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Abstract

All parameters in structural vector autoregressive (SVAR) models are locally identified when
the structural shocks are independent and follow non-Gaussian distributions. Unfortunately,
standard inference methods that exploit such features of the data for identification fail to
yield correct coverage for structural functions of the model parameters when deviations
from Gaussianity are small. To this extent, we propose a locally robust semi-parametric
approach to conduct hypothesis tests and construct confidence sets for structural functions
in SVAR models. The methodology fully exploits non-Gaussianity when it is present, but
yields correct size / coverage for local-to-Gaussian densities. Empirically we revisit two
macroeconomic SVAR studies where we document mixed results. For the oil price model
of Kilian and Murphy (2012) we find that non-Gaussianity can robustly identify reasonable
confidence sets, whereas for the labour supply-demand model of Baumeister and Hamilton
(2015) this is not the case. Moreover, these exercises highlight the importance of using weak
identification robust methods to assess estimation uncertainty when using non-Gaussianity
for identification.
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1 Introduction

In this paper we develop locally robust inference methods for non-Gaussian structural vector

autoregressive (SVAR) models. To outline our contribution, consider the SVAR model

Yt = c+B1Yt−1 + · · ·+BpYt−p +A−1ϵt , (1)

where Yt is a K × 1 vector of variables, c is an intercept, B1, . . . , Bp are the autoregressive

matrices, A is the invertible contemporaneous effect matrix and ϵt is the K × 1 vector of

structural shocks with mean zero and unit variance.

It is well known that, without further restrictions, the first and second moments of {Yt} are

insufficient to identify all parameters in A (e.g. Kilian and Lütkepohl, 2017). Instead, higher

order moments or non-Gaussian distributions can be exploited to (locally) identify A. The most

well known result follows from the Darmois–Skitovich theorem and is central to the literature on

independent components analysis (ICA): if the components of ϵt are independent and at least

K − 1 have a non-Gaussian distribution, then A can be recovered up to sign and permutation

of its rows, see Comon (1994). Based on such results several recent works have exploited non-

Gaussianity to improve identification and conduct inference in SVAR models (e.g. Lanne and

Lütkepohl, 2010; Moneta et al., 2013; Lanne et al., 2017; Kilian and Lütkepohl, 2017; Maxand,

2020; Lanne and Luoto, 2021; Gouriéroux et al., 2017, 2019; Tank et al., 2019; Herwartz, 2019;

Bekaert et al., 2021, 2020; Fiorentini and Sentana, 2022; Braun, 2021; Sims, 2021; Guay, 2021;

Brunnermeier et al., 2021; Drautzburg and Wright, 2023; Keweloh, 2021; Davis and Ng, 2022;

Lanne et al., 2022).1,2

Unfortunately, as we show in this paper, standard inference methods for non-Gaussian

SVARs are not robust in situations where the densities of the structural shocks are too “close”

to the Gaussian density. Intuitively, what matters for correctly sized inference is not non-

Gaussianity per se, but a sufficient distance from the Gaussian distribution. When the true

distributions of the structural shocks are close to the Gaussian distribution, local identifica-

tion deteriorates and coverage distortions occur in confidence sets for structural functions, e.g.

structural impulse response functions or forecast error variance decompositions.3 The problem

is somewhat analogous to the weak instruments problem where it is well known that non-zero

correlation between the instruments and the endogenous variables is not sufficient for standard

inference methods to be reliable; the correlation must be sufficiently large in order for conven-

tional IV asymptotic theory to provide an approximation which accurately reflects the finite

sample situation.4 Similarly, in our setting, non-Gaussianity alone is not sufficient for standard

(pseudo) maximum likelihood or generalised method of moments methodologies to yield correct

coverage when the distance to the Gaussian distribution is not sufficiently large. As such we

1See Montiel Olea et al. (2022) for a recent review of this approach and, for example, Lewis (2021) for a related
approach based on heteroskedasticity.

2ICA type identification results have been applied/extended for various related models such as linear simultaneous
equations models, graphical models and factor models (e.g. Shimizu et al., 2006; Bonhomme and Robin, 2009;
Wang and Drton, 2019).

3Simulation studies in, among others, Gouriéroux et al. (2017, 2019) and Lanne and Luoto (2021) have previously
highlighted such coverage distortions for parameter estimates in the case of “weakly” non-Gaussian distributions,
see also Lee and Mesters (2023a) for more discussion of the same issue in static ICA models.

4See e.g. the recent review by Andrews et al. (2019).
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refer to this phenomenon as “weak non-Gaussianity”.

In this paper, we propose a solution to this problem by combining insights from the econo-

metric literature on weak identification robust hypothesis testing as well as the statistical lit-

erature on semiparametric inference. Specifically, we treat the SVAR model with independent

structural shocks as a semiparametric model where the densities of the structural shocks form

the non-parametric part.

For this set-up we provide three main results. First, we adopt a semi-parametric generali-

sation of Neyman-Rao score statistic in order to test the possibly weakly identified (or under /

unidentified) parameters of the SVAR. More precisely, the semi-parametric score statistic that

we propose is based on a quadratic form of the efficient score function, which projects out all

scores for the nuisance parameters, including the scores corresponding to the density functions

of the structural shocks, from the conventional score function for the parameter of interest. This

projection, along with the fact that the potentially weakly/non- identified parameter is fixed

under the null when conducting the test (as is standard in score-type testing procedures), en-

ables us to circumvent the (weak-)identification problem and we show that the semi-parametric

score test has a χ2 limit under local parameter sequences consistent with the null hypothesis.

Second, we propose a method for constructing confidence sets for smooth structural func-

tions. Prominent examples of interest include structural impulse responses and forecast error

variance decompositions. Specifically, we utilise our proposed score test for the weakly identified

parameters in a Bonferroni-based procedure (cf. Granziera et al., 2018; Drautzburg and Wright,

2023) which is guaranteed to provide correct coverage asymptotically.

Third, under the additional assumption that the errors of the SVAR model follow dis-

tributions that are different from the Gaussian distribution in the limit, we show that point

estimates, constructed as one-step updates based on the efficient score function, are consistent

and semi-parametrically efficient for the finite dimensional parameters in the semi-parametric

SVAR model. This implies that under strong identification and some regularity conditions such

estimators are preferable to existing pseudo MLE and GMM estimators.

Overall, our methods are computationally simple as the estimation of the efficient scores

typically only requires estimating regression coefficients, a covariance matrix and the log density

scores of the structural shocks. To estimate the log density scores, we use B-spline regressions

as developed in Jin (1992) and also considered in Chen and Bickel (2006) for semi-parametric

independent component analysis. This approach is computationally convenient and allows our

methodology to work under a wide variety of possible distributions for the structural shocks.5

We assess the finite-sample performance of our method in a large simulation study and find

that the empirical rejection frequencies of the semi-parametric score test are always close to

the nominal size. This is in contrast to several existing methods that are not robust to weak

non-Gaussianity and show substantial size distortions for non-Gaussian distributions that are

close to the Gaussian density. We also analyze the power of the proposed procedure and find

that the power of the semi-parametric score test generally exceeds that of alternative robust

methods such as weak identification robust GMM methods. Finally, we show that while the

5The general approach is applicable with other choices of log density score estimators, e.g. the local polynomial
estimators proposed in Pinkse and Schurter (2021). The main requirement is that the chosen estimator should
satisfy the high-level conditions stated in Lemma A.1.
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Bonferroni approach for constructing confidence sets for structural functions is (by construction)

conservative, it does often substantially reduce the length of the confidence bands for structural

impulse responses when compared to alternative methods.

In our empirical study we revisit two prominent macroeconomic SVAR applications and ask

whether non-Gaussian distributions can help to robustly identify structural functions of interest.

Specifically, we revisit (i) the labor supply-demand model of Baumeister and Hamilton (2015)

and (ii) the oil price model of Kilian and Murphy (2012).6 Our findings are mixed.

In the labor supply-demand model of Baumeister and Hamilton (2015) we find that allowing

for non-Gaussian structural shocks does not lead to a tight confidence set for the supply and

demand elasticities. In contrast, when non-robust methods are used, as in Lanne and Luoto

(2022) for instance, non-Gaussianity appears to pin down the elasticities in a narrow set. These

findings strongly support the usage of robust confidence sets when assessing uncertainty around

parameter estimates obtained using non-Gaussianity as an identifying assumption.

For the oil price model of Kilian and Murphy (2012) non-Gaussian structural shocks provide

substantially more identifying power. In fact, we show that our robust methodology yields a

finite confidence set for the short-run oil supply elasticities, thus avoiding the need to impose

a priori bounds on these elasticities. For instance, the bounds imposed in Kilian and Murphy

(2012) have been criticized for being too tight in Baumeister and Hamilton (2019) and have led

to a large literature that assesses their importance, see Herrera and Rangaraju (2020) for an

overview. We show that exploiting non-Gaussian shocks leads to finite bounds that are within

the range of estimates documented in the literature, hence providing a data driven solution to

the determination of appropriate bounds.

This paper relates to several strands of literature. First and foremost, the paper contributes

to the SVAR literature that exploits non-Gaussianity of the structural shocks for identification

(see the references above). Most related, Drautzburg and Wright (2023) are also concerned

about identification when using higher order moment restrictions for identification. To circum-

vent distortions in confidence sets they exploit the identification robust S-statistic of Stock and

Wright (2000) as well as a non-parametric independence test for conducting inference. The

benefit of the S-statistic is that it is not necessary to assume full independence of the structural

shocks. Instead, typically only the third and fourth order higher cross moments are set to zero,

leaving all higher order moments unrestricted. A downside of such a robust moment approach

is that it requires the existence of substantially higher order moments. For instance, when

using fourth order moment restrictions the convergence of the S-statistic requires the existence

of at least eight moments. We provide a detailed comparison between the approaches in our

simulation study.

Besides the non-Gaussian SVAR literature, we note that our approach is inspired by the

identification robust inference literature in econometrics (e.g. Stock and Wright, 2000; Kleiber-

gen, 2005; Andrews and Mikusheva, 2015). The crucial difference in our setting is that the

nuisance parameters which determine identification status are infinite dimensional, i.e. the den-

sities of the structural shocks. Despite this difference, conceptually our approach is similar to

6The assumption of independence among the structural shocks is maintained throughout this paper. Therefore in
each application we test for the existence of independent components following both Matteson and Tsay (2017)
and Montiel Olea et al. (2022).
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the score testing approach developed for weakly identified parametric models in Andrews and

Mikusheva (2015). To handle infinite dimensional nuisance parameters we build on the general

statistical theory discussed in Bickel et al. (1998) and van der Vaart (2002). While the major-

ity of the statistical literature focuses on efficient estimation in semi-parametric models, a few

papers have contributed to testing in well identified models (e.g. Choi et al., 1996; Bickel et al.,

2006). The major difference with our paper is that in our setting, a subset of the parameters of

interest are possibly weakly- or un- / under- identified, which violates a key regularity condition

assumed in this literature. Lee and Mesters (2023a) consider a similar score testing approach,

but their setting only considers static linear models and hence their results cannot be applied

to the SVAR models that are of interest in this paper.

The remainder of this paper is organized as follows. Section 2 casts the SVAR model as a

semi-parametric model and discusses the needed regularity conditions. Section 3 establishes a

number of preliminary results that are of general interest. The semi-parametric score testing

approach is presented in Section 4 and inference for smooth structural functions is covered in

Section 5. Section 6 discusses point estimation under strong identification. Section 7 evaluates

the finite-sample performance of the proposed methodology and Section 8 discusses the results

from the empirical studies. Section 9 concludes. Any references to sections, equations, lemmas

etc. which start with “S” refer to the supplementary material.

2 Semi-parametric SVAR model

In this section we cast the SVAR model as a semi-parametric model and impose some primi-

tive assumptions that will be maintained throughout the text. For convenience, we adopt the

following notation for the SVAR model

Yt = BXt +A−1(α, σ)ϵt , t ∈ Z , (2)

where Xt := (1, Y ′
t−1, . . . , Y

′
t−p)

′, B := (c,B1, . . . , Bp) and A(α, σ) is a K ×K invertible matrix

that is parametrized by the vectors α and σ.

In general, we leave the choice for the specific parametrization of A(α, σ) open to the re-

searcher. The key restriction is that σ should be recoverable from the variance of Yt − BXt

after α has been fixed, whereas α itself may be unidentified depending on the distribution of

the structural shocks. One popular choice in this context sets A−1(α, σ) = Σ1/2(σ)R(α), where

Σ1/2(σ) is a lower triangular matrix (with positive diagonal elements) parametrized by the vec-

tor σ and R(α) is a rotation matrix that is parametrized by the vector α. Alternatively, letting

σ capture the lower triangular entries of A−1(α, σ) and α the strictly upper triangular entries

also defines an easy to interpret parametrization.7

To describe the non-parametric part of model (2) we let η = (η1, . . . , ηK) correspond to the

7In general, different parametrizations are often used in practice (cf Section 8) and our general formulation allows
for all sufficiently smooth choices (cf Assumption 2.1). The supplementary material Section S1 provides more
discussion and examples.
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density functions of ϵt = (ϵ1,t, . . . , ϵK,t)
′. All parameters are summarized as follows

θ = (γ, η) , γ = (α, β) , β = (σ, b) , (3)

where b = vec(B).

Let Y n = (Y1, . . . , Yn)
′ and let Pn

θ denote the distribution of Y n conditional on the initial

values (Y1−p, . . . , Y0). Throughout we work with these conditional distributions; see Hallin and

Werker (1999) for a similar setup. For a sample of size n, our semi-parametric SVAR model is

the collection

Pn
Θ = {Pn

θ : θ ∈ Θ} , Θ = A× B︸ ︷︷ ︸
Γ

×H , (4)

where Γ ⊂ RL, with L = Lα+Lσ+Lb corresponding to the dimensions of (α, σ, b), Lβ = Lσ+Lb,

and H ⊂
∏K

k=1H with

H :=

{
f ∈ L1(λ) ∩ C1 : f(z) ≥ 0,

∫
f(z) dz = 1,

∫
zf(z)dz = 0,

∫
κ(z)f(z) dz = 0

}
,

where λ denotes Lebesgue measure on R, C1 is the class of real functions on R which are

continuously differentiable and κ(z) = z2 − 1. It is understood that γ ∈ Γ and η ∈ H, where

the parameter space for the densities ηk is restricted such that ϵk,t has mean zero and variance

one. Further restrictions are placed on the parameter space Θ in the assumptions below.

Assumptions

Having defined the semi-parametric SVAR model, we now proceed to formulate the required

assumptions. Broadly speaking, we split our assumptions into two parts: Assumption 2.1 details

the main assumptions that allow us to establish the properties of the semi-parametric score test

and Assumption 2.2 defines a set of regularity conditions on densities ηk under which the log

density scores can be consistently estimated using B-splines.8 These scores are an important

ingredient for the methodology discussed below.

The main assumption is stated as follows.

Assumption 2.1: For model (2), we assume that

(i) For all β ∈ B, |IK −
∑p

j=1Bjz
j | ≠ 0 for all |z| ≤ 1 with z ∈ C

(ii) Conditional on the initial values (Y ′
−p+1, . . . , Y

′
0)

′, ϵt = (ϵ1,t, . . . , ϵK,t)
′ is independently and

identically distributed across t, with independent components ϵk,t. Each η = (η1, . . . , ηK) ∈
H is such that each ηk is nowhere vanishing, dominated by Lebesgue measure on R, con-
tinuously differentiable with log density scores denoted by ϕk(z) := ∂ log ηk(z)/∂z, and for

all k = 1, . . . ,K

(a) Eϵk,t = 0, Eϵ2k,t = 1, Eϵ4+δ
k,t < ∞, E(ϵ4k,t) − 1 > E(ϵ3k,t)2, and Eϕ4+δ

k (ϵk,t) < ∞ (for

some δ > 0);

8Lemma A.1 in the Appendix shows that, under Assumptions 2.1 and 2.2, the B-spline based estimator satisfies
a particular high-level condition; the results of this paper will continue to apply if any alternative density score
estimator which also satisfies this high-level condition is used.
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(b) Eϕk(ϵk,t) = 0, Eϕ2k(ϵk,t) > 0, Eϕk(ϵk,t)ϵk,t = −1, Eϕk(ϵk,t)ϵ2k,t = 0 and Eϕk(ϵk,t)ϵ3k,t =
−3;

(iii) Γ is an open subset of RL and for all (α, β) ∈ Γ we have that

(a) A(α, σ) is nonsingular

(b) (α, σ) → A(α, σ) is continuously differentiable

(c) (α, σ) → [Dαl
(α, σ)]k•A(α, σ)

−1
•j and (α, σ) → [Dσm(α, σ)]k•A(α, σ)

−1
•j , with Dαl

(α, σ) :=

∂A(α, σ)/∂αl and Dσm(α, σ) := ∂A(α, σ)/∂σm, are locally Lipschitz continuous for

all l = 1, . . . , Lα, m = 1, . . . , Lσ and j, k = 1, . . . ,K, where the notation M•j or Mj•

denotes the jth column or row of a matrix M .

Part (i) imposes that the SVAR model (2) admits a stationary and causal solution. Part

(ii) imposes that the densities of the shocks are continuously differentiable and certain moment

conditions hold. Specifically, part (a) normalises the shocks to have mean zero, variance one and

finite four+δ moments.9 Additionally, we require the log density scores ϕk(x) = ∂ log ηk(x)/∂x

evaluated at the shocks to have finite 4+ δ moments. Part (b) simplifies the construction of the

efficient score functions. Whilst this may at first glance appear a strong condition, in Section S3

of the supplementary material we show that simple sufficient condition is that the tails of the

densities ηk converge to zero at a polynomial rate. The final part (iii) of the assumption imposes

that A(α, σ) is invertible and that the parametrization chosen by the researcher is sufficiently

smooth.10 These conditions can be easily verified for specific choices for A(α, σ).

Next, we impose a number of smoothness conditions on the densities ηk. These assumptions

facilitate the estimation of the log density scores ϕk(z) = ∇z log ηk(z), which are an important

ingredient for the efficient score test discussed below.

Assumption 2.2: Let ϕk,n := ϕk1[ΞL
k,n,Ξ

U
k,n]

, ∆k,n := ΞU
k,n − ΞL

k,n and νn = ν2n,p with 1 < p ≤
1 + δ/4 and n−1/2(1−1/p) = o(νn,p). Suppose that for [ΞL

k,n,Ξ
U
k,n] ↑ Ξ̃ ⊃ supp(ηk) and δk,n ↓ 0 it

holds that

(i) P (ϵk,t /∈ [ΞL
k,n,Ξ

U
k,n]) = o(ν2n);

(ii) For some ι > 0, n−1∆2+2ι
k,n δ

−(8+2ι)
k,n = o(νn);

(iii) ηk is bounded (∥ηk∥∞ <∞) and differentiable, with a bounded derivative: ∥η′k∥∞ <∞;

(iv) For each n, ϕk,n is three-times continuously differentiable on [ΞL
k,n,Ξ

U
k,n] and ∥ϕ(3)k,n∥

2
∞δ

6
k,n =

o(νn);
11

(v) There are c > 0 and N ∈ N such that for n ≥ N we have infs∈[ΞL
k,n,Ξ

U
k,n]

|ηk(s)| ≥ cδk,n.

9E(ϵ4k,t) − 1 ≥ E(ϵ3k,t)2 always holds; this is known as Pearson’s inequality. See e.g. result 1 in Sen (2012).
Assuming that E(ϵ4k,t) − 1 > E(ϵ3k,t)2 rules out (only) cases where 1, ϵk,t and ϵ2k,t are linearly dependent when
considered as elements of L2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).

10All of our results continue to hold without the restriction that Γ is open provided γ is an interior point of Γ.
11The differentiability and continuity requirements at the end-points are one-sided.
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These assumptions are similar to those considered in Chen and Bickel (2006). They ensure

that the log density scores can be estimated sufficiently accurately using B-spline regressions (as

explained in section 4).12 Formally, we require that the support of the density ηk is contained

with high probability in the interval [ΞL
k,n,Ξ

U
k,n]. These lower and upper points will correspond

to the smallest and largest knots of the B-splines. Second, condition (ii) ensures that the number

of knots does not increase too fast, relative to the sample size n. Conditions (iii) and (iv) impose

that the density is sufficiently smooth, such that it can be well-fitted by B-splines. The final

condition restricts the tails of the density.

3 Preliminary results

In this section we present two preliminary results for semi-parametric SVAR models that we

believe are useful more broadly. First, we provide a (uniform) local asymptotic normality

[(U)LAN] result for the semi-parametric SVAR model in (2). The primary difference with

existing results is that we explicitly perturb the non-parametric part of the model, i.e. the

densities ηk, whereas existing (U)LAN results for VARs hold this fixed (e.g. Hallin and Saidi,

2007). This extension is necessary for deriving the form of the score test proposed in this

paper and can be used in other applications. Second, we analytically derive the efficient score

function for the semi-parametric SVAR model, see e.g. van der Vaart (1998); Bickel et al.

(1998) for general discussions on efficient score functions. Readers who are mainly interested in

implementing the methodology of this paper can safely skip this section.

3.1 Uniform Local Asymptotic Normality

Let Gk denote the law on R corresponding to ηk (k = 1, . . . ,K) and define

˙H :=
K∏
k=1

˙Hk, ˙Hk :=

{
hk ∈ C1

b (λ) :

∫
hk dGk =

∫
hkιdGk =

∫
hkκdGk = 0

}
, (5)

where ι is the identity funcion, κ(z) = z2−1 (as defined above) and C1
b (λ) denotes the class of real

functions on R which are bounded, continuously differentiable and have bounded derivatives.

Note that RL× ˙H is a linear subspace of RL×
∏K

k=1 L2(Gk). Let this be normed by ∥(g, h)∥ :=√
∥g∥22 +

∑K
k=1 ∥hk∥2L2(Gk)

where ∥ · ∥2 denotes the Euclidean norm.

For an arbitrary convergent sequence (gn, hn) → (g, h) ∈ RL × ˙H let θn := θn(gn, hn) :=

(γ + gn/
√
n, η(1 + hn/

√
n)). Denote by pnθ the density of Pn

θ with respect to λn and Λn
θn

the

(conditional) log likelihood ratio:

Λn
θn

:= log

(
pnθn
pnθ

)
=

n∑
t=1

ℓθn(Yt, Xt)− ℓθ(Yt, Xt) , (6)

where ℓθ(Yt, Xt) denotes the t-th contribution to the conditional log likelihood for the SVAR

12These assumptions are tailored to the specific density score estimator we propose in this paper. Nevertheless, in
principle, other density score estimators may be used. Inspection of the proofs reveals that any such estimator
which satisfies the conclusions of Lemma A.1 can be adopted.
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model evaluated at θ. We note that this can be explicitly written as

ℓθ(Yt, Xt) = log |det(A(α, σ))|+
K∑
k=1

ηk(Ak•(α, σ)(Yt −BXt)) .

With this notation established we first derive the scores for the full vector of finite dimensional

parameters γ = (α, σ, b). The score functions with respect to the components αl, σl and bl are

ℓ̇θ,αl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,jϕk(Ak•Vθ,t)Aj•Vθ,t +

K∑
k=1

ζαl,k,k (ϕk(Ak•Vθ,t)Ak•Vθ,t + 1) , (7)

ℓ̇θ,σl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζσl,k,jϕk(Ak•Vθ,t)Aj•Vθ,t +
K∑
k=1

ζσl,k,k (ϕk(Ak•Vθ,t)Ak•Vθ,t + 1) , (8)

ℓ̇θ,bl(Yt, Xt) =
K∑
k=1

ϕk(Ak•Vθ,t)× [−Ak•DblXt] , (9)

where Vθ,t := Yt − BXt, A := A(α, σ), Dαl
(α, σ) := ∇αl

A(α, σ), Dσl
(α, σ) := ∇σl

A(α, σ),

Dbl = ∇blB, ζαl,k,j := [Dαl
(α, σ)]k•A

−1
•j , ζ

σ
l,k,j := [Dσl

(α, σ)]k•A
−1
•j and ϕk(z) := ∇z log ηk(z).

We collect these scores in the vector

ℓ̇θ(Yt, Xt) :=

((
ℓ̇θ,αl

(Yt, Xt)
)Lα

l=1
,
(
ℓ̇θ,σl

(Yt, Xt)
)Lσ

l=1
,
(
ℓ̇θ,bl(Yt, Xt)

)Lb

l=1

)′
.

Under assumption 2.1, we have the following ULAN result.13

Proposition 3.1 (ULAN): Suppose that assumption 2.1 holds. Then as n→ ∞,

Λn
θn(Y

n) = gn(Y
n)− 1

2
Eθ

[
gn(Y

n)2
]
+ oPn

θ
(1), (10)

where Eθ indicates that the expectation is taken under Pn
θ and

gn(Y
n) :=

1√
n

n∑
t=1

[
g′ℓ̇θ(Yt, Xt) +

K∑
k=1

hk(Ak•Vθ,t)

]
,

with A = A(α, σ). Moreover, under Pn
θ ,

gn(Y
n)⇝ N (0,Ψθ(g, h)), Ψθ(g, h) := lim

n→∞
Eθ

[
gn(Y

n)2
]
.

The corollary below follows from Le Cam’s first Lemma (e.g. van der Vaart, 1998, Example

6.5).

Corollary 3.1: If assumption 2.1 holds, then the sequences (Pn
θn
)n∈N and (Pn

θ )n∈N are mutually

contiguous.

The importance of this result is that the semi-parametric SVAR model can be locally asymp-

13The proof of LAN is based on verifying the conditions of Lemma 1 in Swensen (1985). ULAN then follows by
combining this with an asymptotic equicontinuity condition on (g, h) 7→ Pn

θn(g,h).
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totically approximated by a Gaussian shift experiment. This local approximation can be ex-

ploited to derive the form of the score test below as well as its limiting distribution under

local alternatives, but can be more broadly used for other inference problems, such as building

estimators.

3.2 Efficient score function

One of the key ingredients in our framework is the efficient score function for the parameter of

interest, α. Loosely speaking this is defined as the projection of the score function for α on the

orthogonal complement (in L2) of the space spanned by the score functions for the nuisance

parameters (β, η) (e.g. Bickel et al., 1998; van der Vaart, 2002; Newey, 1990; Choi et al., 1996).

In the case of interest here, where the nuisance parameter contains both finite (β) and

infinite-dimensional (η) components, the efficient score function can be calculated in two steps:

(1) compute the projection of the score for γ = (α, β) on the orthocomplement of the space

spanned by the score functions for η, and (2) partition the resulting object into the components

corresponding to α and β and project the former onto the orthocomplement of the latter.

We proceed according to this two-step procedure and now establish the form of the first

projection.

Lemma 3.1:Given Assumption 2.1 the efficient score function for γ in the semi-parametric

SVAR model Pn
Θ at any θ = (γ, η) with γ = (α, β), α ∈ A, β = (σ, b) ∈ B and η ∈ H is given

by ℓ̃n,θ(Y
n) =

∑n
t=1 ℓ̃θ(Yt, Xt), where

ℓ̃θ(Yt, Xt) =

((
ℓ̃θ,αl

(Yt, Xt)
)Lα

l=1
,
(
ℓ̃θ,σl

(Yt, Xt)
)Lσ

l=1
,
(
ℓ̃θ,bl(Yt, Xt)

)Lb

l=1

)′

with components

ℓ̃θ,αl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,jϕk(Ak•Vθ,t)Aj•Vθ,t +
K∑
k=1

ζαl,k,k [τk,1Ak•Vθ,t + τk,2κ(Ak•Vθ,t)]

ℓ̃θ,σl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζσl,k,jϕk(Ak•Vθ,t)Aj•Vθ,t +
K∑
k=1

ζσl,k,k [τk,1Ak•Vθ,t + τk,2κ(Ak•Vθ,t)]

ℓ̃θ,bl(Yt, Xt) =

K∑
k=1

−Ak•Dbl [(Xt − µ)ϕk(Ak•Vθ,t)− µ(ςk,1Ak•Vθ,t + ςk,2κ(Ak•Vθ,t))]

where Vθ,t = Yt − BXt, ζ
α
l,k,j := [Dαl

(α, σ)]k•A
−1
•j with Dαl

(α, σ) := ∂A(α, σ)/∂αl, ζ
σ
l,k,j :=

[Dσl
(α, σ)]k•A

−1
•j with Dσl

(α, σ) := ∂A(α, σ)/∂σl, Dbl := ∂B/∂bl, µ := (1, vec(ιp ⊗ (IK − B1 −
. . .−Bp)

−1c)′)′, and τk := (τ1,k, τ2,k)
′ and ςk := (ς1,k, ς2,k)

′ are defined as

τk :=M−1
k

(
0

−2

)
, ςk :=M−1

k

(
1

0

)
where Mk :=

(
1 Eθ(Ak•Vθ,t)

3

Eθ(Ak•Vθ,t)
3 Eθ(Ak•Vθ,t)

4 − 1

)
.

The derivation of the efficient scores ℓ̃θ(Yt, Xt) follows along the same lines as in Amari and

Cardoso (1997); Chen and Bickel (2006); Lee and Mesters (2023a). The dependence on η comes
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through (a) the log density scores ϕk(z) = ∇z log ηk(z), for k = 1, . . . ,K and (b) the third and

fourth order moments of ϵk in Mk.

For future reference, we partition

ℓ̃θ(Yt, Xt) =

(
ℓ̃θ,α(Yt, Xt)

ℓ̃θ,β(Yt, Xt)

)
,

where ℓ̃θ,α(Yt, Xt) = (ℓ̃θ,αl
(Yt, Xt))

Lα
l=1 and ℓ̃θ,β(Yt, Xt) =

(
(ℓ̃θ,σl

(Yt, Xt))
Lσ
l=1, (ℓ̃θ,bl(Yt, Xt))

Lb
l=1

)′
.

Based on the efficient scores, we define the efficient information matrix for γ by

Ĩn,θ :=
1

n

n∑
t=1

E ℓ̃θ(Yt, Xt)ℓ̃
′
θ(Yt, Xt) with partitioning Ĩn,θ =

(
Ĩn,θ,αα Ĩn,θ,αβ

Ĩn,θ,βα Ĩn,θ,ββ

)
. (11)

With Lemma 3.1 and the efficient information matrix in place, we can compute the efficient

score function for α with respect to β and η. In particular this score can be computed by the

second projection (e.g. Bickel et al., 1998, p. 74)

κ̃n,θ(Yt, Xt) := ℓ̃θ,α(Yt, Xt)− Ĩn,θ,αβ Ĩ
−1
n,θ,ββ ℓ̃θ,β(Yt, Xt) , (12)

as long as Ĩθ,ββ is positive definite. The corresponding efficient information matrix is given by

Ĩn,θ := Ĩn,θ,αα − Ĩn,θ,αβ Ĩ
−1
n,θ,ββ Ĩn,θ,βα . (13)

We note that the efficient score function κ̃θ(Yt, Xt) and the efficient information matrix Ĩn,θ can
be evaluated at any parameters θ = (α, β, η) and variables (Yt, Xt).

Building tests or estimators based on the efficient score function is attractive as efficiency

results are well established, see Choi et al. (1996), Bickel et al. (1998) and van der Vaart (2002).

A crucial difference in our setting is that the efficient information matrix might be singular.

For instance, if more than one component of ϵt follows an exact Gaussian distribution, Ĩn,θ is

singular, see Lemma S15 in Lee and Mesters (2023b). The singularity plays an important role

in the construction of the semi-parametric score statistic below.

4 Inference for potentially non-identified parameters

In this section we consider conducting inference on α without assuming that α is locally iden-

tified. Specifically and in contrast to the existing literature, we do not assume that sufficiently

many components of ϵt have a non-Gaussian distribution. Only Assumptions 2.1 and 2.2 are

imposed, under which α may not be (locally) identified.

Our approach is based on testing hypotheses of the form

H0 : α = α0 , β ∈ B , η ∈ H against H1 : α ̸= α0 , β ∈ B , η ∈ H . (14)

The main idea is to consider test statistics whose computation does not require evaluation

under the alternative H1, thus avoiding the need to consistently estimate α. Clearly, based
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on the trinity of classical tests, the score test is the only viable candidate and we will proceed

by constructing score tests in the spirit of Neyman-Rao, but adapted for the semi-parametric

setting (e.g. Choi et al., 1996). Such test statistics can then be inverted to yield a confidence

region for α with correct coverage. This confidence region then forms the basis for constructing

confidence intervals for structural functions as we show in the next section.

In our setting, we rely on the efficient score functions for the SVAR model to construct

test statistics. The functional form of the efficient scores ℓ̃θ(yt, xt) was analytically derived in

Lemma 3.1. These scores can be estimated by replacing the population quantities by sample

equivalents. We have

ℓ̂γ(Yt, Xt) =

((
ℓ̂γ,αl

(Yt, Xt)
)Lα

l=1
,
(
ℓ̂γ,σl

(Yt, Xt)
)Lσ

l=1
,
(
ℓ̂γ,bl(Yt, Xt)

)Lb

l=1

)′
(15)

with components

ℓ̂γ,αl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζαl,k,jϕ̂k,n(Ak•Vγ,t)Aj•Vγ,t +
K∑
k=1

ζαl,k,k [τ̂k,1Ak•Vγ,t + τ̂k,2κ(Ak•Vγ,t)]

ℓ̂γ,σl
(Yt, Xt) =

K∑
k=1

K∑
j=1,j ̸=k

ζσl,k,jϕ̂k,n(Ak•Vγ,t)Aj•Vγ,t +
K∑
k=1

ζσl,k,k [τ̂k,1Ak•Vγ,t + τ̂k,2κ(Ak•Vγ,t)]

ℓ̂γ,bl(Yt, Xt) =

K∑
k=1

−Ak•Dbl

[
(Xt − X̄n)ϕ̂k,n(Ak•Vγ,t)− X̄n(ς̂k,1Ak•Vγ,t + ς̂k,2κ(Ak•Vγ,t))

]
where Vγ,t = Yt−BXt and X̄n = 1

n

∑n
t=1Xt.

14 The estimates for the τk’s and ςk’s are obtained

by replacing the population moments defined in Lemma 3.1 by their sample counterparts: τ̂k =

M̂k(0,−2)′ and ς̂k = M̂k(1, 0)
′, where

M̂k :=

(
1 1

n

∑n
t=1(Ak•Vγ,t)

3

1
n

∑n
t=1(Ak•Vγ,t)

3 1
n

∑n
t=1(Ak•Vγ,t)

4 − 1

)
. (16)

Finally, the estimates of ℓ̂γ(Yt, Xt) depend on ϕ̂k,n(·) which is the estimate for the log density

scores ϕk(z) = ∇z log ηk(z). In practice, we estimate these density scores using B-splines fol-

lowing the methodology of Jin (1992) and Chen and Bickel (2006). To set this up, let bk,n =

(bk,n,1, . . . , bk,n,Bk,n
)′ be a collection of Bk,n cubic B-splines and let ck,n = (ck,n,1, . . . , ck,n,Bk,n

)′

be their derivatives: ck,n,i(x) :=
dbk,n,i(x)

dx for each i = 1, . . . , Bk,n. The knots of the splines,

ξk,n = (ξk,n,i)
Kk,n

i=1 are taken as equally spaced in [ΞL
k,n,Ξ

U
k,n]. In practice we take these points

as the 95th and 5th percentile of the samples {Ak•Vt}ni=1 adjusted by log(log(n)), where

A = A(α, σ) and Vt = Yt −BXt for a given parameter choice γ = (α, β).15

With this our estimate for the log density score ϕk is given by

ϕ̂k,n(z) := ψ̂′
k,nbk,n(z) , (17)

14Note that the components are now indexed by γ as the score estimates no longer depend on η, recalling that
θ = (γ, η).

15In the simulation study below we fix the number of B-splines Bk,n = 7 and in the working paper version Hoesch
et al. (2023) we also investigate a data driven selection procedure.
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where

ψ̂k,n := −

[
1

n

n∑
t=1

bk,n(Ak•Vγ,t)bk,n(Ak•Vγ,t)
′

]−1
1

n

n∑
t=1

ck,n(Ak•Vγ,t) . (18)

This shows that computing the log density score estimate (17) only requires computing the B-

spline regression coefficients ψ̂k,n in (18). The working paper version of this paper (i.e. Hoesch

et al., 2023) provides the exact expressions for the B-splines and more discussion.

Having defined all the components of the efficient score estimates we may estimate the

efficient information matrix for γ by

În,γ =
1

n

n∑
t=1

ℓ̂γ(Yt, Xt)ℓ̂γ(Yt, Xt)
′ . (19)

With the estimates for the efficient scores and information for γ, we can estimate the efficient

score and information for α. This amounts to replacing the population score κ̃n,θ(Yt, Xt) and

information Ĩn,θ in (12) and (13) by their sample counterparts. We have that

κ̂n,γ(Yt, Xt) = ℓ̂γ,α(Yt, Xt)− În,γ,αβ Î
−1
n,γ,ββ ℓ̂γ,β(Yt, Xt) (20)

and

În,γ = În,γ,αα − În,γ,αβ Î
−1
n,γ,ββ În,γ,βα . (21)

Since the information matrix may be singular, we need to make an adjustment. Specifically,

given the truncation rate νn defined in Assumption 2.2, we define a truncated eigenvalue version

of the information matrix estimate as

Ît
n,γ = ÛnΛ̂n(ν

1/2
n )Û ′

n , (22)

where Λ̂n(ν
1/2
n ) is a diagonal matrix with the ν

1/2
n -truncated eigenvalues of În,γ on the main

diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let

{λ̂n,i}Li=1 denote the non-increasing eigenvalues of În,γ , then the (i, i)th element of Λ̂n(νn) is

given by λ̂n,i1(λ̂n,i ≥ ν
1/2
n ). Similar truncation schemes are discussed for reduced rank Wald

statistics in Dufour and Valery (2016).

Based on this, we define the semi-parametric score statistic for the SVAR model as follows.

Ŝn,γ :=

(
1√
n

n∑
t=1

κ̂n,γ(Yt, Xt)

)′

Ît,†
n,γ

(
1√
n

n∑
t=1

κ̂n,γ(Yt, Xt)

)
, (23)

where Ît,†
n,γ is the Moore-Penrose pseudo-inverse of Ît

n,γ . We note that the test statistic can

be evaluated at any γ = (α, β). In practice we will set α = α0, i.e. fixing the potentially

unidentified parameters under the null (14), and β̂n, some
√
n-consistent estimate for the finite

dimensional nuisance parameters.

For such parameter choices, the limiting distribution of Ŝn,γ (under the null hypothesis

α = α0) is derived in the following theorem.

Theorem 4.1: Suppose Assumptions 2.1 and 2.2 hold and that β̂n is a
√
n−consistent estimator
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of β under Pn
θ , for θ = (α0, β, η). Define Sn = n−1/2CZLβ for some C > 0 and let β̄n

be a discretized version of β̂n which replaces its value with the closest point in Sn; define

γ̄n = (α0, β̄n). Let rn = rank(Ît
n,γ̄n) and denote by cn the 1− a quantile of the χ2

rn distribution,

for any a ∈ (0, 1). Then if θn := (α0, β + b/
√
n, η(1 + h/

√
n)),

lim
n→∞

Pn
θn(Ŝn,γ̄n > cn) ≤ a,

with inequality only if rank(Ĩθ) = 0. Moreover, this size control is uniform over (b, h) ∈ B⋆ ×
H⋆ ⊂ RLβ × ˙H , where B⋆ and H⋆ are compact.16 That is,

lim
n→∞

sup
(b,h)∈B⋆×H⋆

Pn
θn(b,h)

(Ŝn,γ̄n > cn) ≤ a.

The theorem shows that the efficient score test (23) is locally uniformly asymptotically

correctly sized when we choose the critical value cn to correspond to the 1 − a quantile of the

chi squared distribution with degrees of freedom equal to the rank of the truncated (estimated)

efficient information matrix. Several comments are in order.

First, we do not impose which estimator β̂n should be adopted as the theorem holds for any
√
n-consistent estimator. In practice, standard estimators (e.g. GMM estimators) will satisfy

this condition. Moreover, given that the efficient scores for γ need to be computed anyway, it

is attractive to rely on one-step efficient estimates for β = (σ, b) as discussed in van der Vaart

(1998, Section 5.7). These estimates are guaranteed to satisfy the requirements of the Theorem

and typically improve the (finite sample) power of the test.17

Second, the score statistic is evaluated at the discretised estimator β̄n, which takes the

estimate β̂n and replaces its value with the closest point in Sn = n−1/2CZL2 . Note that this

changes each coordinate of β̂n by a quantity which is at most Op(n
1/2), hence the

√
n-consistency

is retained by discretization. Since the constant C can be chosen arbitrarily small this change

has no practical relevance for the implementation of the test.18 Discretization is a technical

device due to Le Cam (1960) that allows the proof to go through under weak conditions, see Le

Cam and Yang (2000, p. 125) or van der Vaart (1998, pp. 72 – 73) for further discussion.

Third, the practical choice for the eigenvalue truncation rate ν
1/2
n , which theoretically needs

to satisfy Assumption 2.2, appears to have little effect on the finite sample results. In our

simulation studies and empirical applications, we always truncate at machine precision which

implies that Ît,†
n,γ is similar to Î†

n,γ , the Moore-Penrose inverse of În,γ . Experimenting with

different, but small, truncation rates appears to show that this choice matters little in practice.

Fourth, if Ĩθ has full rank, the singularity adjusted score statistic is asymptotically equivalent

to its non-singular version that is computed with Î−1
n,γ̄n instead of Ît,†

n,γ̄n ; it is well known that the

former is (locally asymptotically) optimal in a number of settings.19 Moreover, if the rank of Ĩθ
is positive, the singularity adjusted score statistic is (locally asymptotically) minimax optimal,

16H⋆ ⊂ Ḣ ⊂
∏K

k=1 L2(Gk) and is equipped with the
∏K

k=1 L2(Gk) norm.
17See the simulation results of section 7.
18Indeed, in practice, we always discretise at machine precision, see Algorithm 1 below.
19This can be seen by comparison of the asymptotic local power of this test with the power bound in the
appropriate limit experiment. For example, see Theorem 25.44 in van der Vaart (1998) for the one-dimensional
one-sided case; optimality amongst unbiased tests in the two-sided case can be shown similarly.
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as can be shown by an argument analogous to that given in Lee (2022).

Confidence set

A confidence set for the parameters α can be constructed by inverting the efficient score test

Ŝn,γ over an arbitrarily fine grid of values for α. Formally, for any a ∈ (0, 1) we define the 1− a

confidence set estimate for α as

Ĉn,1−a := {α ∈ A : Sn,(α,β̄n)
≤ cn,α} ,

where cn,α the 1 − a quantile of the χ2
rn,α

distribution and rn,α = rank(Ît
n,(α,β̄n)

). The fol-

lowing corollary establishes that the confidence set Ĉn,1−a has asymptotically correct coverage,

uniformly over local alternatives in the nuisance parameters.

Corollary 4.1: Suppose that assumptions 2.1 and 2.2 hold. Let β̄n, B
⋆, H⋆ and θn(b, h) be as

in Theorem 4.1. Then,

lim
n→∞

inf
(b,h)∈B⋆×H⋆

Pn
θn(b,h)

(
α ∈ Ĉn,1−a

)
≥ 1− a. (24)

The confidence set Ĉn,1−a is the main building block for constructing confidence bands for

the structural functions in the next section. In addition, this set may be of interest in its

own right as in some models the coefficients α have a direct structural interpretation, see for

instance the labor supply-demand model of Baumeister and Hamilton (2015) that is considered

in Section 8.

We finish this section by summarizing the practical implementation for the construction of

the confidence set, which naturally includes the implementation for the efficient score test.

Algorithm 1: Confidence set for α

(i) Choose a set A;

(ii) For each α ∈ A:

1 Obtain estimates β̂n = (σ̂n, b̂n), with bn = vec(Bn), and set V̂t = Yt − B̂nXt;

2 For k = 1, . . . ,K, compute the log density scores ϕ̂k(A(α0, σ̂n)k•V̂t) from (17);

3 Compute the efficient scores ℓ̂γ̂n(Yt, Xt) from (15) and the information matrix În,γ̂n

from (19) using γ̂n = (α0, β̂n);

4 Compute κ̂n,γ̂n(Yt, Xt) and În,γ̂n from (20) and (21).

5 Compute the score statistic Ŝn,γ̂n from (23) and accept H0 : α = α0 if Ŝn,γ̂n ≤ cn,

where cn is the 1− a quantile of the χ2
rn distribution with rn = rank(Ît

n,γ̂n
).

(iii) Collect the accepted values for α to form Ĉn,1−a.

The algorithm highlights that the computation costs for evaluating the score test, i.e. step

(ii), are modest. Only K B-spline regressions and a few standard computations are needed.

That said, for some applications the dimension of α may be large and therefore the grid over

15



which the test needs to be computed is large as well leading to substantial computational

costs. To avoid this somewhat it is attractive to parameterize A(α, σ) such that α is as low

dimensional as possible, i.e. Lα = K(K − 1)/2. In addition, it is attractive to incorporate

additional restrictions, for example in our empirical work we typically use sign restrictions to a

priori shrink the set A.

5 Robust inference for smooth functions

In this section we discuss the methodology for conducting robust inference on smooth functions

of the finite dimensional parameters γ = (α, β). The main functions of interest are the structural

impulse response functions (sIRF), but also forecast error variance decompositions and forecast

scenarios can be considered within the general framework that we develop (e.g. Kilian and

Lütkepohl, 2017). The main difference with the preceding section is that we are now explicitly

interested in conducting inference on functions of both α and β, where we recall that the

parameters β are
√
n-consistently estimable, but α may not be consistently estimable due to a

potential lack of identification.

We define the general function of interest by

g(α, β) : Dg → Rdg , with Dg ⊃ A× B , (25)

where Dg is the domain of g and dg is some positive integer. The following assumption restricts

the class of functions that we consider.

Assumption 5.1: g : Dg → Rdg is continuously differentiable with respect to β and the Jacobian

matrix Jγ := ∇β′g(α, β) has full column rank on Dg.

The differentiability condition allows for the application of the (uniform) delta-method,

whereas the rank condition ensures that no further degeneracy in the asymptotic distribution

occurs, apart from that caused by α potentially suffering from identification problems.

For concreteness the next example provides the details for a vector of structural impulse

response functions.

Example 5.1: Consider the vector that collects all sIRF at horizon l

IRF(l) = g(α, β) := vec
(
DB(b)lD′A(α, σ)−1

)
,

where

D :=
[
IK 0K×K(p−1)

]
, and B(b) :=



B1 B2 · · · Bp−1 Bp

IK 0 · · · 0 0

0 IK · · · 0 0
...

...
. . .

...
...

0 0 · · · IK 0


.

In our general notation we have dg = K2 and we note that, given Assumption 2.1, this function
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is continuously differentiable with respect to β. The Jacobian Jγ ∈ RK2×Lβ has the form Jγ =

[Jγ,1, Jγ,2] where

Jγ,1 :=
[
(A(α, σ)−1)′ ⊗ IK

] { h−1∑
j=0

[
D(B(b)′)h−1−j ⊗ (DB(b)jD′)

]}
Jγ,2 :=

[
IK ⊗DB(b)hD′] ∇σ vec(A(α, σ)

−1) .

Similar details can be worked out for forecast error variance decompositions and other

structural functions of interest.

In general, our objective is to construct a valid 1− q confidence set for g(α, β). Intuitively,

we proceed in two steps: first we construct a valid confidence set for α using the methodology of

the previous section, and second, for each included α we construct a confidence set for g(α, β̂n).

The union over the latter sets provides the final set. Overall, this two-step Bonferroni approach

is similar to the approach utilized by Granziera et al. (2018) and Drautzburg and Wright (2023).

Formally, let q1, q2 ∈ (0, 1) such that q1 + q2 = q ∈ (0, 1). In the first step we construct

a 1 − q1 confidence set Ĉn,1−q1 for α using Algorithm 1. The asymptotic validity of this set

was proven in Corollary 4.1. Second, for each α ∈ Ĉn,1−q1 we compute ϱ̂α,n := g(α, β̂n). The

confidence set for ν̂α,n is given by

Ĉn,g,α,1−q2 :=
{
ϱ : n(ϱ̂α,n − ϱ)′V̂ −1

n,α(ϱ̂α,n − ϱ) ≤ cq2

}
, (26)

where ϱ := g(α, β) and V̂n,α = Jγ̂Σ̂nJ
′
γ̂ , with γ̂ = (α, β̂n) and Σ̂n a consistent estimate for the

asymptotic variance of β̂n. The critical value cq2 corresponds to the 1− q2 quantile of a χ2
1−q2

random variable. The following proposition establishes the conditions on the estimates β̂n that

ensure that the confidence set (26) is valid.

Proposition 5.1: Suppose that assumption 5.1 holds. Let β̂n and Σ̂n be sequences of estimates

and B⋆ ⊂ B, H⋆ ⊂ ˙H be compact. Let βn(b) := β+b/
√
n. If, for any θn(b, h) := (α, βn(b), η(1+

h/
√
n)) with (b, h) ∈ B⋆ ×H⋆,

√
n(β̂n − βn(b))

Pn
θn⇝ N (0,Σ) , and, Σ̂n

Pn
θn−−→ Σ,

where Σ is positive definite, then the confidence set Ĉn,g,α in (26) satisfies

lim
n→∞

inf
(b,h)∈B⋆×H⋆

Pn
θn(b,h)

(
g(α, βn(b)) ∈ Ĉn,g,α,1−q2

)
= 1− q2 . (27)

The proposition formally establishes that if β̂n is asymptotically normal along the local

sequences θn(b, h), then the confidence set Ĉn,g,α is valid. The proof of this proposition is a

straightforward application of the uniform delta method.

The condition imposed on the estimator β̂n is satisfied by most typical estimators (e.g. GMM

estimators) under appropriate regularity conditions. Additionally, it can always be ensured

(under Assumption 2.1) by taking β̂n as a one-step efficient estimator based on any initial
√
n

– consistent estimator (cf. Section 6).
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The final confidence set for g(α, β), i.e. Ĉn,g, is formed by taking the union of the sets

Ĉn,g,α,1−q2 over α ∈ Ĉn,1−q1 . Formally, we consider

Ĉn,g :=
⋃

α∈Ĉn,1−q1

Ĉn,g,α,1−q2 . (28)

The confidence set Ĉn,g is a valid 1− q confidence set as we formally establish in the following

Corollary.

Corollary 5.1: Let βn(b), θn(b, h) and B⋆, H⋆ be as in Proposition 5.1. If Ĉn,1−q1 satisfies

(24) and Ĉn,g,α,1−q2 satisfies (27), then

lim inf
n→∞

inf
(b,h)∈B⋆×H⋆

Pn
θn(b,h)

(
g(α, βn(b)) ∈ Ĉn,g

)
≥ 1− q .

This Corollary requires only the conclusions of Corollary 4.1 and Proposition 5.1.20 For

convenience we summarize the practical implementation in the following algorithm.

Algorithm 2: Robust confidence sets for smooth functions

(i) Obtain the confidence set Ĉn,1−q1 for α using Algorithm 1;

(ii) For each α ∈ Ĉn,1−q1

(a) Estimate β̂n and Σ̂n;

(b) Compute V̂n,α = Jγ̂Σ̂J
′
γ̂ with Jγ̂ and γ̂ = (α, β̂n)

(c) Construct the confidence set Ĉn,g,α,1−q2 as in (26);

(iii) Construct Ĉn,g from (28).

As is demonstrated in the subsequent section, for structural impulse responses this approach

often provides confidence sets with shorter average length when compared to alternative robust

confidence set constructions proposed in the literature.

The structure of Algorithm 2 implies that different parametrizations for A(α, σ) can lead

to different confidence sets for the structural functions. For example, suppose that K = 2: we

could choose A(α, σ) = Σ1/2(σ)R(α) such that α is a scalar, or we could set α = (α1, α2) as the

off-diagonal elements of A(α, σ) and let σ = (σ1, σ2) capture the diagonal elements. The stated

results hold for both options, but which approach results in the smallest confidence sets for a

given structural function depends on the true data generating process. In practice, unless the

researcher is interested in jointly testing specific entries of A, we recommend choosing α as small

as possible, this reduces the computational burden of searching over the set A in Algorithm

1 and therefore immediately reduce the computational cost of Algorithm 2.

20These are proven under Assumptions 2.1 and 2.2 which, we re-iterate, do not impose that the structural shocks
have non-Gaussian distributions.
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6 Point estimation under strong identification

While the main emphasis of this paper is on providing robust confidence sets for (functions of)

possibly weakly identified parameters in non-Gaussian SVAR models, the results from Section

3 can also be exploited to construct point estimates for the finite dimensional parameters γ =

(α, σ, b). Under an additional strong identification assumption, e.g. the densities of the errors

are non-Gaussian, such estimates have desirable efficiency properties as we document in this

section.21

Assumption 6.1: The limiting efficient information matrix for γ, Ĩθ = limn→∞ Ĩn,θ is non-

singular, where Ĩn,θ is as in (11).

A necessary underlying condition for this assumption is that at most one of the structural

shocks can follow a Gaussian distribution (e.g. Comon, 1994).22 Under this assumption the

literature has developed a variety of
√
n – consistent estimators for this case, see the references

cited in the introduction. Based on any of such estimators we define the one-step efficient

estimator as

γ̂n = γ̄n + Î−1
n,γ̄n ℓ̄n,γ̄n , where ℓ̄n,γ̄n =

1

n

n∑
t=1

ℓ̂n,γ̄n(Yt, Xt) , (29)

with ℓ̂n,γ(Yt, Xt) and În,γ defined in (15) and (19) respectively and γ̄n a discretised version

of any
√
n–consistent estimator γ̃n = (α̃n, β̃n). We note that under Assumption 6.1 and the

regularity conditions stated above Î−1
n,γ̄n exists with probability approaching one. See van der

Vaart (1998) for a more elaborate discussion on one-step efficient estimators.

The following theorem summarizes the main result.

Theorem 6.1: Suppose that Assumptions 2.1, 2.2 and 6.1 hold. Let γ̃n be a
√
n–consistent

estimator of γ under Pn
θ . Let γ̄n be a discretised version of γ̃n which which replaces its value

with the closest point in S ∗
n := n−1/2CZL. Then,

√
n(γ̂n − γ) =

1√
n

n∑
t=1

Ĩ−1
θ ℓ̃θ(Yt, Xt) + oPn

θ
(1)⇝ N (0, Ĩ−1

θ ), (30)

and, moreover,

Ĩ
1/2
θ

√
n(γ̂n − γ)⇝ N (0, I).

The theorem reveals that the estimator γ̂n is asymptotically efficient in the sense that it is

locally regular and achieves the asymptotic semiparametric efficiency bound for locally regular

estimators given by an infinite dimensional version of the Hájek – Le Cam convolution theorem,

see e.g. Theorem 3.11.2 in van der Vaart and Wellner (1996) for a version of this theorem which

applies to the present setting. The estimator in (29) can be iterated to achieve finite sample

improvements.

21These efficiency properties transfer to smooth functions of γ (e.g. IRFs) in the usual way (cf. Section 25.7 in
van der Vaart (1998))

22We note that primitive sufficient conditions depend also on the specific parametrization that is chosen for
A(α, σ).
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Table 1: Distributions for Structural Shocks

Abbreviation Name Definition

N (0, 1) Gaussian 1√
2π

exp
(
−1

2x
2
)

t(ν), ν = 15, 10, 5 Student’s t
Γ( ν+1

2 )
√
νπΓ( ν

2 )

(
1 + x2

ν

)(− ν+1
2 )

SKU Skewed Unimodal 1
5N
(
0, 1
)
+ 1

5N
(
1
2 , (

2
3)

2
)
+ 3

5N
(
13
12 , (

5
9)

2
)

KU Kurtotic Unimodal 2
3N
(
0, 1
)
+ 1

3N
(
0, ( 1

10)
2
)

BM Bimodal 1
2N
(
− 1, (23)

2
)
+ 1

2N
(
1, (23)

2
)

SPB Separated Bimodal 1
2N
(
− 3

2 , (
1
2)

2
)
+ 1

2N
(
3
2 , (

1
2)

2
)

SKB Skewed Bimodal 3
4N
(
0, 1
)
+ 1

4N
(
3
2 , (

1
3)

2
)

TRI Trimodal 9
20N

(
− 6

5 , (
3
5)

2
)
+ 9

20N
(
6
5 , (

3
5)

2
)
+ 1

10N
(
0, (14)

2
)

Note: The table reports the distributions that are used in the simulation studies in section 7 to draw the structural
shocks. The mixture distributions are taken from Marron and Wand (1992), see their table 1.

7 Finite sample performance

This section discusses the results from a collection of simulation studies that were designed

to evaluate the size and power of the proposed inference procedures. Additional results are

presented in the working paper version of this paper (e.g. Hoesch et al., 2023).

7.1 Size of semi-parametric score test

We start by evaluating the empirical rejection frequencies of the score test Ŝn,γ̂n for the semi-

parametric SVAR model. We consider SVAR(p) specifications with p = 1, 4, 12 lags, K = 2, 3

variables and sample sizes T = 200, 500, 1000. We simulate the SVAR(p) model for ten different

choices for the distributions of the structural shocks ϵk,t. The density functions that we consider

and their abbreviated names are reported in Table 1. We normalize each ϵk,t to have mean zero

and variance one by standardizing by the population mean and variance implied by the densities

in Table 1.

For the purpose of the simulation study, we parametrize the contemporaneous effect matrix

by A(α, σ)−1 = Σ1/2(σ)R(α)′ where Σ1/2(σ) is lower triangular and the rotation matrix R(α)

is parametrized using the Cayley transform: R(α) = [IK − Γ(α)] [IK + Γ(α)]−1, where Γ(α) is

a skew-symmetric matrix with elements α.23 The true structural parameters α0 are fixed at

randomly sampled values. Furthermore, we choose Σ1/2 to be lower triangular with ones on the

main diagonal and zeros elsewhere. The coefficient matrices, Aj , j = 1, . . . , p are parametrized

as Aj = ϕjIK where ϕj are fixed at values that ensure the SVAR is stationary. We use 400

23Our results are robust to using different parametrizations such as parametrizing R(α) by Euler angles (e.g.
Rose, 1957) or directly parametrizing A−1(α, σ) = L(σ) + U(α) where L(σ) is a lower triangular matrix and
U(α) is an upper triangular matrix excluding the main diagonal. Hoesch et al. (2023) reports the results for
the latter case.
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burn-in periods to simulate data and, unless indicated differently, we use M = 2, 500 Monte

Carlo replications throughout the simulations.

Table 2 reports the empirical rejection frequencies of the semi-parametric score test defined

in Section 4 for testing the hypothesis H0 : α = α0 vs. H1 : α ̸= α0. The test is implemented

following steps 1-5 of Algorithm 1 for α = α0 and using B = 7 cubic B-splines for the

estimation of the log density scores. The nuisance parameters β are estimated using either OLS

or using a one-step efficient estimator for β which update the OLS estimates using one Gauss-

Newton iteration (van der Vaart, 1998, Section 5.7). All tests are conducted at 5% nominal

size.

For the one-step efficient estimates (top panel) we find that the size of the test is generally

very close to the nominal size of 5%, regardless of the dimension of the SVAR or the number

of lags. Only for SVARs with a large number of parameters (high K and high p), do we see

minor size distortions. Most notably for K = 3, p = 12 and n = 200 the empirical size of the

test is often below the nominal level. We note that such settings, where the number of nuisance

parameters Lβ is proportional to the sample size is not covered by our theory which imposes

Lβ/n→ 0.

Most importantly however, and central to the main objective of this paper, the results are

similar across the different densities for ϵk,t. Regardless whether the density is Gaussian, close-

to-Gaussian or far away from the Gaussian density the behavior of the test is similar, and we

do not see an increase in the rejection frequency around the point of no-identification, i.e. the

Gaussian density.

For the test that is based on OLS estimates (bottom panel) the results are quite similar.

The only difference is that for small sample sizes with K and p large the test over-rejects

substantially more when compared to the test based on one-step efficient estimates. The reason

is that OLS estimates are considerably more noisy and biased in settings where the number of

parameters is proportional to the number of observations.

7.2 Comparison to alternative approaches

Next, we compare the performance of the semi-parametric score test to a variety of alternative

methods that have been proposed in the literature based on size and power. We focus on

an SVAR(1) model with K = 2 variables and a sample size of T = 500. We use the same

parametrization and parameter values as described in the previous subsection to generate the

data.

We distinguish between two types of alternative tests: (i) tests that do not fix α under the

null (e.g. Wald and Likelihood ratio type tests) and (ii) tests that fix α under the null (e.g. score

type or Lagrange multiplier tests). We expect the tests in the first category to perform poorly

as they are more vulnerable to identification failures.24 In the first category, we consider three

different Wald and three different Likelihood-ratio tests. The first test (WPML,t) is a pseudo-

maximum likelihood test based on the t-distribution, implemented using one (standardised)

t(7) density and a (standardised) t(12) density for the second shock. The test is closely related

24Simulation evidence in Lee and Mesters (2023a) has shown that tests that do not fix α under the null often
show severe over-rejection in static ICA models when the errors are close to Gaussian.
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Table 2: Empirical rejection frequencies

K p n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

One-Step Efficient Estimates

2 1 200 5.4 6.3 5.8 5.4 5.8 5.3 4.6 4.3 4.7 4.8
2 1 500 6.6 6.3 6.1 6.1 5.4 5.4 4.2 4.2 5.5 4.9
2 1 1000 5.9 6.3 5.7 5.2 4.8 6.1 4.4 4.1 4.8 5.2

2 4 200 4.3 6.0 6.0 4.4 4.5 4.2 5.2 5.4 3.8 4.6
2 4 500 6.0 5.7 6.0 5.3 4.6 5.5 5.6 5.9 4.6 4.8
2 4 1000 5.8 5.8 6.6 4.7 4.8 5.3 4.3 4.0 4.8 4.4

2 12 200 4.7 4.3 5.0 4.7 4.4 3.9 4.6 6.5 3.3 5.4
2 12 500 6.2 6.9 5.0 4.9 4.2 4.5 5.2 5.8 4.7 4.6
2 12 1000 6.8 5.7 5.5 5.4 4.4 4.8 4.3 4.4 5.0 5.6

3 1 200 7.2 7.6 7.6 8.4 7.4 7.2 4.8 4.4 4.8 5.7
3 1 500 7.4 8.3 8.1 6.6 6.1 5.6 5.6 5.4 5.2 4.9
3 1 1000 7.4 7.8 6.5 5.6 5.0 5.5 4.6 4.2 5.3 4.1

3 4 200 6.2 7.6 7.5 8.3 6.0 5.9 3.6 4.1 5.5 3.6
3 4 500 9.5 7.2 8.0 7.7 6.4 6.2 5.9 5.6 4.7 4.5
3 4 1000 7.8 6.7 7.9 6.2 5.3 6.7 5.7 5.5 5.0 5.0

3 12 200 2.4 2.7 3.3 4.5 3.1 2.7 3.2 2.0 2.3 3.4
3 12 500 8.4 8.5 9.4 9.4 6.6 4.7 3.9 3.5 5.3 2.4
3 12 1000 8.4 8.0 8.5 8.1 5.8 6.6 6.7 6.3 5.3 4.6

OLS Estimates

2 1 200 4.0 4.4 4.8 5.7 4.4 5.0 3.8 3.5 4.0 3.8
2 1 500 4.6 5.0 5.5 6.6 5.0 5.0 3.6 4.0 4.2 4.6
2 1 1000 4.7 5.4 4.9 5.0 4.8 6.2 3.9 3.8 5.1 4.9

2 4 200 4.6 6.1 5.1 5.1 3.5 4.0 3.0 2.8 4.0 3.0
2 4 500 5.0 5.3 5.5 5.9 5.1 4.0 3.5 3.7 4.1 3.6
2 4 1000 4.8 5.4 5.4 4.8 5.0 4.6 3.9 3.3 4.0 3.5

2 12 200 8.2 6.9 8.5 9.6 4.7 5.4 4.8 4.0 5.6 3.5
2 12 500 6.7 7.8 6.4 6.7 5.4 3.4 3.5 2.7 4.4 3.6
2 12 1000 6.3 5.3 5.8 5.6 6.2 3.7 3.9 3.0 4.6 4.2

3 1 200 5.6 6.9 7.1 10.2 5.7 5.7 3.4 2.5 4.4 3.0
3 1 500 5.4 6.4 6.7 8.6 5.6 5.9 3.3 3.0 4.2 3.0
3 1 1000 5.0 5.9 5.5 6.6 4.8 6.0 3.6 3.2 4.4 3.2

3 4 200 7.7 8.9 10.1 11.5 5.7 3.7 2.4 1.3 4.7 1.9
3 4 500 6.9 6.3 7.7 9.0 5.9 3.0 2.5 1.8 3.5 2.2
3 4 1000 6.1 5.7 7.5 6.7 5.0 4.2 3.0 2.4 3.9 2.6

3 12 200 16.0 18.5 19.7 20.6 11.0 9.7 6.1 4.8 13.6 4.7
3 12 500 12.7 13.6 13.7 14.5 7.2 2.5 2.5 1.4 6.2 1.5
3 12 1000 8.5 8.8 8.7 8.4 7.0 2.5 2.9 1.4 4.3 2.0

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α ̸= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameter
estimates β̂ are either one-step efficient or OLS estimates. The columns correspond to the dimension K, the
number of lags p, the sample size n and the different choices for the distributions of the structural shocks, ϵk,t
for k = 1, . . . ,K. The distributions are reported in Table 1. Rejection rates are computed based on M = 2, 500
Monte Carlo replications.
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to the Wald test of Gouriéroux et al. (2017). We also consider the (psuedo –) likelihood ratio

test (LRPML,t). In addition, we consider two tests based on the work of Lanne and Luoto

(2021) – the GMM Wald (WGMM,LL) and likelihood ratio (LRGMM,LL) tests which are based on

higher (third & fourth) order moment conditions. We also include the closely related moment

estimator from Keweloh (2021) for a Wald (WGMM,Kew) and likelihood-ratio (LRGMM,Kew) test.

In the second category we consider five tests. First, we have the pseudo maximum likelihood

Lagrange Multiplier test (LMPML,t) that is based on work of Gouriéroux et al. (2017). This

test is based on the score of the pseudo log likelihood which we take, following Gouriéroux

et al. (2017), to be the Student’s t with degrees of freedom fixed at ν = 7 and ν = 12 for

the first and second shocks respectively.25 Secondly, we consider the LM test corresponding to

the GMM setup of Lanne and Luoto (2021) (LMGMM,LL). Lastly, we compare to the recently

proposed robust GMM methods of Drautzburg and Wright (2023). We include both tests that

they propose. The first is based on the S-statistic of Stock and Wright (2000) which sets the

cross third and fourth order moments to zero (SDW). Second, we include their non-parametric

test which is based on Hoeffding (1948) and Blum et al. (1961) and sets all higher order cross

moments to zero (BKRDW). The SDW has the benefit that it does not require a full independence

assumption, whereas the BKRDW test, similarly to our semi-parametric score test, requires full

independence of the structural shocks. We implement the SDW and BKRDW tests using the

bootstrap procedure described in Drautzburg and Wright (2023).

Size comparison

Table 3 compares the size of the different testing procedures.

First as expected, the tests in group (i) — WPML, WLL and DMLL — tend to perform very

poorly, with the simulation results demonstrating both substantial over-rejection and extremely

conservative performance, depending on the test and distribution pair. This leads to the strong

recommendation to avoid tests that are not robust to weak deviations from Gaussian densities.

Overall, all tests in group (ii) perform much better, yet there are some differences that are

worth noting. First, similarly as before the rejection rates for the two efficient score tests (Ŝ)

are close to the nominal size of 5%, regardless of the distribution of the structural shocks (as in

table 2).

Next, consider the LM test based on Gouriéroux et al. (2017) (LMPML): in the case with one

Gaussian density, this test is able to control size for all choices of the second density considered.

In the case where both shocks are drawn from the same distribution, this test is able to control

size for most of the distributions, however over-rejects somewhat for the BM, SPB and TRI

distributions. The LM test based on Lanne and Luoto (2021) (LMLL) displays slightly worse

performance, with over-rejections for about half of the distributions considered. Interestingly

many of these over-rejections occur in the first panel, where we may expect that identification

is somewhat stronger. The identification robust moment tests of Drautzburg and Wright (2023)

(GMMDW and BKRDW) generally perform well, with the former always controlling size correctly

25Note that this test is not actually discussed in Gouriéroux et al. (2017), but the simulations in Lee and Mesters
(2023a) show that it has reliable size for ICA models. Moreover, the same idea could be implemented using
mixtures of normals instead of the Student’s t density (Fiorentini and Sentana, 2022).
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Table 3: Empirical rejection frequencies for alternative tests

Test N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

ϵ1,t ∼ ϵ2,t

Ŝols 5.3 5.7 6.1 5.7 4.4 5.7 4.0 3.7 4.8 3.9

Ŝonestep 7.8 6.5 6.7 6.0 4.7 5.3 5.2 5.0 5.5 4.7
SDW 3.9 3.8 3.7 5.8 5.3 4.3 2.6 2.9 3.6 3.7
BKRDW 3.8 3.9 4.3 4.9 5.5 28.5 5.9 5.5 7.9 6.1

LMPML,t 5.1 5.1 5.7 5.3 4.9 6.8 16.6 22.2 5.4 21.7
LMGMM,LL 1.8 1.5 4.2 12.1 16.2 10.6 3.5 3.7 2.3 3.9
LMGMM,Kew 1.4 1.5 4.0 15.0 15.3 6.5 4.5 4.3 1.4 4.1

LRPML,t 34.7 13.1 7.6 3.7 1.6 1.9 100.0 100.0 14.0 100.0
LRGMM,LL 7.4 10.5 11.7 19.2 16.1 12.6 3.9 3.4 9.6 3.8
LRGMM,Kew 9.8 10.3 13.7 20.0 16.9 12.6 4.6 4.7 9.4 4.3

WPML,t 16.7 10.8 11.3 8.1 6.2 5.9 37.4 41.7 12.4 38.5
WGMM,LL 20.5 24.5 23.5 27.2 22.2 17.9 4.4 4.8 22.8 4.5
WGMM,Kew 33.0 29.7 28.7 24.1 21.1 14.5 5.0 5.3 27.6 4.8

Note: The table reports empirical rejection frequencies for tests of the hypothesis H0 : α = α0 vs. H1 : α ̸= α0

with 5% nominal size for the SVAR(1) model with K = 2 and T = 500, and α0 = 0.5594. Ŝols denotes the semi-
parametric score test using OLS estimates for β, Ŝonestep uses one-step efficient estimates. LMPML,t, WPML,t and
LRPML,t denote the pseudo-maximum likelihood tests based on Gouriéroux et al. (2017), assuming t-distributed
shocks. LMGMM,LL, WGMM,LL and LRGMM,LL denote the GMM-based tests based on Lanne and Luoto (2021)
with one co-kurtosis condition based on ϵ31tϵ2t. LM

GMM,Kew, WGMM,Kew and LRGMM,Kew denote the correspond-
ing GMM-based tests of Keweloh (2021) using both co-kurtosis conditions. Finally, SDW and BKRDW denote
the bootstrapped GMM-based and non-parametric test of Drautzburg and Wright (2023), respectively. The
columns correspond to different choices for the distributions of the structural shocks, ϵk,t for k = 1, . . . ,K. The
distributions are reported in Table 1. The tests of Drautzburg and Wright (2023) use 500 bootstrap replications
to simulate the null distribution of the test statistics. Rejection rates are computed based on M = 1, 000 Monte
Carlo replications.

and the latter over-rejecting only in a few cases (e.g. the kurtotic unimodal distribution). This

over-rejection is not due to identification failure but rather slow convergence due to the higher

order moment conditions used.

To summarize, most of the non-robust alternative procedures lead to incorrect inference if

the distribution of the structural shocks is not “sufficiently” non-Gaussian. Furthermore, the

identity of the best-performing alternative procedure crucially depends on which non-Gaussian

distribution generated the data. In contrast, the semi-parametric score test proposed in this

paper gives correct inference regardless of the distribution of the structural shocks.

Power comparison

Next, we compare power among the identification robust tests. We again focus on an SVAR(1)

model with K = 2 variables a sample size of T = 500.

Figure 1 reports the raw (i.e not size-adjusted) power for the semi-parametric score test

using one-step nuisance parameter estimates (red solid line), the semi-parametric score test

using OLS nuisance parameter estimates (black sold line), the pseudo maximum likelihood LM
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Figure 1: Power in the SVAR(1) model
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Note: The figure reports unadjusted empirical power curves for tests of the hypothesisH0 : α = α0 vs. H1 : α ̸= α0

with 5% nominal size for the SVAR(1) model with K = 2 and T = 500. The x-axis corresponds to different
alternatives for α around α0 = 0.5594. Ŝols denotes the semi-parametric score test using OLS estimates for
β, Ŝonestep uses one-step efficient estimates. LMPML,t denotes the pseudo-maximum likelihood test based on
Gouriéroux et al. (2017), SDW denotes the GMM-based test of Drautzburg and Wright (2023), BKRDW denotes
the non-parametric test of Drautzburg and Wright (2023). The tests of Drautzburg and Wright (2023) use 500
bootstrap replications to obtain critical values. Rejection frequencies are computed using M = 1, 000 Monte
Carlo replications.

test (dot - dashed blue line), the Drautzburg and Wright (2023) GMM test (dotted green line)

and the non-parametric Drautzburg and Wright (2023) test (dot - dashed purple line).

For the t distributions in the first row of the figure, the best performing test is the pseudo

maximum likelihood LM test. This is not surprising as this test is based on the t – density and

therefore is close to correctly specified. The efficient score tests show greater power than either

of the other tests considered. Moreover, in the other panels, the efficient score tests are typically

the most powerful tests (that also control size), with the one-step update version performing

slightly better. The quality of the other three tests depends to a large extent on the underlying

density. For example, the tests of Drautzburg and Wright (2023) offer very little power in the

t-distribution cases, but for the other distributions their non-parametric test has power curves
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which are not much below those of the efficient score test.26

7.3 Additional results

Hoesch et al. (2023) show additional results that evaluate (i) the score test under alterna-

tive parametrizations, (ii) the score test for higher dimensions, (iii) the score test with cross-

validation for selecting the number of B-splines as in Chen and Bickel (2006), (iv) the confidence

sets for smooth functions of the SVAR parameters as discussed in Section 5 (both coverage and

confidence set length) and (v) the point estimates introduced in Section 6. The results show

that the finite sample properties of the score test are invariant to the specific parametrization

chosen. The cross-validation procedure leads to rejection frequencies that are generally closer

to the nominal level. In higher dimensions the performance of the test deteriorates; similar

to other SVAR studies, a bootstrap implementation of our test is likely to be preferable in

such settings. The evaluation of the impulse responses shows that the two-step Bonferroni ap-

proach is conservative; but if the efficient score test, based on one-step efficient estimates, is

used as the first step the coverage becomes much closer to the nominal size. Also, the efficient

score approach gives the smallest length among all procedures considered and for all densities.

Finally, the one-step efficient point estimates are generally more accurate when compared to

non-efficient competitors, i.e. their root-mean-squared error is lower when compared to existing

estimators.

8 Empirical studies

In this section, we discuss the results from two empirical studies: one for labor supply and

demand and the other for the oil market. We investigate the consequences of replacing some of

the identifying information used in previous studies with identification based on non-Gaussianity

and illustrate the calculation of confidence sets based on the methodology of this paper.

8.1 Labor supply-demand model of Baumeister and Hamilton (2015)

We revisit the bivariate SVAR(p) model of the U.S. labor market as considered in Baumeister

and Hamilton (2015). We have Yt = (∆wt,∆ηt)
′, where ∆wt is the growth rate of real compen-

sation per hour and ∆ηt is the growth rate of total U.S. employment. The SVAR model for Yt

is defined by (2) with parametrization27

A−1(α, σ) =

(
−αd 1

−αs 1

)−1(
σ1 0

0 σ2

)
.

26For the kurtotic unimodal distribution the power curve of this test is higher, however this test is substantially
oversized for this density. It should also be noted that the tests of Drautzburg and Wright (2023) are sub-
stantially more computationally demanding than the efficient score based approaches, as they use a bootstrap
approach to obtain the critical value. Relying on asymptotic critical values for these tests yields substantially
worse performance.

27In Hoesch et al. (2023), we provide additional results from an alternative parametrization of the model using
a rotation matrix.
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It follows that here the parameter αd is the short-run wage elasticity of demand, and αs is

the short-run wage elasticity of supply. The number of lags used is p = 8, the sample is

from 1970:Q1 through 2014:Q2, and conventional sign restrictions are imposed on the supply

and demand elasticities (αd ≤ 0, αs ≥ 0). These restrictions ensure that we test economically

interesting permutations of the impact matrix.

Without further identifying information, any fixed point that satisfies the sign restrictions

is a valid point and nothing more can be learned. To improve identification, Baumeister and

Hamilton (2015) introduce carefully motivated priors on the short-run labor supply and demand

elasticities, based on estimates from the micro-econometric and macroeconomic literature, as

well as a long-run restriction on the effect of labor-demand shocks on employment (e.g. Shapiro

and Watson, 1988). We investigate whether such additional identifying assumptions can be

avoided by exploiting possible non-Gaussianity in the supply and demand shocks. For the

purpose of our analysis, we consider a wide grid of potential elasticities, (αd, αs) ∈ [−3, 0)×(0, 3],

which covers the majority of elasticity estimates reported in the microeconometric literature, as

well as findings from theoretical macroeconomic models (see the discussion in Baumeister and

Hamilton (2015)). We confine our analysis to this grid which can be regarded as an additional

identification restriction.

Recently, Lanne and Luoto (2022) adopted the methodology of Lanne and Luoto (2021) to

assess identification of the model using non-Gaussianity, but this approach may yield incorrect

coverage when the shocks are close to Gaussian (cf Section 7). Here we will adopt the robust

score testing approach of Sections 4 and 5 to construct confidence sets for the elasticity param-

eters as well as impulse responses to labor supply and labor demand shocks. Specifically, we

construct confidence sets for α using Algorithm 1 and confidence bands for the impulse re-

sponses using Algorithm 2. For both algorithms, we make use of one-step efficient parameter

estimates β̂n.

Before getting there, we recall that our methodology relies on the assumption that the

demand and supply shocks are independent and not merely uncorrelated. Therefore, we start

by testing for independent components using the permutation tests of Matteson and Tsay (2017)

and Montiel Olea et al. (2022). To compute the test, we obtain an initial GMM estimate of

α using the moment conditions of Keweloh (2021). For the given sample period, we obtain a

p-value of 0.12 for the test of Matteson and Tsay (2017) and a p-value of 0.55 for the test of

Montiel Olea et al. (2022), hence we conclude this assumption is not unreasonable and proceed

with constructing confidence sets for the elasticity parameters.

Confidence Sets for (αd, αs)

Figure 2 shows the 95% and 67% joint confidence sets for labor demand (αd) and labor supply

(αs) parameters obtained using Algorithm 1 of Section 4. The confidence sets are constructed

based on a grid of 250,000 equally spaced points spanning the elasticity ranges discussed above.

The figure shows that overall, non-Gaussianity is not sufficient to pin down a precise region for

the elasticities, though it does rule out parts of the parameter space which would be accepted

under Gaussianity. For sufficiently negative values of the short-run demand elasticity, the

short-run supply elasticity is reasonably well identified from non-Gaussianity with confidence
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Figure 2: Confidence Sets for Labor Demand and Supply Elasticities
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Note: 95% (light blue) and 67% (dark blue) confidence regions for labor demand and supply elasticities obtained
using Algorithm 1 with 250,000 equally-spaced grid points for (αd, αs) ∈ [−3, 0)× (0, 3].

sets indicating that αs lies in the 0 - 0.3 range for both 95% and 67% confidence level. In

contrast, for values of αd that are less negative (smaller absolute value), the confidence sets

support a wide range of values for the supply elasticity, up to 0.6 at 67% confidence level and

spanning almost all values in the inspected grid at 95% confidence level. Our results match the

findings of Baumeister and Hamilton (2015) who report that the main posterior mass for αs

lies in the 0 - 0.5 range while the posterior for αd indicates that demand elasticities between -3

and 0 are well supported by the model.

Note that the estimate of Lanne and Luoto (2022) obtained using non-Gaussianity identi-

fication (αd = –0.317, αs = 0.514) falls within our confidence set at 95% level. However, they

find narrow confidence sets for the elasticity parameters while our weak-identification robust

approach results in much wider confidence sets, similar to the credible sets of Baumeister and

Hamilton (2015).

Confidence Sets for impulse responses

Figure 3 shows our identification-robust 95% and 67% confidence sets for the impulse responses

to labor-demand and labor-supply shocks. Comparing the impulse response bands to the poste-

rior credible sets reported by Baumeister and Hamilton (2015), we note that the implied impulse

responses are, overall, very similar and show long and persistent responses to the supply and

demand shocks. The main differences are that our 95% identification-robust bands support

slightly negative long-run responses of the real wage and employment to a demand shock, as

well as a more pronounced negative long-run response of employment to a supply shock while
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Figure 3: IRF confidence bands for labor demand and supply shocks
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Note: 95% (light blue) and 67% (dark blue) identification-robust confidence bands for impulse responses to labor
supply and labor demand shocks, obtained using 250,000 equally-spaced grid points for (αd, αs) ∈ [−3, 0)× (0, 3].

Baumeister and Hamilton (2015)’s credible sets contain only (weakly) positive responses. Com-

paring our results to Lanne and Luoto (2022), we note several differences. First, Lanne and

Luoto (2022) find a significant negative long-run response of the real wage to a supply shock

while our confidence sets do not rule out that the long-run response is weakly positive. Second,

and most important, they find a strong and significant dynamic response of both the real wage

and employment to the labor demand shock, inconsistent with the tight prior variance Baumeis-

ter and Hamilton (2015) impose on the long-run response of employment to a demand shock.

In contrast to their findings, both our 67% and 95% identification-robust confidence bands do

not rule out that the long-run response of either variable to the demand shock is zero. This

evidence suggests that the long-run restriction of Baumeister and Hamilton (2015) cannot be

rejected solely on the basis of non-Gaussianity.

8.2 Oil price model of Kilian and Murphy (2012)

Next, we revisit the tri-variate oil market SVAR(p) model of Kilian and Murphy (2012). We

have Yt = (∆qt, xt, pt)
′ where ∆qt is the percent change in global crude oil production, xt is an
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index of real economic activity representing the global business cycle and pt is the log of the

real price of oil. The SVAR model is parameterised as follows

Yt = c+B1yt−1 + · · ·+BpYt−p +A−1(α, σ) ϵt, A−1(α, σ) =

σ1 αqx · σ5 αqp · σ6
σ2 σ4 αxp

σ3 σ5 σ6

 (31)

where following Baumeister and Hamilton (2019) we use p = 12. In this model, ϵt includes

a shock to the world production of crude oil (“oil supply shock”), a shock to the demand for

crude oil and other industrial commodities associated with the global business cycle (“aggregate

demand shock”), and a shock to demand for oil that is specific to the oil market (“oil-market-

specific demand shock”). In the parametrisation above, αqx is the short-run (impact) demand

elasticity of oil supply while αqp captures the short-run (impact) price elasticity of oil supply.

The baseline model of Kilian and Murphy (2012) makes use of the following sign restrictions

on the impact responses in A−1 to identify impulse responses:28

A−1(α, σ) =

+ + +

+ + −
− + +

 . (32)

In addition, Kilian and Murphy (2012) impose a set of upper bounds on the short-run oil supply

elasticities implied by the model to shrink the identified set for the impulse responses. Specif-

ically, they assume that αqp < 0.0258, αqx < 0.0258 and that αxp > −1.5. These restrictions,

in particular the elasticity bound on αqp, have been criticised by Baumeister and Hamilton

(2019) as being too tight and there is an active debate around which values for these bounds

are reasonable (see Herrera and Rangaraju (2020) for an overview).

We investigate whether the bounds on the elasticities can be avoided by exploiting non-

Gaussian features of the structural shocks. We base our analysis on the monthly data sample

considered in Zhou (2020) which spans February 1973 - August 2009. This data corresponds

to the original data of Kilian and Murphy (2014), but includes the correction to the index

of global economic activity discussed in Kilian (2019). We consider the robust score testing

approach of Sections 4 and 5 to construct confidence sets for the elasticity parameters as well

as the impulse responses to the oil supply shock, the aggregate demand shock and the oil-

market-specific demand shock. Our implementation is similar as in the previous application.

We start by testing for independent components using the permutation tests of Matteson and

Tsay (2017) and Montiel Olea et al. (2022). As before, we base the test on a GMM estimate of

α obtained using the moment conditions of Keweloh (2021). For the given sample period, we

obtain a p-value of 0.35 for the test of Matteson and Tsay (2017) and a p-value of 0.47 for the

test of Montiel Olea et al. (2022), hence we conclude this assumption is not unreasonable and

proceed with constructing confidence sets for the elasticity parameters.

28Kilian and Murphy (2012) normalize the first shock to be an oil supply disruption, leading to inverted signs in
the first column of A−1. Following Baumeister and Hamilton (2019), we consider a positive oil supply shock.
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Figure 4: Confidence Sets for (αqx, αqp)
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Note: 95% (light blue) and 67% (dark blue) confidence regions for supply elasticities (αqx, αqp) obtained using
Algorithm 1 using 500,000 grid points for (αqx, αqp, αxp) ∈ (0, 0.25] × (0, 0.1] × [−3, 0) by projection across
accepted values for αxp. The black dashed lines denote the original supply elasticity bounds of 0.0258 imposed
by Kilian and Murphy (2012).

Confidence sets for oil supply elasticities (αqx, αqp)

Figure 4 shows the 95% and 67% joint confidence sets for the price elasticity of oil supply (αqp)

and the demand elasticity of oil supply (αqx) obtained using Algorithm 1 of Section 4 from a

grid of 500,000 points for (αqx, αqp, αxp) ∈ (0, 0.25] × (0, 0.1] × [−3, 0) with 100 points for αqx

and αqp each and 50 points for αxp. The confidence set for (αqx, αqp) is obtained by projecting

over all values of αxp in the grid. The end points of the grid were chosen by (i) doubling the

bound on αxp imposed by Kilian and Murphy (2012), (ii) allowing for a large range of values for

αqx and (iii) substantially relaxing the bound on the price elasticity of oil supply (αqp) in Kilian

and Murphy (2012) to address the critique of Baumeister and Hamilton (2019). In particular,

the grid end-point of 0.1 for αqp matches the largest supply elasticity bound considered in

the sensitivity analysis of Baumeister and Hamilton (2019)’s model carried out in Herrera and

Rangaraju (2020) and nests the relaxed supply elasticity bound considered in Zhou (2020). To

ensure that our robust confidence set is compatible with the sign restrictions in (32), we impose

these signs in the estimation of the nuisance parameters σ.29

Inspecting the confidence set depicted in Figure 4, we note that non-Gaussianity significantly

helps to identify the price elasticity of the oil supply, but is less able to accurately pin down

the demand elasticity of oil supply. In particular, while the considered grid allows for supply

29Note that the set of sign restrictions on A−1 does not merely pin down a signed permutation of A−1, but also
imposes additional restrictions on the magnitudes of elasticities; see the discussion in Baumeister and Hamilton
(2019, p. 1881).
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Figure 5: IRF Confidence Bands in the Oil Market Model
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Note: 95% (light blue) and 67% (dark blue) identification-robust confidence bands for the impulse responses to
oil supply, aggregate demand and oil-specific demand shocks, obtained using 500,000 equally-spaced grid points
for (αqx, αqp, αxp) ∈ (0, 0.25]× (0, 0.1]× [−3, 0).

elasticities up to 0.1, the bound on the price elasticity of oil supply implied by the 95% and

67% confidence set for αqp falls within the relaxed bound of 0.04 considered by Zhou (2020). In

addition, at the 67% level, the elasticity lies within the bound of 0.0258 originally considered

in Kilian and Murphy (2012). At the 95% level, non-Gaussianity can not rule out that αqp falls

outside this bound. For the demand elasticity of oil supply (αqx), the confidence set spans a

large range of values between zero and 0.22, depending on the value for αqp.

Overall, our results suggest that non-Gaussianity is informative about the oil supply elas-

ticities αqx, αqp in the model of Kilian and Murphy (2012). However, it is not able to justify

the bounds considered in Kilian and Murphy (2012).

Confidence Sets for Impulse Responses

Finally, we turn to inspecting the 95% and 67% confidence bands for impulse responses to

oil supply, aggregate demand and oil-specific supply shocks which are depicted in Figure 5.

We note that our confidence bands overall exhibit response patterns that are similar to the
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results reported in Kilian and Murphy (2012) based on sign restrictions and the elasticity

bound of 0.0258. However, our procedure results in substantially wider confidence bands for

the responses of global real activity and the real price of oil than the ones originally reported

in Kilian and Murphy (2012). In particular, while the responses of oil production are identified

precisely, the responses of global real activity and of the real price of oil exhibit large uncertainty

with insignificant and flat responses to the oil supply shock, significant positive hump-shaped

responses to the aggregate demand shock and mixed response patterns to the oil-specific demand

shock.

9 Conclusion

This paper develops robust inference methods for structural vector autoregressive (SVAR) mod-

els that are identified via non-Gaussianity in the distributions of the structural shocks. We treat

the SVAR model as a semi-parametric model where the densities of the structural shocks form

the non-parametric part and conduct inference on the possibly weakly identified or non identi-

fied parameters of the SVAR, using a semi-parametric score statistic. We additionally provide a

two-step Bonferroni-based approach to conduct inference on smooth functions of all the finite-

dimension parameters of the model.

We assess the finite-sample performance of our method in a large simulation study and find

that the empirical rejection frequencies of the semi-parametric score test are always close to the

nominal size, regardless of the true distribution of the shocks. Moreover, the power of the test

is typically higher than alternative methods that have been proposed in the literature.

Finally, we employ the proposed approach in a number of empirical studies. Overall our

findings are mixed. Whilst non-Gaussianity does provide some identifying information for the

structural parameters of interest, it is unable to always pin down the parameter values or impulse

responses precisely. These exercises also highlight the importance of using weak identification

robust methods to asses estimation uncertainty when using non-Gaussianity for identification.
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Appendix

A Proofs and additional results

Here we prove the main results of the paper. Only the main arguments are given here, with the
verification of technical details relegated to Lemmas which can be found in the supplementary
material.

A.1 Notation

x := y means that x is defined to be y. The Lebesgue measure on RK is denoted by λK or
λ if the dimension is clear from context. The standard basis vectors in RK are e1, . . . , eK .
We make use of the empirical process notation: Pf :=

∫
f dP , Pnf := 1

n

∑n
i=1 f(Yi) and

Gnf :=
√
n(Pn − P )f . For any two sequence of probability measures (Qn)n∈N and (Pn)n∈N

(where Qn and Pn are defined on a common measurable space for each n ∈ N), Qn ◁ Pn

indicates that (Qn)n∈N is contiguous with respect to (Pn)n∈N. Qn ◁ ▷ Pn indicates that both
Qn ◁ Pn and Pn ◁ Qn hold, see van der Vaart (1998, Section 6.2) for formal definitions. X ⊥⊥ Y
indicates that random vectors X and Y are independent; X ≃ Y indicates that they have the
same distribution. a ≲ b means that a is bounded above by Cb for some constant C ∈ (0,∞);
the constant C may change from line to line. clX means the closure of X. vec−1 is the inverse
vec operator, i.e. if b = vec(B) then B = vec−1(b). If S is a subset of an inner product space
(V, ⟨·, ·⟩), S⊥ is its orthogonal complement, i.e. S⊥ = {x ∈ V : ⟨x, s⟩ = 0 for all s ∈ S}. If
S ⊂ V is complete (hence a Hilbert space) the orthogonal projection of x ∈ V onto S is Π(x|S).
The total variation distance between measures P and Q defined on the measurable space (Ω,F)
is dTV (P,Q) = supA∈F |P (A)−Q(A)|. ⇝ denotes weak convergence.

A.2 Density score estimation

Lemma A.1: Suppose Assumptions 2.1 and 2.2 hold. Let θn = (αn, βn, η) → θ be a deterministic
sequence with

√
n∥βn − β∥ = O(1). Then the log density score estimates ϕ̂k,n defined as in (17)

satisfy for j, k = 1, . . . ,K, k ̸= j

1

n

n∑
t=1

[
ϕ̂k,n(An,k•(Yt −BnXt))− ϕk(An,k•(Yt −BnXt))

]
Wn,t = oPn

θ̃n
(n−1/2), (33)

where An := A(αn, βn), Bn := B(βn) and Wn,t are any mean-zero random variables independent
from all An,k•(Ys − BnXs) with s ≥ t and such that supn∈N,1≤t≤n Eθ̃n

W 2
n,t < ∞. Additionally,

for νn = ν2n,p with 1 < p ≤ 1 + δ/4 and n−1/2(1−1/p) = o(νn,p) we have

1

n

n∑
t=1

([
ϕ̂k,n(An,k•(Yt −BnXt))− ϕk(An,k•(Yt −BnXt))

]
Wn,t

)2
= oPn

θ′n
(νn). (34)

where Wn,t are any random variables independent from all An,k•(Ys − BnXs) with s ≥ t and
such that supn∈N,1≤t≤n Eθ̃n

W 2
n,t <∞.

Proof. The claim follows by an argument analogous to that used to prove Lemma 4 of Lee and
Mesters (2023a); see Lee and Mesters (2023b) for the proof.30

30Note that in the statement of Lemma 4 of Lee and Mesters (2023a) the object corresponding to Wn,t here
(their Zn,i) is assumed to be mean zero in the equations corresponding to both (33) and (34). Inspection of
the proof reveals that this is unnecessary for the equation corresponding to (34).
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A.3 ULAN

To establish ULAN we establish LAN, as in Proposition A.1 directly below. Following this
in Proposition A.2 we show that (g, h) 7→ Pn

θn(g,h)
is asymptotically equicontinuous in total

variation. These properties are together equivalent to ULAN.

Proposition A.1 (LAN): Suppose that assumption 2.1 holds. Then for any g, h ∈ RL × ˙H
such that θn(g, h) = (γ + g/

√
n, η(1 + h/

√
n)), as n→ ∞,

Λn
θn(g,h)

(Y n) = gn(Y
n)− 1

2
E
[
gn(Y

n)2
]
+ oPn

θ
(1), (35)

where the expectation is taken under Pn
θ and

gn(Y
n) :=

1√
n

n∑
t=1

[
g′ℓ̇θ(Yt, Xt) +

K∑
k=1

hk(Ak•Vθ,t)

]
,

with A = A(α, σ). Moreover, under Pn
θ ,

gn(Y
n)⇝ N (0,Ψθ(g, h)), Ψθ(g, h) := lim

n→∞
E
[
gn(Y

n)2
]
.

Proof. Throughout we work conditional on (Y−p+1, . . . , Y0)
′. Define Vθ,t := Yt −BXt and

Wn,t :=
1

2
√
n

[
g′ℓ̇θ(Yt, Xt) +

K∑
k=1

hk(Ak•Vθ,t)

]
,

Fn,t := σ(Yt, Xt) and note that (Wn,t,Fn,t)n∈N, 1≤t≤n forms an adapted stochastic process. By
Assumption 2.1(ii),

E [Wn,t|Fn,t−1] =
1

2
√
n

[
g′ E

[
ℓ̇θ(Yt, Xt)|Fn,t−1

]
+

K∑
k=1

E[hk(Ak•Vθ,t)|Fn,t−1]

]
= 0, (36)

almost surely, where the expectation is taken under Pn
θ .

Next define Un,t := (un,t/un,t−1)
1/2 − 1 where un,0 = 1 and else

un,j :=

(
|An|
|A|

)j

×
j∏

t=1

K∏
k=1

ηk(An,k•Vθn,t)

ηk(Ak•Vθ,t)

(
1 +

hk(An,k•Vθn,t)√
n

)
, (37)

with A := A(α, σ) and An := A(α+ gα/
√
n, σ + gσ/

√
n). That is,

Un,t :=

[(
|An|
|A|

)
×

K∏
k=1

ηk(An,k•Vθn,t)

ηk(Ak•Vθ,t)

(
1 +

hk(An,k•Vθn,t)√
n

)]1/2
− 1. (38)

We now verify conditions (1.2) – (1.6) of Lemma 1 in Swensen (1985), having shown (1.7) to
hold above. (1.2), i.e. that E

∑n
t=1[Wn,t −Un,t]

2 → 0, where the expectation is taken under Pn
θ

is shown to hold in Lemma S2.5. For (1.3) note that by Lemma S2.4, Pn
θ [|

√
nWn,t|2+ρ] ≤ C for

some ρ > 0. Hence

sup
n∈N

Pn
θ

[
n∑

t=1

W 2
n,t

]
≤ sup

n∈N

1

n

n∑
t=1

Pn
θ (

√
nWn,t)

2 ≲ C.
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For (1.4), by Lemma S2.4 and Markov’s inequality,

Pn
θ

(
max
1≤t≤n

|Wn,t| > ε

)
≤ Pn

θ

(
n∑

t=1

W 2
n,t1{|Wn,t| > ε} > ε2

)

≤ ε−2
n∑

t=1

E
[
W 2

n,t1{
√
n|Wn,t| >

√
nε}
]

→ 0.

(1.5) follows from Lemma S2.7. For (1.6), by Lemma S2.4 and the fact that conditional expec-
tations are L1 contractions we have for any ε > 0

E

∣∣∣∣∣
n∑

t=1

E
[
W 2

n,t1{|Wn,t| > ε}|Fn,t−1

]∣∣∣∣∣ ≤
n∑

t=1

E
∣∣E [W 2

n,t1{
√
n|Wn,t| >

√
nε}|Fn,t−1

]∣∣
≤

n∑
t=1

E
[
W 2

n,t1{
√
n|Wn,t| >

√
nε}
]

→ 0.

under Pn
θ . Additionally (iii) of Theorem 1 in Swensen (1985) holds since the relevant measures

are both absolutely continuous with respect to Lebesgue measure (cf. Taniguchi and Kakizawa,
2000, p. 34). Therefore, by Lemma 1 in Swensen (1985), under Pn

θ ,

Λn
θn(g,h)

(Y n) = 2
n∑

t=1

Wn,t − τ2/2 + oPn
θ
(1)⇝ N

(
−τ

2

2
, τ2
)
.

Given the form of Wn,t, it remains only to show that E[gn(Y n)2] → τ2. Since gn(Y
n) =

2
∑n

t=1Wn,t and Wn,t forms a martingale difference array with respect to Fn,t (equation (36)),

E[gn(Y n)2] = 4E

[
n∑

t=1

Wn,t

]2
= 4E

n∑
t=1

W 2
n,t.

That this converges to τ2 follows from Lemma S2.7 and the reverse triangle inequality.

Proposition A.2: Suppose that assumption 2.1 holds. Then, if (gn, hn) → (g, h),

lim
n→∞

dTV (P
n
θn(gn,hn)

, Pn
θn(g,h)

) = 0.

Proof. By Lemmas S2.8 and S2.9

log
pnθn(gn,hn)

pnθn(gn,h)
= oPn

θn(gn,h)
(1) and log

pnθn(gn,h)

pnθn(g,h)
= oPn

θn(g,h)
(1), (39)

whenever (gn, hn) → (g, h). Therefore, by Lemma S3.3, (i) dTV (P
n
θn(gn,hn)

, Pn
θn(gn,h)

) → 0 and

(ii) dTV (P
n
θn(gn,h)

, Pn
θn(g,h)

) → 0.

Proof of Proposition 3.1. The only conclusion of Proposition 3.1 which is not immediately im-
plied by those of Proposition A.1 is that

Λn
θn(gn,hn)

(Y n)− gn(Y
n) +

1

2
E
[
gn(Y

n)2
]
= oPn

θ
(1).
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By Proposition A.1,

Λn
θn(g,h)

(Y n)− gn(Y
n) +

1

2
E
[
gn(Y

n)2
]
= oPn

θ
(1),

and hence it suffices to show that

Λn
θn(gn,hn)

(Y n)− Λn
θn(g,h)

(Y n) = oPn
θ
(1). (40)

By Proposition A.2, dTV (P
n
θn(gn,hn)

, Pn
θn(g,h)

) → 0, hence (Pn
θn(gn,hn)

)n∈N and (Pn
θn(g,h)

)n∈N are

mutually contiguous (e.g. Lemma 2.15 & Remark 18.3 in Strasser (1985)). By Proposition A.1
and Example 6.5 in van der Vaart (1998) the same is true of (Pn

θn(g,h)
)n∈N and (Pn

θ )n∈N. By the

transitivity of mutual contiguity, we conclude that (Pn
θn(gn,hn)

)n∈N and (Pn
θ )n∈N are mutually

contiguous. Combine this with equation (39) to conclude that (40) holds.

Proof of Corollary 3.1. Combine Example 6.5 in van der Vaart (1998) with the fact that by
Proposition 3.1, under Pn

θ

Λn
θn(gn,hn)

⇝ N
(
−1

2
Ψ(g, h),Ψ(g, h)

)
.

A.4 Scores

Proof of Lemma 3.1. Define

T η|γ
Pθ,H

:=

{
n∑

t=1

K∑
k=1

hk(Ak•Vθ,t) : h = (h1, . . . , hK) ∈ ˙H

}
, Vθ,t := Yt −BθXt. (41)

It suffices to show that (a) ℓ̃θ(Ys, Xs) ∈
[
T η|γ
Pθ,H

]⊥
⊂ L2(P

n
θ ) (componentwise) and (b)

ℓ̇θ(Ys, Xs)− ℓ̃θ(Ys, Xs) ∈

{
K∑
k=1

hk(Ak•Vθ,s) : h = (h1, . . . , hK) ∈ cl ˙H

}
, s = 1, . . . , n. (42)

For (a), the fact that ℓ̃θ(Ys, Xs) ∈ L2(P
n
θ ) follows straightforwardly from its form and the

moment conditions in assumption 2.1(ii). Next note that for any h ∈ ˙H , 1 ≤ s ≤ n,

n∑
t=1

K∑
k=1

E
[
ℓ̃θ(Ys, Xs)hk(Ak•Vθ,t)

]
= 0

will be obtained under Pn
θ if for all k, j,m ∈ [K] with m ̸= j and all 1 ≤ s ≤ n, 1 ≤ t ≤ n,

E [ϕl(ϵm,s)ϵj,shk(ϵk,t)] = 0

E [ϵm,shk(ϵk,t)] = 0

E [κ(ϵm,s)hk(ϵk,t)] = 0

E [(Xs − µ)ϕm(ϵm,s)hk(ϵk,t)] = 0,

the first three of which follow from the independence between components and across time of
(ϵt)t≥1. If s ≤ t, then by independence E [(Xs − µ)ϕm(ϵm,s)hk(ϵk,t)] = E [(Xs − µ)]E [ϕm(ϵm,s)hk(ϵk,t)] =
0. If s > t, then E [(Xs − µ)ϕm(ϵm,s)hk(ϵk,t)] = E [(Xs − µ)hk(ϵk,t)E [ϕm(ϵm,s)|σ(ϵ1, . . . , ϵs−1)]] =
0 again by independence.

For (b), we note that for the components corresponding to a xl ∈ {αl : l = 1, . . . , Lα}∪{σl :
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l = 1, . . . , Lσ} we have

ℓ̇θ,xl
(Ys, Xs)− ℓ̃θ,xl

(Ys, Xs) =
K∑
k=1

ϕk(Ak•Vθ,s)Ak•Vθ,s + 1− τk,1Ak•Vθ,s − τk,2κ(Ak•Vθ,s).

That this is mean zero and has finite second moment follows immediately from Assumption 2.1.
That it has covariance zero with Ak•Vθ,s and κ(Ak•Vθ,s) is ensured by the choice of τk.

For the components xl ∈ {bl : l = 1, . . . , Lb},

ℓ̇θ,xl
(Ys, Xs)− ℓ̃θ,xl

(Ys, Xs) =
K∑
k=1

(ϕk(Ak•Vθ,s) + ςk,1Ak•Vθ,s + ςk,2κ(Ak•Vθ,s)) [−e′kµ].

Again that this is mean zero and has finite second moment follows immediately from Assumption
2.1. That it has covariance zero with Ak•Vθ,s and κ(Ak•Vθ,s) is ensured by the choice of ςk.

This establishes that (42) holds since these are the defining properties of cl ˙H .31

A.5 Main Theorems

Proof of Theorem 4.1. Define

Rn,1(γ⋆) :=
∥∥∥√nPn

[
ℓ̂γ⋆ − ℓ̃θ⋆

]∥∥∥
Rn,2(γ⋆) :=

∥∥∥√nPn

[
ℓ̃θ⋆ − ℓ̃θ

]
+
√
nĨn,θ(γ⋆ − γ)

∥∥∥
Rn,3(γ⋆) := ν−1/2

n

∥∥∥În,γ⋆ − Ĩθ

∥∥∥ ,
where γ⋆ := (α, β⋆) and θ⋆ := (γ⋆, η). By Corollary 3.1, Pn

θ ◁▷ P
n
θn((0,bn),0)

for any bn → b ∈ RLβ .

It then follows by Lemmas S2.13, S2.15 and Le Cam’s first Lemma (e.g. van der Vaart, 1998,
Lemma 6.4) that

Rn,i(γn)
Pn
θ−−→ 0 for i = 1, 2, 3,

for any sequence γn = (α, β + bn/
√
n) with bn → b ∈ RLβ . Hence by Lemma S3.1 also

Rn,i(γ̄n)
Pn
θ−−→ 0 for i = 1, 2, 3. (43)

It follows that

√
nPn

[
ℓ̂γ̄n − ℓ̃θ

]
=

√
nPn

[
ℓ̂γ̄n − ℓ̃θ̄n

]
+
√
nPn

[
ℓ̃θ̄n − ℓ̃θ

]
= −Ĩn,θ(0,

√
n(β̄n − β)′)′ + oPn

θ
(1),

and În,θ̄n
Pn
θ−−→ Ĩθ and so K̂θ̄n,n

Pn
θ−−→ K̃θ for

K̃θ :=
[
I −Ĩθ,αβ Ĩ−1

θ,ββ

]
, K̂n,θ :=

[
I −În,θ,αβ Î−1

n,θ,ββ

]
.

31This follows by the argument of Lemma S8 in Lee and Mesters (2023b), noting that in the present context
their H0, H

⋆
0 , H̃0 may be dropped.
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We combine these to obtain

√
nPn [κ̂γ̄n,n − κ̃n,θ]

=
(
K̂n,γ̄n − K̃θ

)√
nPn

[
ℓ̂γ̄n − ℓ̃θ

]
+ K̃θn

√
nPn

[
ℓ̂γ̄n − ℓ̃θ

]
+
(
K̂n,γ̄n − K̃θ

)√
nPnℓ̃θ

= −K̃θ Ĩθ(0,
√
n(β̄n − β)′)′ + oPn

θ
(1)

= −
[
I −Ĩθ,αβ Ĩ−1

θ,ββ

] [Ĩθ,αα Ĩθ,αβ
Ĩθ,βα Ĩθ,ββ

] [
0√

n(β̄n − β)

]
+ oPn

θ
(1)

= oPn
θ
(1).

Next, let Zn := 1√
n

∑n
t=1 κ̂n,γ̄n(Yt, Xt) and re-write it as

Zn =
1√
n

n∑
t=1

κ̃θ(Yt, Xt) +
1√
n

n∑
t=1

(κ̂γ̄n,n(Yt, Xt)− κ̃θ(Yt, Xt)) =
1√
n

n∑
t=1

κ̃θ(Yt, Xt) + oPn
θ
(1).

By (i) of Lemma S2.15 and Le Cam’s third lemma (e.g. van der Vaart, 1998, Example 6.7)

1√
n

n∑
t=1

ℓ̃θ(Yt, Xt)⇝ N
(
Ĩθ(0

′, b′)′, Ĩθ

)
under Pθn ,

and hence under Pθn

Zn =
1√
n

n∑
t=1

ℓ̃θ,α(Yt, Xt)− Ĩθ,αβ Ĩ
−1
θ,ββ ℓ̃θ,β(Yt, Xt) + oPn

θn
(1)⇝ Z ∼ N (0, Ĩθ).

By repeated addition and subtraction along with the observations that any submatrix has a
smaller operator norm than the original matrix we obtain and the matrix inverse is Lipschitz
continuous at a non-singular matrix we obtain∥∥∥În,γ̄n − Ĩθ

∥∥∥
2
≲
∥∥∥În,γ̄n − Ĩθ

∥∥∥
2
.

Hence by (43) have
∥∥∥În,γ̄n − Ĩθ

∥∥∥
2
= oPn

θn
(ν

1/2
n ). By Proposition S1 in Lee and Mesters (2023b)

Ît,†
n,γ̄n

Pn
θn−−→ Ĩ†

θ and Pn
θnRn → 1, where Rn := {rank(Ĩt

n,γ̄n) = rank(Ĩθ)}.

Suppose first that r := rank(Ĩθ) > 0. By Slutsky’s lemma and the continuous mapping
theorem we have that

ŜSR
n,γ̄n = Z ′

nÎ
t,†
n,γ̄nZn ⇝ Z ′Ĩ†

θZ ∼ χ2
r

where the distributional result X := Z ′Ĩ†
θZ ∼ χ2

r , follows from e.g. Theorem 9.2.2 in Rao and
Mitra (1971). On Rn cn is the 1−a quantile of the χ2

r distribution, which we will call c. Hence,

we have cn
Pn
θn−−→ c and as a result,ŜSR

n,γ̄n − cn ⇝ X − c where X ∼ χ2
r . Since the χ2

r distribution
is continuous, we have by the Portmanteau theorem

Pn
θn

(
ŜSR
n,γ̄n > cn

)
= 1−Pn

θn

(
ŜSR
n,γ̄n − cn ≤ 0

)
→ 1−P (X − c ≤ 0) = 1−P (X ≤ c) = 1−(1−a) = a ,

which completes the proof in the case that r > 0.
We next handle the case with r = 0. On the sets Rn we have that Ît

n,γ̄n is the zero matrix,

whose Moore-Penrose inverse is also the zero matrix. Hence on these sets we have ŜSR
n,γ̄n = 0
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and cn = 0 and therefore do not reject, implying

Pn
θn(Ŝ

SR
n,γ̄n > cn) ≤ 1− Pn

θnRn → 0.

It follows that Pn
θn
(ŜSR

n,γ̄n > cn) → 0.
This completes the demonstration of the pointwise convergence

lim
n→∞

Pn
θn(b,h)

(Ŝn,γ̄n > cn) =

{
α if rank(Ĩθ) > 0

0 if rank(Ĩθ) = 0
.

Finally, to complete the proof, note that the norm on B× ˙H induces the product topology,
hence B⋆ ×H⋆ is compact. The uniformity then follows from the asymptotic uniform equicon-
tinuity in total variation of (b, h) 7→ Pn

θn(b,h)
on B⋆ × H⋆ which is an immediate consequence

of Lemma A.2 and the fact that asymptotic uniform equicontinuity is implied by asymptotic
equicontinuity on a compact set.

Proof of Corollary 4.1. Apply Theorem 4.1 to conclude:

lim
n→∞

inf
(b,h)∈B⋆×H⋆

Pn
θn(b,h)

(α ∈ Ĉn) ≥ 1− lim
n→∞

sup
(b,h)∈B⋆×H⋆

Pn
θn(b,h)

(ŜSR
n,γ̄n > cn) ≥ 1− α.

Proof of Proposition 5.1. By the uniform delta method (van der Vaart, 1998, Theorem 3.8),
under Pn

θn(b,h)
,

√
n
(
g(α, β̂n)− g(α, βn(b))

) Pn
θn(b,h)
⇝ N

(
0, JγΣJ

′
γ

)
.

Combine with V̂n,α
Pn
θn(b,h)−−−−−→ JγΣJ

′
γ ≻ 0 and the continuous mapping theorem to obtain

ng(α, β̂n)
′V̂ −1

n,αg(α, β̂n)
Pn
θn(b,h)
⇝ χ2

dg .

Hence, pointwise in (b, h) ∈ B⋆ ×H⋆,

lim
n→∞

Pn
θn(b,h)

(g(α, βn(b)) ∈ Ĉn,g,αn,1−a) = lim
n→∞

Pn
θn(b,h)

(
ng(α, β̂n)

′V̂ −1
n,αg(α, β̂n) ≤ ca

)
= 1− a.

The uniform statement then follows from Proposition A.2.

Proof of Corollary 5.1. This follows directly from the hypotheses and the fact that

Pn
θn(b,h)

(
g(α, βn(b)) ∈ Ĉn,g

)
≥ Pn

θn(b,h)

({
g(α, β̂n) ∈ Ĉn,g,α,1−q2

}
∩
{
α ∈ Ĉn,1−q1

})
≥ Pn

θn(b,h)

(
g(α, β̂n) ∈ Ĉn,g,α,1−q2

)
+ Pn

θn(b,h)

(
α ∈ Ĉn,1−q1

)
− 1.

Proof of Theorem 6.1. Similarly to as in the Proof of Theorem 4.1, define

Rn,1(γ⋆) :=
∥∥∥√nPn

[
ℓ̂γ⋆ − ℓ̃θ⋆

]∥∥∥
Rn,2(γ⋆) :=

∥∥∥√nPn

[
ℓ̃θ⋆ − ℓ̃θ

]
+
√
nĨn,θ(γ⋆ − γ)

∥∥∥
Rn,3(γ⋆) :=

∥∥∥Îγ⋆,n − Ĩθ

∥∥∥ ,
where θ⋆ := (γ⋆, η). By Corollary 3.1, for any gn → g ∈ RLα+Lβ , Pn

θ ◁ ▷ P
n
θn(gn,0)

. By Lemmas
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S2.13, S2.15 and Le Cam’s first Lemma (e.g. van der Vaart, 1998, Lemma 6.4)

Rn,i(γn)
Pn
θ−−→ 0 for i = 1, 2, 3,

where γn = γ + gn/
√
n. Hence by Lemma S3.1 also

Rn,i(γ̄n)
Pn
θ−−→ 0 for i = 1, 2, 3. (44)

Combine these and (29) to yield

√
nĨθ(γ̂n − γ) =

√
nĨθ(γ̄n − γ) +

√
nĨθ Î

−1
n,γ̄n ℓ̄n,γ̄n

=
√
nĨθ(γ̄n − γ) +

√
nPn

(
ℓ̂n,γ̄n − ℓ̃θ̄n

)
+
√
nPn

(
ℓ̃θ̄n − ℓ̃θ

)
+
√
nPnℓ̃θ + oPn

θ
(1)

=
√
nPnℓ̃θ + oPn

θ
(1).

Combine this with Lemma S2.15 (i) and the continuous mapping theorem.
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