the optimal decision rule is simply the alternative with the highest choice-specific

1There are relatively few examples of structural estimation or numerical solution of DC models. Some
prominent examples include the model of optimal nondurable consumption and housing purchases
(Carroll and Dunn (1997)), optimal saving and retirement (French and Jones (2011)), and optimal saving,
labor supply, and fertility (Adda, Dustmann, and Stevens (2017)).

2The EGM is in fact a specific application of what is referred to as “controlling the postdecision state”
in operations research and engineering (Bertsekas, Lee, van Roy, and Tsitsiklis (1997)). Carroll (2006) in-
troduced the idea in economics by developing the EGM algorithm with the application to the buffer-stock
precautionary savings model. Since then the idea became widespread in economics. Further generaliza-
tions of EGM include Barillas and Fernández-Villaverde (2007), Hintermaier and Koeniger (2010), Ludwig
and Schön (2013), Fella (2014), Iskhakov (2015). Jørgensen (2013) compares the performance of EGM to
mathematical programming with equilibrium constraints (MPEC).
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value. However, solving dynamic programming problems that combine continuous and
discrete choices is substantially more complicated, since discrete choices introduce
kinks and nonconcave regions in the value function that lead to discontinuities in the
policy function of the continuous choice (consumption). This can lead to situations
where the Euler equation has multiple solutions for consumption, and hence it is only a
necessary rather than a sufficient condition for the optimal consumption rule (Clausen
and Strub (2013)). This inherent feature of DC problems complicates any method one
might consider for solving DC models.

We illustrate how DC-EGM can deal with these inherent complications using a life-
cycle model with a continuous consumption and binary retirement choice with and
without taste shocks. Our example is a simple extension of the classic life-cycle model
of Phelps (1962) where, in the absence of a retirement decision, the optimal consump-
tion rule could hardly be any simpler—a linear function of resources. However, once
the discrete retirement decision is added to the consumption–savings problem—in our
case allowing a worker with logarithmic utility to also make a binary irreversible retire-
ment decision—the consumption function becomes unexpectedly complex, with mul-
tiple discontinuities in the optimal consumption rule. We derive an analytic solution for
this model and use it to demonstrate the accuracy of the solution obtained numerically
by DC-EGM. We then show how DC-EGM can be used to solve DC models with taste
shocks and investigate its performance as a nested solution method for structural esti-
mation of a DP model of retirement.

Fella (2014) showed how the EGM could be adapted to solve nonconcave problems,
including models with discrete and continuous choices. In this paper we focus on dis-
crete choices and show that introducing independent and identically distributed (i.i.d.)
extreme value type I choice-specific taste shocks not only facilitates maximum likeli-
hood estimation, but also smooths out some of the kinks in the value functions, thereby
simplifying the numerical solution of the model. This approach results in multinomial
logit formulas for the conditional choice probabilities for the discrete choices and a
closed-form expression for the expectation of the value function with respect to these
taste shocks.3

In econometric applications continuously distributed taste shocks are essential for
generating predictions from dynamic programming models that are statistically nonde-
generate. Such predictions assign a positive (however small) choice probability to every
alternative, and therefore preclude zero likelihood observations. These shocks are in-
terpreted as unobserved state variables, that is, idiosyncratic shocks observed by agents
but not by the econometrician. However, in numerical or theoretical applications, taste
shocks can serve as a smoothing device (homotopy perturbation) that facilitates the nu-
merical solution of more advanced DC models that may have excessively many kinks
and discontinuities, for example, caused by a large number of discrete choices.

3In principle, the extreme value assumption could be relaxed to allow for other distributions at the cost
of numerical approximation of choice probabilities and the conditional expectation of the value function.
For example, Bound, Stinebrickner, and Waidmann (2010) assume that the discrete choice-specific taste
shocks are Normal rather than extreme value. Yet, we follow the long tradition of discrete choice modeling
dating back to McFadden (1973) and Rust (1987).
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The inclusion of extreme value type I taste shocks has a long history in discrete
choice modeling dating back to the seminal work by McFadden (1973). This assumption
is typically invoked in microeconometric analyses of dynamic discrete choice models
where numerical performance boosted by closed-form choice probabilities is particu-
larly important; see, for example, Rust (1994) and the recent survey by Aguirregabiria
and Mira (2010). Some recent studies of DC models with extreme value taste shocks in-
clude Casanova (2010), Ejrnæs and Jørgensen (2016), Iskhakov and Keane (2016), Oswald
(2016), and Adda, Dustmann, and Stevens (2017).

At first glance, the addition of stochastic shocks would appear to make the prob-
lem harder to solve, since both the optimal discrete and continuous decision rules will
necessarily be functions of these stochastic shocks. However, we show that a variety of
stochastic variables in DC models smooth out many of the kinks in the value functions
and the discontinuities in the optimal consumption rules. In the absence of smooth-
ing, we show that every kink induced by the comparison of the discrete choice-specific
value functions in any period t propagates backward in time to all previous periods as a
manifestation of the decision maker’s anticipation of the future discrete action. The re-
sulting accumulation of kinks during backward induction presents the most significant
challenge for the numerical solution of DC models. In the presence of taste shocks the
decision maker can only anticipate a particular future discrete action to be more or less
probable, and thus the primary reason for the accumulation of kinks disappears. Thus,
the combination of taste shocks and the stochastic variables in the model is perhaps the
most powerful device to prevent the propagation and accumulation of kinks.4

In the case where extreme value taste shocks are used as a logit smoothing device of
an underlying deterministic model of interest, we show that the latter problem can be
approximated by the smoothed model to any desirable degree of precision. The scale
parameter σ ≥ 0 of the corresponding extreme value distribution then serves as a ho-
motopy or smoothing parameter. When σ is sufficiently large, the nonconcave regions
near the kinks in the nonsmoothed value function disappear and the value functions
become globally concave. But even small values of σ smooth out many of the kinks in
the value functions and suppress their accumulation in the process of backward induc-
tion as noted above. An additional benefit of the taste shocks is that standard integration
methods, such as quadrature rules, apply when the expected value function is a smooth
function.

We run a series of Monte Carlo simulations to investigate the performance of DC-
EGM for structural estimation of the life-cycle model with the discrete retirement deci-
sion. We find that a maximum likelihood estimator that nests the DC-EGM algorithm
performs well. It quickly produces accurate estimates of the structural parameters of
the model even when fairly coarse grids over wealth are used. We find the cost of “over-
smoothing” to be negligible in the sense that the parameter estimates of a perturbed
model with stochastic taste shocks are estimated very accurately even if the true model
does not have taste shocks. Thus, even in the case where the addition of taste shocks

4Contrary to the macro literature that uses stochastic elements such as employment lotteries (Rogerson
(1988), Prescott (2005), Ljungqvist and Sargent (2005)) to smooth out nonconvexities, the taste shock we
introduce in DC models in general do not fully convexify the problem.
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results in a misspecification of the model, the presence of these shocks improves the
accuracy of the solution and reduces computation time without increasing the approxi-
mation bias significantly. Even when very few grid points are used to solve the model, we
find that smoothing the problem improves the root mean square error (RMSE). Partic-
ularly, with an appropriate degree of smoothing (σ), we can reduce the number of grid
points by an order of magnitude without much increase in the RMSE of the parameter
estimates.

DC-EGM is applicable to many fields of economics and has been implemented
in several recent empirical applications. Ameriks, Briggs, Caplin, Shapiro, and Tonetti
(2015) study how the need for long term care and bequest motive interact with
government-provided support to shape the wealth profile of the elderly. They use an
endogenous grid method similar to DC-EGM to solve and estimate the correspond-
ing nonconcave model. Iskhakov and Keane (2016) employ DC-EGM to estimate a life-
cycle model of discrete labor supply, human capital accumulation, and savings for the
Australian population. They use the model to evaluate Australia’s defined contribution
pension scheme with means-tested minimal pension, and quantify the effects of antici-
pated and unanticipated policy changes. Yao, Fagereng, and Natvik (2015) use DC-EGM
to analyze how housing and mortgage debt affects consumers’ marginal propensity to
consume. They estimate a model in which households hold debt, financial assets, and
illiquid housing, and find that a substantial fraction of households are likely to behave
in a “hand-to-mouth” fashion despite having significant wealth holdings. Druedahl and
Jørgensen (2015) employ a modified version of DC-EGM to analyze the credit card debt
puzzle. They solve a model of optimal consumption and debt holdings, and show how,
for some parameterizations of the model, a large group of consumers find it optimal
to simultaneously hold positive gross debt and positive gross assets even though the
interest rate on the debt is much higher than the rate on the assets. Ejrnæs and Jør-
gensen (2016) use DC-EGM to estimate a model of optimal consumption and saving
with a fertility choice to analyze the saving behavior around intended and unintended
child births. They model the fertility process as a discrete choice over effort to conceive
a child subject to a biological fecundity constraint and allow for the possibility of unin-
tended child births through imperfect contraceptive control.

In the next section we present a simple extension of the life-cycle model of consump-
tion and savings with logarithmic utility studied by Phelps (1962) and Deaton (1991)
where we allow for a discrete retirement decision. We derive a closed-form solution to
this problem and discuss its properties. Using this simple model we demonstrate the ac-
curacy of the deterministic version of DC-EGM. We then introduce extreme value taste
shocks and show how the implied smoothing affects the value functions and the optimal
policy rules. In particular, we show that the error introduced by “extreme value smooth-
ing” is uniformly bounded, and prove that the solution of the smoothed DP problem
with taste shocks converges to the solution to the DP problem without taste shocks as
the scale of the shocks approaches zero. Section 3 presents the full DC-EGM algorithm.
In Section 4 we show how it is incorporated in the nested fixed point algorithm for max-
imum likelihood estimation of the structural parameters in the retirement model. We



322 Iskhakov, Jørgensen, Rust, and Schjerning Quantitative Economics 8 (2017)

present the results of a series of Monte Carlo experiments in which we explore the per-
formance of the estimator in a variety of settings. We conclude with a short discussion
of the range of models that DC-EGM is applicable to and discuss some open issues with
this method.

2. An illustrative problem: Consumption and retirement

This section extends the classic life-cycle consumption–savings model of Phelps (1962)
and Deaton (1991) to allow for a discrete retirement decision. We derive an analytic so-
lution to this problem with logarithmic utility to both illustrate the complexity caused
by the addition of a discrete retirement choice and show how DC-EGM computes this
solution. While we focus on this simple example for expositional clarity, DC-EGM can be
applied to a much more general class of problems that include taste and income shocks.
We will discuss these extensions in Section 3 and show how the addition of shocks can
actually simplify the solution of the model using DC-EGM.

2.1 Deterministic model of consumption–savings and retirement

Consider the discrete-continuous (DC) dynamic optimization problem

max
{ct �dt }Tt=1

T∑
t=1

βt
(
log(ct)− δdt

)
(1)

involving choices of consumption ct and whether to retire dt , to maximize lifetime dis-
counted utility. Let dt = 0 denote retirement, let dt = 1 denote continued work, and let
δ > 0 be the disutility of work. To simplify the exposition, we assume retirement is ab-
sorbing, that is, a retiree cannot return to work.5

We solve (1) subject to a sequence of period-specific borrowing constraints, ct ≤Mt ,
where Mt = R(Mt−1 − ct−1)+ ydt−1 is the consumer’s consumable resources (wealth) at
the beginning of period t. There is a fixed, nonstochastic gross interest rate R and labor
income y for workers. The continuous consumption decision and discrete retirement
decision are made at the start of each period, whereas interest earnings and labor in-
come are paid at the end of the period.6

Let Vt(M) and Wt(M) be the expected discounted lifetime utility of a worker and a
retiree, respectively, in period t of their life. The choice problem of the worker can be
expressed recursively through the Bellman equation as

Vt(M)= max
{
vt(M�0)� vt(M�1)

}
� (2)

5This allows us to focus primarily on the worker’s problem. In the absence of absorbing retirement, the
retiree’s problem involves a discrete choice (returning to work or staying retired), and can be solved by DC-
EGM similarly to the worker’s problem.

6This timing convention is standard in the literature and it removes the need to include income as a
seperate state variable when we extend this model to a much wider class of problems with stochastic R

and/or y .
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where the choice-specific value functions vt(M�d), d ∈ {0�1}, are given by

vt(M�0)= max
0≤c≤M

{
log(c)+βWt+1

(
R(M − c)

)}
� (3)

vt(M�1)= max
0≤c≤M

{
log(c)− δ+βVt+1

(
R(M − c)+ y

)}
� (4)

The Bellman equation for the retiree’s problem, which does not involve a discrete choice,
is much simpler and can be written as

Wt(M)= max
0≤c≤M

{
log(c)+βWt+1

(
R(M − c)

)}
� (5)

The value function for a retiree Wt(M) has a closed-form solution given by Phelps
(1962, p. 742), so we focus on solving the worker’s problem, that is, solving for the value
function Vt(M) and the optimal consumption rule ct(M). The fact that the future looks
the same from the point of view of the retiree and from the point of view of the worker
who decides to retire, can be verified from the fact that the right hand side of (3) is iden-
tical to that of (5). Therefore, we have Wt(M) = vt(M�0), and the consumption function
of the retiree is identical to the choice-specific consumption function of the worker who
decided to retire, ct(M�0), where the second argument denotes the retirement choice.

Note that even if vt(M�0) and vt(M�1) are concave functions of M , the value func-
tion Vt(M) is the maximum of these two concave functions by (2) and will generally not
be globally concave (Clausen and Strub (2013)). Further, Vt(M) will generally have a kink
point at the value M = Mt where the two choice-specific value functions cross, that is,
vt(Mt�1) = vt(Mt�0). We refer to these as primary kinks because they constitute opti-
mal retirement thresholds for the worker in each period t. The optimal retirement rule is
given by dt(M) = 1 if M <Mt and dt(M) = 0 if M ≥Mt .

The worker is indifferent between retiring and working at the primary kink Mt , and
Vt(M) is nondifferentiable at this point. However, the left and right hand side derivatives,
V −
t (M) and V +

t (M), exist and satisfy V −
t (Mt) < V +

t (Mt). The discontinuity in the deriva-
tive of Vt(M) at Mt leads to a discontinuity in the optimal consumption function in the
previous period t − 1 because the Bellman equation for Vt−1(M) depends on Vt(M). In
turn, this causes a kink in Vt−1(M) that we label a secondary kink since it is a reflection of
the primary kink in Vt(M). Thus, the primary kinks propagate back in time and manifest
themselves in an accumulation of secondary kinks in the value functions in earlier peri-
ods, resulting in an increasing number of discontinuities in the consumption functions
in earlier periods of the life cycle. The discontinuities in consumption rules in period t

are caused by the worker’s anticipation of landing exactly at the kink points in periods
t + 1� t + 2� � � � �T under the optimal consumption policy.

Theorem 1 (Analytical Solution to the Retirement Problem). Assume that income and
disutility of work are time-invariant, the discount factor β and the disutility of work δ are
not too large, that is,

βR≤ 1 and δ < (1 +β) log(1 +β)� (6)
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and instantaneous utility is given by u(c) = log(c). Then for τ ∈ {1� � � � �T } the optimal
consumption rule in the worker’s problem (2)–(4) is given by

cT−τ(M)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M if M ≤ y/Rβ�

[M + y/R]/(1 +β) if y/Rβ ≤M ≤M
l1
T−τ�[

M + y
(
1/R+ 1/R2)]/(1 +β+β2) if M

l1
T−τ ≤M ≤ M

l2
T−τ�

· · · · · ·[
M + y

(
τ−1∑
i=1

R−i

)](
τ−1∑
i=0

βi

)−1

if M
lτ−2
T−τ ≤M ≤ M

lτ−1
T−τ�[

M + y

(
τ∑

i=1

R−i

)](
τ∑

i=0

βi

)−1

if M
lτ−1
T−τ ≤M <M

rτ−1
T−τ�[

M + y

(
τ−1∑
i=1

R−i

)](
τ∑

i=0

βi

)−1

if M
rτ−1
T−τ ≤M <M

rτ−2
T−τ�

· · · · · ·
[
M + y

(
1/R+ 1/R2)]( τ∑

i=0

βi

)−1

if M
r2
T−τ ≤M <M

r1
T−τ�

[M + y/R]
(

τ∑
i=0

βi

)−1

if M
r1
T−τ ≤M <MT−τ�

M

(
τ∑

i=0

βi

)−1

if M ≥MT−τ�

(7)

The segment boundaries are totally ordered with

y/Rβ<M
l1
T−τ < · · · <M

lτ−1
T−τ <M

rτ−1
T−τ < · · · <M

r1
T−τ <MT−τ� (8)

and the rightmost threshold MT−τ, given by

MT−τ = (y/R)e−K

1 − e−K
� where K = δ

(
τ∑

i=0

βi

)−1

� (9)

defines the smallest level of wealth sufficient to induce the consumer to retire at age t =
T − τ.

The proof of Theorem 1—in particular, the expressions for the kink points Mli
T−τ and

M
ri
T−τ—is available in a supplementary file on the journal website, http://qeconomics.

org/supp/643/supplement.pdf. However, we show how this solution is derived when we
introduce the DC-EGM algorithm in the next section.7

7Note that the assumptions on the parameters β, δ, and R are needed to ensure the ordering of the
bounderies (8). Modified versions of Theorem 1 hold under weaker conditions, including a version where
income and the disutility of work are age-dependent. However, depending on the paths of income and

http://qeconomics.org/supp/643/supplement.pdf
http://qeconomics.org/supp/643/supplement.pdf
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Theorem 1 establishes that the optimal consumption rule of the worker cT−τ(M) is
piecewise linear in M , and in period t consists of 2(T − t)+1 segments. The first segment
where M < y/Rβ is the credit constrained region where the agent consumes all available
wealth and does not save. The next T − t − 1 segments are demarcated by the liquidity

constraint kink points M
lj
t that define values of M at which the consumer is liquidity

constrained at age t + j but not at any earlier age. The remaining segments are defined
by the secondary kinks, M

rj
t , j = 1� � � � �T − t − 1, and represent the largest level of saving

for which it is optimal to retire at age t + j but not at any earlier age. Finally, Mt is the
retirement threshold, which denotes the minimum level of wealth that is required to
retire. This is also the primary kink point as explained above. The optimal consumption
function is discontinuous at points M

rj
t , and Mt , so in total there are T − t downward

jumps in the consumption function.
Theorem 1 implies that the value function Vt(M) is piecewise logarithmic with the

same kink points, and can be written as Vt(M) = Bt log(ct(M))+Ct for constants (Bt�Ct)

that depend on the region that M falls into. The function Vt(M) has one primary kink at
the optimal retirement threshold Mt and T − t − 1 secondary kinks at M

rj
t , j = 1� � � � �T −

t − 1. In addition there are T − t kinks related to current and future liquidity constraints

at M = y/Rβ and M
lj
t , j = 1� � � � �T − t − 1. If Rβ = 1, the liquidity-related kink points

collapse to a single point M = y/Rβ = y = M
l1
t = · · · = M

lT−t−1
t , as in the case shown in

Figure 3 in Section 2.3.

2.2 DC-EGM for problems without taste shocks

We are now in a position to introduce a generalization of the EGM algorithm for solv-
ing discrete-continuous problems that we call the DC-EGM algorithm. We describe DC-
EGM by showing how it can be used to solve for the optimal consumption rule in the
last three periods of the worker’s problem. As the original EGM constitutes a building
block of DC-EGM, we illustrate it as well using the consumption choice problem of the
retiree. After explaining the DC-EGM algorithm, we compare its numerical performance
and show that DC-EGM can closely approximate the analytic solution in Theorem 1.

DC-EGM is a backward induction algorithm that uses the inverted Euler equation to
sequentially compute (potentially without root-finding) the choice-specific value func-
tions vt(M�d) and the corresponding choice-specific consumption functions ct(M�d)

starting at the last period of life, T . Note that in a generic period t of the backward induc-
tion, the Bellman equation (4) of a worker who remains working implies the following
first order condition for the consumption choice known as the Euler equation:

0 = u′(c)−βRu′(ct+1
(
R(M − c)+ y

))
= 1/c − βR

ct+1(R(M − c)+ y)
�

(10)

disutility of work, some of the intermediate thresholds in Theorem 1 may not exist or may be equal to each
other.
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Similarly the Bellman equation (3) for the worker who decides to retire implies the Euler
equation

0 = u′(c)−βRu′(crt+1
(
R(M − c)

))
= 1/c − βR

crt+1(R(M − c))
�

(11)

where the second equality shows the case of u(c) = log(c). Given the period t + 1 opti-
mal consumption functions ct+1(M) for workers and crt+1(M) for retirees, the solutions
to these Euler equations yield the period t choice-specific consumption functions of the
worker, ct(M�d).8 The solutions are computed by applying the inverse of the marginal
utility to the second component in (10) and (11). When such an inverse function is an-
alytical, specifying an exogenous grid over end-of-period saving A = M − c facilitates
solving for optimal current consumption in closed form without resorting to iterative
numerical methods. This is the idea behind the endogenous grid method (EGM) pro-
posed by Carroll (2006) that we build on.

Consider the terminal period T . The optimal consumption rule is to consume all
available wealth and, thus, is given by cT (M�d)=M . With positive disutility of working,
all agents retire (i.e., MT = 0) since income is paid at the end of the period, so it follows
that dT (M)= 0. This solution provides the base for backward induction.

Now consider a retiree in period T − 1. Note that because the Bellman equation of
the retiree (5) is identical to that of the worker who decides to retire (3), the Euler equa-
tion (11) also characterizes the optimal consumption choices of the retiree, cRt (M). In
T − 1 the closed-form solution of (11) is cRT−1(M) = M/(1 + β). Consider how this so-
lution is computed using the original EGM algorithm by Carroll (2006). EGM uses the
Euler equation (11) to construct an endogenous grid over M from an exogenous grid over
savings A = M − c. Let �A = {A1� � � � �AJ} denote the exogenous grid over savings. Be-
cause savings is a sufficient statistic, that is, carries all the information about wealth and
consumption in the period, Euler equation (11) can be solved for c for each point Aj .
As mentioned above, when u′(c) is analytically invertible, the solution is also analytical.
For the case u(c) = log(c), the solution is easily seen to be crT−1(Mj�T−1) = Aj/β, where

Mj�T−1 is an element of the endogenous grid �MT−1 implied by the exogenous grid over
savings �A in period T − 1. We have Mj�T−1 = Aj + crT−1(Mj�T−1) = Aj(1 + 1/β), which
implies the EGM solution crT−1(Mj�T−1)= Mj�T−1/(1 +β).

Thus, at the points of the endogenous grid �Mt , EGM produces an exact solution in
the sense that the Euler residuals exactly equal zero. Between these points calculation
of the optimal consumption requires function approximation, typically linear interpo-
lation. With the latter, EGM produces the exact (linear) solution for the consumption
function of a retiree.

8Note the distinction between crt+1(M) and ct+1(M) which are the state-specific optimal consumption
functions at time t + 1, and ct(M�0) and ct(M�1) which are the decision-specific consumption functions at
time t for the worker. The distinction can be confusing since “work” and “retirement” are both states and
decisions but it is important. We focus on the worker problem and skip the Euler equation for the retiree
who have no additional discrete choice over retirement due to our assumption that retirement is absorbing.
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Now consider a worker in period T − 1. The worker must solve for two consumption
functions cT−1(M�0) and cT−1(M�1) corresponding to the decision to retire or not, re-
spectively. However no special complications are created at this point: we simply apply
“standard EGM” to solve for the optimal consumption rule of a worker cT−1(M�d) for
each of the discrete decisions d, using Euler equation (10) or (11) just as we described
for the case of a retiree above. Similar to above, with linear interpolation this also results
in exact solutions cT−1(M�1) = (M + y/R)/(1 +β) and cT−1(M�0)=M/(1 +β).

To ensure that the credit constraint cT−1 ≤ M is satisfied in the presence of noncap-
ital income y, standard EGM has an additional step.9 Namely, from (10) it follows that
invoking the EGM algorithm with zero savings, Aj = 0, produces an endogenous point
Mj�T−1 = y/Rβ. As we show below in Theorem 2, it holds that savings as a function of
wealth must be nondecreasing, and, therefore, for M ≤ y/Rβ the savings must remain
zero, that is, cT−1(M�1)= M . To add this additional “credit-constrained” segment to the
optimal consumption function, it is sufficient to add a point M0�T−1 = 0 to the endoge-
nous grid �MT−1, and set the corresponding optimal consumption cT−1(M0�T−1�1) =
M0�T−1 = 0. This way, when linear interpolation is used, EGM finds the first two seg-
ments of the true solution cT−1(M�1) given in equation (7) of Theorem 1 exactly, includ-
ing the location of the first kink point.

In summary, when there are discrete choices, DC-EGM invokes the EGM algo-
rithm to calculate, via simple linear interpolation as described above, piecewise lin-
ear approximations of the decision-specific consumption functions ct(M

d
j�t� d) defined

over decision-specific endogenous grids �Md
t = {Md

1�t � � � � �M
d
J�t}. However, what is different

about DC-EGM is that we need to compare the choice-specific value functions vt(M�0)
and vt(M�1) so as to locate the threshold level of wealth when it becomes optimal to
retire, Mt . DC-EGM constructs approximations to vt(M�0) and vt(M�1) over the respec-
tive endogenous grids �M0

t and �M1
t alongside the calculation of the optimal consumption

functions ct(M�0) and ct(M�1) by substituting the latter into the Bellman equations (3)
and (4). Using the interpolated decision-specific value functions, we then find the op-
timal retirement threshold (primary kink) Mt by finding the point of intersection of the
two decision-specific value functions, vt(Mt�0) = vt(Mt�1).

The overall value function for the worker Vt(M) is then computed as an upper enve-
lope of the two choice-specific value functions vt(M�d), each defined over the endoge-
nous grid �Md

t . Similarly, the overall consumption function of the worker cT−1(M) is com-
bined from choice-specific consumption functions cT−1(M�1) and cT−1(M�0) depend-
ing on whether the level of wealth M is below or above the primary kink point MT−1,
fully in line with formula (7) of Theorem 1 for τ = 1.

So far DC-EGM seems to be a rather straightforward extension of standard EGM, but
at period T − 2 we encounter an important additional complication: the emergence of
secondary kinks due to multiple local optima for c in the Bellman equation (4). Recall
that Vt(M) is the maximum of decision-specific value functions and is not globally con-
cave. In particular, VT−1(M) has a nonconcave region near MT−1, where the decision-
specific value functions vT−1(M�0) and vT−1(M�1) cross. This implies that at time T − 2

9Note that the credit constraint never binds in the retiree’s problem.
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when we search over c to maximize log(c)+βVT−1(R(M − c)+ y�1) in (4), for some lev-
els of M there will be multiple local optima for c with corresponding multiple solutions
to the Euler equations. Thus, DC-EGM must also take care to select the correct solution
to the Euler equation corresponding to the globally optimal consumption value. This is
achieved by the calculation of the upper envelope over the overlapping segments of the
decision-specific value functions that are produced from different solutions. The dom-
inated grid points are then eliminated from the endogenous grid in a way we describe
below.

We illustrate this crucial step in the DC-EGM algorithm by showing how subopti-
mal endogenous grid points are eliminated in the worker’s decision-specific value func-
tion vT−2(M�1) in Figure 1.10 With the parameter values listed in the Figure 1 legend,
in period T − 1 the primary kink is MT−1 = 30�4382. In panel (a) we plot the maximand
of the Bellman equation (4), log(c) + βVT−1(R(M − c) + y), in period T − 2 for differ-
ent values of M . The kink in VT−1(M) and the nonconcave region around it translate
directly into a kink and a nonconcave region around it in the maximand for various
levels of M . Location of the latter kink depends on M , for example, in the lowest dot-
ted line plotted for M = 28 the kink at MT−1 in VT−1(M) induces a kink at c = 17�5618.
In general, we have that the kink in c occurs at c = M − (MT−1 − y)/R and, thus, in-
creases monotonically in M . With the kink at c = M − (MT−1 − y)/R, the maximand
log(c)+βVT−1(R(M−c)+y) has multiple locally optimal values of c on either side of the
former. Panel (a) shows that for M < 30�5626 =M

r1
T−2 (notation of Theorem 1) the global

optimum is to the right of the kink point, and vice versa for M >M
r1
T−2. At M = M

r1
T−2 the

consumer is indifferent between the two locally optimal solutions.
The multiplicity of locally optimal solutions for c in the region near the secondary

kink M
r1
T−2 is also reflected in multiple solutions to the corresponding Euler equation

as shown in panel (c) of Figure 1. The discontinuity in the Euler residual functions are
located at the same kink points.

Panel (b) of Figure 1 shows the implied consumption function and endogenous grid
�M1
T−2 that result from the application of the standard EGM method in period T − 2. We

label each of the points (Mj�T−2� cj) resulting from the application of EGM to the first
20 exogenous saving grid points A1 = 0, A2 = 1, up to A20 = 19. The striking result is
that EGM produces a nonmonotonic endogenous grid �M1

T−2 as is indicated by the dot-
ted line that connects (M11�T−2� c11�T−2)= (35�76�25�76) to the point (M12�T−2� c12�T−2) =
(26�98�15�98). Evidently, this reflects both a discontinuity and a drop in both M and c.
Note also that EGM has produced a consumption correspondence rather than a con-
sumption function because of the two possible consumption values at the endogenous
grid points (M12�T−2� � � � �M18�T−2). In addition, the jump in this consumption corre-
spondence at M11�T−2 going backward to an endogenous grid point M12�T−2 <M11�T−2
contradicts the theoretical property of the correct solution due to the following theorem.

Theorem 2 (Monotonicity of the Saving Function). Let At(M�d)=M − ct(M�d) denote
the savings function implied by the optimal consumption function ct(M�d). If u(c) is a

10In fact, multiple solutions to the Euler equation cause the standard EGM loop to produce a “value
correspondence” rather than a value function, while the elimination of suboptimal grid points converts
this correspondence back to a proper function.
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Figure 1. DC-EGM in period T −2 of the retirement problem, where T = 20. The plots illustrate
how suboptimal endogenous points in the value function of the worker who in period T − 2 de-
cides to continue working, vT−2(M�1), are eliminated in the DC-EGM algorithm. Parameters of
the model are T = 20, R= 1, β= 0�98, δ= 1, and y = 20. Panel (a) plots the maximand of the Bell-
man equation (4); panel (b) shows the points of the optimal consumption functions computed
by the standard EGM, corresponding to the endogenous grid points in panel (d); panel (c) show-
cases the discontinuous Euler equation by plotting Euler residuals for several values of wealth
M , corresponding to panel (a); panel (d) plots the “value correspondence” produced by the stan-
dard EGM in the nonconcave region of the problem and the location of the kink point found by
DC-EGM.

concave function, then for each t ∈ {1� � � � �T } and each discrete choice d ∈ {0�1} the opti-
mal saving function At(M�d)=M − ct(M�d) is monotone nondecreasing in M .

The proof of a more general version of Theorem 2 for arbitrary DC models is given
in Appendix A. It implies that the nonmonotonic endogenous grid �M1

T−2 illustrated in
panel (b) of Figure 1 is inconsistent with an optimal solution to the problem. How can
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this be rectified? In panel (d) of Figure 1 we illustrate the key second step of DC-EGM—
refinement of the endogenous grid to discard the suboptimal points produced by the
EGM step. This is achieved by constructing the upper envelope over the segments of the
discrete choice-specific value function correspondence in the region of M where multi-
ple solutions were detected. The detection itself relied on checking for monotonicity of
the endogenous grid.

In panel (d) of Figure 1, M12�T−2 < M11�T−2, and, thus, two segments are formed
(the first indicated with “×” symbols over points j ∈ {1� � � � �11}, and the second indi-
cated with “◦” symbols over points j ∈ {11� � � � �20}). The solid vertical line is drawn
at the secondary kink point M

r1
T−2 (notation of Theorem 1) where the two segments

intersect. It follows that to the left of M
r1
T−2 the higher first segment contains the

global solutions, while to the right of M
r1
T−2 it is the second segment that contains

global maxima. Therefore, points j ∈ {8� � � � �14}, which correspond to the lower values,
are suboptimal and should be discarded. The identified dominated points are elimi-
nated from the endogenous grid �M1

T−2, forming the refined endogenous grid �M∗1
T−2 =

{M1�T−2� � � � �M7�T−2�M15�T−2� � � � �M20�T−2} that is monotonic. To further increase the
accuracy of the solution, the refined grid �M∗1

T−2 can be supplemented by the kink point

M
r1
T−2 itself.

With the refined monotonic endogenous grid �M∗1
T−2 constructed from the upper en-

velope of the interpolated value functions, we obtain a close approximation to the cor-
rect optimal consumption rule cT−2(M�1) as we can see in panel (b) of Figure 1. That is,
for M ≤ M

r1
T−2 optimal consumption is given by the upper line marked with “×” sym-

bols, while for M >M
r1
T−2 optimal consumption is given by the lower line marked with

“◦” symbols. There is a discontinuous downward jump in consumption from endoge-
nous grid point M7�T−2 to the next point M15�T−2, unless the kink point M

r1
T−2 is also

added, marking the point of vertical drop in the consumption function. Using this re-
fined monotonic endogenous grid �M∗1

T−2 (even with a small number of grid points J),
the DC-EGM produces very accurate approximations to the true solutions VT−2(M) and
cT−2(M) that capture both the kink in the former and the discontinuity in the latter.

This completes our description of DC-EGM: the described procedure is repeated for
all periods t to solve the retirement problem via backward induction on the Euler and
Bellman equations. In the next section we verify that DC-EGM produces accurate ap-
proximations to ct(M�d), d = 1, at all periods t ∈ {1� � � � �T }. It also generates accurate
estimates of the secondary kink points M

rj
t that capture discontinuous reductions in

consumption that reflects the anticipated primary kink MT−1 under the optimal con-
sumption policy.

2.3 Numerical performance of the DC-EGM

Figure 2 displays the optimal consumption function (7) and compares it to the numer-
ical solution produced by DC-EGM, as well as the numerical solution produced by a
naive brute force implementation of value function iteration (VFI). VFI solves the Bell-
man equations (3) and (4) by backward induction over an exogenous grid on M and us-
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Figure 2. Optimal consumption functions. The plots show optimal consumption rules of the
worker in the consumption–savings model with R = 1, β = 0�98, y = 20, and T = 20. Panel (a)
illustrates the analytical solution (which is indistinguishable from the the numerical solution
produced by DC-EGM), panel (b) illustrates the numerical error from the solution found by
DC-EGM, panel (c) shows the numerical solution found by VFI, and panel (d) shows the asso-
ciated numerical errors. Both the VFI and DC-EGM solutions were generated using 2000 points
in the M-grid. For VFI, grid points are equally spaced, the maximum level in the wealth is 600,
and 10,000 equally spaced points of consumption between zero and M(t) are used to solve the
maximization problem in the Bellman equation.

ing numerical optimization to search for optimal consumption at each M grid point.11

With a sufficient number of grid points, DC-EGM is able to accurately locate all the dis-
continuities of the analytical consumption rules (M

rj
t ) and the boundary of the credit-

11Simple linear interpolation of the value function at the exogenous grid points over M was used to
implement numerical optimization for values of c where implied next period resources R(M − c)+ y does
not lie on the predefined exogenous grid �M . To enable a fair comparison with DC-EGM, we did use the
analytical expressions for the value functions and consumption functions in the retiree problem.
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constrained region y/Rβ. Yet, because the kinks points associated with the credit con-

straint in future periods, M
lj
t , are not located precisely by DC-EGM, the right panel of

Figure 2 shows small relative errors on the order of 10−4 in the intervals (y/Rβ�M
τ−1
T−τ) in

each period T − τ. Overall, the numerical solution by DC-EGM replicates the analytical
solution remarkably well.12

Panels (c) and (d) of Figure 2 show the solution produced by the VFI method where
the optimal consumption levels are found by a fine grid search method. This implemen-
tation of VFI could admittedly be thought of as too simplistic, with possible improve-
ments in how the grid points are located and spaced, which computational methods
are employed to search for optimal consumption in each grid point, and so forth. Yet,
the point we wish to make is that a standard “off the shelf” version of the VFI method
may have serious difficulties when solving DC problems due to its failure to adequately
capture the secondary kinks in the value function that get “papered over” via naive ap-
plication of the standard method of linear interpolation of the value functions. The bot-
tom panels of Figure 2 shows that the VFI solution results in significant approximation
errors and is unable to fully capture the numerous discontinuities in the consumption
function.

Figure 3 plots the optimal consumption functions and simulated consumption
paths under the same assumptions as in Figure 2 except in this case we set R = 1/β =
1�02. The theoretical prediction for the consumption–savings model without retirement
is that, with Rβ = 1, simulated consumption paths should be completely flat. Yet, the
consumption functions shown in the left panel display numerous discontinuities that
accumulate backward from the final period T = 20. Beyond the important economic
message that discontinuous consumption functions are not incompatible with con-
sumption smoothing, this also illustrates the remarkable precision of the DC-EGM al-
gorithm. In fact, when we simulate consumption trajectories implied by this incredibly
complex solution found numerically, the simulated consumption profiles are still per-
fectly flat.

Before we describe in detail how DC-EGM works, we now illustrate how the incor-
poration of various types of uncertainty, including extreme value taste shocks, renders
the accumulation of kinks in the value function and discontinuities in the consumption
function considerably less severe.

3. DC-EGM for problems with taste shocks

In this section we introduce income and taste shocks into the consumption and retire-
ment model and show how DC-EGM is modified to accommodate these shocks. We

12With 2000 points on the endogenous grid over wealth it took our Matlab/C implementation around
0�17 seconds on a Lenovo ThinkPad laptop with an Intel® Core™ i7-4600M central processing unit (CPU)
at 2�10 GHz and 8 GB random access memory (RAM) to generate the numerical solution by DC-EGM. This is
about 20 times faster than VFI, which we implemented in Matlab with 500 fixed grid points over wealth. The
discretization of consumption is a brute force approach to ensure that global optimum is found. We used
400 equally spaced guesses for each level of wealth. The fact that EGM offers the speedup of 1–2 orders
of magnitude relative to VFI is a well established finding in the literature; see, for example, Barillas and
Fernández-Villaverde (2007), Jørgensen (2013), Fella (2014), Ameriks et al. (2015).
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Figure 3. Discontinuous consumption function and smooth consumption paths. The plots
show optimal consumption functions of the worker in the consumption–savings model with
with T = 20, dt = 1, y = 20, β = 0�98, and R = 1/β = 1�02. The left panel illustrates the solution
for t = 1�10�18, while the right panel presents consumption paths simulated over the whole life
cycle for several initial levels of wealth. The model was solved by the DC-EGM algorithm.

show how primary and secondary kinks are smoothed in the presence of the random
factors in the model, and explain how the numerical solution is simplified even though
the problem remains nonconvex in general.

Three effects are at play. First, because the discrete choice policy is expressed in
probabilistic terms, the calculation of primary kink points is no longer needed. Second,
as a result, the process of accumulation of secondary kinks is perturbed: the pertur-
bations caused by the primary kinks that remain throughout the backward induction
process in the deterministic setting “fade out” in the presence of shocks. Third, the cal-
culation of expectations over random income in the problem with taste shocks can be
performed with standard numerical algorithms, as opposed to the setting with random
income but without taste shocks. We discuss each of these points in detail below.

3.1 Taste and income shocks in the retirement problem

Consider an extension of the model presented in Section 2 where the consumer faces
income uncertainty and where choices are affected by discrete choice-specific taste
shocks. More specifically, assume that income when working is yt = yηt , where ηt is
log-normally distributed multiplicative idiosyncratic income shock, logηt ∼ N (−σ2

η/2�
σ2
η).13

Following a vast literature on discrete choice modeling originating with McFadden
(1973), we assume that random choice-specific taste shifters σεεt(d), d ∈ {0�1}, are ad-
ditively separable, i.i.d. and have an extreme value distribution with scale parameter σε.

13As mentioned above, we follow the literature in the assumption that idiosyncratic income shocks are
realized after the labor supply choice is made, which is equivalent to allowing income to be dependent on
a lagged choice of labor supply.
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These shocks can be interpreted in the structural sense as the information relevant for
the discrete choices that is observed by the agents but not by the econometrician. In
this case, the scale parameter σε can be estimated from the data. Alternatively, if the
true model is deterministic, σε can be interpreted as a (logit) smoothing parameter that
can be chosen to approximate the true model with arbitrary precision; see Theorem 3
below.

Because discrete choice-specific taste shocks as well as income shocks only enter
the worker problem, the solution of the retiree problem (5) remains the same. As for
the worker problem, the inclusion of taste shocks requires us to rewrite the Bellman
equation (2) as

Vt(M�ε)= max
{
vt(M�0)+ σεε(0)� vt(M�1)+ σεε(1)

}
� (12)

where the value function conditional on the choice to retire, vt(M�0), is still given by (3).
However, the value function conditional on the choice to remain working, vt(M�1), is
modified to account for the taste and income shocks in the following period, namely

vt(M�1)= max
0≤c≤M

{
log(c)− δ+β

∫
EV σε

t+1

(
R(M − c)+ yη�1

)
f (dη)

}
� (13)

Because the taste shocks are independent extreme value distributed random vari-
ables, the expected value function, EV σε

t+1, is given by the well known log-sum formula
(McFadden (1973))

EV σε
t+1(M�1) =E

[
max

{
vt+1(M�0)+ σεε(0)� vt+1(M�1)+ σεε(1)

}]
= σε log

(
exp

{
vt+1(M�0)/σε

}+ exp
{
vt+1(M�1)/σε

})
�

(14)

The immediate effect of introducing extreme value taste shocks is the complete
elimination of the primary kinks, because the location of the indifference point in (12)
is now probabilistic from the point of view of the econometrician. Instead of calculating
the location of the primary kink Mt in the value function of the worker V (M), the dis-
crete choice policy function is now given by the logit choice probabilities Pt(d|M) that
arise due to the distributional assumption for the taste shocks:

Pt(d|M)= exp
{
vt(M�d)/σε

}
exp

{
vt(M�1)/σε

}+ exp
{
vt(M�0)/σε

} � d ∈ {0�1}� (15)

Because ε is unobserved it becomes impractical to carry out the calculations in
terms of overall value function V (M) and overall consumption function c(M). Instead,
in the presence of taste shocks, DC-EGM operates on the discrete choice-specific value
functions v(M�d) and consumption functions c(M�d), and computes choice probabil-
ities (15) at each time period t. It is worth noting that the problem is still not globally
concave in general, so the upper envelope calculation and the elimination of the sub-
optimal endogenous grid points is still performed as described in Section 2.2. However,
when σε is sufficiently large, the value function Vt(M) in (12) eventually becomes glob-
ally concave. To see this, note that as the variance of the taste shocks increases, the
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choice-specific value functions are dominated by the noise and the differences between
the alternatives become relatively less important. In turn, the components in (12) be-
come similar, and limσε↑∞ EV σε

t (M)/σε = log(2). It follows from (12) then that the value
function vt(M�1) inherits its globally concave shape from the utility function.

The income shocks14 in the model also smooth out the secondary kinks during back-
ward induction. When the agent cannot perfectly anticipate having next period wealth
exactly at the kink point, the secondary kinks are not replicated perfectly in the prior pe-
riods. Together these two sources of uncertainty make numerical solution significantly
easier by reducing the number of times the secondary envelope routine is called by DC-
EGM to refine the nonmonotonic endogenous grid, as described in Section 2.2 and Al-
gorithm 2 below.

Figure 4 shows the consumption function ct(M�1) for a worker conditional on
the choice to continue working for different values of the taste shock scale parameter
σε ∈ {0�0�01�0�05�0�10�0�15}. The left panel plots the optimal consumption in the ab-
sence of income uncertainty (ση = 0) while income uncertainty (ση = √

0�005) is added
in the right panel. The plots are drawn for the period T − 5, corresponding to four dis-
continuities of the choice-specific policy function (which is in line with Theorem 1, not
counting the one at the primary kink point MT−5). It is evident that taste shocks of larger
scale (σε ≥ 0�05) manage to smooth the function completely, eliminating all four discon-
tinuities in the consumption function. Yet, for σε = 0�01 only the last (rightmost) discon-
tinuity is obviously smoothed out. When the model has other stochastic elements such
as wage shocks or random market returns, the accumulation of secondary kinks may be
less pronounced due to the additional smoothing. Yet, in the absence of taste shocks,

Figure 4. Optimal consumption rules for the worker who remains working, ct(M�1). The plots
show optimal consumption rules of the worker who decides to continue working in the con-
sumption–savings model with retirement in period t = T − 5 for a set of taste shock scales σε in
the absence of income uncertainty, ση = 0 (left panel), and in presence of income uncertainty,
ση = √

0�005 (right panel). The rest of the model parameters are R= 1, δ= 1, β = 0�98, and y = 20.

14Equivalently, random returns or other stochastic factors in the intertemporal budget constraint.
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the primary kinks cannot be avoided even if all secondary kinks are eliminated by a suf-
ficiently high degree of uncertainty in the model. It is in this setup, which also appears
to be mostly used in practical applications, where the introduction of the extreme value
distributed taste shocks is especially beneficial. The taste shocks and other structural
shocks together contribute to the reduction of the number of secondary kinks and to
the alleviation of the issue of their multiplication and accumulation. It is clear from the
right panel of Figure 4 that discontinuities in the consumption function can be elimi-
nated with a smaller taste shock (σε = 0�01) when additional smoothing through other
types of uncertainty is present in the model.

Because the expected value function in (14) is a smooth function of M around the
point where vt(M�1) = vt(M�0), the maximand in (13) is also smooth in this region. This
leads to an additional benefit of the inclusion of taste shocks, namely that standard nu-
merical integration algorithms for the smooth function can be used when calculating
the integral in (13). When σε = 0, using procedures like Gaussian quadrature typically
results in spurious discontinuities as shown in the left panel of Figure 5. This is due to
the integrand not being a smooth function; see Appendix B for a detailed discussion.
The right panel of Figure 5 illustrates how moderate smoothing (σε = 0�05) significantly
reduces this approximation error and removes the artificial kinks.

When the taste shocks εt have an interpretation as stochastic noise that is intro-
duced to help solve a difficult DC dynamic program by making it more smooth, σε is
the amount of smoothing and has to be chosen and fixed prior to estimation. Theo-
rem 3 shows that the level of σε can always be chosen in such a way that the perturbed
model approximates the underlying deterministic model with an arbitrary degree of pre-
cision.

Figure 5. Artificial discontinuities in consumption functions, σ2
η = 0�01, t = T − 3. The figure

illustrates how the number of discrete points used to approximate expectations regarding future
income affects the consumption functions from value function iteration (VFI) and DC-EGM.
Panel (a) illustrates how using few (10) discrete equiprobable points to approximate expecta-
tions produce severe approximation error when there is no taste shocks. Panel (b) illustrates how
moderate smoothing (σε = 0�05) significantly reduces this approximation error.
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Theorem 3 (Extreme Value Homotopy Principle). In every time period the (expected)
value function of the consumption and retirement problem with extreme value taste
shocks EV σε

t (Mt) defined in (14) converges uniformly to the value function of the same
problem without taste shocks Vt(M�1) defined in (2) as the scale of these shocks ap-
proaches zero. The uniform bound

∀t: sup
M≥0

∣∣EV σε
t (M�1)− Vt(M�1)

∣∣≤ σε

[
T−t∑
j=0

βj

]
log(2) (16)

holds. Consequently, as σε ↓ 0, both continuous and discrete decision rules of the
smoothed model with taste shocks converge pointwise to those of the deterministic model.

In Appendix D we prove a more general version of Theorem 3 that holds under weak
conditions for arbitrary DC models. Theorem 3 formalizes the results presented graph-
ically in Figure 4, and justifies our claim that the extreme value smoothing can be re-
garded as a homotopy method for solving the nonsmooth limiting problem without
taste shocks by solving a smooth “nearby” problem with extreme value taste shocks. The
extreme value scale parameter σε plays the role of the “homotopy parameter.”

3.2 Extending DC-EGM for taste shocks and income uncertainty

In the presence of taste shocks and income uncertainty, the DC-EGM algorithm remains
largely the same, and potentially even simpler because the calculation of the primary
kinks Mt is replaced by the calculation of choice probabilities using formula (15). The
biggest difference is that with taste shocks, the DC-EGM operates on the choice-specific
values, as was mentioned in Section 3.1. We present the pseudo-code of the full algo-
rithm in this section.

If we continue to assume that retirement is an absorbing state, the problem of the
retiree remains the same, and we focus again on the worker’s problem. With taste and
income shocks it is given by (12), (3), and (13), with the modified “smoothed” Euler equa-
tion taking the form15

0 = u′(c)−βR

∫ [
u′(ct+1

(
R(M − c)+ yη�1

))
Pt+1

(
1|R(M − c)+ yη

)
+ u′(ct+1

(
R(M − c)+ yη�0

))
Pt+1

(
0|R(M − c)+ yη

)]
f (dη)

= 1
c

−βR

∫ [
Pt+1

(
1|R(M − c)+ yη

)
ct+1

(
R(M − c)+ yη�1

) + Pt+1
(
0|R(M − c)+ yη

)
ct+1

(
R(M − c)+ yη�0

)]f (dη)�
(17)

where Pt(1|M) and Pt(0|M) are the choice probabilities (15), and the last line is written
for the case u(c) = log(c).

Given the next period choice-specific consumption functions of the worker
ct+1(M�0) and ct+1(M�1), we solve (17) via the same backward induction process as

15See Lemma 1 in Appendix A.
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described in Section 2.2 for the retirement problem without stochastic shocks. As be-
fore, the induction starts at the terminal period T with the easily derived consumption
functions cT (M�0) = cT (M�1) = M , choice-specific value functions vT (M�0) = u(M) =
vT (M�1)+ δ, and the probability of remaining working PT (1|M)= 1/(1 + exp(δ/σε)).

Then working backward, we choose an exogenous grid over saving �A= (A1� � � � �AJ)

(which remains fixed throughout the backward induction process here for notational
simplicity) and compute optimal consumption {ct(A1�d)� � � � � ct(AJ�d)} for each point
Aj and for each discrete choice d by calculating the inverse marginal utility of the right
hand side of the Euler equation (17) and (11) for d = 1 and d = 0, respectively. Us-
ing these consumption functions, we construct the endogenous grid over M as �Md

t =
(Md

t�1� � � � �M
d
t�J), where Md

j is given by Md
j�t = ct(Aj�d)+Aj , j ∈ {1� � � � � J}.

For every d, if the resulting grid points are a monotonically increasing sequence,
then no violation of monotonicity of the saving function as per Theorem 2 is indicated,
and the DC-EGM method automatically reverts to the standard EGM method of Carroll
(2006). However, if �Md

t is not a monotonically increasing sequence, we apply the same
upper envelope procedure as described in Section 2.2 to eliminate the suboptimal ele-
ments of �Md

t and add a point where the disjoint segments of the value function intersect.
The last step amounts to calculating the choice-specific value functions v(M�d) along-
side the consumption functions, which is achieved by plugging the computed ct(A1� d)

into the maximand of the Bellman equation (13) for each point Aj of the exogenous grid
on savings.

After the choice-specific consumption and value functions c(M�d) and v(M�d) are
computed on the monotonic endogenous grids �M∗dt , the period t iteration of the DC-
EGM algorithm is complete. Unlike in Section 2.2, in the presence of taste shocks the
calculation of the upper envelope over the choice-specific value functions is not per-
formed. Instead, the discrete choice probabilities may be calculated using (15) for any
level of wealth M using interpolation of the choice-specific values v(M�0) and v(M�1).

We continue this procedure from period T − 1 backward to period t = 1, at which
point we have fully approximated the solution to the life-cycle retirement problem by
DC-EGM. Note that as before, in the formulation with taste shocks none of the steps of
the DC-EGM algorithm require iterative root-finding operations.

Algorithms 1, 2, and 3 provide the pseudo-code for the complete DC-EGM algorithm
for the problems with discrete shocks. The full DC-EGM algorithm (Algorithm 1) invokes
the EGM step (Algorithm 2) repeatedly to compute the value function correspondences
for all discrete choices, and then finds and removes all suboptimal points on the re-
turned endogenous grids by calling the upper envelope module (Algorithm 3). By Theo-
rem 3, it can also approximate the solution for the problems without taste shocks if the
scale parameter σε is fixed at a sufficiently small value.

While the DC-EGM is similar to the approach proposed in Fella (2014), we explic-
itly allow for extreme value type I taste shocks to preferences and show how they help
with the computational issues specific to the model of discrete-continuous choices.
The approach in Fella (2014) does not readily apply to the class of models with taste
shocks but should be adjusted along the lines described here. In particular, DC-EGM
operates with discrete choice-specific value functions and optimal consumption rules,
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Algorithm 1 The DC-EGM algorithm

Input: Structural parameters, utility function u(c), number of time peiods T , number
of grid points J, upper bound on wealth M̄ .

1: Fix the grid over savings �A= {A1� � � � �AJ} such that A1 = 0 and Aj <Aj+1

2: for t = T� � � � �1 do � Backward induction over time periods
3: for st ∈ S do � For every state (worker, retired)
4: for d = {0�1} if st = worker, or

d = 0 if st = retired do � For all admissible discrete choices
5: if t = T then � Terminal period
6: Set consumption function cT (M�d)=M

7: Set policy function vT (M�d)= u(M)+ dδ

8: else � All periods t < T

9: Call EGM Step (Algorithm 2)
Input: next period consumption and value functions ct+1(M�d′), vt+1(M�d′),

d′ ∈ {0�1}
Output: consumption and value functions ct( �Md

t �d), vt( �Md
t �d) over endoge-

nous grid �Md
t

10: Call Upper Envelope (Algorithm 3)
Input: endogenous grid �Md

t , consumption and value functions ct( �Md
t �d),

vt( �Md
t �d)

Output: refined grid �M∗d
t , consumption and value functions ct( �M∗d

t � d),
vt( �M∗d

t � d)

11: end if
12: end for
13: end for
14: end for
Output: The collection of the choice-specific consumption and value functions

ct(M�d) and vt(M�d) defined on the endogenous grids �Md
t for both worker and

retiree, d = {0�1} and t = {1� � � � �T } constitutes the solution of the consumption–
savings and retirement model

and computes integrals of smooth objects. Furthermore, contrary to Fella (2014), who
uses instances of increasing marginal utility to detect nonconcave regions, DC-EGM
uses the value function correspondence. Finally, Fella (2014) uses standard VFI in de-
tected non-concave regions while we use the solution already found in the EGM-step.
However, both approaches rely on monotonicity of the optimal end-of-period savings
function.

An important question of how the method handles the situations when the noncon-
vex regions go undetected due to relatively coarse grid �A is addressed by the Monte Carlo
simulations in the next section. We show that even with a small number of endogenous
grid points the nested fixed point (NFXP) maximum likelihood estimator based on the
DC-EGM algorithm performs well and is able to identify the structural parameters of the
model.
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Algorithm 2 The EGM step, adaptation of the standard EGM algorithm (Carroll (2006))

Input: Structural parameters, utility function u(c), current period t < T , state (st),
discrete choice d, next period consumption and value functions ct+1(M�d′),
vt+1(M�d′), d′ ∈ {0�1}, exogenous grid over savings �A= {A1� � � � �AJ}

1: for j = 1� � � � � J do � Loop over points in �A
2: Calculate next period wealth M ′ =AjR+ dyη

3: Calculate next period choice probabilities Pt+1(d
′|M ′)

4: Calculate optimal choice-specific consumption ct+1(M
′� d′) and u′(ct+1(M

′� d′))
5: Calculate choice-specific value function vt+1(M

′� d′) in period t + 1
6: Repeat Steps 2–5 to compute the right hand side (RHS) of the Euler equation (17)

and the expectation of the next period value function EV (the last component of the
maximand in (13)). Gaussian quadrature or other numerical integration algorithms
can be used to calculate the integral over income shocks η. Also, in general case, it
may be necessary to integrate over the transition probabilities P(st ′|st� d) of the state
process st, which is trivial in the retirement model.

7: Compute current period optimal consumption c(Aj�d)= (u′)−1(RHS)
8: Compute current period choice-specific value function v(Aj�d) = u(c(Aj�d)) +

dδ+ EV
9: Compute the endogenous point Md

j�t = c(Aj�d)+Aj

10: end for
11: Add an extra point Md

0�t = 0 to �Md
t and set c(0� d) = 0

Output: Endogenous grid �Md
t , consumption and value functions ct( �Md

t �d), vt( �Md
t �d)

over it

3.3 Credit constraints

Before turning to the Monte Carlo results, we briefly discuss how DC-EGM handles the
credit constraints, c ≤ M . During the EGM step, the credit constraints are dealt with in
exactly same manner as in Carroll (2006), as described in Section 2.2. Let the smallest
possible end-of-period resources A1 = 0 be the first point in the exogenous grid over
saving �A. Assuming that the corresponding point of the endogenous grid Mt(A1� d) is
nonnegative,16 it holds that A(M�d) = 0 for all M ≤ Mt(A1� d) due to the monotonicity
of the saving function A(M�d) = M − ct(M�d) (see Theorem 2). Therefore, the optimal
consumption in this region is then given by ct(M�d)= M , and the choice-specific value
function is

vt(M�d)= log(M)− dδt +β

∫
EV t+1(dyη)f (dη)� M ≤Mt(A1� d)� (18)

Note that the third component of (18) is the expected value of having zero savings. It is
calculated within the EGM step for the point A1 = 0, and should be saved separately as
a constant that depends on d but not on M . Once this constant is computed, vt(M�d)

16It is not hard to show that this holds as long as the per-period utility function satisfies the Inada condi-
tions.
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Algorithm 3 Upper envelope

Input: Endogenous grid �Md
t , choice-specific consumption and value functions

ct( �Md
t �d), vt( �Md

t �d) calculated on �Md
t

1: for j = 1� � � � � J − 1 do
2: if Md

j�t >Md
j+1�t then � Detect nonmonotonicity in the endogenous grid

3: Find j′ > j such that Md
j′+1�t >Md

j′�t
4: Define partitions �N1 = {1� � � � � j}, �N2 = {j� � � � � j′}, �N3 = {j′� � � � � J}
5: Run upper envelope calculation over segments of the “value function corre-

spondence” vt( �N1� d), vt( �N2� d) and vt( �N3� d) computed on the partitions in previ-
ous step, as described in Section 2.2 and illustrated in Figure 1, panels (b) and (d).

6: Determine a set of suboptimal grid points Q
7: Refine the endogenous grid by removing suboptimal points, so that �M∗d

t =
�Md
t \Q

8: Remove the corresponding points ct( �Md
Q�t� d), vt( �Md

Q�t� d)

9: [Optional] Add the kink point(s) M where the uppermost segments in Step 5
intersect and add the corresponding interpolated values of ct(M�d), vt(M�d)

10: end if
11: end for
Output: Refined monotonic grid �M∗d

t , consumption and value functions ct( �M∗d
t � d),

vt( �M∗d
t � d) calculated on �M∗d

t

essentially has analytical form in the interval [0�Mt(A1� d)], and thus can be directly
evaluated at any point.

When the per-period utility function is additively separable in consumption and dis-
crete choice as in the retirement model we consider, (18) holds for all d in the inter-
val 0 ≤ M ≤ mind Mt(A1� d). In other words, the choice-specific value functions for low
wealth have the same shape, which is shifted vertically with dt-specific coefficients. This
implies that the logistic choice probabilities Pt(d|M) are constant in this interval and
have to be calculated only once.

4. Monte Carlo results

In this section we investigate the properties of the approximate maximum likelihood
estimator (MLE) that we obtain using the DC-EGM to approximate the model solution
in the inner loop of the nested fixed point algorithm. We specifically focus on the role of
income uncertainty and taste shocks for the approximation bias induced by a numerical
solution with a finite number of grid points; in particular, how approximation bias de-
pends on the number of grid points in smooth as well as nonsmooth problems. After a
description of the data generating process (DGP), we present the results from a series of
Monte Carlo experiments, and show that models used in typical empirical applications
are sufficiently smooth to almost eliminate approximation bias using relatively few grid
points.
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4.1 Data generation process

For the Monte Carlo we consider a slightly more general formulation of the con-
sumption–savings and retirement problem defined in (1) with constant relative risk
aversion (CRRA) utility

max
{ct �dt }T1

T∑
t=1

βt

(
c

1−ρ
t − 1
1 − ρ

− δtdt + σεε(dt)

)
� (19)

where ρ is the CRRA coefficient.
So as to simulate synthetic data from the DGP consistent with the model and the

vector of true parameter values, we solve the model very accurately with 2000 grid points
using the DC-EGM. We refer to this solution as the true solution even though this is of
course only an accurate finite approximation of the value function.17

We consider several specifications of the model in the Monte Carlo experiments be-
low to study various aspects of the performance of the estimator. Our monte carlo exper-
iments focus on estimation of the parameter δ for the disutility of work18, which we as-
sume is time-invariant with a true values shown in Table 1. We perform 200 Monte Carlo
replications for each of the combinations of the other parameters, which are treated as
known and fixed at their true values listed in Table 1. The exception is Section 4.4 where
the true value of σε used to generate the data is zero, but where we impose that σε is
either 0�01 or 0�05. This enables us to also study the effect of model misspecification on
the Monte Carlo performance of the NFXP estimator using the DC-EGM algorithm.

For each specification of the model, 50,000 individuals are simulated for T = 44 pe-
riods. Each individual i is initiated as a full-time worker sdi�1 = 1, where we have used

sdi�t ∈ {0�1} to denote the labor market state, that is, whether an individual is retired

(sdi�t = 0) or working (sdi�t = 1). Each worker’s initial wealth Md
i�1 is drawn from a uniform

distribution on the interval [0�100]. At the beginning of each time period t, a random
log-normal labor market income shock ηt with variance parameter ση is drawn if the
individual i is working and the individual’s resources Md

t are calculated. Given the level

Table 1. Baseline true parameter values.

Description Value Description Value

Time horizon T = 44 Disutility of work δ ∈ {0�1�0�5}
Gross interest rate R = 1�03 Discount factor β= 0�97
Full time employment income y = 1�0 CRRA coefficient ρ= 2�0
Income variance ση = 0 Taste shocks scale σε ∈ {0�0�01�0�05}

17As a spot check, we have also compared this solution with the traditional value function iteration ap-
proach, where we used a grid search over 1000 discrete points on the interval [0�Mt ] to locate the optimal
consumption for each value of wealth. We find that results are essentially identical.

18Other parameters insluding the scale of taste shocks σε could have been estimated as well, but for clear
exposition we focus on a single parameter.
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of resources, discrete choice-specific value functions and choice probabilities are com-
puted, and a random draw determines which discrete labor market option ddit is cho-
sen. The labor force participation decision at t becomes the labor market state at t + 1,
sdi�t+1 = ddit . The optimal level of consumption, cit , is then computed conditional on ddit ,
and the end-of-period wealth is calculated and stored to be used for calculation of re-
sources available in the beginning of period t + 1, Md

i�t+1. We then add normal addi-
tive measurement error with standard deviation σξ = 1 to get the simulated consump-
tion data, cdit . This produces simulated panel data (Md

it� s
d
it � d

d
it � c

d
it) for each individual

i ∈ {1� � � � �50,000} in all time periods t ∈ {1� � � � �44}.

4.2 Maximum likelihood estimation

We implement a discrete-continuous version of the nested fixed point (NFXP) maximum
likelihood estimator devised in Rust (1987, 1988), where we augment the original dis-
crete choice estimator with a measurement error approach when assessing the likeli-
hood of the observed continuous choices.

Assume that a panel data set is available, {(Md
it� s

d
it � d

d
it � c

d
it)}i={1�����N}�t={1�����T }, con-

taining observations on wealth, labor market state, and discrete and continuous choices
of individuals i = 1� � � � �N in time periods t = 1� � � � �T . Let ct(Mt� st� dt |θ) denote the
consumption policy function computed by the DC-EGM for a given vector of model pa-
rameters θ = (δ�β�ρ�ση�σε). We assume that consumption is observed with additive
Gaussian measurement error,

cdit = ct
(
Md

it� s
d
it � d

d
it |θ

)+ ξit� ξit ∼N(0�σξ)� i.i.d. ∀i� t� (20)

Let ξdit(θ) = cdit − ct(M
d
it� s

d
it � d

d
it |θ) denote the difference between the predicted and the

observed consumption. We assume that the measurement error, ξit , is independent of
the taste shocks, εt(dt), and, thus, the joint likelihood of observation i in period t is given
by


it(θ�σξ) = P
(
ddit |Md

it� s
d
it � θ

)φ(ξdit(θ)/σξ

)
σξ

� (21)

where φ(·) is the density function of the standard normal distribution. We have ignored
the controlled transition probability for the retirement status sdit , since Ptr(s

d
it |sdi�t−1�

ddi�t−1) is always 1 in the data when retirement is absorbing and the labor market state is
perfectly controlled by the decision.

The choice probabilities for the workers (sdit = 1) are standard logits,

P
(
ddit |Md

it� s
d
it � θ

)= exp
(
vt
(
Md

it� s
d
it � d

d
it |θ

)
/σε

)
1∑

j=0

exp
(
vt
(
Md

it� s
d
it � j|θ

)
/σε

) � (22)

and are computed from the discrete choice-specific value functions vt(M
d
it� s

d
it � d

d
it |θ)

found by the DC-EGM given a particular value of the parameter vector θ, evaluated at
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the data. Because retirement is absorbing and thus retirees do not have any discrete
choice to make, the first component of individual likelihood contribution (21) drops out
when sdit = 0.

The joint log-likelihood function is given by L̃(θ�σξ) = log
∏N

i

∏T
t 
it(θ�σξ), where

rearranging the first order condition with respect to σ2
ξ yields the standard MLE for the

measurement error variance, σ2
ξ(θ) = 1

NT

∑Ti
t=1 ξ

d
it(θ)

2. The concentrated log-likelihood
function is, therefore, proportional to

L(θ)∝
N∑
i=1

T∑
t=1

{
sdit
σε

(
vt
(
Md

its
d
it � d

d
it |θ

)− EV t
(
Md

it� s
d
it |θ

))− 1
2

log

(
N∑
i=1

T∑
t=1

ξdit(θ)
2

)}
� (23)

where EV t (M
d
it� s

d
it |θ) is the the log sum given in (14) evaluated at parameter value θ.19

The parameter vector θ̂ that maximizes (23) is the MLE of the model parameters.

4.3 Taste shocks as unobserved state variables

We are now ready to investigate the effects of smoothing on the accuracy of the MLE
based on the DC-EGM algorithm. We conduct two Monte Carlo experiments where we
vary the degree of smoothing induced by extreme value taste shocks and income un-
certainty, respectively. Throughout we focus on estimating the parameter that indexes
disutility of work, δ, while keeping all others fixed at their true values. Appendix C con-
tains the average estimation time for DC-EGM.

Taste shocks and approximation error Figure 6 displays the root mean square error
(RMSE) of the parameter estimates for the disutility of work, δ̂. Results are shown for
varying degrees of smoothing, σε ∈ {0�01�0�05}, and different values of the disutility of

Figure 6. Monte Carlo results: disutility of work. The plots illustrate the root mean square error
(RMSE) of δ̂. Results are shown for varying degrees of smoothing, σε ∈ {0�01�0�05}, and different
values of the disutility of work, δ ∈ {0�1�0�5}. The rest of the parameters are at their baseline levels;
see Table 1.

19Following (23), the log sum only has to be evaluated for workers, sdit = 1.
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work parameter, δ ∈ {0�1�0�5}. With RMSE around 1�0e−3, the proposed estimator is al-
ready accurate with 50 grid points and rapidly improves as the number of grid points
increases from 50 through 1000. Note that standard errors will of course increase with
σε due to the increased amount of unexplained variation in the error term, and RMSE
reflects this too. Bearing this is mind, it is evident that the approximation bias decreases
as the degree of smoothing increases, that is, larger values of σε. For higher levels of
smoothing, problems with multiplicity of the Euler equation solutions disappear and
few grid points are needed to approximate the (smooth) consumption function. This is
particularly true when the disutility from work is large (δ = 0�5) because the noncon-
cave regions are larger in this case. We also calculated the Monte Carlo standard devia-
tion (MCSD),20 which is on the order of 1�0e−4 irrespective of the number of grid points
used.

Income uncertainty Additional uncertainty about, for example, future labor market in-
come tends to smooth out secondary kinks stemming from multiple solutions to the Eu-
ler equations. To illustrate how that additional smoothing affects the proposed estima-
tor, Figure 7 display RMSE when introducing income uncertainty. We report results from
two different values of the income variance,21 σ2

η ∈ {0�001�0�05}. The first level, 0�001,
does not completely smooth out secondary kinks while the significantly more uncertain
income process with σ2

η = 0�05 does (see the right panel of Figure 4).
Income uncertainty together with taste shocks smooth the problem to such a degree

that the RMSE drops by an order of magnitude when increasing the income variance
from 0�001 to 0�05. Hence, using only a few grid points when estimating such a model
will result in only minor approximation errors.

Figure 7. Monte Carlo results: income uncertainty. The plots illustrate the root mean square
error (RMSE). Results are shown for varying degrees of smoothing, σε ∈ {0�01�0�05}, and different
values of the income variance, σ2

η ∈ {0�001�0�05}. The rest of the parameters are at their baseline
levels; see Table 1.

20MCSD is defined as standard deviation of the difference between the estimates and true values accross
Monte Carlo runs, results not shown.

21The values of the income variance we use correspond well to the empirical findings, for example, in
Gourinchas and Parker (2002), Meghir and Pistaferri (2004), Imai and Keane (2004).
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As mentioned, standard errors will of course increase with σε due to the increased
amount of unexplained variation. The MCSD is quite small and unaffected by the degree
of income uncertainty as well as the number of grid points, but increases from 0�00023
to 0�00045 as σε increases from 0�01 to 0�05. This is the main explanation for why RMSE
is only smaller for a small number of grid points. Sorting out this effect, it is clear that
increasing σε decreases the amount of pure approximation bias, especially when the
number of grid points is small. Note that MCSD is very small, in part due to a relatively
large sample size, but also because the variance of the i.i.d. extreme value error term is
extremely small. In most empirical applications, σε would be larger, leading to an even
smoother problem than the one we consider here. Hence, with relatively few grid points
we can expect to obtain an even smaller approximation bias induced by the finite grid
approximation in the DC-EGM.

4.4 Taste shocks as logit smoother

Until now we have assumed that the correct model has unobserved state variables and,
thus, σε > 0 has to be estimated. To investigate how the proposed estimator performs
if the data stem from a model in which there are no unobserved states, we estimate
versions of the model where we impose σε > 0 and, thus, estimate a misspecified model.
This is interesting because if researchers have reasons to believe that the underlying
model has no shocks, the inclusion of these shocks acts as a smooth approximation to
the true deterministic model. As argued above, solving the smoothed model is much
faster since it requires fewer grid points and, thus, is much faster to estimate.

Figure 8 illustrates the RMSE of δ when using 50, 100, and 500 grid points for var-
ious levels of smoothing σε ∈ [0�001�0�05], while the correct level is σε = 0. Intuitively,
as the model becomes “more” misspecified (increasing the imposed σε), the RMSE and
the MCSD increase. Interestingly, for a given number of discrete grid points, the RMSE is

Figure 8. Monte Carlo results: true model without taste shocks (misspecified). The plots illus-
trate the root mean square error (RMSE) from estimation of a misspecified model. The model
from which data are simulated is deterministic, σε = 0, while the model used to estimate the
disutility of work imposes σε > 0. Results are shown for varying degrees of imposed smoothing,
σε ∈ [0�001�0�05] on the horizontal axes, different levels of income shocks, ση ∈ {0�0�05}, and dif-
ferent number of grid points. The rest of the parameters are at their baseline levels; see Table 1.
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minimized by a σε > 0. While large degree of smoothing induces significant approxima-
tion bias, the bias is initially falling in σε until some point at which the RMSE increases
again. The minimum of the RMSE is attained for lower levels of smoothing if additional
stochasticity (i.e., income shocks) is present in the model. This is expected because the
income uncertainty smooths the problem and less logit smoothing is needed to ob-
tain the optimal smooth approximation. It is worth noting, however, that the optimal
amount of logit smoothing may not be sufficient to completely eliminate the noncon-
vexities in the model. It is therefore essential for the solution method to be able to ro-
bustly solve optimization problems with multiple local solutions, the task that DC-EGM
performs particularly well.

These results show the potential for great speed gains by smoothing. Using only 50
grid points and imposing σε = 0�01 produces a RMSE of around the same level as using
500 grid points and imposing σε ≈ 0 close to the true model. We can reduce the number
of grid points by an order of magnitude without increasing the root mean square error
significantly simply by choosing the degree of smoothing appropriately. Note, however,
that there is naturally a trade-off between lowering the computational cost by increasing
smoothing and decreasing the number of grid points and the accuracy of the resulting
solution compared to the true solution of the nonsmooth model.

5. Discussion and conclusions

In this paper we have shown how complications from numerous discontinuities in the
consumption function to a life-cycle model with discrete and continuous choices can
be avoided by smoothing the problem and using the DC-EGM algorithm. The proposed
algorithm retains all the nice features of the original EGM method, namely that it typ-
ically does not require any iterative root-finding operations, and is equally efficient in
dealing with borrowing constraints. Moreover, we show that the smoothed model can
be successfully estimated by the NFXP estimator based on the DC-EGM algorithm even
with a small number of grid points and even when the true DGP is nonsmooth.

For expositional clarity, we focused on a simple illustrative example when explaining
the details of the DC-EGM algorithm. This also allows us to derive an analytical solution
that we can compare to the numerical one. The analytical solution provides economic
intuition for why first and second order kinks appear, and permits direct evaluation
of the precision of the DC-EGM algorithm. Admittedly, the illustrative model of con-
sumption and retirement is very stylized, and the reader may wonder if DC-EGM can be
used to solve and estimate larger, more complex, and realistic models with more state
variables, multiple discrete alternatives, heterogeneous agents, institutional constraints,
and so forth. The answer is positive. As shown in Appendix A, the DC-EGM method can
be applied to a much more general class of problems as long as the postdecision state
variable is a sufficient statistic for the continuous choice in the current period, and the
marginal utility function and intratemporal budget constraint are invertible. When the
marginal utility function is analytically invertible, DC-EGM also avoids the bulk of costly
root-finding operations.22

22The DC-EGM algorithm can also be generalized for other specifications including the models with
large state space and multidimensional discrete choice. White (2015), Iskhakov (2015), Druedahl and Jør-
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The DC-EGM method has been implemented in several recent empirical applica-
tions, where it has proven to be a powerful tool for solving and estimating more com-
plex DC models in various fields: labor supply, human capital accumulation and saving
(Iskhakov and Keane (2016)); joint retirement decisions of couples (Jørgensen (2014));
consumption, housing purchases, and housing debt (Yao, Fagereng, and Natvik (2015));
saving decisions and fertility (Ejrnæs and Jørgensen (2016)); precautionary borrowing
and credit card debt (Druedahl and Jørgensen (2015)).

We have demonstrated in the Monte Carlo experiments that the NFXP maximum
likelihood estimator based on the DC-EGM solution algorithm performs very well when
decisions are made under uncertainty, for example, in the presence of extreme valued
taste shocks and the existence of income uncertainty. Even when the true model is de-
terministic, taste shocks can be used as a powerful smoothing device to simplify the
solution without much approximation bias due to oversmoothing.

The addition of extreme value taste shocks is not only a convenient smoothing de-
vice that simplifies the solution of DC models, it is also an empirically relevant extension
required to avoid statistical degeneracy of the model. In empirical applications the vari-
ance of these shocks is typically much larger compared to what we have considered here.
This makes models smooth enough to almost eliminate approximation bias in parame-
ter estimates even with relatively few grid points. We therefore conclude that DC-EGM
is practical and appears to be a fast and accurate method for use in actual empirical
applications.

Appendix A: Theoretical foundations of DC-EGM

For the purpose of this Appendix we consider the following more general formulation of
the consumption–savings and retirement problem. Let Mt denote consumable wealth
that is a continuous state variable with particular motion rule described below, and let
st denote a vector of additional discrete or discretized state variables. Let ct be the scalar
continuous decision (consumption) and let dt be a scalar discrete decision variable with
finite set of values that could encode multiple discrete decisions if needed. Consider the
dynamic discrete-continuous choice problem given by the Bellman equation,

Vt(Mt� st) = max
0≤ct≤Mt�dt∈Dt

[
u(ct� dt� st)+ σεεt(dt)+βtEt

{
Vt+1(Mt+1� st+1)|At�dt

}]
� (24)

where t = 1� � � � �T − 1, and the last component of the maximand is absent for t = T . The
choices in the model are restricted by the credit constraint ct ≤ Mt and feasibility sets
Dt . The per-period utility includes scaled taste shocks σεεt(dt), where εt is a vector of
i.i.d. extreme value (type I) distributed random variables. The dimension of εt is equal
to the number of alternatives that the discrete choice variable may take, εt(dt) denotes
the component that corresponds to a particular discrete decision. In the general case
the discount factor βt is time-specific to allow for the probability of survival. The ex-
pectation is taken over the taste shocks εt+1 and the transition probabilities of the state

gensen (2017) present theoretical foundations for extending endogenous grid methods to multidimen-
sional models.



Quantitative Economics 8 (2017) DC-EGM method for dynamic choice models 349

process st as well as any serially uncorrelated (or idiosyncratic) shocks that may affect
Mt+1 and st+1. The expectation is taken conditional on the choices in period t using the
sufficient statistic At =Mt − ct in place of the continuous (consumption) choice.

Using the well known representation of the expectation of the maximum of extreme
value distributed random variables, the Bellman equation (24) can be written in terms
of the deterministic choice-specific value functions as

vt(Mt� st |dt) = max
0≤ct≤Mt

[
u(ct� dt� st)+βtEt

{
Vt+1(Mt+1� st+1)|At�dt

}]
(25)

= max
0≤ct≤Mt

[
u(ct� dt� st)

+βtEt
{
φ
(
vt+1(Mt+1� st+1|dt+1)�Dt+1�σε

)|At�dt
}]
�

(26)

where φ(xj� J�σ)= σ log[∑j∈J exp xj
σ ] is the log-sum function. The expectation in (26) is

now only taken with respect to (w.r.t.) state transitions and idiosyncratic shocks, unlike
in (24) and (25).

The crucial assumption for the DC-EGM is that postdecision state At constitutes the
sufficient statistic for the continuous choice in period t, that is, that transition proba-
bilities/densities of the state process (Mt� st) depend on At rather than Mt or ct directly.
It is also required that At as a function of Mt is (analytically) invertible. For our case,
assume for concreteness that At = Mt − ct , and that Mt+1 = RAt + y(dt), where R is a
gross return, and y(dt) is discrete choice-specific income. We also assume that the utility
function u(ct� dt� st) satisfies the following condition.

Assumption A (Concave Utility). The instantaneous utility u(ct� dt� st) is concave23 in ct
and has a monotonic derivative w.r.t. ct that is (analytically) invertible.

Lemma 1 (Smoothed Euler Equation). The Euler equation for the problem (24) takes the
form

u′(ct� dt� st)

= βtREt

[ ∑
dt+1∈Dt+1

u′(ct+1(Mt+1� st+1|dt+1)�dt+1� st+1
)
Pt+1(dt+1|Mt+1� st+1)

]
�

(27)

where u′(ct� dt� st) is the partial derivative of the utility function w.r.t. ct , ct+1(Mt+1�

st+1|dt+1) is the choice-specific consumption function in period t+1, and Pt+1(dt+1|Mt+1�

st+1) is the conditional discrete choice probability in period t + 1, given by

Pt(dt |Mt� st) = exp
(
vt(Mt� st |dt)/σε

)/ ∑
d∈Dt

exp
(
vt(Mt� st |d)/σε

)
� (28)

23More precisely, a weaker condition is sufficient, namely for every x and arbitrary �1 > 0 and �2 > 0 it
must hold that u(ct +�1� dt� st )− u(ct � dt� st ) ≥ u(ct +�1 +�2� dt� st )− u(ct +�2� dt� st ); see Theorem 2.
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Proof. Discrete choice-specific consumption functions ct(Mt� st |dt) satisfy the the first
order conditions for the maximization problems in (25) given by

u′(ct� dt� st)+βtE

{
∂Vt+1(Mt+1� st+1)

∂Mt+1

∂Mt+1

∂ct

}
= 0 (29)

for every value of dt ∈Dt . The envelope conditions for (25),

∂vt(Mt� st |dt)
∂Mt

= βtE

{
∂Vt+1(Mt+1� st+1)

∂Mt+1

∂Mt+1

∂Mt

}
� (30)

and because ∂Mt+1(dt)/∂Mt =R= −∂Mt+1(dt)/∂ct , it holds for all dt and t = 1� � � � �T −1:

u′(ct� dt� st) = ∂vt(Mt� st |dt)
∂Mt

� (31)

The first order condition for (26) is

u′(ct� dt� st) = βtREt

[ ∑
dt+1∈Dt+1

∂vt+1(Mt+1� st+1|dt+1)

∂Mt+1
Pt+1(dt+1|Mt+1� st+1)

]
� (32)

where choice probabilities Pt+1(dt+1|Mt+1� st+1) are given by (28). Plugging (31) into (32)
completes the proof. �

The DC-EGM algorithm outlined in Algorithm 1 is readily applicable to the general
formulation of the discrete-continuous problem (24), except for the extra loop that has
to be taken over all additional states st in Step 3 (Algorithm 1). The expectation over the
transition probabilities of the state process is calculated together with the expectation
over the other stochastic elements of the model in Algorithm 2.

The criteria for selecting the solutions of the Euler equation that correspond to the
optimal behavior in the model are based on the monotonicity of the savings function,
which is established with the following theorem.24

Theorem 4 (Monotonicity of Savings Function). Denote by At(Mt� st |dt) = Mt − ct(Mt�

st |dt) a discrete choice-specific savings function in period t. Under Assumption A, function
At(M� st |dt) is monotone nondecreasing in M for all t, st , and dt ∈Dt .

Proof. Theorem 4 is an application of Theorem 4 in Milgrom and Shannon (1994) to
the current problem. Conditional savings function At(Mt� st |dt) is a maximizer in the
expression similar to (25) for the discrete choice-specific value function vt(Mt� st |dt). As
a function of M and A, the maximand in this expression is given by

f (A�M) = u(M −A�dt� st)+βtEt
{
Vt+1

(
Mt+1(A)� st+1

)}
� (33)

where Mt+1(A) is next period wealth as an increasing function of A. It is necessary
and sufficient to show that f (A�M) is quasi-supermodular in A and satisfies the sin-

24A similar monotonicity result is also used in Fella (2014).
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gle crossing property in (A�M). The former is trivial because A is a scalar. For the latter,
consider A′ >A′′, M ′ >M ′′ and assume f (A′�M ′′) > f(A′′�M ′′). Then

f
(
A′�M ′)− f

(
A′′�M ′)

= u
(
M ′ −A′� dt� st

)− u
(
M ′ −A′′� dt� st

)
+βt

[
EV t+1

(
Mt+1

(
A′)� st+1

)− EV t+1
(
Mt+1

(
A′′)� st+1

)]
≥ u

(
M ′′ −A′� dt� st

)− u
(
M ′′ −A′′� dt� st

)
+βt

(
EV t+1

(
Mt+1

(
A′)� st+1

)− EV t+1
(
Mt+1

(
A′′)� st+1

))
= f

(
A′�M ′′)− f

(
A′′�M ′′)> 0�

(34)

For the first inequality we use

u
(
M ′ −A′� dt� st

)− u
(
M ′ −A′′� dt� st

)≥ u
(
M ′′ −A′� dt� st

)− u
(
M ′′ −A′′� dt� st

)
�

u
(
M ′ −A′� dt� st

)− u
(
M ′′ −A′� dt� st

)≥ u
(
M ′ −A′′� dt� st

)− u
(
M ′′ −A′′� dt� st

)
�

u(z�dt� st)− u(z −�M�dt� st) ≥ u(z +�A�dt� st)− u(z +�A −�M�dt� st)�

(35)

where z = M ′ − A′, �A = A′ − A′′ > 0, and �M = M ′ − M ′′ > 0, and which is due to As-
sumption A, that is, concavity of the utility function. It follows then that f (A′�M ′) >
f(A′′�M ′). Similarly, assumption f (A′�M ′′) ≥ f (A′′�M ′′) leads to f (A′�M ′) ≥ f (A′′�M ′)
and, thus, f (A�M) satisfies the single crossing property, and the monotonicity theorem
in Milgrom and Shannon (1994) applies. �

Appendix B: Spurious discontinuities from numerical integration

To illustrate how naive numerical quadrature integration can produce spurious discon-
tinuities in the policy function, we here focus on the illustrative model without smooth-
ing. Particularly, for working households, the smoothed Euler equation in (17) collapses
to

u′(ct(Mt |dt)
)= β

∫ ∞

0
Ru′(ct+1(Mt+1|dt+1 = 1)

) · 1{Mt+1 ≤ Mt+1}f (dη)

+β

∫ ∞

0
Ru′(ct+1(Mt+1|dt+1 = 0)

) · 1{Mt+1 >Mt+1}f (dη)�
(36)

where we recall that Mt+1 = R(Mt − ct(Mt |dt)) + yη. With the change of variables, q =
f (η), we can write the Euler equation (36) as

u′(ct(Mt |dt)
)= β

∫ qt

0
f−1(q)u′(ct+1

(
R
(
Mt − ct(Mt |dt)

)+ yf−1(q)�dt+1 = 1
))
dq

+β

∫ 1

qt

f−1(q)u′(ct+1
(
R
(
Mt − ct(Mt |dt)

)+ yf−1(q)�dt+1 = 0
))
dq�

(37)
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where the threshold qt is given by

qt = f

(
Mt+1

Mt+1

)
� (38)

As long as the income shock distribution is not degenerate, the resulting Euler equation
(37) is continuous and smooth in ct(Mt�W) through Mt+1 in spite of the discontinuity
in the consumption function ct+1(Mt+1�W) at Mt+1 = Mt+1. In turn, this suggests that
numerical integration should be done twice—once for each case—to ensure that the
integral is well behaved.

In contrast, the naive Euler equation in (36) is discontinuous in ct(Mt�W). When us-
ing numerical quadrature to evaluate the integral, for a given level of resources, some
of the nodes will result in Mt+1 ≤ Mt+1 while others will result in the opposite case. For
concreteness, say that 10 nodes are used and the five lowest nodes result in Mt+1 ≤Mt+1.
Say also that for a slightly larger value of current resources perhaps only four nodes sat-
isfy Mt+1 ≤ Mt+1 while now six invoke the alternative. When comparing the solution
found in the two (close) values of current period resources, there will be a discontinuous
change in the optimal consumption. In the current model, this would result in spurious
downward kinks in the consumption function around a secondary kink.

Appendix C: DC-EGM run times

Figure 9 illustrates the average estimation time spent to estimate δ̂. Results are shown
for varying degrees of income uncertainty, ση ∈ {0�001�0�05}, and different values of the
disutility of work parameter, δ ∈ {0�1�0�5}.

Appendix D: Proof of extreme value homotopy principle

This appendix proves Theorem 3, which states that the value function and optimal de-
cision rules in the presence of type I extreme value distributed taste shocks converge (in
an appropriate sense to be defined below) to the value functions and decision rules of a

Figure 9. Timing: income uncertainty. The plots illustrate the time spent to estimate the model.
Results are shown for varying degree of smoothing, σε ∈ {0�01�0�05}, and different values of the
income variance, σ2

η ∈ {0�001�0�05}. The rest of parameters are at their baseline levels; see Table 1.
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limiting problem without taste shocks. We prove Theorem 3 for a more general class of
problems than just the retirement consumption model, and therefore restate it below.

Let ε be a random variable having a standardized type I extreme value distribution
with the cumulative distribution function (CDF) given by

F(ε) = exp
{−exp{−ε}}� (39)

We have E{ε} = γ, where γ = 0�577 � � � is Euler’s constant and var(ε) = π2/6. Then if σ
is a positive scaling constant, σε will also be a type I extreme value distribution with
expected value σγ and variance σ2π2/6. In the notation of the illustrative model in the
paper, σ corresponds to the scaling parameter of the “perturbed” model σε.

The homotopy convergence result we prove below holds for a considerably more
general class of dynamic programming (DP) problems than the simple retirement ex-
ample we analyzed in Section 2.1 or even the class defined in Appendix A, where we as-
sumed the continuous choice is a unidimensional variable and we imposed additional
assumptions to ensure monotonicity of the savings function. In this appendix we con-
sider a more general class of problems, though we do not strive for maximum possible
generality so as to make our proof as straightforward as possible.

Consider a finite horizon DP problem without type I extreme value taste shocks
that we also refer to as the “unperturbed” DP problem. In the last period, T , the agent
chooses a vector of k continuous choice variables c ∈ CT (d� s), where CT (d� s) is a com-
pact subset of a Rk, d is one of the discrete choices, and s is a potentially multidimen-
sional vector of state variables in some Borel subset S of a finite dimensional Euclidean
space. We assume that the discrete choice d is an element of a finite choice set DT(s).
Let uT (d� c� s) be a utility function that is continuous in c for each s and each d ∈ DT(s)

and a Borel measurable function of s for each c and d. Then the value function in period
T is given by

VT (s) = max
d∈DT (s)

max
c∈CT (d�s)

uT (d� c� s)� (40)

Now consider time T − 1 and let pT (s
′|s� c�d) be a Markov transition probability provid-

ing the conditional probability distribution over the state s′ at time T given that the state
vector at time T − 1 is s, the discrete choice is d, and the continuous choice is c. Define
the conditional expectation of VT , EV T−1(d� c� s), by

EV T−1(d� c� s) =
∫

VT
(
s′
)
pT

(
∂s′|d� c� s)� (41)

where we use ∂s′ to indicate the stochastic next period state variables over which this
expectation is taken. In Assumption C below, we assume that this conditional expec-
tation exists and is continuous in c for each s ∈ S and d ∈ DT−1(s). Then by back-
ward induction we can define the value function VT−1(s) and, continuing for each
t ∈ {T − 1�T − 2� � � � �0}, we can define the sequence of functions {Vt} recursively using
Bellman’s equation,

Vt(s) = max
d∈Dt(s)

max
c∈Ct(d�s)

[
ut(d� c� s)+β

∫
Vt+1

(
s′
)
pt+1

(
∂s′|d� c� s)]� (42)

where β≥ 0 is the agent’s discount factor.
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We make the following assumptions on this limiting DP problem without taste
shocks that is sufficient to guarantee the existence of a well defined solution.

Assumption B. The choice sets Dt(s) are all finite with a uniformly bounded number of
elements D given by

D= max
t∈{0�1�����T }

sup
s∈S

∣∣Dt(s)
∣∣<∞� (43)

where |Dt(s)| denotes the number of elements in the finite set Dt(s).

Assumption C. For each t ∈ {0�1� � � � �T }, each s ∈ S, and each d ∈ Dt(s), the function
ut(d� c� s) is continuous in c, and for each t ∈ {1�2� � � � �T − 1}, s ∈ S, and d ∈ Dt−1(s), the
function EV t (d� c� s) given by

EV t (d� c� s) =
∫

Vt
(
s′
)
pt
(
∂s′|d� c� s) (44)

is finite and continuous in c.

Define the discrete choice-specific continuous choice function ct(d� s) by

ct(d� s)= argmax
c∈Ct(d�s)

[
ut(d� c� s)+βEV t+1(d� c� s)

]
(45)

and the optimal discrete decision rule δt(s) by

δt(s) = argmax
d∈Dt(s)

[
ut
(
d� ct(d� s)� s

)+βEV t+1
(
d� ct(d� s)� s

)]
� (46)

The overall optimal continuous decision rule ct(s) is then given by

ct(s) = ct
(
δt(s)� s

)
� (47)

The solution to the DP problem is given by the collection Γ of the T + 1 value functions
{V0� V1� � � � � VT }, the T +1 optimal continuous decision rules {c0� c1� � � � � cT }, and the T +1
optimal discrete decision rules {δ0� δ1� � � � � δT }.

Now we define a family of perturbed DP problems indexed by σ , the scale parameter
of the type I extreme value distribution. Let ε denote a vector of i.i.d. extreme value ran-
dom variables with the same dimension as |Dt(s)|, the number of elements in the finite
choice set Dt(s). Assume the elements of DT(s) are ordered in some fashion and let ε(d)
be the component of the vector ε corresponding to the choice of alternative d ∈ Dt(s).
We will refer to ε(d) as the dth taste shock.

Now consider the last period T . The value function Vσ�T (s� ε) is given by

Vσ�T (s� ε) = max
d∈DT (s)

max
c∈CT (d�s)

[
uT (d� c� s)+ σε(d)

]
� (48)

Notice that Vσ�T is now a function of the vector s and the vector ε ∈ R|DT (s)|. If the number
of elements of DT(s) varies with s ∈ S, we can embed the vector ε in RD, where D is
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the upper bound on the number of discrete choices by Assumption B. We can use the
convention that if |DT(s)| < D for some s ∈ S, the function Vσ�T (s� ε) depends only on
the components of ε corresponding to the feasible choices d ∈ DT(s) and not on any
components d that are not elements of DT(s).

The CDF F(ε) of the vector random variable ε is given by the product of the univari-
ate type I extreme value CDFs, that is,

F(ε(1)� � � � � ε(D)) =
D∏

d=1

exp
{−exp

{−ε(d)
}}
� (49)

To compute the expected value of VT (s�ε), we apply multivariate integration to get

EV σ�T (d� c� s) =
∫
s′

∫
ε′
Vt
(
s′� ε′)F(∂ε′)pT

(
∂s′|d� c� s)

=
∫
s′
σ log

( ∑
d∈DT (s′)

exp
{
uT

(
d� cT (s�d)�d

)
/σ

})
pT

(
∂s′|d� c� s)� (50)

where cT (s�d) = argmaxc∈CT (d�s)
uT (d� c� s) is the choice-specific continuous choice

function. The closed-form expression for the expectation over ε′—the type I extreme
value random variables—is a consequence of a property of extreme value random vari-
ables known as max stability, that is, the maximum of a finite collection of type I extreme
value random variables has a (shifted) type I extreme value distribution. We refer to the
log-sum formula inside the integral of the lower equation in (50) as the smoothed max
function. We now prove a key lemma that establishes a bound between the usual max
function and the smoothed max function.

Lemma 2 (Log-Sum Error Bounds). Let {v1� � � � � vD} be any finite set of D real numbers
and let σ > 0 be a constant. Then we have

0 ≤ σ log

(
D∑

d=1

exp{vd/σ}
)

− max{v1� � � � � vD} ≤ σ log(D)� (51)

Proof. Consider the shifted values vd − max(v1� � � � � vD) ≤ 0. It follows that

log

(
D∑

d=1

exp
{(
vd − max{v1� � � � � vD})/σ}

)
≤ log

(
D∑

d=1

exp{0}
)

= log(D)� (52)

Define d∗ = arg maxd(vd) and let J ≥ 1 denote the number of elements of D for which
vd = vd∗ . The lower bound is obtained from observing that

log

(
J +

D∑
d=1�d �=d∗

exp
{(
vd − max{v1� � � � � vD})/σ}

)
≥ 0� (53)



356 Iskhakov, Jørgensen, Rust, and Schjerning Quantitative Economics 8 (2017)

Combining (52) and (53) with the identity

σ log

(
D∑

d=1

exp
{(
vd − max{v1� � � � � vD})/σ}

)

= σ log

(
D∑

d=1

exp{vd/σ}
)

− max{v1� � � � � vD}
(54)

concludes the proof. �

Lemma 2 is the key to all of our subsequent results and the key to Theorem 5 since
it shows that the difference between the max function and the smoothed max func-
tion is bounded by σ log(D) and this tends to 0 as σ ↓ 0. This will imply that the dif-
ference between the value functions and decision rules of the unperturbed limiting DP
problem and the family of perturbed DP problems with extreme value distributed taste
shocks will converge to zero as the scale of the extreme value taste shocks, σ , converges
to 0.

We can now define the value functions at all time periods for the perturbed problem
as the sequence {Vσ�0� � � � � Vσ�T }, where Vσ�T is given by equation (48) and the other value
functions are given by the Bellman recursion

Vσ�t(s� ε)= max
d∈Dt(s)

max
c∈Ct(d�s)

[
ut(d� c� s)+ σε(d)+βEV σ�t+1(d� c� s)

]
� (55)

where EV σ�t+1(d� c� s) is the conditional expectation of Vσ�t+1(s� ε) and is given by

EV σ�t+1(d� c� s)

= σ

∫
s′

log
( ∑
d′∈Dt+1(s′)

exp
{
vσ�t+1

(
d′� cσ�t+1

(
d′� s′

)
� s′

)
/σ

})
pt+1

(
∂s′|d� c� s)� (56)

where

vσ�t+1(d� c� s) = ut+1(d� c� s)+βEV σ�t+2(d� c� s) (57)

and cσ�t+1(d� s) is the choice-specific continuous choice rule given by

cσ�t+1(d� s)= argmax
c∈Ct+1(d�s)

[
vσ�t+1(d� c� s)

]
� (58)

Note that we used the max-stability property again to obtain the expression for
EV σ�t+1(d� c� s) in equation (56), and we also note that due to the assumption that taste
shocks are not only contemporaneously independent across different discrete choices
d but also intertemporally independent processes, it follows that the value of the ε state
vector at time t does not affect the conditional expectation of Vσ�t+1 and, hence, does
not enter the conditional expectation EV σ�t+1(d� c� s). This conditional independence
restriction on the ε shocks is critical to all results that follow below.

Having defined the set of value functions for the family of perturbed problems, we
can define the full solution of the perturbed problem as the collection Γσ consisting of
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the value functions (Vσ�0� � � � � Vσ�T ), the continuous decision rules (cσ�0� � � � � cσ�T ), and
the the discrete decision rules (δσ�0� � � � � δσ�T ). Note that all of these objects depend on
both s and ε, which constitute the full vector of state variables in the perturbed problem.
In particular, the discrete decision rule δσ�t(s� ε) can be defined using the choice-specific
continuous choice rule cσ�t(d� s) as

δσ�t(s� ε)= argmax
d∈Dt(s)

[
vσ�t

(
d� cσ�t(d� s)� s

)+ σε(d)
]
� (59)

and the unconditional or continuous decision rule can be defined using the choice-
specific continuous choice rules by

cσ�t(s� ε)= cσ�t
(
δσ�t(s� ε)� s

)
� (60)

To define a notion of convergence of the solution Γσ of the family of perturbed DP
problems to the solution Γ of the limiting unperturbed problem, we have to confront the
difficulty that the state space for the family of perturbed problems is the set of points of
the form (s� ε) for s ∈ S and ε ∈ RD whereas the state space of the limiting unperturbed
problem is just S. We start by noting the representation for the value functions of the
perturbed problem,

Vσ�t(s� ε)= max
d∈Dt(s)

[
vσ�t

(
d� cσ�t(d� s)� s

)+ σε(d)
]
� (61)

which follows directly from the Bellman equation (55) and the definition of the vt func-
tion in equation (57). We now compute a partial expectation of the value functions
Vσ�t(s� ε) over the ε holding the s state variable fixed. That is, we define the partial ex-
pectation EV σ�t(s) as the function given by

EV σ�t(s) =
∫
ε
Vσ�t(s� ε)F(ε)

= σ

( ∑
d∈Dt(s)

exp
{
vσ�t

(
d� cσ�t(d� s)� s

)
/σ

})
�

(62)

We are in the position now to state the main result, which is a reformulation of Theo-
rem 3 for a more general class of DC models than the consumption retirement model in
Section 2.

Theorem 5 (Extreme Value Homotopy Principle). Under Assumptions B and C, let

Γ = {
(V0� � � � � VT )� (δ0� � � � � δT )� (c0� � � � � cT )

}
(63)

be the solution to the limiting DP problem without taste shocks given in equations (40),
(42), (45), and (46) above. Similarly, let

Γσ = {
(Vσ�0� � � � � Vσ�T )� (δσ�0� � � � � δσ�T )� (cσ�0� � � � � cσ�T )

}
(64)
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be the solution to the the perturbed DP problem with type I extreme value taste shocks with
scale parameter σ > 0 given in equations (48), (55), (56), (59), and (60). Then as σ → 0 we
have

lim
σ↓0

Γσ = Γ� (65)

where the convergence of value functions is defined in terms of the partial expectations of
the value functions for the perturbed problems with taste shocks, with EV σ�t(s) given in
equation (62). It follows that the uniform bound holds

∀t sup
s∈S

∣∣EV σ�t(s)− Vt(s)
∣∣≤ σ

[
T−t∑
j=0

βj

]
log(D)� (66)

and the decision rules converge pointwise for all (s� ε), s ∈ S, and ε ∈ RD, that is,

lim
σ↓0

δσ�t(s� ε)= δt(s)�

lim
σ↓0

cσ�t(s� ε)= ct(s)�
(67)

assuming that the decision rules of the limiting problem δt(s), ct(s) are singletons; other-
wise the limits are elements of the sets (δt(s)� ct(s)).

Proof. We prove Theorem 5 in three steps. First, we prove (66) by induction using
Lemma 2 and showing that the bounds are independent of s. Second, we prove con-
vergence of decision rules assuming that the limiting problem Γ has unique solution.
Third, we extend the latter result to nonsingleton solution sets.

Lemma 3 (DP Error Bounds). Let Vt(s) be the value function for the unperturbed DP
problem and let EV σ�t(s) be the partial expectation of the value function Vσ�t(s� ε) to the
perturbed DP problem. Then we have

∀t� s 0 ≤ EV σ�t(s)− Vt(s) ≤ σ

[
T−t∑
j=0

βj

]
log(D)� (68)

Proof. Lemma 3 can be proved by induction using Lemma 2. We work out the first sev-
eral steps of the inductive argument, starting at period T . In period T , VT (s) is given by
equation (40), which can be rewritten in terms of the choice-specific continuous choice
rule as

VT (s) = max
d∈DT (s)

[
uT

(
d� cT (d� s)� s

)]
(69)

and, similarly, we have EV σ�T (s) given by

EV σ�T (s) = σ log
( ∑
d∈DT (s)

exp
{
uT

(
d� cT (d� s)� s

)
/σ

})
� (70)
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since it is easy to see that cT (d� s) = cσ�T (d� s) in the final period T . Using Lemma 2, we
obtain the bounds

0 ≤ EV σ�T (s)− VT (s) ≤ σ log(D) ∀s ∈ S� (71)

which establish the base case for our induction proof. Now suppose the inductive hy-
pothesis holds, that is, the error bounds are given by equation (68) at period T�T−1� � � � � t+
1. We now want to show that it also holds at period t. We have

Vt(s) = max
d∈Dt(s)

[
ut
(
d� ct(d� s)� s

)+β

∫
Vt+1

(
s′
)
pt+1

(
∂s′|d� ct(d� s)� s

)]
(72)

and

EV σ�t(s) = σ log
( ∑
d∈Dt(s)

exp
{

1
σ

[
ut
(
d� cσ�t(d� s)� s

)

+β

∫
EV σ�t+1

(
s′
)
pt+1

(
∂s′|d� cσ�t(d� s)� s

)]})
�

(73)

Note that cσ�t(d� s) is the choice-specific continuous decision rule for the perturbed
problem. Define a function Ṽt(s) by substituting cσ�t(d� s) for ct(d� s) in equation (72):

Ṽt(s) = max
d∈Dt(s)

[
ut
(
d� cσ�t(d� s)� s

)+β

∫
Vt+1

(
s′
)
pt+1

(
∂s′|d� cσ�t(d� s)� s

)]
� (74)

Since cσ�t(d� s) is not necessarily an optimal choice-specific consumption for the unper-
turbed problem, it follows that

Ṽt(s) ≤ Vt(s) ∀s ∈ S� (75)

Similarly define the function EṼσ�t(s) by substituting the conditional expectation of Vt+1

instead of the conditional expectation of EV σ�t+1 in the formula for EV σ�t(s) in equation
(73). We have

EṼσ�t(s) = σ log
( ∑
d∈Dt(s)

exp
{

1
σ

[
ut
(
d� cσ�t(d� s)� s

)

+β

∫
Vt+1

(
s′
)
pt+1

(
∂s′|d� cσ�t(d� s)� s

)]})
�

(76)

Note that we can write

EV σ�t(s) = σ log
( ∑
d∈Dt(s)

exp
{

1
σ

[
ut
(
d� cσ�t(d� s)� s

)

+β

∫
Vt+1

(
s′
)
pt+1

(
∂s′|d� cσ�t(d� s)� s

)

+β

∫ [
EV σ�t+1

(
s′
)− Vt+1

(
s′
)]
pt+1

(
∂s′|s� cσ�t(d� s)� s

)]})
�

(77)
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By the inductive hypothesis, it follows that

β

∫ [
EV σ�t+1

(
s′
)− Vt+1

(
s′
)]
pt+1

(
∂s′|d� cσ�t(d� s)� s

)≤ σβ

[
T−t−1∑
j=0

βj

]
log(D)� (78)

Thus, it follows from inequality (78) that the inequality

EV σ�t(s) ≤EṼσ�t(s)+ σβ

[
T−t−1∑
j=0

βj

]
log(D)� (79)

holds. From Lemma 2 we have

EṼσ�t(s)− Ṽt(s) ≤ σ log(D)� (80)

Using inequalities (75), (79) and (80) it follows that

0 ≤ EV σ�t(s)− Vt(s) ≤ σ

[
T−t∑
j=0

βj

]
log(D)� (81)

completing the induction step of the argument. It follows by mathematical induction
that inequality (68) holds for all t ∈ {0�1� � � � �T }, so Lemma 3 is proved. �

Note that the bound (68) is uniform over all states s ∈ S since the right hand side
of the inequality does not depend on s. In particular, we do not need to rely on any
continuity or boundedness assumptions about Vt(s): this function could potentially be
nonsmooth or even discontinuous in s and an unbounded function of s, something typi-
cal in many economic problems with consumption and saving, including the retirement
problem we analyzed in Section 2.

It follows from uniformity of bound (68) that (66) holds.
We turn now to establishing that the decision rules δσ�t(s� ε) and cσ�t(s� ε) in the per-

turbed problem converge to the optimal decision rules δt(s) and ct(s) in the limiting
unperturbed DP problem for t ∈ {0�1� � � � �T }. We will allow for the possibility that there
are multiple values of d and c that attain the optimum values in equations (45) and (46)
above, so in general we can interpret ct(s) and δt(s) as correspondences (i.e., set-valued
functions of s). However, the pointwise argument is simplest in the case where there is a
unique discrete and continuous decision attaining the optimum, so we first present the
argument in this case in Lemma 4 below.

Lemma 4 (Policy Convergence 1). Consider a point s ∈ S for which δt(s) is just a single
element d ∈ Dt(s) and ct(s) is a single element of the set of feasible continuous choice
Ct(δt(s)� s) that attains the optimum. Then (67) holds for any ε ∈RD.
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Proof. Since the pair of decisions (δt(s)� ct(s)) is the unique optimizer of the Bellman
equation in state s ∈ S, we have

ut
(
δt(s)� ct(s)� s

)+β

∫
Vt+1

(
s′
)
pt+1

(
∂s′|δt(s)� ct(s)� s

)
= ut

(
δt(s)� ct

(
δt(s)� s

)
� s
)+β

∫
Vt+1

(
s′
)
pt+1

(
∂s′|δt(s)� ct

(
δt(s)� s

)
� s
)

> ut(d� c� s)+β

∫
Vt+1

(
s′
)
pt+1

(
∂s′|d� c� s)

∀c �= ct(s) ∈ Ct(d� s)�d �= δt(s) ∈Dt(s)�

(82)

Let d be any limit point of the sequence {δσ�t(s� ε)}. Since feasibility requires δσ�t(s� ε) ∈
Dt(s) and Dt(s) is a finite set, at least one limit point must exist. Similarly let c be a
limit point of the choice-specific continuous decision rule cσ�t(δσ�t(s� ε)� s� ε). This also
must have one limit point since feasibility requires that cσ�t(s� ε) = cσ�t(δσ�t(s� ε)� s� ε) ∈
Ct(δt(s� ε)� s), where the latter is a compact set due to Assumption C. This follows since
we are considering a subsequence {δσn�t(s� ε)} that converges to a particular choice d ∈
Dt(s), so for sufficiently large n (or sufficiently small σn) the sequence {cσn�t(s� ε)} must
be elements of the compact set Ct(d� s) and thus must have at least one limit point.

Now we show that d = δt(s) and c = ct(s) since otherwise we would have a contra-
diction of the strict optimality of the decisions (δt(s)� ct(s)) in inequality (82). We have

EV σ�t(s) = σ log
( ∑
d∈Dt(s)

exp
{

1
σ

[
ut
(
d� cσ�t(d� s)� s

)

+β

∫
EV σ�t+1

(
s′
)
pt+1

(
∂s′|d� cσ�t(d� s)� s

)]})

=
∫

Vσ�t(s� ε)F(ε)

=
∫ [

ut
(
δσ�t(s� ε)� cσ�t

(
δσ�t(s� ε)� s

)
� s
)+ σε

(
δσ�t(s� ε)

)

+β

∫
EV σ�t+1

(
s′
)
pt+1

(
∂s′

∣∣∣δσ�t(s� ε)� cσ�t(δσ�t(s� ε)� s)� s)
]
F(ε)�

(83)

By Lemma 3 we have that uniformly for each t ∈ {0�1� � � � �T } and all s ∈ S,

lim
σ↓0

EV σ�t(s) = Vt(s)� (84)

However, using the fact that for a subsequence {σn} converging to zero we have

lim
σn↓0

δσn�t(s� ε)= d�

lim
σn↓0

cσ�t
(
δσ�t(s� ε)� s

)= c�
(85)
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these limits together with the representation of EV σ�t(s) in the last equation of (83) im-
plies that

Vt(s) = ut(d� c� s)+β

∫
Vt+1

(
s′
)
pt+1

(
∂s′|d� c� s)� (86)

However, because δt(s) and ct(s) are the unique optimizers of the Bellman equation
in equation (82) above, it follows that d = δt(s) and c = ct(s). This argument holds
for all cluster points of {δσ�t(s� ε)} and {cσ�t(s� ε)}, so it follows that for any sequence
{σn} with limn σn = 0, the sequences {δσn�t(s� ε)} and {cσn�t(s� ε)} converge to δt(s) and
ct(s), respectively, proving that the claimed limits in equation (67)—the statement of
Lemma 4—hold. �

Finally, we consider the case where δt(s) and/or ct(s) are not singletons. We also al-
low for the optimal decision rules to the perturbed problem, δσ�t(s� ε) and cσ�t(s� ε), to
be correspondences (corresponding to the case where multiple choices attain the opti-
mum in the Bellman equation). The fact that the extreme value taste shocks are contin-
uously distributed over the entire real line implies that for almost all ε, δσ�t(s� ε) will be a
singleton (i.e., there will be a unique discrete choice that maximizes the agent’s utility).

We now show in Lemma 5 that even when we allow for nonuniqueness in the op-
timizing choices of (d� c) in both the perturbed problem and the limiting unperturbed
problem, the correspondences δσ�t(s� ε) and cσ�t(s� ε) are upper hemicontinuous, that is,
if we have limits given by

lim
σ↓0

δσ�t(s� ε)= d�

lim
σ↓0

cσ�t(s� ε)= c�
(87)

where we now allow for the possibility that the limits d and c are actual sets, upper hemi-
continuity requires that d ⊂ δt(s) and c ⊂ ct(s).

Lemma 5 (Policy Convergence 2). Consider a point s ∈ S where the decision rules δt(s)

and ct(s) are potentially nonunique, that is, they may be sets of points in Dt(s) and
Ct(δt(s)� s), respectively. Then the correspondences δσ�t(s� ε) and cσ�t(s� ε) are upper
hemicontinuous, and for almost all ε, δσ�t(s� ε) is a singleton, which implies that its limit
d is a single element in δt(s).

Proof. The proof is similar to Lemma 4 except that we now allow for the possibility that
in the limiting DP model without taste shocks, there may be multiple values of d ∈Dt(s)

and c ∈ Ct(δt(s)� s) that attain the maximum of the Bellman equation in equations (45)
and (46) above. Since the extreme value distribution is continuous, the probability that
there are any ties in the perturbed DP problem with taste shocks is zero (with respect to
the extreme value distribution) and thus for almost all (s� ε), δσ�t(s� ε) is a singleton, and
thus its limit d is a singleton. Following the reasoning of Lemma 4, if c is a limit point of
cσ�t(s� ε), then as σ → 0 we can represent c as

c ∈ lim
σ↓0

cσ�t(d� s)� (88)
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that is, c is one of the limit points of the {cσ�t(s� ε)}. Now suppose that the pair (d� c) is not
optimal, that is, d �= δt(s) and c /∈ ct(s). Then following the same argument as in Lemma 4
we can obtain a contradiction, because following the same argument we can show that
equation (86) holds, but if (d� c) are not optimal, this would contradict the fact that Vt(s)
attains the maximum over all feasible (d� c) values in equations (45) and (46). �

This concludes the proof of Theorem 5. �
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