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Bias correction can often improve the finite sample performance of estimators.
We show that the choice of bias correction method has no effect on the higher-
order variance of semiparametrically efficient parametric estimators, so long as
the estimate of the bias is asymptotically linear. It is also shown that bootstrap,
jackknife, and analytical bias estimates are asymptotically linear for estimators
with higher-order expansions of a standard form. In particular, we find that for a
variety of estimators the straightforward bootstrap bias correction gives the same
higher-order variance as more complicated analytical or jackknife bias correc-
tions. In contrast, bias corrections that do not estimate the bias at the parametric
rate, such as the split-sample jackknife, result in larger higher-order variances in
the i.i.d. setting we focus on. For both a cross-sectional MLE and a panel model
with individual fixed effects, we show that the split-sample jackknife has a higher-
order variance term that is twice as large as that of the ‘leave-one-out’ jackknife.
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1. INTRODUCTION

Asymptotic bias corrections can be useful for centering estimators nearer to the truth.
One approach is to use analytical corrections such as the standard textbook expansion
for functions of sample means and the more complicated formulas required for other
estimators. Alternatively, we may use jackknife and bootstrap bias corrections. To help
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choose a bias correction method it would be useful to know which, if any, is prefer-
able on asymptotic efficiency grounds. Although the bias correction does not affect the
first-order asymptotic variance, it can affect the higher-order variance. We show that
the method of bias correction does not affect the higher-order variance of any para-
metric estimator that is efficient in a semiparametric model, as long as the bias esti-
mator is asymptotically linear. Thus, one can choose a bias correction for an efficient
estimator based on computational convenience, or some other criteria, without affect-
ing its higher-order efficiency. We give a formal expansion showing this property for a
parametric estimator in a general semiparametric model, i.e. a model with a parametric
component in which some other components are left unspecified. We also prove that
the bootstrap, jackknife and analytical bias estimates are asymptotically linear when
the estimator of the parameters of interest has a standard form of stochastic expansion
(which is known to exist for a large class of models). Derivations in the case of the MLE,
show that the jackknife, bootstrap, and one type of analytical bias correction deliver es-
timators that have identical stochastic expansions to third order, and so have an even
stronger equivalence property.

There are many implications of this higher-order efficiency result. One is that bias
corrections that are not asymptotically linear may not have the same higher-order vari-
ance as those that are. For example, split-sample jackknife bias corrections are not
asymptotically linear in cross-section or panel data and have a larger higher-order vari-
ance than other bias-corrected estimators. We find that the higher-order variance term
is twice the size of that for the leave-one-out jackknife bias correction. On the other
hand, the split-sample jackknife is useful in time series or panel data when the observa-
tions are not independent over time because the leave-one-out panel jackknife does not
work in this case.

Another implication of the result is that it allows researchers to choose the bias
correction method that is computationally convenient. For example, Newey and Smith
(2004) showed that the empirical likelihood estimator is higher-order efficient in mo-
ment condition models when certain analytical bias corrections are used. Asymptotic
linearity of the bootstrap means that calculation of the bias formula can be avoided by
using the bootstrap bias correction instead. As another example, Cattaneo, Jansson and
Ma (2019) showed that a jackknife bias correction can be important when a first step
regression with many regressors is plugged into a second step regression. Although our
current results do not include asymptotics in which the number of regressors increases
with the sample size, we conjecture that the bootstrap bias correction has similar prop-
erties to the jackknife bias correction when the number of regressors increases slowly
enough.

The higher-order variance concept that we consider is the O(n−1) variance of a
third-order stochastic expansion of the estimator. Its use for comparison of estimators
was pioneered by Nagar (1959). As shown in Pfanzagl and Wefelmeyer (1978) and Ghosh,
Sinha and Wieand (1980), and discussed in Rothenberg (1984), under appropriate reg-
ularity conditions rankings based on this higher-order variance correspond to rankings
based on the variance of an Edgeworth approximation. Thus, the bias and variance of
leading terms in a stochastic expansion are also the leading terms of an expansion of the
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bias and variance of an approximating distribution. Furthermore, as noted by Rothen-
berg (1984), Akahira and Takeuchi (1981) have shown that all well-behaved asymptot-
ically efficient estimators of a parametric likelihood model necessarily have the same
skewness and kurtosis to an order n−1 approximation and that to compare the disper-
sion of second-order approximations to the distribution of efficient estimators it suffices
to compare their higher-order variances. This motivates our focus here on the higher-
order variance of bias-corrected estimators, which serves to quantify their higher-order
efficiency. In having this focus we follow much of the more recent literature, such as
Rilstone and Ullah (1996) and Newey and Smith (2004).

We also derive asymptotic higher-order variance expressions for panel data mod-
els with unobserved, individual fixed effects. These estimators are known to suffer
from asymptotic bias under asymptotic sequences in which n and T grow at the same
rate. Two common methods of bias correction in this setting are the ‘leave-one-out’
panel jackknife (Hahn and Newey, 2004), and the split-sample jackknife (Dhaene and
Jochmans, 2015). Both deliver estimates that are asymptotically normal and centered
at the truth when n and T grow at the same rate, with equal first-order (asymptotic)
variances. Our analysis makes it possible to compare the two bias corrections in terms
of their higher-order variance. We find that with i.i.d. data the split-sample correction
has a higher-order variance that is twice the size of the ‘leave-one-out’ jackknife. Al-
though we focus on the maximum likelihood setting for panel data, the results are ap-
plicable to a broader set of moment condition estimators under suitable assumptions
on the moment functions. Numerical comparisons in recent papers confirm that the
difference in higher-order variance can be meaningful in practice, with the split-sample
jackknife having larger dispersion and lower coverage than analytical or leave-one-out
jackknife corrections in a variety of settings; see for example, Alexander and Breunig
(2016), Fernández-Val and Weidner (2018), Czarnowske and Stammann (2019). Our own
simulations of a panel probit model with individual fixed effects also support this result.
This comparison is also true of estimates of a marginal effect parameter.

1.1 Related literature

Higher-order efficiency of the MLE was analyzed by Pfanzagl and Wefelmeyer (1978) in
terms of risk functions or Akahira and Takeuchi (1981) in terms of concentration prob-
abilities. Ghosh (1994), and Taniguchi and Kakizawa (2000) for time series models, con-
tain surveys of this literature. A common theme is that a higher-order bias-corrected ver-
sion of the MLE is higher-order efficient in the case of higher-order squared risk. Sim-
ilar results obtain for median bias-corrected MLE’s in the case of concentration prob-
abilities. The bias correction in this literature is typically of a known parametric form
that only depends on the estimated parameters. A plug-in estimator is then a regular
estimator for the bias term. Amari (1982) obtains similar results for curved exponen-
tial families using differential geometry that characterizes the MLE in terms of tangent
spaces. Akahira (1983, 1989) shows that when, instead of using parametric bias correc-
tion, one relies on the jackknife, the same higher-order efficiency results remain true for
the jackknifed MLE. We add to this literature by analyzing the effects of bias correction
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for first-order, but not necessarily higher-order, semiparametrically efficient estimators.
We demonstrate that any bias-corrected semiparametrically efficient estimator using an
asymptotically linear bias estimator has a higher-order variance that does not depend
on the nature of the bias estimate. This result applies to cases where the higher-order
bias may not be known in closed form. We show that efficient bias correction may be
based on sample averages, bootstrap or jackknife methods as long as the bias estimates
are asymptotically linear.

The use of a jackknife bias estimator goes back to Quenouille (1949, 1956) and
Tukey (1958). Bootstrap bias estimation was discussed by Parr (1983), Shao (1988b), Hall
(1992), and Horowitz (1998) in the context of nonlinear transformations of OLS estima-
tors of linear models and nonlinear functions of the mean. Akahira (1983) showed that
the jackknife bias-corrected maximum likelihood estimator is higher-order efficient.
Our work extends the literature on the bootstrap and jackknife bias-corrected estimators
by analyzing any semiparametrically efficient parametric estimator rather than nonlin-
ear transformations of linear estimators as in Shao (1988a,b).

In the panel data literature, methods to control for unobserved heterogeneity are
well established (early literature includes Rasch (1960, 1961) and Andersen (1970)); see
for example Chamberlain (1984), Arellano and Honoré (2001), and Arellano and Hahn
(2010) for reviews. Because of the incidental parameters problem, the best that can be
achieved in a fixed-T setting is partial identification in general; this is especially true for
policy relevant parameters such as average marginal effects (see Chernozhukov, Newey,
Hahn and Fernández-Val (2013)). Even under sequences in which T grows at the same
rate as n, fixed effects estimators may be asymptotically biased, as discussed in Hahn
and Kuersteiner (2002), Hahn and Newey (2004). Given the typical size of panel data
sets, in which n is much larger than T , it is desirable to find estimators that have biases
of order O(T−2) or smaller, rather than the typical O(T−1) of fixed effects estimators.

For a static model, Hahn and Newey (2004) show that a ‘leave-one-out’ jackknife
estimator is asymptotically normal and centered at the truth when n and T grow at
the same rate. Other styles of jackknife bias correction are also possible. For example,
Dhaene and Jochmans (2015) suggest a split-sample bias correction that, in its simplest
form, is constructed by splitting the sample into two half-panels of length T/2. It should
be understood that the split-sample jackknife provides valid bias corrections with au-
tocorrelated data where the ‘leave-one out’ jackknife does not. Thus the split-sample
jackknife is preferred to the leave-one-out jackknife with autocorrelated data. Our re-
sults show that the leave-one-out jackknife is preferred to the split-sample jackknife in
i.i.d. data in the sense that the higher-order variance is smaller and small sample perfor-
mance is better.

The remainder of the paper is set out as follows. In Section 2 we discuss the higher-
order bias and variance of parametric estimators, and provide our main results on the
higher-order efficiency of bias corrections for semiparametric efficient estimators and
asymptotic linearity of analytical, bootstrap and jackknife bias corrections. In Section 3,
we provide expressions for the higher-order expansions and variances of various bias-
corrections in a cross-sectional MLE. We extend the results to panel settings in Section
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4, by deriving the higher-order variances of the leave-one-out and split-sample jack-
knifes in a model with individual fixed effects. Section 5 provides Monte Carlo evidence
to support the theory in the panel setting. Section 6 concludes. Proofs and additional
derivations can be found in Supplementary Appendices contained in the working paper
Hahn, Hughes, Kuersteiner and Newey (2024).

2. HIGHER-ORDER EFFICIENCY OF BIAS-CORRECTED ESTIMATORS

2.1 Higher-order bias and variance

We begin with a discussion of higher-order expansions for parametric estimators, and
make precise our definition of higher-order variance, following closely the exposition in
Rothenberg (1984). We focus on semiparametric models in which the data {Zi}ni=1 are
i.i.d. with some distribution F0 contained in a class of distributions that is the model.1

Let θ̂ denote an estimator of a parameter θ0.When θ̂ is an estimator based on parametric
moment conditions, such as GMM, and the moment conditions are smooth enough in
the parameter θ and possibly other parameters, there will be a stochastic expansion of
the form

√
n
(
θ̂− θ0

)
=A1 +

A2√
n

+
A3

n
+ op

(
n−1

)
, (1)

A1 =
1√
n

n∑
i=1

ψ(Zi), E[ψ(Zi)] = 0,

where A2 and A3 are second and third-order products of sample averages of mean-zero
random variables, each multiplied by

√
n; see for example, Rilstone and Ullah (1996).

The termsA1, A2, andA3 are bounded in probability so that equation (1) is an expansion
where the stochastic order of terms is smaller as one moves to the right in the expansion.

We define the higher-order bias and variance of estimators using the first and second
moments of the leading three terms in this expansion. We also compare higher-order
efficiency of bias-corrected estimators by comparing their higher-order variance, as dis-
cussed in the introduction. The higher-order bias of

√
n(θ̂− θ0) is given by E[A2]/

√
n.

This follows from the fact that E[A1] = 0, while the expectation of A3/n is generally of
smaller order than E[A2]/

√
n. Dividing through by

√
n, the higher-order bias of θ̂ is

Bias(θ̂)≈ b0
n
, b0 =E[A2].

In general b0 = E[B(Z)], where the function B(z) captures the ‘own observation’ term
in A2, i.e. where the observation indices coincide in the product of sample means that
make up A2. The term B(z) may depend on the distribution of the data through the
parameter θ or in other ways. We let this dependence be implicit for notational conve-
nience.

1By ‘semiparametric model’, we refer to a model which has a parametric component, but leaves the func-
tional form of some other components unspecified. See Newey (1990) for further discussion.
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Similarly, the higher-order variance of
√
n(θ̂− θ0) can be obtained from the variance

of the first three expansion terms, up to order 1/n. This gives

V ar
(√
n(θ̂− θ0)

)
≈ V ar(A1) +

υ

n

υ := V ar(A2) + 2
√
nE[A1A2] + 2E[A1A3].

where V ar(A1) is the asymptotic (first-order) variance of the estimator and we refer to υ
as the higher-order variance.

EXAMPLE 1. In order to demonstrate ideas, we will follow a simple example. Suppose

that we observe a sample of observations Zi ∼N
(√

θ,1
)

. The MLE provides an efficient

estimate for θ, and is given by θ̂ =
(

1
n

∑n
i=1Zi

)2
. It can be shown that the asymptotic

expansion for this estimator is of the form in (1), with

A1 = 2
√
θ

1√
n

∑
i

(Zi −
√
θ), A2 =

( 1√
n

∑
i

(Zi −
√
θ)
)2
, (2)

and A3 = 0.2 In this case, since the estimator is quadratic, the expansion is exact. We
can conclude that the bias of the estimator is E[A2]/n = 1/n. Since E[A1A2] = 0 in this
example, the higher-order variance is

V ar
(√
n(θ̂− θ)

)
= V ar(A1) + V ar(A2)/n= 4θ+ 2/n.

2.2 The effect of bias correction

A bias-corrected estimator can be formed by subtracting off an estimator b̂ of b0 from θ̂

θ̃ = θ̂− b̂

n

The focus of this paper is on the effect of the choice of b̂ on the variance of θ̃. Generally
b̂ has no effect on the asymptotic variance (i.e. the first-order variance) of θ̃, as long as
b̂ is bounded in probability, because then

√
n(̂b/n) = b̂/

√
n = op(1). The choice of b̂ can

have an effect on the higher-order variance of θ̃. To describe this effect note that the
asymptotic expansion for θ̂ implies that, by adding and subtracting b0/

√
n,

√
n(θ̃− θ0) =A1 +

A2 − b0√
n

+
A3 −

√
n(̂b− b0)

n
+ op(n−1) (3)

=A1 +
Ã2√
n

+
Ã3

n
+ op(n−1),

where Ã2 =A2 − b0, and Ã3 =A3 −
√
n(̂b− b0). This is again an expansion whose terms

are of decreasing stochastic order, so long as b̂ is
√
n-consistent so that the third term

2See Section H in the Supplementary Appendix for details of this example.
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is smaller order than the second term. Importantly, the second-order term Ã2/
√
n has

expectation zero, so that the bias-corrected estimator θ̃ is higher-order unbiased.
To analyze the higher-order variance of the bias-corrected estimator it is helpful to

be more specific about b̂. For now we assume b̂ is asymptotically equivalent to a sample
average, i.e. that there exists a φ(z) with E[φ(Z)] = 0, V ar(φ(Z))<∞, such that

√
n(̂b− b0) =

1√
n

n∑
i=1

φ(Zi) + op(1).

Here we are assuming that b̂ is asymptotically linear with influence function φ(z). Bias
corrections that are based on directly estimating b0 = E[B(Z)] will often have this
property and we find that other bias corrections, like the jackknife and bootstrap also
have this property. In this case the expansion in equation (3) continues to hold with
Ã3 =A3−∆ for ∆ :=

∑n
i=1 φ(Zi)/

√
n. The variance of the third-order approximation for

θ̃ is V ar(A1) + υ̃/n, with higher-order variance

υ̃ := V ar(Ã2) + 2
√
nE[A1Ã2] + 2E[A1Ã3] (4)

= V ar(A2 − b0) + 2
√
nE[A1(A2 − b0)] + 2E[A1(A3 −∆)]

= υ− 2E[A1∆].

Higher-order efficiency of the bias-corrected estimator refers to the size of υ̃. One bias-
corrected estimator is higher-order more efficient than another if it has smaller υ̃.

The contribution of the bias correction to the higher-order variance υ̃ is through the
term

−2E[A1∆] =−2E[ψ(Z)φ(Z)]. (5)

Thus the bias correction b̂ affects the higher-order variance only through the covariance
of its influence function with that of θ̂. In the following theorem, we show that when θ̃

is an efficient estimator, its higher-order variance does not depend on the choice of b̂,
by demonstrating that the covariance in (5) is the same for any φ(Z). We adopt the no-
tation and terminology of Newey (1990, pp 104–106) for the statement and proof of this
result. Here T denotes the tangent set for the semiparametric model, which is the mean-
square closure of the set of all scores for regular parametric submodels. A parameter is
differentiable if there is a random variable d(Z) such that the derivative of the parame-
ter with respect to parameters of any regular parametric submodel exists and equals the
expected product of d(Z) with the submodel score. Under additional regularity condi-
tions, the influence function of any asymptotically linear estimator will be equal to such
a d(Z).

THEOREM 1. If T is linear, θ0 and b0 are differentiable parameters of the semiparamet-
ric model, θ̂ is asymptotically linear and efficient with influence function ψ(Z), and b̂ is
asymptotically linear with influence function d(Z), then the higher-order variance υ̃ does
not depend on b̂.
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PROOF. It follows from asymptotic linearity and efficiency of θ̂ that its influence func-
tion ψ(Z) is an element of T . By Theorem 3.1 of Newey (1990) the efficient influence
function δ(Z) for b0 is equal to the projection of d(Z) on T . This allows us to decompose
d(Z) as,

d(Z) = δ(Z) +U(Z), E[U(Z)t(Z)] = 0 for all t ∈ T .

As shown above in (5), the higher-order variance of θ̃ = θ̂ − b̂/n, depends on b̂ only
through the covariance of ψ(Z) with d(Z). By the above decomposition, since ψ(Z) is
in the tangent set, this covariance is

E[ψ(Z)d(Z)] =E[ψ(Z)δ(Z)] +E[ψ(Z)U(Z)] =E[ψ(Z)δ(Z)],

Since the efficient influence function δ(Z) is unique, it follows that E[ψ(Z)d(Z)] does
not vary with d(Z), and hence υ̃ does not vary with b̂.

The proof uses geometry associated with semiparametric models, and relies on the
efficiency of θ̂. There is also some relatively simple intuition for this result. Consider any
two semiparametric estimators b̂1 and b̂2 of b0. The random variable b̂1 − b̂2 is a semi-
parametric estimator of 0. If the asymptotic covariance of θ̂ with b̂1 − b̂2 were nonzero
then for some fixed constant C the asymptotic variance of θ̄ = θ̂ + C (̂b1 − b̂2) would be
less than the asymptotic variance of θ̂, so that θ̂ could not be semiparametrically effi-
cient. That is, semiparametric efficiency of θ̂ implies zero asymptotic covariance of θ̂
with b̂1− b̂2, which is equivalent to the asymptotic covariance of θ̂ with b̂1 being equal to
the asymptotic covariance of θ̂ with b̂2. The asymptotic covariance of θ̂ with any asymp-
totically linear b̂ is E[ψ(Z)φ(Z)], so semiparametric efficiency of θ̂ implies that this co-
variance does not depend on φ(Z). This intuition extends the Hausman (1978) result
that the covariance of any estimator of a parameter of interest with an efficient estima-
tor of that parameter is equal to the variance of the efficient estimator, i.e. the covariance
does not depend on the estimator. The intuition and result here show that the covariance
of an efficient estimator of a parameter of interest with an estimator of any object does
not depend on the estimator of that object.

2.3 Asymptotically linear bias correction

There are many examples of bias corrections to semiparametric estimators that have
different influence functions. Consider a parametric model of the conditional pdf of
an outcome variable Y given regressors X , where the pdf of Y conditional on X has a
parametric form f(y|x,β) and θ is some function of β. This is a familiar semiparametric
model where the marginal distribution ofX is unspecified. A special case is a parametric
likelihood model where X is a constant and f(y|x,β) specifies the unconditional pdf of
observation Y . Since generally b0 =E[B(Z)], for Z = (Y,X) and for some function B(z)

that may also depend on β, one could devise a number of estimates for b0. For example,
an analytical bias correction could be obtained by plugging in estimates β̂ and replac-
ing the expectation operators with sample averages. Alternative forms of analytical bias

http://qeconomics.org


Submitted to Quantitative Economics Efficient Bias Correction 9

correction could make use of the structure imposed by f(y|x,β) to integrate over y in
B(z), or use restrictions implied by

∫
f(y|x,β)dy = 1 to estimate b0 (e.g. applying the

information equality).
One could also use a nonparametric method like the bootstrap or jackknife to esti-

mate b0. The bootstrap bias correction estimates the bias by 1
n b̂B ≡ E

∗
[
θ̂∗
]
− θ̂, where

θ̂∗ are estimates obtained using bootstrap samples from the empirical distribution of Z .
Alternatively, the jackknife estimates the bias by taking the difference between θ̂ and the
average of all ‘leave-one-out’ estimates, i.e. estimates formed by excluding a single ob-
servation. The jackknife bias estimator is given by 1

n b̂J = (n− 1)
(

1
n

∑n
i=1 θ̂(i) − θ̂

)
where

θ̂(i) is the estimate of the parameter that excludes observation i. In Section 3 we describe
these bias correction techniques in detail in the context of MLE.

EXAMPLE 1 (continued). Continuing our earlier example, we can compute the jackknife
and analytical bias corrections for θ̂. From the asymptotic expansion in (2), we have that

E[A2] =E[(Zi −
√
θ)2]

which suggests the analytical bias estimate b̂a = 1
n

∑
i(Zi − Z̄)2. Alternatively, using the

known variance, we could simply use ba = 1. To construct a jackknife bias estimator, we
use

1

n
b̂J = (n− 1)

( 1

n

∑
i

( 1

n− 1

∑
j 6=i

Zj
)2 − ( 1

n

∑
i

Zi
)2)

=
1

n(n− 1)

∑
i

(Zi − Z̄)2

which is the same as the first analytical bias estimate, up to the factor n/(n − 1). It is
straightforward to show that both bias estimates can be written as

√
n(̂b− 1) =

1

n

∑
i

(
(Zi −

√
θ)2 − 1

)
+ op(1)

so that they are both asymptotically linear, in this case with the same influence func-
tion d(Z) = (Z −

√
θ)2 − 1. Given that the third moment of Z is equal to zero, since it is

normally distributed, we have E[A1(̂b− 1)] = 0, so that the higher-order variance of the
bias-corrected estimators that use either of the analytical or the jackknife bias estimates,
are the same as that of θ̂, i.e. 4θ+ 2/n.

Theorem 1 implies that the various analytical bias corrections as well as both non-
parametric bias correction methods lead to the same higher-order variance as any other
method when the b̂ is asymptotically linear. In the example above, both the analytical
and jackknife bias estimates are asymptotically linear. This is not a coincidence. It turns
out that for a fairly general class of models, the analytical, jackknife, and bootstrap bias
estimates are asymptotically linear, so that Theorem 1 can be applied.3

3The theorem is stated for a scalar parameter θ, but straightforwardly extends to a vector-valued param-
eter, at the cost of more complicated notation.
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THEOREM 2. Let θ̂ be an estimator with a stochastic expansion

θ̂− θ0 =
1√
n
A1 +

1

n
A2 +

1

n3/2
A3 +

1

n2A4 +
1

n5/2
A5 + op(n5/2) (6)

where n−k/2Ak is a k-th order V-statistic, i.e.

1

nk/2
Ak =

1

nk

n∑
i1=1

· · ·
n∑

ik=1

gk,1(zi1 , θ0) · · ·gk,k(zik , θ0) (7)

and gk,j are functions of the data that are continuously differentiable in θ at θ0, mean
zero, i.e. E[gj,k(zi, θ0)] = 0, and with E[gj,k(zi, θ0)10]≤C <∞.

Then, the jackknife, bootstrap, and (sample average) analytical4 bias estimates of the
higher-order bias b0 =E[A2] =E[g2,1(zi, θ0)g2,2(zi, θ0)], are asymptotically linear.

PROOF. See Appendix A

The V-statistic structure assumed in Theorem 2 is shown to hold for the case of MLE
under standard regularity conditions on the likelihood function (see Supplementary Ap-
pendix I A). In Section 4 we derive such expansions for a maximum likelihood estimator.
The derivation is based on an expansion of the first order condition of the MLE and so
applies to any other estimator that can be characterized by a moment equation satisfy-
ing similar regularity conditions. Therefore, the structure can be shown to appear in the
expansion of any M-estimator, i.e. an estimator that maximizes the sample average of
some function, which need not be a log-likelihood.

An important semiparametric model is a model of unconditional moment restric-
tions that motivates GMM estimation. Newey and Smith (2004) derive the asymptotic
expansion for generalized empirical likelihood (GEL) estimators up to third order and
examination of that expansion shows the same V-statistic structure. Under sufficient
regularity conditions, the structure should also exist in the fifth-order expansion used in
Theorem 2, so that the equivalence result of Theorem 1 would imply that jackknife and
bootstrap bias corrections lead to the same higher-order variance for GEL estimators.
This extends the result in Newey and Smith (2004), who found that averaging over an
efficient estimator of the distribution of the data to obtain b̂ does not affect the higher-
order variance of bias-corrected GMM and generalized empirical likelihood (GEL) esti-
mators.

Another interesting example is a nonparametric model where no restrictions are
placed on the distribution of the data. In this case b0 will also be a nonparametric ob-
ject and there will exist only one influence function corresponding to b0; see van der
Vaart (1991) and Newey (1994). Here, all asymptotically linear estimators of b0 will have
the same influence function so that Theorem 1 holds trivially. In particular, when gen-
eral misspecification is allowed for in debiasing, so that the distribution of the data is
unrestricted, there will only be one influence function for b0. Then any bias correction

4See Section 3 for exact definitions of these three bias corrections, θ̂J , θ̂B , and θ̃a.
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method, such as the analytical, bootstrap, or jackknife, must have the same higher-order
variance, as long as they are asymptotically linear.

We emphasize that Theorem 1 only applies to comparisons between bias correc-
tions for a given semiparametrically efficient estimator. The stochastic expansion term
A2 may differ across semiparametrically efficient estimators so that their higher-order
variances need not be the same. For example, Newey and Smith (2004) showed that
GMM will tend to have larger second-order bias than GEL when there are many instru-
mental variables, so that A2 is different for GMM and GEL. Theorem 1 has nothing to
say about how the higher-order variance of bias-corrected GMM compares with that of
bias-corrected GEL. It only implies that the form of b̂ does not affect the higher-order
variance of bias-corrected GMM and separately for bias-corrected GEL.

Note that while Theorem 2 implies that bootstrap, jackknife, and analytical bias es-
timates are asymptotically linear in general, this is not true of all bias estimates. An
example of this is the split-sample jackknife, which estimates the bias using 1

n b̂SS =
1
2 (θ̂(1) + θ̂(2))− θ̂, where θ̂(1) and θ̂(2) are estimates using two separate halves of the data
set.

EXAMPLE 1 (continued). Let N = 2m, and define ξ(1) = 1√
m

∑
i≤m(Zi −

√
θ) and ξ(2) =

1√
m

∑
i>m(Zi −

√
θ). Some algebra gives the expression

b̂SS =
1

2

(
ξ(1) − ξ(2)

)2
Since ξ(1) and ξ(2) are independent standard normal variables, we have E [̂bSS ] = 1, so
that the split-sample jackknife gives an unbiased estimator for b0. However, b̂SS =Op(1),
so that the bias estimator is also inconsistent, and hence not asymptotically linear. In
this case, the higher-order variance of the bias-corrected estimator can be shown to be
V ar

(√
n(θ̂SS)

)
= 4θ + 4/n, which is larger than that of the analytical and jackknife es-

timators. In Section 3.3, we give a formal result that shows that this larger higher-order
variance is true in general for MLE.

3. BIAS-CORRECTED MLE

In this section, we demonstrate the higher-order equivalence of bias corrections in a
fully parametric model by deriving higher-order expansions and variance expressions
for several bias-corrected maximum likelihood estimators. We consider the bootstrap
bias correction, jackknife bias correction, as well as three different versions of ana-
lytical bias correction, including the bias-corrected MLE of Pfanzagl and Wefelmeyer
(1978), which was shown to be third-order optimal. We show that all of these correc-
tions lead to estimators with the same higher-order variance. Further, we show that the
bootstrap, jackknife, and a particular analytical bias-correction, result in identical third-
order asymptotic expansions.

To describe the parametric model, let {Zi}ni=1 be an i.i.d. sample Zi ∼ f (z, θ0), such
that f(z, θ) satisfies sufficient smoothness conditions.5 The density f(z, θ) is a member

5The results in Section 3 are predicated on regularity conditions, including Conditions 1, 2 and 3, which
are presented in Appendix B.1.
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of a parametric family of distributions Pθ indexed by θ ∈ Θ with Θ ∈ R a compact set.6

We consider properties of the MLE θ̂, where

θ̂ ≡ arg sup
θ∈Θ

n−1
n∑
i=1

log f (Zi, θ) .

We adopt the following set of notations in this section of the paper. We let ` (·, θ) ≡
∂ log f (·, θ)/∂θ, `θ (·, θ)≡ ∂2 log f (·, θ)

/
∂θ2, `θθ (·, θ)≡ ∂3 log f (·, θ)

/
∂θ3, etc. We also de-

fine I ≡ −E
[
`θ(Zi, θ0)

]
, Q1 (θ) ≡ E

[
`θθ(Zi, θ)

]
, and Q2 (θ) ≡ E

[
`θθθ(Zi, θ)

]
. Further-

more, we let Ui (θ) ≡ ` (Zi, θ), Vi (θ) ≡ `θ (Zi, θ) − E
[
`θ (Zi, θ)

]
, Wi(θ) ≡ `θθ (Zi, θ) −

E
[
`θθ (Zi, θ)

]
. Finally, we define U (θ) ≡ n−1/2

∑n
i=1Ui (θ), V (θ) ≡ n−1/2

∑n
i=1 Vi (θ),

andW (θ)≡ n−1/2
∑n
i=1Wi (θ). We next describe the bias corrections and derive higher-

order properties of the bias-corrected estimators.

3.1 The bootstrap and jackknife bias corrections

The bootstrap estimator constructs an estimate of the higher-order bias as the differ-
ence between the average of bootstrap replicates θ̂∗ and the MLE θ̂. In particular, we
first obtain bootstrapped estimates θ̂∗ by sampling Z∗1 , ...,Z

∗
n identically and indepen-

dently from the empirical distribution F̂ (z) = 1
n

∑
1{Zi ≤ z}. Let E∗ be the expectation

operator with respect to F̂ . The idea behind the bootstrap bias correction is to estimate

E
[
θ̂
]
− θ0, if it exists, by 1

n b̂B ≡ E
∗
[
θ̂∗
]
− θ̂. This in turn will allow us to construct the

bias-corrected estimate

θ̂B ≡ θ̂−
b̂B
n

= 2θ̂−E∗
[
θ̂∗
]
.

An alternative nonparametric bias correction is a jackknife bias-corrected estimator.
The jackknife estimates the higher-order bias by taking the difference between the MLE
and the average of all ‘leave-one-out’ estimates, i.e. estimates formed by excluding a
single observation. The jackknife estimate is given by

θ̂J = θ̂− b̂J
n

= nθ̂− n− 1

n

n∑
i=1

θ̂(i)

where θ̂(i) is the estimate of the parameter that excludes observation i. The jackknife

uses the bias estimate 1
n b̂J = (n− 1)

(
1
n

∑n
i=1 θ̂(i) − θ̂

)
.

The following proposition establishes the higher-order properties of the bootstrap
and jackknife bias-corrected MLEs.

PROPOSITION 1. Let b̃ be either the bootstrap bias estimate b̂B , or the jackknife bias esti-
mate b̂J . Then, under regularity conditions stated in Appendix B.1, b̃ satisfies

√
n(b̃− b0) =

1√
n

n∑
i=1

Bi + op(1)

6For simplicity of notation, we will assume that p= 1, where p= dim(θ). The result is expected to hold
for any finite p.
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where

Bi =

(
1

2
I−3Q2 +

3

2
I−4Q2

1 + 3I−4Q1E[UiVi] + I−3
(
E[UiWi] +E[(`θ)2]

))
Ui

+

(
3

2
I−3Q1 + 2I−3E[UiVi]

)
Vi +

1

2
I−2Wi

+
1

2
I−3Q1

(
`(Zi, θ0)2 −E[`2]

)
+ I−2

(
`(Zi, θ0)`θ(Zi, θ0)−E[``θ]

)
and hence, for θ̃ either the bootstrap or jackknife bias-corrected MLE,

√
n
(
θ̃− θ0

)
=A1 +

1√
n

(A2 − b(θ0)) +
1

n
(A3 −B) + op

(
n−1

)
,

where B =
∑
iBi/

√
n.

Here we see that the jackknife and bootstrap bias estimates are
√
n-consistent and

asymptotically linear (note that E[Bi] = 0), which from Theorem 1 implies that their
higher-order variances are the same as any other estimator that uses an asymptotically
linear estimator of the bias. In fact, the jackknife and bootstrap share an even stronger
equivalence, in the sense that their bias estimates have identical influence functions,
which implies that their asymptotic expansions are identical up to the third order.

3.2 Analytical bias corrections

We next introduce and discuss three forms of analytical bias correction. An analytical
expression for the higher-order bias is given by

b (θ0)≡E [A2] =
1

2I3E
[
`θθ
]
E
[
`2
]

+
1

I2E
[
``θ
]

(8)

The first bias correction is based on the bias formula (8), replacing expectations with

sample averages. This gives the estimator θ̃a ≡ θ̂−
b̃
(
θ̂
)

n , where

b̃
(
θ̂
)

=−

(
1

n

∑
i

`θθ(Zi, θ̂)

)(
1

n

∑
i

`(Zi, θ̂)
2

)

2

(
1

n

∑
i

`θ(Zi, θ̂)

)3 +

(
1

n

∑
i

`(Zi, θ̂)`
θ(Zi, θ̂)

)
(

1

n

∑
i

`θ(Zi, θ̂)

)2 (9)

It can be shown that this form of analytical bias estimate shares the same influence
function as the bootstrap and jackknife bias estimators. It follows that it has an identical
third-order asymptotic expansion.

PROPOSITION 2. Let the regularity conditions stated in Appendix B.1 hold. The estimator
θ̃a has the higher-order expansion

√
n
(
θ̃a − θ0

)
=A1 +

1√
n

(A2 − b (θ0)) +
1

n
(A3 −B) + op

(
n−1

)
.
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Alternative analytical corrections can be constructed by imposing the information
equality, E[`2] = I in the characterization of the bias, that is, using the bias formula

b (θ0)≡E [A2] = I−2

(
1

2
E
[
`θθ
]

+E
[
``θ
])

. (10)

An analytical bias correction that uses the information equality is given by

θ̂a ≡ θ̂−
b̂
(
θ̂
)

n
≡ θ̂− 1

n



(
n−1

∑
i

`θθ(Zi, θ̂)

)

2

(
n−1

∑
i

`θ(Zi, θ̂)

)2 +

(
n−1

∑
i

`(Zi, θ̂)`
θ(Zi, θ̂)

)
(
n−1

∑
i

`θ(Zi, θ̂)

)2

 .

It is also possible to construct a bias correction that computes the expectations in
(10) in their integral form. This is the analytical bias-corrected estimator of Pfanzagl and
Wefelmeyer (1978), which they showed is higher-order efficient.

θ̂c ≡ θ̂−
b
(
θ̂
)

n
= θ̂− 1

n


∫
`θθ(z, θ̂)f(z, θ̂)dz

2

(∫
`θ(z, θ̂)f(z, θ̂)dz

)2 +

∫
`(z, θ̂)`θ(z, θ)f(z, θ̂)dz(∫
`θ(z, θ̂)f(z, θ̂)dz

)2

 .

The analytical bias-corrected estimators that impose the information equality do
not have identical higher-order expressions to the bias-corrected estimators that do not
rely on the information equality. Instead, they differ in their third expansion terms, as
can be seen in the following proposition.

PROPOSITION 3. Let the regularity conditions stated in Appendix B.1 hold. The analytical
bias estimates satisfy

√
n(̂b(θ̂)− b0) =

1√
n

n∑
i=1

Ai + op(1)

√
n(b(θ̂)− b0) =

1√
n

n∑
i=1

Ci + op(1)

where Ai and Ci are as defined in Supplementary Appendix I A. Hence, the analytical
bias-corrected estimators θ̂c and θ̂a have higher-order expansions

√
n
(
θ̂c − θ0

)
=A1 +

1√
n

(A2 − b (θ0)) +
1

n
(A3 −C) + op

(
n−1

)
,

√
n
(
θ̂a − θ0

)
=A1 +

1√
n

(A2 − b (θ0)) +
1

n
(A3 −A) + op

(
n−1

)
,

where A =
∑
iAi/

√
n and C =

∑
iCi/

√
n.
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Propositions 1, 2, and 3 imply that the higher-order variances of θ̂B , θ̂J , θ̃a are equal
to Var (A2) + 2n1/2E [A1A2] + 2E [A1 (A3 −B)], while the higher-order variances of θ̂a,
and θ̂c are Var (A2) + 2n1/2E [A1A2] + 2E [A1 (A3 −A)] and Var (A2) + 2n1/2E [A1A2] +

2E [A1 (A3 −C)], respectively. Therefore, it is natural to conjecture that the higher-order
variances of θ̂B , θ̂J , and θ̃a are different from that of θ̂c or θ̂a. However, the propositions
also state that each estimator uses an estimate of the higher-order bias b0 that is asymp-
totically linear, and hence a corollary of Theorem 1 is that the higher-order variances of
the bias-corrected estimators are all equal.

COROLLARY 1. Let the regularity conditions stated in Appendix B.1 hold. Then,

E [BA1] =E [AA1] =E [CA1]

By Corollary 1, and the expression for the higher-order variance (4), we conclude that
all five estimators are higher-order efficient. This result follows because (i) they have
identical higher-order variance; and (ii) θ̂c was shown to be higher-order efficient by
Pfanzagl and Wefelmeyer (1978).

The next proposition provides an expression for the higher-order variance of these
five bias-corrected estimators.

PROPOSITION 4. Let the regularity conditions stated in Appendix B.1 hold, and define

Xi = I−1Ui

Yi =
1

2
I−2Q1Ui + I−1Vi

Υ =
(
E[X2

i ]E[Y 2
i ] +E[X1Yi]

2
)

The higher-order variance of θ̂B , θ̂J , θ̃a, θ̂a, and θ̂c is

V ar(A1) +
υ̃

n
= I−1 +

1

n
Υ (11)

The above higher-order variance expression is useful since the higher-order variance
formula in (4) includes two covariance terms 2E [A1A3] + 2n1/2E [A1A2], and as such,
it is not obvious that (4) is positive. On the other hand, because Υ > 0, the expression
in the proposition consists of positive terms and eliminates this concern. According to
Theorem 1, (11) is also the higher-order variance of any other asymptotically linear bias
correction.

3.3 Inefficient bias correction

Our discussion above shows that many common methods of bias correction use es-
timates of the bias that are asymptotically linear, and hence estimate the bias at the
n−1/2-rate. These bias-corrected estimators have equivalent higher-order variances. We
now show by an example that the equivalence result does not hold in general if this
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rate assumption is violated. We showed in Example 1 (see the end of Section 2.3) that
the split-sample jackknife provided an inconsistent estimate of the higher-order bias,
so that its higher-order variance was larger than that of the leave-one-out jackknife. In
the Appendix we show that this result holds more generally, for estimators with the ex-
pansion structure used in Theorem 2. Here we derive expressions for the higher-order
variance in the MLE case.7

Recall that the split-sample jackknife estimator is given by

θ̂SS ≡ 2θ̂−
(
θ̂(1) + θ̂(2)

)
/2,

where θ̂(1) and θ̂(2) denote the MLEs based on separate halves of the sample. The implicit

bias estimate used by the split-sample jackknife is given by 1
n b̂SS = (θ̂(1) + θ̂(2))/2− θ̂.

PROPOSITION 5. Let the regularity conditions stated in Appendix B.1 hold. The bias esti-
mate used by the split-sample estimator can be written as

b̂SS − b0 =
1

2

(
X(1)Y(1) +X(2)Y(2) − 2b0 −

(
X(1)Y(2) +X(2)Y(1)

))
=Op(1)

where, for n = 2m, X(1) = 1√
m

∑m
i=1Xi is the scaled sum over Xi in the first half of the

sample, and X(2), Y(1), and Y(2) are defined similarly (for Xi and Yi as defined in Propo-
sition 4).

The higher-order variance of θ̂SS is

V ar(A1) +
υ̃SS
n

= I−1 +
2

n
Υ

That is, the higher-order variance of θ̂SS is strictly larger than that of θ̂J . As shown in
Proposition 5, the split-sample bias correction provides an inconsistent estimate of the
bias term b0, which results in a bias correction that impacts the second-order termA2 in
the expansion, and hence affects the higher-order variance of the estimator.

4. BIAS CORRECTION FOR PANEL DATA

We now extend some of these ideas to the panel data setting by comparing the jack-
knife and split-sample bias correction methods for a model with individual fixed effects.
We begin with a description of the fixed effects maximum likelihood estimator. Let Zit,
for i = 1, . . . , n and t = 1, . . . , T , be a vector of observed data. Denote θ a p× 1 parame-
ter vector and αi a scalar unobserved individual effect.8 The data have density function

7Derivation of the expressions used below are available in Section A7 of Supplementary Appendix I.
8As before, we will assume that p= 1 for notational simplicity, but results should be expected to hold for

any finite p > 1. The analysis in this section assumes that time effects are not present.
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f(z|θ,α) with respect to some measure, and so (treating the αi as parameters to be esti-
mated) we may estimate θ via maximum likelihood. Assuming that the Zit are indepen-
dent across both i and t, the MLE solves

θ̂T ≡ arg max
θ

n∑
i=1

T∑
t=1

lnf(Zit|θ, α̂i(θ)), α̂i(θ)≡ arg max
α

T∑
t=1

lnf(Zit|θ,α)

In contrast to the higher-order bias discussed earlier for the cross-sectional model,
the fixed effects panel data estimator suffers from the well-known incidental parame-
ters problem (Neyman and Scott, 1948). For fixed T , the probability limit of the estima-
tor θT ≡ plimn→∞ θ̂T generally differs from θ0.9 Even when the number of time periods
grow, so that n/T → ρ (which will be assumed in this section), the estimator θ̂ remains
asymptotically biased, i.e.

√
nT (θ̂ − θ0)⇒N(

√
ρB,Ω) for some bias term B. The bias is

of order O(T−1), and can be substantial if T is not sufficiently large.
It is useful to think about θ0 and αi as solutions to a set of moment equations given

by the score functions

0 =

n∑
i=1

E

[
∂

∂θ
lnf(zit|θ0, αi)

]
, 0 =E

[
∂

∂αi
lnf(zit|θ0, αi)

]
As earlier, we can expand these first order conditions to produce asymptotic expansions.
We may also consider other quantities of interest that can be defined via some moment
condition, for example an average effect parameter µ0, defined as the solution to

0 = µ0 −
1

n

n∑
i=1

E [m(zit, θ0, αi)]

where m is some function of interest, for example, the partial derivative of a conditional
expectation function. Stacking these moment conditions, we can define the common
parameter to be (θ,µ), so that the results presented below will also apply to these types
of parameters.

We use the following notation for this section. Let uit(θ,α) ≡ ∂
∂θ lnf(zit|θ,α) and

Vit(θ,α) ≡ ∂
∂αi

lnf(zit|θ,α) be the score functions. When evaluating functions at the
true value of parameters, arguments will be dropped, e.g. uit = uit(θ0, αi). Further, let
Uit(θ,α) = uit(θ,α)−δVit(θ,α), for δ =E[uitVit]/E[V 2

it], be the efficient score for θ. All ex-
pectations are taken with respect to the distribution for an individual i, that isE[h(zit)] =∫
h(z)f(z|θ,αi)dz. Also define In = 1

n

∑n
i=1E[U2

it]. As in the cross sectional case, we de-
note partial derivatives of these functions with superscripts, e.g. ∂Uit/∂θ = Uθit.

4.1 Higher-order comparison of jackknife estimators

In this section we derive the higher-order properties of both the leave-one-out jackknife
and split-sample jackknife estimators for the panel data model.

9θT is given by argmaxθ limn→∞
1
n

∑n
i=1E

[∑T
t=1 lnf(zit|θ, α̂i(θ))

]
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It has be shown previously (e.g. Hahn and Kuersteiner (2002), Hahn and Newey
(2004)) that the MLE θ̂ has an expansion of the form

√
nT (θ̂− θ0) =A1 +

√
n√
T
A2 +

√
n

T
A3 +Op(T−1) (12)

where the expansion termsA1,A2,A3 are eachOp(1).10 This expansion is similar in style
to the asymptotic expansion for the cross-sectional model developed earlier, except that
the asymptotic order of the leading terms in the expansion are in terms of T−1/2 due to
the presence of the individual fixed effects. Here the asymptotic bias is given by

√
n
TB =√

n
T E[A2].

The ‘leave-one-out’ jackknife estimator is

θ̂J = T θ̂− (T − 1)
1

T

T∑
t=1

θ̂(t),

where θ̂(t) is the estimator formed from the subsample that excludes time period t.11

Dhaene and Jochmans (2015) propose the use of split-panel jackknifes that only make
use of subpanels that contain consecutive time periods. The split-sample jackknife esti-
mator is

θ̂SS = 2θ̂− θ̄SS ,

where θ̄SS = 1
2 (θ̂1 + θ̂2), with θ̂1 being the estimate using observations from the first

half of time periods, and θ̂2 the estimate that uses the second half of time periods.
Other choices of split-sample jackknife are available; however, the results in Dhaene and
Jochmans (2015) show that non-overlapping sub-panels in general have lower asymp-
totic variance, and that among the non-overlapping options, splitting in two leads to the
smallest inflation of higher-order bias. Hence, in this paper we focus on this half sample
version, and simply refer to it as the split-sample jackknife.

Both the jackknife and split-sample corrections have no impact on the first-order
term in (12) so that both estimators have the same asymptotic variance, equal to
limn→∞Var(A1) = limn→∞ I−1

n . To compute the higher-order variance for the estima-
tors, we take the variance of the first three expansions terms, retaining terms up to
O(T−1), similar to what was done in Section 3. The following proposition establishes
the higher-order variance expressions for the two estimators, from which we can con-
clude that the higher-order variance of the split-sample estimator is larger than that of
the jackknife.

10In Supplementary Appendix IV, we provide an even higher-order expansion than is available in Hahn
and Newey (2004).

11Jackknife estimators that drop k time periods, rather than just one, could also be used. However, av-
eraging over all

(T
k

)
leave-k-out estimates would be computationally demanding, and so we do not pursue

this idea here.
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PROPOSITION 6. Let the regularity conditions stated in Appendix B.2 hold. The higher-
order variances of the jackknife and split-sample bias-corrected estimators are given by

Var(θ̂J )≈Var(A1) +
1

T − 1
υ̃, Var(θ̂SS)≈Var(A1) +

2

T
υ̃,

where

Var(A1) = I−1
n ,

υ̃ = I−2
n

1

n

∑
i

1

2
E[Uααit ]2 + 2E[Uααit ]E[VitU

α
it ] +E[V 2

it]E[(Uαit)
2] +E[VitU

α
it ]

2

E[V 2
it]

2 .

4.2 Accuracy in estimating the bias

In Section 3.3, it was demonstrated that while the jackknife uses a consistent estimate
of the bias term, the split-sample jackknife uses an unbiased, but inconsistent estimate.
A similar situation arises in the panel model. For the ‘leave-one-out’ jackknife, the im-

plicit bias estimate is equal to 1
T b̂J = (T − 1)

(
1
T

∑T
t=1 θ̂(t) − θ̂

)
, while the split-sample

jackknife uses the bias estimate 1
T b̂SS = (θ̄SS− θ̂). The following proposition establishes

the accuracy of b̂J and b̂SS as estimators for B = limn→∞E[A2].

PROPOSITION 7. Let the regularity conditions stated in Appendix B.2 hold. Let 1
T b̂J = (T −

1)( 1
T

∑T
t=1 θ̂(t)− θ̂) and 1

T b̂SS = (θ̄SS− θ̂) be the jackknife and split-sample estimators for
the bias term B. Then,

√
nT

1

T
(̂bJ −B) =Op(T−1)

√
nT

1

T
(̂bSS −B) =Op(T−1/2).

Similarly to the cross-sectional analysis, the jackknife estimates the bias term at a
faster rate than the split-sample estimator. In contrast, in the panel setting the split-
sample bias estimate is in fact consistent; it is an average over n unbiased, but in-
consistent, estimates of individual-level bias terms. Nonetheless, Proposition 7 shows
that the jackknife bias correction affects the third-order, Op(T−1), part of the expan-
sion, while the split-sample bias correction appears as a second-order, Op(T−1/2),
term. This implies that the jackknife bias estimate will only impact the higher-order
variance through its covariance with the first-order term A1, i.e. through the term

Cov
(√

nA1,
√
nT (̂bJ −B)

)
. In contrast, the split-sample bias estimate appears in the

higher-order variance both through its covariance with A1, as well as through its own

variance, Var
(√

n(̂bSS −B)
)

.

It should be noted that the results in Propositions 6 and 7 are derived under i.i.d
sampling over both individuals and time. In this setting, the results mirror those for
the cross sectional analysis. In settings where serial correlation exists, the leave-one-out
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style jackknife does not provide a valid estimate of the bias, while the split-sample esti-
mator continues to produce a consistent estimate of the bias, albeit at a slower rate. This
is an important advantage of the method in Dhaene and Jochmans (2015). Although a
general result on higher-order properties under serial correlation is not yet available, it
may be reasonable to speculate that the convergence rate of the estimator of the bias will
continue to play an important role. This would suggest that analytical bias corrections
involving parametric estimators, when available, are likely to be superior to nonpara-
metric estimators that require estimates of long-run variances.

EXAMPLE 2. A simple example may help to highlight the results. Suppose that zit ∼
N (αi, θ) are independent across i and t. This model was studied by Neyman and Scott
(1948). The MLE is given by θ̂ = 1

nT

∑n
i=1

∑T
t=1(zit − z̄i)2, and a standard calculation

gives thatE[θ̂] = T−1
T θ so that the MLE has a bias of 1

TB =− 1
T θ. It can be shown that the

jackknife bias-corrected estimator has the form

θ̃J =
1

n(T − 1)

n∑
i=1

T∑
t=1

(zit − z̄i)2

while the split-sample estimator is

θ̃SS = 2
1

nT

n∑
i=1

T∑
t=1

(zit− z̄i)2− 1

2

 1

nM

n∑
i=1

M∑
t=1

(zit − z̄i,1)2 +
1

nM

n∑
i=1

T∑
t=M+1

(zit − z̄i,2)2


where T = 2M , and z̄i,1 and z̄i,2 are the sample means in the first and second halves
of the sample time period. In this simple model, the formula given in Proposition 6
gives VJ = 2T

T−1θ
2 and VSS = 2T+4

T θ2, which we can easily confirm are also the ex-
act finite sample variances of the two estimators in this case. Considering the estima-
tion of the bias itself, we can see that the jackknife bias-correction estimates the bias
as 1

T b̂J = − 1
T

1
n(T−1)

∑n
i=1

∑T
t=1(zit − z̄i)2, while the split-sample correction estimates

the bias using 1
T b̂SS = − 1

2n

∑n
i=1

(
(z̄i,1 − z̄i)2 + (z̄i,2 − z̄i)2

)
. Both are unbiased estima-

tors of the bias term in this case, i.e. E [̂bJ ] = E [̂bSS ] = −θ. It is straightforward to show

Var
(√

n
T (̂bJ −B)

)
= 2θ2

T (T−1) , whereas Var
(√

n
T (̂bSS −B)

)
= 2θ2

T , so that the variance

of the split-sample bias estimate is larger by a factor T , as predicted by Proposition 7.

4.3 Extension to time series data

In Proposition 4, we noted that the higher-order variance of the bias corrected MLE can
be expressed in terms of Υ in (11). This characterization is useful because it is intuitively
positive, which is not obvious from the definition in (4). A natural question is whether an
analytical bias correction in a general time series environment would lead to a higher-
order variance of the form E

[
A2

1

]
+ 1
n

(
Υ + o

(
n−1

))
, where Υ is appropriately replaced

by the long-run counterpart of

E

( 1√
T

T∑
t=1

Xt

)2
E

( 1√
T

T∑
t=1

Yt

)2
+

(
E

[(
1√
T

T∑
t=1

Xt

)(
1√
T

T∑
t=1

Yt

)])2

.
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Although we are unable to answer the question in its general form, it can be shown
to be valid for a strictly stationary AR(1) model with normally distributed errors. To
be more precise, we go through the formal expansion of the MLE of the AR(1) model
yt = θyt−1 + εt, where εt ∼ N

(
0, σ2

)
and y0 ∼ N

(
0, σ2

/(
1− θ2

))
.12 The higher-order

bias based on the asymptotic expansion for the MLE yields limT→∞E [A2] = −2θ,

so the analytical bias-corrected estimator takes the form θ̂ + 2θ̂
/
T . This means that

the higher-order variance of the bias-corrected estimator is Var (A1) + 1
T Var (A2) +

2√
T
E [A1A2] + 2

T E [A1 (A3 + 2A1)], which is not obviously positive. We show that this

higher-order variance is equal to Var (A1) + 1
T

(
Var (X ) Var (Y) + (E [XY])2

)
for X =(

1− θ2
)

1√
T

∑T
t=1

yt−1εt
σ2 and Y = −

(
1− θ2

)
1√
T

∑T
t=1

(
y2t−1

σ2 − 1
1−θ2

)
. Analogously to

the result in Proposition 5, we show that the split-sample jackknife bias-corrected
estimator for the AR(1) model has higher-order variance that is given by Var (A1) +
2
T

(
Var (X ) Var (Y) + (E [XY])2

)
, and so the higher-order part of its variance is larger

than that of the analytical bias-corrected estimator by a factor of two. See Propositions 5
and 6 in Supplementary Appendix III. These results are admittedly specific to the AR(1)
model. We conjecture that they carry over to more general parametric time series mod-
els as long as the bias has a closed form parametric expression that can be estimated at
parametic rates. On the other hand, estimators with non-parametrically estimated bias
corrections that typically involve estimated long run variances may not share the same
efficiency properties. We conjecture the same is true for non-parametric block bootstrap
procedures and other subsampling techniques used to estimate the higher-order bias.

5. MONTE CARLO ANALYSIS

To highlight the relevance of the results in a more practical setting, we conduct two
Monte Carlo exercises. In the cross-sectional setting we estimate a marginal treatment
effect (MTE) model as in Heckman and Vytlacil (2005). The simulation design follows
that used in Cattaneo, Jansson and Ma (2019) and is a simplified model with no co-
variates. The treatment Ti is assigned according to Ti = 1{P (Zi) ≥ Vi}, where P (Zi)

is a propensity score (which is a function of observed instrumental variables Zi), and
Vi ∼ Uniform[0,1] is an unobservable shock that is correlated with potential outcomes
and generates selection. Potential outcomes under treated and control states are gener-
ated according to

Yi(0) = U0i, U0i|Zi, Vi ∼Uniform[−1,1],

Yi(1) = 0.5 +U1i, U1i|Zi, Vi ∼Uniform[−0.5,1.5− 2Vi].

The observed outcome variable is given by Yi = TiYi(1) + (1−Ti)Yi(0). We create a set of
19 potential instruments, Zj,i ∼Uniform[0,1] for j = 1, . . . ,19, to be used in estimation,
although the true propensity score only depends on the first four of these (in addition to
the constant) P (Zi) = 0.1 +Z1,i +Z2,i +Z3,i +Z4,i.

12The result is available in Supplementary Appendix III.
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The MTE function is defined as MTE(v) =E[Y1−Y0|V = v], and measures the aver-
age treatment effect for individuals with a given level of unobserved resistance to treat-
ment Vi = v. Many objects of interest can be represented as weighted averages of the
MTE function, although for the purposes of this simulation we follow Cattaneo, Jans-
son and Ma (2019) and focus on θ = MTE(0.5). The MTE function can be identified as
MTE(v) = ∂E[Yi|P (Zi) = p]/∂p|p=v .

To estimate the marginal treatment effect parameter, the propensity score P (z) is
first estimated via regression of the treatment dummy variable Ti on (1,Z1,i, . . . ,Zk−1,i),
where k ranges from 5 to 20. The second step then regresses the outcome Yi on a
quadratic in the propensity score, Yi = β1 + β2P̂ (z) + β3P̂ (z)2. The scalar parameter of
interest θ is the derivative of this function at p= 0.5, i.e. θ̂ = β̂2 + β̂3.

We investigate the performance of the bootstrap, jackknife, and split-sample bias
corrections. As predicted by the theory, the standard deviation of the bootstrap and
jackknife bias-corrected estimators are very similar across the different simulation set-
tings. This is particularly true as the sample size grows large; for n = 3000 the jackknife
and bootstrap bias corrections are very close in terms of standard deviation. The split-
sample estimator has larger standard deviation than the other two bias corrections, as
expected given its larger higher-order variance. As the sample size grows, the difference
decreases; this is expected given that the estimators all have the same asymptotic vari-
ance.

As a panel data example, we estimate a probit model with strictly exogenous covari-
ates and individual fixed effects.

yit = 1{θ′0xit + αi + εit > 0}, εit ∼N(0,1)

The simulation is calibrated to the female labor force participation application of
Fernández-Val (2009), and is the same as that used in Fernández-Val and Weidner (2018).
Here the outcome is an indicator for participation in the labor force, and the covariates
include three measures of fertility, the number of children aged 0-2, 3-5, and 6-17 years,
as well as the log of husband’s income, and a quadratic in age. We focus on the coeffi-
cients on the three fertility variables. Below we report the results of simulations drawn
from a sample of n= 500 individuals and T = {4,8} time periods.13

Table 2 reports the results for the biased MLE fixed effects estimator as well as three
bias corrections: the analytical correction, leave-one-out jackknife, and the split-sample
jackknife. We report the bias, standard deviation and root mean-squared error as a per-
centage of the true coefficient values, and the rejection rate for a test with 5% signifi-
cance. The MLE fixed effects estimator has large bias and rejection rates as large as 54%.
As is evident from the theory, the size of the bias is decreasing with the number of time
periods. Both the jackknife and analytical bias corrections lead to significant reductions
in the bias with no cost in precision; in fact, both bias corrected estimators have smaller
standard deviations than the MLE. In contrast, while the split-sample jackknife also re-
duces bias (although to a lesser degree than the other corrections), it has substantially

13Fernández-Val and Weidner (2018) report results using the n = 664 and T = 9, which matches the
sample size in the PSID data set, and find similar results.
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TABLE 1. Simulation of marginal treatment effect estimates

Conventional Bootstrap
n k Bias SD RMSE Bias SD RMSE

1000 5 0.441 4.922 4.941 0.105 5.146 5.146
10 1.059 4.712 4.828 0.254 5.320 5.325
15 1.570 4.460 4.727 0.511 5.274 5.297
20 1.952 4.231 4.659 0.713 5.167 5.215

2000 5 0.317 4.730 4.740 0.075 4.840 4.839
10 0.798 4.636 4.703 0.154 4.953 4.954
15 1.226 4.505 4.668 0.275 4.972 4.979
20 1.604 4.421 4.702 0.423 5.014 5.031

3000 5 0.155 4.756 4.757 -0.044 4.827 4.826
10 0.582 4.666 4.701 0.025 4.879 4.877
15 0.971 4.574 4.675 0.122 4.899 4.899
20 1.300 4.517 4.700 0.202 4.951 4.953

Jackknife Split-Sample
n k Bias SD RMSE Bias SD RMSE

1000 5 0.099 5.135 5.135 0.092 5.426 5.426
10 0.184 5.381 5.383 0.243 5.683 5.686
15 0.326 5.447 5.456 0.459 5.611 5.628
20 0.425 5.435 5.450 0.716 5.563 5.607

2000 5 0.074 4.830 4.830 0.087 5.012 5.012
10 0.122 4.964 4.964 0.175 5.185 5.187
15 0.191 5.021 5.024 0.260 5.204 5.210
20 0.264 5.105 5.110 0.395 5.267 5.281

3000 5 -0.047 4.822 4.821 -0.068 4.924 4.923
10 0.008 4.881 4.880 -0.024 5.006 5.005
15 0.069 4.924 4.923 0.068 5.093 5.092
20 0.103 4.995 4.994 0.243 5.180 5.184

* Results of estimators over 2000 simulations. Conventional denotes
the standard two-step estimator described in the text; Jackknife de-
notes the leave-one-out jackknife bias-corrected estimator; Bootstrap
denotes the bootstrap bias-corrected estimator based on n/2 boot-
strap draws.

larger variance and mean-squared error. It is evident that, even for T = 8, the impact of
higher-order differences in the bias corrections remains important for the finite sample
properties of the estimator.

6. SUMMARY

We show that the choice of bias correction method does not affect the higher-order vari-
ance of any parametric estimator that is semiparametrically efficient, as long as the bias
estimator is asymptotically linear, i.e. asymptotically equivalent to a sample average. We
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TABLE 2. Simulation of probit model with individual fixed effects

MLE Analytical
Bias SD RMSE Rej 5% Bias SD RMSE Rej 5%

T=4 Ages 0-2 −41.9 24.7 48.6 0.54 −8.2 19.0 20.7 0.06

Ages 3-5 −42.4 47.8 63.9 0.24 −8.2 37.4 38.3 0.05

Ages 6-17 −42.7 132.1 138.8 0.12 −1.1 102.9 102.9 0.03

T=8 Ages 0-2 −16.9 11.2 20.3 0.36 −3.9 10.0 10.7 0.05

Ages 3-5 −16.8 18.6 25.1 0.18 −3.7 16.6 17.0 0.05

Ages 6-17 −18.6 50.7 54.0 0.09 −4.8 45.2 45.5 0.05

Jackknife Split-sample
Bias SD RMSE Rej 5% Bias SD RMSE Rej 5%

T=4 Ages 0-2 21.2 16.7 27.0 0.14 37.7 49.5 62.2 0.53

Ages 3-5 20.9 30.6 37.1 0.03 35.2 99.5 105.5 0.46

Ages 6-17 22.4 88.8 91.6 0.02 31.2 303.7 305.3 0.44

T=8 Ages 0-2 4.3 9.3 10.2 0.04 7.1 16.3 17.8 0.25

Ages 3-5 4.4 15.6 16.2 0.04 7.1 30.6 31.4 0.27

Ages 6-17 3.1 42.2 42.3 0.03 8.6 82.1 82.5 0.28

* Results of estimators over 1000 simulations. Bias, SD, and RMSE are percentages of the true
parameter values.

give a formal expansion showing this property in a general semiparametric model. We
also prove that the bootstrap, jackknife and a version of the analytical bias estimates
are asymptotically linear, when the estimator of the parameters of interest has a stan-
dard form of stochastic expansion (which is known to exist for a large class of models).
The result implies that a researcher may choose a bias correction for an efficient estima-
tor based on computational convenience, or some other criteria, without affecting its
higher-order efficiency.

We have verified this result using derivations of the asymptotic expansion and
higher-order variance for maximum likelihood estimation of a parametric model, us-
ing a bootstrap, jackknife, and three forms of analytical bias corrections. Furthermore,
we found that the third-order stochastic expansion of the bootstrap, jackknife, and one
type of analytical bias-corrected MLE are identical, and hence have an even stronger
higher-order equivalence property.

These results show that the higher-order efficiency of bias-corrected efficient esti-
mators does not depend on the form of the bias correction, as long as the estimate of
the bias term is asymptotically linear (and hence

√
n-consistent). Thus, in practice one

might use whatever bias correction method is most convenient. An important caveat is
that the split-sample jackknife estimator does not estimate the bias at the

√
n-rate, and

so is not asymptotically linear, and we show the resultant higher-order variance to be
strictly larger in an i.i.d. setting, suggesting the importance of the accuracy in estimat-
ing the bias.
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We generalized the result to the analysis of a panel data model with fixed effects,
and established that the split-sample bias-corrected estimator has larger higher-order
variance than the jackknife estimator, confirming the importance of the accuracy in es-
timation of the bias even in panel settings. In non-i.i.d. settings, the standard jackknife
cannot be used. Comparison of the split-sample correction with alternatives, such as
the analytical correction given in Hahn and Kuersteiner (2002, 2011), is a topic that we
leave for future research.

APPENDIX A: PROOF OF THEOREM 2

We assume that θ̂ is an estimator with a stochastic expansion

√
n(θ̂− θ0) =A1 +

1√
n
A2 +

1

n
A3 (13)

+
1

n3/2
A4 +

1

n2A5 + op(n−2) (14)

where n−k/2Ak is a k-th order V-statistic, i.e.

1

nk/2
Ak =

( 1

n

n∑
i=1

gk,1(zi)
)
· · ·
( 1

n

n∑
i=1

gk,k(zi)
)

(15)

and gk,j are functions of the data, evaluated at θ0 with expectation zero, i.e E[gj,k(zi)] =

0.
The following lemma derives the first-order expansions of the jackknife, bootstrap

and (sample-average) analytical bias estimators, from which asymptotic linearity fol-
lows.

LEMMA 1. Define b0 =E[g2,1(zi)g2,2(zi)] as the higher-order bias of θ̂. Then, the jackknife
bias estimate b̂J satisfies

√
n(̂bJ − b0) =

1√
n

∑
i

(
g2,1(zi)g2,2(zi)−E[g2,1(zi)g2,2(zi)]

)
+E[g3,1(zi)g3,2(zi)]

1√
n

∑
i

g3,3(zi) +E[g3,1(zi)g3,3(zi)]
1√
n

∑
i

g3,2(zi)

+E[g3,2(zi)g3,3(zi)]
1√
n

∑
i

g3,1(zi) + op(1)

and the bootstrap and analytical bias corrections satisfy

√
n(̂bB − b0) =

1√
n

∑
i

(
g2,1(zi)g2,2(zi)−E[g2,1(zi)g2,2(zi)]

)
+
(
E[g2,1(zi)h2(zi)] +E[g2,2(zi)h1(zi)]

) 1√
n

∑
i

g1,1(zi) + op(1)
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where h1 and h2 are derivatives of g2,1 and g2,2 respectively. That is, they are all asymp-
totically linear estimators for b0.

PROOF. Jackknife bias correction
A jackknife estimate of the higher-order bias of θ̂ is given by

b̂J
n

= (n− 1)(
1

n

n∑
i=1

θ̂(i) − θ̂)

where θ̂(i) is the estimator that excludes observation i. Note that θ̂(i) has an equivalent

expansion to θ̂, with termsAk,(i) that are the same as the terms in the original expansion,
simply dropping observation i.

We may write

b̂J
n

= (n− 1)
(

(
1

n

n∑
i=1

1√
n− 1

A1,(i) −
1√
n
A1) + (

1

n

n∑
i=1

1

n− 1
A2,(i) −

1

n
A2)

+ (
1

n

n∑
i=1

1

(n− 1)3/2
A3,(i) −

1

n3/2
A3)

)
+ (

1

n

n∑
i=1

1

(n− 1)2A4,(i) −
1

n2A4)
)

+ (
1

n

n∑
i=1

1

(n− 1)5/2
A5,(i) −

1

n5/2
A5)

)
+ op(n−5/2)

=
1

n

(
B̃1 +

1

n1/2
B̃2 +

1

n
B̃3 +

1

n3/2
B̃4 +

1

n2 B̃5

)
+ op(n−5/2).

By Lemma 21 in Supplementary Appendix II F we have B̃1 = 0, while Lemma 22 gives

B̃2 =
1√
n

∑
i

g2,1(zi)g2,2(zi)−
1√

n(n− 1)

∑
i

∑
j 6=i

g2,1(zi)g2,2(zj)

=
1√
n

∑
i

g2,1(zi)g2,2(zi) + op(1).

For the next term, using Lemma 23 from Supplementary Appendix II F, it is straightfor-
ward to show that

1√
n
B̃3 =

2n− 1

n3/2(n− 1)

∑
i

g3,1(zi)g3,2(zi)g3,3(zi)

+
n2 − 3n+ 1

n3/2(n− 1)2

∑
i

∑
j 6=i

(
g3,1(zi)g3,2(zi)g3,3(zj) + g3,1(zi)g3,2(zj)g3,3(zi)

+ g3,1(zj)g3,2(zi)g3,3(zi)
)

− 3n− 1

n3/2(n− 1)2

∑
i

∑
j 6=i

∑
k 6={i,j}

g3,1(zi)g3,2(zj)g3,3(zk)
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=
1

n3/2

∑
i

∑
j 6=i

(
g3,1(zi)g3,2(zi)g3,3(zj)

+ g3,1(zi)g3,2(zj)g3,3(zi) + g3,1(zj)g3,2(zi)g3,3(zi)
)

+ op(1)

=E[g3,1(zi)g3,2(zi)]
1√
n

∑
i

g3,3(zi) +E[g3,1(zi)g3,3(zi)]
1√
n

∑
i

g3,2(zi)

+E[g3,2(zi)g3,3(zi)]
1√
n

∑
i

g3,1(zi) + op(1).

Similar results show that B̃4 and B̃5 are also OP (1) (see for example Section A2 in
Supplementary Appendix IV for results on jackknife V-statistics up to sixth order).

Using these results, we may then write

√
n(̂bJ − b0) = B̃2 −

√
nb0 +

1√
n
B̃3 + op(1)

=
1√
n

∑
i

(
g2,1(zi)g2,2(zi)−E[g2,1(zi)g2,2(zi)]

)
+E[g3,1(zi)g3,2(zi)]

1√
n

∑
i

g3,3(zi) +E[g3,1(zi)g3,3(zi)]
1√
n

∑
i

g3,2(zi)

+E[g3,2(zi)g3,3(zi)]
1√
n

∑
i

g3,1(zi) + op(1)

which gives the result in the proposition.
Bootstrap bias correction
Given the expansion in (13), the bootstrap estimate θ̂∗ has an equivalent expansion

with reference to the empirical distribution F̂n, rather than the population distribution
F0.

√
n(θ̂∗ − θ̂) = Â1 +

1√
n
Â2 +

1

n
Â3 + op(n−1) (16)

where

1

nk/2
Âk =

( 1

n

n∑
i=1

ĝk,1(z∗i )
)
· · ·
( 1

n

n∑
i=1

ĝk,k(z∗i )
)

(17)

with ĝk,j the same function as in (15), evaluated at θ̂ and F̂n rather than θ0 and F0. Note
that in this expansion terms are zero mean with respect to F̂n, i.e.

∑
i ĝk,j(zi) = 0.

We can define a bootstrap bias estimate as b̂B/n= E∗[θ̂∗ − θ̂], where E∗ is expecta-
tion over the bootstrap distribution (i.e. F̂n). We may write

b̂B
n

=
1√
n
E∗[Â1] +

1

n
E∗[Â2] +

1

n3/2
E∗[Â3] + op(n−3/2).
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From Lemma 17 in Supplementary Appendix II F we have that

E∗[Â1] =E∗[
1√
n

n∑
i=1

ĝ1,1(z∗i )] =
1√
n

n∑
i=1

ĝ1,1(zi) = 0.

Lemma 18 gives

E∗[Â2] =E∗[
1

n

∑
i

∑
j

ĝ2,1(z∗i )ĝ2,2(z∗j )]

=
1

n

∑
i

ĝ2,1(zi)ĝ2,2(zi) +
n− 1

n2

∑
i

ĝ2,1(zi)
∑
j

ĝ2,2(zj)

=
1

n

∑
i

ĝ2,1(zi)ĝ2,2(zi)

and similarly, Lemma 19 gives

E∗[Â3] =E∗[
1

n3/2

∑
i

∑
j

∑
k

g3,1(z∗i )g3,2(z∗j )g3,3(z∗k)]

=
1

n3/2

∑
i

ĝ3,1(zi)ĝ3,2(zi)ĝ3,3(zi).

Using these results we can write

√
n(̂bB − b0) =

1√
n

∑
i

(
ĝ2,1(zi)ĝ2,2(zi)−E[g2,1(zi)g2,2(zi)]

)
+ op(1).

Next, note that

1√
n

∑
i

(
ĝ2,1(zi)ĝ2,2(zi)− g2,1(zi)g2,2(zi)

)
=

1√
n

∑
i

g2,1(zi)
(
ĝ2,2(zi)− g2,2(zi)

)
+

1√
n

∑
i

(
ĝ2,1(zi)− g2,1(zi)

)
g2,2(zi)

+
1√
n

∑
i

(
ĝ2,1(zi)− g2,1(zi)

)(
ĝ2,2(zi)− g2,2(zi)

)
.

Let h1(zi) and h2(zi) be first derivatives of g2,1(z) and g2,2(zi) with respect to θ (eval-
uated at θ0), so that first-order expansions of ĝ2,1 and ĝ2,2 are given by

√
n
(
ĝ2,1(zi)− g2,1(zi)

)
= h1(zi)

√
n(θ̂− θ0) + op(1)

√
n
(
ĝ2,2(zi)− g2,2(zi)

)
= h2(zi)

√
n(θ̂− θ0) + op(1).
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Then, we can write

1

n

∑
i

g2,1(zi)
(
ĝ2,2(zi)− g2,2(zi)

)
=

1

n

∑
i

g2,1(zi)h2(zi)
√
n(θ̂− θ0) + op(1)

=E[g2,1(zi)h2(zi)]
1√
n

∑
i

g1,1(zi) + op(1)

and similarly for 1√
n

∑
i

(
ĝ2,1(zi)− g2,1(zi)

)
g2,2(zi) so that

√
n(̂bB − b0) =

1√
n

∑
i

(
g2,1(zi)g2,2(zi)−E[g2,1(zi)g2,2(zi)]

)
+
(
E[g2,1(zi)h2(zi)] +E[g2,2(zi)h1(zi)]

) 1√
n

∑
i

g1,1(zi) + op(1)

giving the result of the proposition.
Analytical bias correction
Under (13) and (15) the bias term has the form b0 =E[g2,1(zi)g2,2(zi)], for some func-

tions g2,1 and g2,2. Assume that we can construct consistent estimators of these func-
tions, ĝ2,1 and ĝ2,2 by plugging in θ̂ in place of θ0 and replacing expectations with sample
means. This implies ĝ2,1 and ĝ2,2 are the same functions as in the bootstrap expansion
above. We can form a bias estimate using

b̂a =
1

n

∑
i

ĝ2,1(zi)ĝ2,2(zi).

This then gives

√
n(̂ba − b0) =

1√
n

∑
i

(
ĝ2,1(zi)ĝ2,2(zi)−E[g2,1(zi)g2,2(zi)]

)
and the result follows from the bootstrap result above.

A.1 Split-sample bias correction

Here we show that, under the same asymptotic expansion structure used above, the
split-sample bias estimate is not asymptotically linear. The split-sample bias estimate

is given by b̂ss
n = 1

2 (θ̂1 + θ̂2)− θ̂. Again, we can construct an expansion for this bias esti-
mate from the expansion of θ̂.

b̂ss
n

=
1√
n
B̃1 +

1

n
B̃2 + op(n−1)

Let m= n/2. We have

B̃1 =
1

2
(Â1,1 + Â1,2)− Â1 = 0
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B̃2 =
1

2
(Â2,1 + Â2,2)− Â2

=
1

2

( 4

n

m∑
i=1

m∑
j=1

g2,1(zi)g2,2(zj) +
4

n

n∑
i=m+1

n∑
j=m+1

g2,1(zi)g2,2(zj)
)

− 1

n

n∑
i=1

n∑
j=1

g2,1(zi)g2,2(zj)

=
1

n

m∑
i=1

m∑
j=1

g2,1(zi)g2,2(zj) +
1

n

n∑
i=m+1

n∑
j=m+1

g2,1(zi)g2,2(zj)

− 1

n

m∑
i=1

n∑
j=m+1

g2,1(zi)g2,2(zj)−
1

n

n∑
i=m+1

m∑
j=1

g2,1(zi)g2,2(zj).

This then gives

b̂ss − b0 =
1

n

m∑
i=1

m∑
j=1,j 6=i

g2,1(zi)g2,2(zj) +
1

n

n∑
i=m+1

n∑
j=m+1,j 6=i

g2,1(zi)g2,2(zj)

− 1

n

m∑
i=1

n∑
j=m+1

g2,1(zi)g2,2(zj)−
1

n

n∑
i=m+1

m∑
j=1

g2,1(zi)g2,2(zj)

+ op(1).

The terms on the RHS are each Op(1) so that the split-sample bias estimator is inconsis-
tent, and has a U-statistic structure to first-order, and hence cannot be asymptotically
linear.

APPENDIX B: REGULARITY CONDITIONS

B.1 Conditions for cross-sectional models

CONDITION 1. (i) The function log f (z, θ) is 7 times continuously differentiable on Θ for
each z; (ii) The parameter space Θ ⊂ R is a compact set, θ0 ∈ int(Θ); (iii) there exists a
function M (z) such that for all θ ∈Θ∣∣∣∣∂m log f (z, θ)

∂θm

∣∣∣∣≤M (z) 0≤m≤ 7

and E
[
M (Zi)

Q
]
<∞ for some Q> 16; (iv) If θ 6= θ0 then f (Zi, θ) 6= f (Zi, θ0) .

CONDITION 2. For each θ ∈Θ and for m≤ 7, ∂m log f (z, θ)/∂θm is a P -measurable func-
tion of z.
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CONDITION 3. Let F be the class of functions ∂m log f (z, θ)/∂θm indexed by θ ∈ Θ for
m= 1, ..,7 with envelope M (z). Then,

∫ 1

0
sup
Q∈P

√√√√logN

(
ε

(∫
M2dQ

)1/2

,F,L2(Q)

)
dε <∞, (18)

where P is the class of probability measures on R that concentrate on a finite set and N is
the cover number defined in van der Vaart and Wellner (1996, p.90).

Condition 1 is a standard condition guaranteeing identification of the model and
imposing sufficient smoothness conditions as well as existence of higher moments to
allow for a higher order stochastic expansion of the estimator. Condition 2 together with
separability of the parameter space guarantees measurability of suprema of our empiri-
cal processes. As is well known from the probability literature, measurability conditions
could be relaxed somewhat at the expense of more refined convergence arguments. We
are abstracting from such refinements for the purpose of this paper.

B.2 Conditions for panel models

The assumptions for the panel results follow those used in Hahn and Newey (2004).

CONDITION 4. n,T →∞, with n/T → ρ for 0< ρ<∞.

CONDITION 5. (i) The data zit are independent over i and t and identically distributed
over t according to the density f(z|θ,α); (ii) the log density lnf(z|θ,α) is continuous
in both θ and α; (iii) there exists a function M(zit) such that | lnf(zit|θ,αi)| ≤M(zit),
|∂ lnf(zit|θ,αi)/∂(θ,αi)| ≤M(zit) and supiE[M(zit)

33]<∞.

CONDITION 6. For each η > 0, infi

[
Gi(θ0, αi)− sup{(θ,α):|(θ,α)−(θ0,αi)|>η}Gi(θ,α)

]
> 0

where Gi(θ,α)≡E[lnf(zit|θ,α)].

CONDITION 7. (i) There exists someM(zit) such that
∣∣∂m1+m2 lnf(zit|θ,α)

/
∂θm1∂αm2

∣∣≤
M(zit) for 0≤m1 +m2 ≤ 7, and supiE[M(zit)

Q]<∞ for some Q> 64; (ii) limn→∞ In >
0, where In ≡ 1

n

∑
iE[U2

it]; (iii) miniE[V 2
it]> 0.
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