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C Mobility at Grocery Stores

In Appendix C, we provide evidence that suggests the public health measures placed during

the COVID-19 pandemic made grocery shopping more costly. We use Google Community

Mobility Reports (available at https://www.google.com/covid19/mobility/?hl=en) to

document how people in the United States changed grocery shopping activity around the

stay-at-home order. In Figure C.1, each gray line represents how visits and length of stay at

grocery stores changed in the 30 days before and after the stay-at-home order at each state

(see Table C.1 for the day when the stay-at-home order was implemented around the first

wave of COVID-19 spread). The black line represents its country-wide average, weighted by

the state population as of April 2020. They are reported in the percent change compared to

the median value for that day of the week during the 5-week period January 3-February 6,

2020.
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Figure C.1: Visits and Length of Stay at Grocery Stores Around Stay-at-Home Orders
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Table C.1: Start Date of Stay-at-Home Orders

State Start Date

Alabama April 4
Alaska March 28
Arizona March 31
Arkansas None
California March 19
Colorado March 26

Connecticut March 23
Delaware March 24

District of Columbia April 1
Florida April 3
Georgia April 3
Hawaii March 25
Idaho March 25
Illinois March 21
Indiana March 24
Iowa None

Kansas March 30
Kentucky March 26
Louisiana March 23
Maine April 2

Maryland March 30
Massachusetts March 24

Michigan March 24
Minnesota March 27
Mississippi April 3
Missouri April 6

State Start Date

Montana March 28
Nebraska None
Nevada March 31

New Hampshire March 27
New Jersey March 21
New Mexico March 24
New York March 20

North Carolina March 30
North Dakota None

Ohio March 23
Oklahoma April 2
Oregon March 23

Pennsylvania April 1
Rhode Island March 28
South Carolina April 7
South Dakota None
Tennessee April 2
Texas April 2
Utah None

Vermont March 24
Virginia March 30

Washington March 23
West Virginia March 24
Wisconsin March 25
Wyoming None
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D Interpretation of the Rationing Rule

In this section, we provide a microfoundation for the rationing rule of our model by demon-

strating that it can be derived as a large-market limit of a finite economy.

We begin with a discrete-period model, where each period has a physical time length of

dt > 0. Let µ > 0 be a scaling parameter that characterizes the size of the market. We take

the limit of µ→∞ later while we always choose µ so that µdt becomes an integer. At each

period, µdt consumers arrive at the market. In addition, sµdt units of product are supplied

to the store. Note that the ratio between the inflow of consumers (µ) and supplied product

(sµ) is fixed for any µ and dt.

In each period, all consumers, µdt of them, are randomly sorted. Each consumer i

demands Qi(t) = Ai(t)dNi(t)qi(t) units of the product, where Ai(t) represents whether the

consumer searches or not, dNi(t) represents whether the consumer arrives at the store or

not, and qi(t) represents the quantity of the product demanded. It is worth noting that we

consider the “potential” demand, i.e., the demand of all consumers who search and arrive at

the store, rather than only the demand of those who actually make a purchase. These two

specifications are equivalent because Ai(t)dNi(t) = 0 for all consumers who do not arrive at

the store in period t.

The dynamics of the aggregate stock are primarily determined by Qi(t): all consumers,

except for at most one person, face either (i) sufficient stock, where inventory levels are not

a constraint, or (ii) no stock, where purchasing is not an option. As we focus on the large

market limit, the presence of the marginal consumer diminishes. To simplify the analysis,

we assume that if the stock does not deplete before consumer i’s turn, she will purchase Qi,

and will be unable to purchase the product otherwise.

Without loss of generality, we can reorder consumers so that consumers arrive at the

store in ascending order of their indices, i = 1, 2, . . . , µdt. Consider an arbitrary rational

number γ ∈ (0, 1). We derive the condition under which the consumer who arrived at the

store in the γth percentile can purchase the product in the limit of µ → ∞. To this end,

we take a sequence µ in which γµdt becomes an integer. Note that whenever γ is rational,

for any µ̄ > 0, there exists µ such that both µdt and γµdt are integers. Let i = γµdt be the

consumer who is positioned at the γth percentile.

Consumer i can meet her unconstrained demand Qi(t) if and only if

γµdt∑
j=1

Qj(t) < sµdt,
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or equivalently,

γ ·
∑γµdt

j=1 Qj(t)

γµdt
< s. (D.1)

We consider a large market limit of this economy, i.e., take a limit of µ → ∞. Indeed, the

main model assumes that infinitely many consumers arrive for any time interval [t, t + dt].

Since we assume that consumers are ordered uniformly at random, we can apply the law of

large numbers. In the limit of µ→∞, (D.1) becomes

γE[Qi(t)] < s. (D.2)

Rearranging the terms in (D.2) yields

γ <
s

E[Qi(t)]
.

Since this conclusion holds for all rational γ ∈ (0, 1), the same conclusion holds for all real

γ ∈ (0, 1).

From now on, let us assume that there is a unit mass of (infinitely many) recurring

consumers. The total amount of the product demanded in this length-dt period is given by

dD(t) :=

∫
i∈[0,1]

Ai(t) · dNi(t) · qi(t)di.

Meanwhile, the mass of consumers in this period is given by dt. Accordingly, we have

E[Qi(t)] =
dD(t)

dt
=: d(t).

Thus, the proportion of consumers who can buy the product without any constraints in

each period can be expressed as s/d(t) for any dt, which is consistent with the main model.

Similarly, all other consumers are unable to purchase anything. Since this proportion remains

constant regardless of the duration of each period, by taking the limit as dt→ 0, we derive

the same rationing rule for the main continuous model.
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E Supplementary Materials

E.1 Supplementary Materials for Section 5

E.1.1 Iteration and Cognitive Hierarchy

In the iterative scheme to find the equilibrium path of R(t), we use the following algorithm.

Let R̃j(t) represent the consumer’s belief for R(t) at round j = 0, 1, 2, . . . , and R̂j(t) represent

the path of R(t) that would be achieved if consumers acted on the belief {R̃j(t)}t≥0. Starting

with an initial guess R̃0(t) = 1 for all t ≥ 0, we update the consumer’s belief according to

R̃j+1 = (1− λ)R̃j + λR̂j with λ ∈ (0, 1), (E.1)

and repeat this until the differences between R̃j and R̂j become sufficiently small.

Figure E.1 depicts the updated beliefs of consumers R̃1, R̃2, . . ., showing the convergence

process of consumer’s belief for the path of R(t) to the equilibrium in the benchmark simu-

lation. There are three noteworthy observations to make.

First, we cannot observe a rational expectations equilibrium (REE) with R(t) = 1 for all

t after the shock hits the market. Initially, we set R̃0(t) = 1 for all t ≥ 0. In each iteration,

R̃j is a weighted average of R̄j−1 and the aggregate dynamic that emerges as the optimal

response against R̃j−1. The existence of a time period t where R̃1(t) ̸= 1 indicates that, after

the shock arrives, and consumers act rationally, there is a shortage.

Second, we find no evidence of an equilibrium in which the shortage is less severe. To

search for a fixed point, we begin with the most optimistic initial guess, R̃0(t) = 1 for all

t, and iteratively compute best responses. Figure E.1 displays the monotonic convergence

of R̃j, suggesting that there is no fixed point (i.e., equilibrium) where the availability R(t)

is higher than the one we have presented, although this is not conclusive evidence of the

uniqueness of the equilibrium transition dynamics.

Third, we can interpret the hoarding-demand spiral using cognitive hierarchy theory

(Camerer, Ho, and Chong, 2004). In our economy, the level-0 agents are consumers who

adhere to the stationary-equilibrium shopping strategy. The level-k agents are consumers

who optimize their shopping strategy, taking into account the fundamental shock, while

assuming that all other consumers are level k−1. As such, R̃j roughly represents the “level-

j” consumer’s belief about product availability. Figure E.1 illustrates this cognitive hierarchy

by showing how each level of consumer’s belief converges towards the equilibrium.1

1Two key differences exist between our updating rule and the standard cognitive hierarchy theory. First,
we update consumers’ beliefs about product availability R̃j , rather than their shopping strategy. However,
this difference is not significant as we are analyzing a mean-field game, in which a consumer’s problem is
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Note: This figure illustrates the process where consumers update their belief for the path of R(t) using the

updating rule (E.1) with λ = 1/6, each colored solid line representing R̃j(t) for j = 0, 10, 20, 30, . . . . The
horizontal axis represents the number of weeks after the announcement.

Figure E.1: Illustration of the Process of Searching for the Rational Belief for R(t).

The impact of the shopping-cost shock on hoarding demand in the first round is relatively

small. However, as consumers realize that other consumers will respond to the shock and

there will be a slight shortage of products, they begin to stockpile more. This leads to an

increase in hoarding demand driven by the fear of lower product availability, which in turn

increases hoarding demand further in subsequent rounds. This iterative process continues

until an equilibrium point is reached, capturing how the shortage grows through the spiral

of defensive hoarding.

influenced by other consumers’ strategies only through product availability. Second, we define the level-j+1
consumers’ belief R̃j+1 as a convex combination of (i) the availability in level j, R̃j , and (ii) the availability
obtained as the best response against R̃j . While the standard cognitive hierarchy theory puts the entire
weight on (ii), we only assign a 90% weight on (i) for computational stability. This is because assigning too
much weight on (ii) would cause abrupt belief changes, making the calculation errors more significant.
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E.1.2 Self-fulfilling Panics

In this section, we briefly investigate the potential for self-fulfilling panics. To be specific,

we explore whether our model can rationalize R(t) < 1 without any exogenous changes in

the model parameters. For that purpose, holding all the parameter values fixed, we consider

an exogenous shift in consumer belief regarding R(t), i.e., R̃0(t) < 1 for a certain period (see

Online Appendix E.1.1 for the definition of R̃0).

Here, instead of demonstrating a global absence of belief changes leading to self-fulfilling

panics, we explore specific belief changes and provide intuitive explanations for why they

do not result in (self-) fulfillment. In Figure E.2, we illustrate consumer belief R̃0(t) with

a dotted line and the best response to this belief, R̂0(t), with a solid line. It is evident

that when a future shortage is anticipated without any changes in fundamentals, consumers

make their purchases in advance of the expected shortage, resulting in the realized shortage

occurring earlier than initially expected. Thus, the initial expectation of a future shortage

cannot be fulfilled.

R(t): Availability
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~R0 (Guess)

R̂0 (Best response)

Note: All the parameter values are fixed.

Figure E.2: Response of R(t) to an Exogenous Shift in R̃(t) .

In Figure E.3, we illustrate the scenario where consumers anticipate an immediate short-

age. It also reveals that such an expectation does not lead to fulfillment, as consumers delay
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their purchases until the shortage is expected to ease, causing the realized shortage to occur

later than initially anticipated.

R(t): Availability
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Note: All the parameter values are fixed.

Figure E.3: Response of R(t) to an Exogenous Shift in R̃(t) .

In summary, in the absence of any changes in fundamentals, consumers refrain from

making purchases when severe shortages are anticipated. Consequently, expectations of

shortages do not become self-fulfilling.

E.1.3 Additional Policy Simulations

E.1.3.1 Sale-Tax Increases We consider a month-long tax increase, comparing its ef-

fectiveness with different tax rates and implementation lags in Table E.1.

Policy Simulation (Short-Term Sales-Tax Hike). The government imposes a special sales

tax of τ percent for a month (4.3 weeks) from d weeks after recognizing the news of a

shopping-cost increase. The after-tax price is given by

p̂(t) =


(
1 +

τ

100

)
· p if t ∈ [d, 4.3 + d];

p otherwise.
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Table E.1: A Shopping-Cost Shock with Short-Term Sales-Tax Hike

Tax rate (τ) Implementation lags (d)

d = 0 d = 1/2 (week) d = 1 (week)

R(t) < 0.33 Ωtax GR R(t) < 0.33 Ωtax GR R(t) < 0.33 Ωtax GR

τ = 0 (Benchmark) 2.12 (weeks) 5.05 0
τ = 3.0 1.91 4.60 2.04 2.00 4.80 1.29 2.04 4.88 1.24
τ = 6.0 1.68 4.15 4.08 1.88 4.55 2.58 1.96 4.72 2.46
τ = 9.0 1.41 3.70 6.12 1.76 4.31 3.86 1.88 4.56 3.68

Note: GR is the present value of increased government revenues (GR =
∫∞
0

e−rt[p̂(t)− p(t)]R(t)d(t)dt).

Table E.1 shows that the sales-tax increase can be useful in reducing the welfare cost of

a shopping-cost shock if it is implemented immediately, and that, if its implementation is

delayed even a few days, the effect is limited since it encourages consumers to shop before

the (after-tax) price will increase.

E.1.3.2 Non-Market Distribution We first consider a case in which the government

distributes the product equally to all consumers. Since fairness is an important policy

concern, the government often wants to accommodate the whole population when specific

consumers’ needs are not observed.

Simulation E.1 (Governmental Distribution to All Consumers). The government distributes

4.5 days worth (4.5/7 unit) of the product to all consumers at t = 0: The initial condition

is set to S(0) = So − 4.5/7 and G(0, k) = Go(k − 4.5/7) for all k.

Figure E.4a presents the simulation results. The adoption of the distribution policy

successfully curbs the consumer’s tendency to rush for panic buying, which can be observed

in the lower-left chart. This, in turn, reduces market congestion and minimizes product

shortages. It is worth noting that increasing the product allocation per consumer can further

alleviate panic buying. However, distributing the product equally to the entire population, as

simulated in Simulation E.1, can be both costly and time-consuming. Therefore, alternative

distribution rules are being investigated:

Simulation E.2 (Governmental Distribution to One Half of Consumers). The government

distributes nine days’ worth (9/7 unit) of the product to one half of consumers at t = 0:

the initial condition is set to S(0) = So − 4.5/7 and G(0, k) = 1/2Go(k) + 1/2Go(k − 9/7)

for all k.

The distribution policy is only targeted toward a portion of the population. Surprisingly,

as shown in Figure E.4b, allocating the product to only half of the population yields similar
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(a) Simulation E.1: The government distributes 4.5/7 unit to all the consumers at time 0:
S(0) = So − 4.5/7 and G(0, k) = Go(k − 4.5/7) for all k.
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(b) Simulation E.2: The government distributes 9/7 unit to 1/2 of consumers at time 0: S(0) =
So − 4.5/7 and G(0, k) = 1/2Go(k) + 1/2Go(k − 9/7) for all k.

Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case.

Figure E.4: Governmental Distribution
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results to distributing it to the entire population. This suggests that the government can

improve the welfare of the entire population by catering to only a fraction of it.

In practice, it is also challenging to implement the distribution policy immediately. There-

fore, we consider a scenario in which the government distributes the products one week after

purchase.

There are various information settings that can be adopted for product distribution. For

instance, consumers may be aware or unaware of whether they will receive the product from

the government in the future. Such information plays a crucial role in shaping consumer

behavior as those who are aware of receiving the product soon have no incentive to rush to

the store.

In this study, we adopt a conservative information setting where consumers have rational

expectations of the evolution of product availability, denoted by R(t). However, we assume

that no consumer expects to receive the product at t = 1, which is an irrational expectation.

This conservative assumption underestimates the effectiveness of the government’s distribu-

tion policy since consumers’ hoarding behavior can only decrease when they are aware of the

chance of receiving the product. Conversely, if the conservative setting can suppress panic

buying, the same results should be applicable to any information setting.

Simulations E.3 and E.4 investigate the scenario where the distribution is delayed by one

week. In these simulations, the government purchases the product at t = 0 but distributes

it at t = 1. As in Simulation E.2, the policy only covers half of the population.

Simulation E.3 (Delayed Governmental Distribution). The government collects 4.5/7 unit

of the product at time t = 0: S(0) = So − 4.5/7. The government distributes nine days

worth (9/7 unit) of the product to one-half of consumers at t = 1: G(1, k) = 1/2G(1−, k) +

1/2Go(1
−, k − 9/7) for all k. Before time t, each consumer behaves as if there is no chance

to receive the governmental distribution, but they correctly anticipate the evolution of the

availability, R.

Figure E.5 displays the simulation results, which reveal a marginal improvement due to

the policy. However, the effect is not significant, at least with our conservative information

setting. To explore whether the efficacy of the policy increases with an increase in the

quantity of distributed products, we perform another simulation in which the government

distributes two weeks’ stock instead of nine day’s stock.

Simulation E.4 (Delayed Governmental Distribution 2). The government collects one unit

of the product at time t = 0: S(0) = So − 1. The government distributes two units of the

product to one-half of consumers at t = 1: G(1, k) = 1/2G(1−, k) + 1/2Go(1
−, k − 2) for all
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Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case.

Figure E.5: Delayed Governmental Distribution (Simulation E.3)

k. Before time t, each consumer behaves as if there is no chance to receive the governmental

distribution, but they correctly anticipate the evolution of the availability, R.

The result of this simulation is presented in Figure E.6. As shown in the top-middle

chart, the availability of the product substantially improves with the distribution of two

units. It is worth noting that in this scenario, the government only purchases one out of 2.5

units of the product at t = 0, implying that the policy can be scaled up further to suppress

panic buying more effectively.

These simulation results suggest that the effectiveness of the government’s distribution

policy is not significantly affected by implementation delays. Even if there are delays in

product delivery, consumers anticipate that market congestion will ease quickly, leading to

fewer consumers rushing to the market upon the policy announcement.

Figure E.6 illustrates that despite delays in the delivery of consumer products, consumers

anticipate the market congestion to ease quickly, leading to fewer consumers rushing to the

market upon the announcement. In reality, consumers are aware that their stock increases at

t = 1, which further improves product availability. This result contrasts with the tax policy,

which may have an adverse effect if the government cannot implement it immediately after

the announcement.
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Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case.

Figure E.6: Delayed Governmental Distribution (Simulation E.4)

E.1.3.3 Efficiency of Policy Interventions We further discuss the efficiency of policy

interventions. Our welfare measure focuses on the impact of the average value. Here we

examine who gets better off through the policy interventions discussed above. To this end,

the difference in the flow value (rV (0, k)) to consumers with stock k at time 0 with and

without policy interventions is displayed in Figures E.7-E.9. That is, these figures display

r(Ṽ (0, k)− V (0, k)), where Ṽ (t, k) and V (t, k) be consumers’ value given stock k at time t,

with and without policy interventions, respectively.

Figure E.7 displays the distributional welfare impacts of the purchase-quota policy. It

shows that (i) all consumers would be better off by implementing the policy, and (ii) it would

especially benefit consumers with small stock. This is because such consumers urgently need

to shop and would benefit greatly from having difficulties in shopping relieved by the policy.

Figure E.8 displays the distributional welfare impacts of the future sales-tax reduction

(Section 5.6.2), showing that the tax policy makes all consumers better off.

Figure E.9 displays the distributional welfare impacts of the governmental distribution

policies (Online Appendix E.1.3.2). We find that government rationing increases value for

all consumers under any scenario and that consumers with low inventories benefit greatly,

similar to purchase quotas and tax reductions.
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Figure E.7: The Increase in Consumers’ Value at Time 0 due to the Purchase Quota
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Figure E.9: The Increase in Consumers’ Value at Time 0 due to the Governmental Distri-
bution
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E.2 Supplementary Materials for Section 6

Here, we introduce consumption shock by considering the time variation in the consumption

rate as follows:

u(t, xi(t)) =

0, xi(t) ≥ µ(t);

−a, xi(t) < µ(t),
(E.2)

where µ(t) is a time-varying positive parameter with limt→∞ µ(t) = 1. Given (E.2), the stock

is consumed at rate of µ(t), i.e., x(t, ki(t)) = µ(t) if ki(t) > 0 and x(t, ki(t)) = 0 otherwise.

Namely, the good is consumed µ(t) units per unit of time (as long as stock is available).

In the following, we consider a consumption shock that increases the rate of consumption

by 100 percent over a four-week period and compare the impact when it is unanticipated

and when it is anticipated.

Simulation E.5 (Unanticipated Consumption Shock). The rate of instantaneous consump-

tion is µ(t) = 2.0 for t ∈ [0, 4] and µ(t) = 1.0 otherwise.

Simulation E.6 (Anticipated Consumption Shock). The rate of instantaneous consumption

is µ(t) = 2.0 for t ∈ [1, 5] and µ(t) = 1.0 otherwise. Agents become aware of the rise in

consumption at time t = 0.

The simulation results in Figure E.10 suggest that the anticipated consumption shock

has a similar impact on shortages as the anticipated shopping-cost shock. However, in

contrast to panic buying caused by shopping costs, unanticipated consumption shocks (as

in Simulation E.5) also result in severe shortages. This is because a consumption shock

makes the goods absolutely scarce, and consumers need to compete for the limited resources,

regardless of whether the shock is anticipated or not. Therefore, the timing of information

has little effect on the severity of panic buying caused by consumption shocks.
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(a) Simulation E.5: Unanticipated Consumption Shock
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(b) Simulation E.6: Anticipated Consumption Shock

Note: The horizontal axis represents the number of weeks after the news.

Figure E.10: An Unanticipated and Anticipated Consumption Shock
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E.3 Supplementary Materials for Section 7

E.3.1 The Magnitude of the Shopping-Cost Shock

In the benchmark case, we considered the case in which the flow shopping costs are increased

by 500 percent. In Figure E.11, by varying the parameter c̄, we investigate how the size of

the shock affects social welfare.

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
Shock size: 7c!c

c

0

1

2

3

4

5

6 + (%)
+R=1 (%)

Figure E.11: Welfare Cost of a Shopping-Cost shock with Different Magnitudes

The figure shows that the welfare cost is very small when the shock size is about 300

percent but drastically severe when the size of the shock is greater than 360 percent. This

implies that there is a nonlinear S-shaped relationship between the gross welfare cost of a

shopping-cost shock and the size of the shock (c̄ − c)/c: If the increase in shopping costs

exceeds a certain level, there is a serious shortage of products, resulting in substantial costs

to consumers.
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E.3.2 Price Dynamics

In the benchmark simulation, we assumed that the market price is kept constant at the

stationary-equilibrium level (p(t) = p). Here, we allow the market price to change in response

to the increase in demand. In light of extensive empirical evidence suggesting that stores are

reluctant to increase the price in emergency situations in order to maintain their reputation,

we assume that the market price is rigid and gradually rises in response to the spike in

demand. Specifically, we consider the following scenarios:

Simulation E.7 (Inflation). During the first six weeks after time 0, the market price in-

creases at a monthly rate of 10 percent.

Simulation E.8 (High Inflation). During the first six weeks after time 0, the market price

increases at a monthly rate of 20 percent.
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Note: The horizontal axis represents the number of weeks after the announcement. The dotted,
dash-dotted, and solid lines show the results for the benchmark case (no inflation), Simulation E.7 (10
percent inflation), Simulation E.8 (20 percent inflation), respectively.

Figure E.12: Response to a Shopping-Cost Shock with Inflation

Figure E.12 illustrates how inflation exacerbates the extent of shortages. While the

changes in individual consumer policies in response to inflation might seem modest, the

anticipated inflation encourages consumers to shop earlier, thereby contributing to an aggre-

gate exacerbation of shortages. Consequently, the likelihood of consumers becoming stock-
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less increases. The figure indicates that this effect becomes more substantial as consumers

encounter even higher inflation rates.2

E.3.3 Model Extension

We extend the model by introducing heterogeneity in the degree of product market frictions

faced by consumers. Kano (2018) documents a large dispersion in the purchase cycle of

toilet paper. In particular, there is a marked difference in inventory at the time of purchase;

on average, households purchase when they reach a two-week stock, but there are many

households that purchase with about half that amount in stock. Here, we examine how

the heterogeneity in the purchase cycle affects the response to the shopping-cost shock by

incorporating consumers who are heterogeneous in the degree of product market frictions

captured by parameters (α, c). Specifically, we consider two types of household: (i) average

shoppers with making purchases once every 4 weeks and having 2 weeks’ stock remaining on

average at the time of purchase; (ii) accessible shoppers with making purchases once every 4

weeks and having 1.2 weeks’ stock remaining on average at the time of purchase. Following

the calibration strategy in Section 4, average shoppers face product market frictions with

(α, c) = (2.29, 14.63), while accessible shoppers face (α, c) = (3.82, 26.89).

Figure E.13 illustrates the response to a shopping cost shock, similar to the benchmark, in

an economy where the population is composed of an equal number of average and accessible

shoppers. The results reveal that the presence of accessible shoppers intensifies the impact

of the shopping cost increase. Specifically, the shortage becomes more severe and persistent,

and the risk of becoming stockless is higher than in the absence of accessible shoppers.

This is because accessible shoppers have less inventory when they receive the news of rising

shopping costs, leading them to hoard products more intensely than the average shoppers.

Consequently, the intensive hoarding by accessible shoppers hastens the onset of shortages,

which further accelerates hoarding by the average consumers. The findings imply that to

avoid panic buying, it is crucial to prevent highly accessible consumers from rushing to stores

and purchasing products.

2Awaya and Krishna (2021) provide a two-period model framework in which the price of a storable
good is endogenously determined by the market-clearing price. In their model, when consumers purchase a
large amount in the first period, the second-period price increases and becomes even higher than the first-
period price. This situation resembles Simulations E.7 and E.8 in the sense that the price does not increase
instantaneously at the beginning of the game. Awaya and Krishna (2021) also show that price controls
mitigate panic buying and enhance social welfare.
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Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case. In the upper-right panel, the lines with marks represent the response of
accessible shoppers.

Figure E.13: Response to a Shopping-Cost Shock with Heterogeneous Households
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F Proofs

F.1 Proofs of Proposition 1 (i)-(iii)

Proof. We prove the proposition in six steps. In steps 1-4, we show that there exists a unique

inaction region. Then, in step 5, we show the uniqueness of optimal stopping time, k∗, and

k̄. In step 6, we drive the expressions for the value functions and k̄.

Step 1. We first prove 0 ∈ A and

α
(
V A(0)− V ∗

o (0)
)
− c > 0 (F.1)

by contradiction. Suppose 0 /∈ A, we must have

Vo(0) = −
a

r
= V N(0) > V ∗

o (0), (F.2)

where

V N(k) :=

∫ ∞

0

e−rsh (max{k − s, 0}) ds = 1

r

[
1− (1 + a)e−rk − b̄

[
e−rk

(
1

r
+ k

)
− 1

r

]]
.

By definition of V ∗
o ,

V ∗
o (0) =−

a+ c

r
+ α

V A(0)− V ∗
o (0)

r

>− a+ c

r
+ α

supq≥0 V N(q)− pq − V (0)

r

=− a+ c

r
+ α

supq≥0 V N(q)− pq + a/r

r
,

where the second line used the fact V A(k) = supq≥0 Vo(k+ q)− pq ≥ supq≥0 V N(k+ q)− pq

and the third line used V N(0) = −a/r. Then, using (F.2), we have

−a

r
> −a+ c

r
+ α

supq≥0 V N(q)− pq + a/r

r
,

or

c > α

[
sup
q≥0

V N(q)− pq +
a

r

]
.

This clearly contradicts Assumption 1. Then, we must have 0 ∈ A, which implies

Vo(0) = V ∗
o (0) = −

a+ c

r
+ α

V A(0)− V ∗
o (0)

r
> −a

r
.
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This immediately implies (F.1).

Step 2. We next prove [0, ε] ∈ A for sufficiently small ε > 0 by contradiction. Suppose that

A = {0}, that is V ∗
o (k) < Vo(k) for all k > 0.

By construction of Vo and V ∗
o , we have Vo(ε) = max{Ṽo(ε), V

∗
o (ε)}, where

Ṽo(ε) = h(ε)dt+ (1− rdt)Vo(ε− dt) (F.3)

and

V ∗
o (ε) =

[
h(ε)− c+ αV A(ε)

]
dt+ (1− (α + r)dt)V ∗

o (ε− dt) (F.4)

for any ε > 0. Take ε = dt > 0. Then, taking difference (F.3) from (F.4), we have

V ∗
o (ε)− Ṽo(ε) =

[
α
(
V A(ε)− V ∗

o (0)
)
− c

]
ε. (F.5)

Since

V A(ε) = sup
q≥0

Vo(ε+ q)− pq = sup
q′≥ε

Vo(q
′)− p(q′ − ε) =

(
sup
q′≥ε

Vo(q
′)− pq′

)
+ pε,

we have, for a sufficiently small ε,

V A(ε) = V A(0) + pε. (F.6)

Substituting (F.6) into (F.5), we have

V ∗
o (ε)− Ṽo(ε)

ε
= α

(
V A(0)− V ∗

o (0)
)
− c+ pε.

Rearranging the terms yields

α
(
V A(0)− V ∗

o (0)
)
− c = − Ṽo(ε)− V ∗

o (ε)

ε
− pε < 0. (F.7)

where the last inequality comes from the assumption Vo(ε) = Ṽo(ε) > V ∗
o (ε). Here, (F.7)

contradicts to (F.1).

Step 3. Using the same arguments as Step 2, we can show that if [0, k̂] ∈ A such that

α
(
V A(k̂)− V ∗

o (k̂)
)
−c > 0, then [0, k̂+ε′] ∈ A for a small ε′ > 0. Then, continuity of V ∗

o and

the instantaneous payoff function h(k) show that [0, k∗] ∈ A with α
(
V A(k∗)− V ∗

o (k
∗)
)
= c.

Step 4. We show that the interval A is connected. That is, A = [0, k∗]. This is almost

obvious. Because h(k) is strictly decreasing for k ≥ k∗, there is no reason to increase k at

the cost of shopping search.
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Step 5. We show the uniqueness of optimal stopping-time policies, or k∗ and k̄. Since we

have shown the problem has a unique inaction region and have assumed V o(k) is continuous,

applying the uniqueness theorem for optimal stopping (Øksendal, 2003, Theorem 10.1.12)

to this problem derives a unique stopping time. This implies a unique k∗.

The uniqueness of k̄ is clear since for k > k∗, Vo(k)−pk is continuous and strictly concave

with V ′
o(k

∗)− p > 0. (See step 6 for the explicit expression).

Step 6. Finally, given that optimal policy, we derive V and V ∗ satisfying:

Vo(k) = 1{k≥k∗}

[∫ k−k∗

0

e−rs′h(k − s′)ds′ + e−r(k−k∗)V ∗
o (k

∗)

]
+ 1{k<k∗}V

∗
o (k), (F.8)

and

V ∗
o (k) =

∫ ∞

0

e−(α+r)s′
[
h(max{k − s′, 0}) + αV A(max{k − s′, 0})− c

]
ds′,

where V A(k) = max
q≥0

Vo(k + q)− pq. It is therefore confirmed that

rVo(k) = 1{k≥k∗}

[
h(k)− ∂Vo(k)

∂k
x(k)

]
+ 1{k<k∗}V

∗
o (k) (F.9)

and

rV ∗(k) = h(k)− c− ∂V ∗(k)

∂k
x(k) + α

[
V A(k)− V ∗(k)

]
. (F.10)

Lemma F.1. Vo(k) and V ∗
o (k) are respectively expressed as follows:

Vo(k) = 1{k≥k∗}

[
1

r
e−r(k−k∗)

(
b(k∗)− b̄

r
+ rV ∗

o (k
∗)

)
+

1

r

(
b̄

r
− b(k)

)]
+ 1{k<k∗}V

∗
o (k),

(F.11)

and

V ∗
o (k) = αΛ(k) +

1

α + r

[(
1− e−(α+r)k

) b̄

α + r
− b(k)− e−(α+r)ka− c

]
, (F.12)

where

Λ(k) :=

∫ k

0

e−(α+r)(k−s)V A(s)ds+ e−(α+r)kV
A(0)

α + r
.

They satisfy the value-matching condition

Vo(k
∗) = V ∗

o (k
∗) = lim

k↑k∗
V ∗
o (k) = lim

k↑k∗
Vo(k), (F.13)
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and the smooth pasting condition

V ′
o(k

∗) = V ∗′
o (k∗) = lim

k↑k∗
V ∗′
o (k) = lim

k↑k∗
V

′

o (k). (F.14)

Proof of Lemma F.1. First, we derive (F.11). The first term of the right-hand side of (F.8)

is ∫ k−k∗

0

e−rs′h(k − s′)ds′ + e−r(k−k∗)V ∗
o (k

∗) =−
∫ k∗

k

e−r(k−s)h(s)ds+ e−r(k−k∗)V ∗
o (k

∗)

=

∫ k∗

k

e−r(k−s)b(s)ds+ e−r(k−k∗)V ∗
o (k

∗).

Then, use b(k) = b̄k and then apply integration by part to obtain∫ k∗

k

e−r(k−s)b(s)ds =b̄

∫ k∗

k

e−r(k−s)sds

=b̄

[
1

r

[
e−r(k−s)s

]k∗
k
− 1

r

∫ k∗

k

e−r(k−s)ds

]
=
b̄

r

[
e−r(k−s)

(
s− 1

r

)]k∗
k

=
1

r

[
e−r(k−k∗)

(
b(k∗)− b̄

r

)
+

b̄

r
− b(k)

]
.

Then, we derive (F.13) and (F.14). Given (F.8), it is immediate to derive the value

matching condition (F.13). Then, (F.10) and the fact α
(
V A(k∗)− V ∗

o (k
∗)
)
= c implies

rV ∗(k∗) = −b(k∗)− V ∗′(k∗). (F.15)

Then, the value matching condition and (F.9) yield the smooth pasting condition (F.14).

Finally, we derive (F.12).

V ∗(k) =

∫ ∞

0

e−(α+r)s′
[
h(max{k − s′, 0}) + αV A((max{k − s′, 0})− c

]
ds′

=

∫ k

0

e−(α+r)(k−s)
[
h(s) + αV A(s)

]
ds+

1

α + r

[
e−(α+r)k

(
h(0) + αV A(0)

)
− c

]
= αΛ(k) +

1

α + r

[(
1− e−(α+r)k

) b̄

α + r
− b(k)

]
− 1

α + r

(
e−(α+r)ka+ c

)
= αΛ(k) +

1

α + r

[(
1− e−(α+r)k

) b̄

α + r
− b(k)− e−(α+r)ka− c

]
,
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where

Λ(k) =

∫ k

0

e−(α+r)(k−s)V A(s)ds+ e−(α+r)kV
A(0)

α + r
.

Note that Lemma F.1 implies that, for k ≥ k∗,

V
′

o (k) = −e−r(k−k∗)

[
b(k∗)− b̄

r
+ rV ∗

o (k
∗)

]
− b̄

r
,

and

V
′′

o (k) =re−r(k−k∗)

[
b(k∗)− b̄

r
+ rV ∗(k∗)

]
=− re−r(k−k∗)

[
b̄

r
+ V ∗′

o (k∗)

]
,

where the second line used (F.15) and (F.14).

Here, we postulate V ∗′
o (k∗) > 0, implying that V

′′
o (k) < 0 for k ≥ k∗ and therefore

Vo(k) is strictly concave for k ≥ k∗. In this case, V A(0) = maxq≥0 Vo(q) − pq has a unique

solution. Let k̄ be the solution. It must be true that (i) k̄ = k∗ if V ′
o(k

∗) ≤ p or (ii) k̄ > k∗

if V ′
o(k

∗) > p. But it is clear that the case (i) contradicts to the fact that k∗ ∈ A. Hence,

the case (ii) must be held and k̄ satisfies

V ′
o(k̄) = −e−r(k̄−k∗)

(
b(k∗)− b̄

r
+ rV ∗(k∗)

)
− b̄

r
= p,

or

k̄ = k∗ − 1

r
log

(
− b̄/r + p

b(k∗)− b̄/r + rV ∗
o (k

∗)

)
= k∗ +

1

r
log

(
1 +

V ′
o(k

∗)− p

b̄/r + p

)
︸ ︷︷ ︸

>1

.

As a consequence, (when postulating V ∗′
o (k∗) > 0), we must have

V A(k) = max
q≥0

Vo(k + q)− pq =

Vo(k̄)− p(k̄ − k), for k ∈ [0, k̄],

Vo(k), for k ∈ (k̄,∞).
(F.16)

Furthermore, use (F.9) to derive the following

Vo(k̄) = −
b(k̄) + V ′

o(k̄)

r
= −b(k̄) + p

r
.

27



Plugging this into (F.16) yields

V A(k) =


−p+ b(k̄)

r
− p(k̄ − k) for k ∈ [0, k̄],

1

r

[
e−r(k−k∗)

(
b(k∗)− b̄

r
+ rV ∗(k∗)

)
+

(
b̄

r
− b(k)

)]
for k ∈ (k̄,∞).

Finally, we verify that our postulation was true. Using (F.12), we have

V ∗′(k) = αΛ′(k)−
(
1− e−(α+r)k

) b̄

α + r
+ e−(α+r)ka.

We then show that, for k ∈ [0, k̄]

Λ′(k) = −(α + r)Λ(k) + V A(k) =
(
1− e−(α+r)k

) p

α + r
.

since

Λ′(k) = −(α + r)

[∫ k

0

e−(α+r)(k−s)
(
V A(0) + ps

)
ds+ e−(α+r)kV

A(0)

α + r

]
+ (V A(0) + pk)

= −
(
1− e−(α+r)k

)
V A(0)− e−(α+r)kV A(0) + (V A(0) + pk)− p(α + r)

∫ k

0

e−(α+r)(k−s)sds

= pk − pk +
(
1− e−(α+r)k

) p

α + r

for k ∈ [0, k̄]. Hence, we have

V ∗′(k) =
(
1− e−(α+r)k

) αp− b̄

α + r
+ e−(α+r)ka.

for k < k̄. Assumption 2 ensures αp > b̄ and thus V ∗′(k) > 0 for all k < k̄. Since k∗ < k̄, we

have shown V ∗′(k∗) > 0.

In sum, the value functions in the stationary equilibrium is given by

rVo(k) = 1{k≥k∗o}

[
e−r(k−k∗o)

(
b̄k∗

o −
b̄

r
+ rV ∗

o (k
∗
o)

)
+

(
b̄

r
− b̄k

)]
+ 1{k<k∗o}rV

∗
o (k),
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where the value of exercising a control V ∗(k) satisfies

V ∗
o (k) =α

[∫ k

0

e−(α+r)(k−s)V A
o (s)ds− e−(α+r)k (p+ b̄k̄o)/r + pk̄o

α + r

]
+

1

α + r

[(
1− e−(α+r)k

) b̄

α + r
− b̄k − e−(α+r)ka− c

]
,

with

V A(k) = 1{k≤k̄o}
[
p(k − k̄o)− (p+ b̄k̄o)/r

]
+ 1{k>k̄o}Vo(k).

F.2 Proofs of Lemma 1 and Proposition 1 (iv) and (v)

Let G(0, k) be the distribution function for the consumer’s stock at the initial period t = 0.

Because of the exogenous exit, the share of consumers who exist from the initial period

decreases at the rate of θ, and such consumers disappear in the long run. Thus, the choice

of g(0, k) does not affect the long-run distribution. Thus, in computing the long-run distri-

bution, without loss of generality, we can assume G(0, k) = Go(k).

In the stationary equilibrium, it must be held that

∂g(t, k)

∂t
=


∂g(t, k)

∂k
x(k) + θ [gnew(k)− g(t, k)]− αg(t, k) for k ∈ [0, k∗

o ],

∂g(t, k)

∂k
x(k) + θ [gnew(k)− g(t, k)] + αG(t, k∗

o)δ(k − k̄o) for k ∈ [k∗
o , k̄o].

Then we show that there exists a unique g(t, k) that satisfies ∂g(t,k)
∂t

= 0. Namely, we show

that the solution for the ordinary differential equation is unique.

0 =

−g′o(k)− αgo(k) for k ∈ (0, k∗
o),

−g′o(k) + αGo(k
∗
o)δ(k − k̄o) for k ∈ [k∗

o , k̄o],

with lim
k↑k∗o

go(k) = go(k
∗
o) and Go(0) = G(k∗

o)e
αk∗o .

It is clear that

go(k) =

C for k ∈ [k∗
o , k̄o],

Ce−α(k∗o−k) for k ∈ (0, k∗
o)
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Hence,

G(k∗
o) =G(0) + C

∫ k∗o

0

e−α(k∗o−k)dk

=G(k∗
o)e

αk∗o +
C

α
(1− eαk

∗
o ).

Therefore,

G(k∗
o) =

C

α
.

Furthermore, it must be true that

G(k∗
o) +

∫ ∞

k∗o

go(k)dk = 1.

This requires

C

(
1

α
+ k̄o − k∗

o

)
= 1.

Namely,

C =
α

1 + α(k̄o − k∗
o)
.

This shows that

go(k) =


α

1+α(k̄o−k∗o)
e−α(k∗o−k) for k ∈ (0, k∗

o),

α
1+α(k̄o−k∗o)

for k ∈ [k∗
o , k̄o],

and has a mass point at k = 0 with Go(0) =
e−αk∗o

1+α(k̄o−k∗o)

Proposition 1 (v) is obvious from the average waiting time between two occurrences in a

Poisson process.
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G Algorithm Description

We define differential operators (or infinitesimal generators of the process) K and T as

(K V )(t, k) = −∂kV (t, k)x(k)

and

(T V )(t, k) = ∂tV (t, k).

The value function V (t, k) can be written as a solution of the Hamilton-Jacobi-Bellman

variational inequality (HJBVI, henceforth):3

min {rV (t, k)− h(k)− (K V )(t, k)− (T V )(t, k), V (t, k)− V ∗(t, k)} = 0, (G.1)

where V ∗(t, k) is the value function of exercising the option, which satisfies the following

HJB equation:

(r + αR(t))V ∗(t, k) = h(k)− c(t) + (K V ∗)(t, k) + (T V ∗)(t, k) + αR(t)V A(t, k).

We will find an approximated solution of the HJBVI (G.1) in a discretized space. We

begin with the description of our notations. Set an equidistant grid over the consumer’s stock

level, k1 = 0, k2, . . . kL with ∆k = kℓ − kℓ−1 for all ℓ = 2, . . . , L. Throughout, we use bold

letters to denote vectors and subscript ℓ to denote the ℓ-th element of a vector. For example,

k = (k1, . . . , kℓ, . . . , kL)
′ and h = (h1, . . . , hℓ, . . . , hL)

′ = (h(k1), . . . , h(kℓ), . . . , h(kL))
′. Let

v(t) be v(t) = (V (t, k1), . . . , V (t, kL))
′. Similarly, let v∗(t) = (V ∗(t, k1), . . . , V

∗(t, kL))
′.

We then discretize the differential operator K . Since a functional operator is the infinite-

dimensional analogue of a matrix, the operator K can be discretized by a matrix K. Specif-

ically, we approximate the partial derivative based on the following finite difference scheme:

∂kV (t, kℓ) =
V (t, kℓ)− V (t, kℓ−1)

∆k

.

3Note that solving the HJBVI (G.1) is equivalent to finding the function V (t, k) that satisfies the com-
plementary slackness conditions:

V (t, k) ≥ V ∗(t, k) if rV (t, k) = h(k) + (K V )(t, k) + (T V )(t, k),

V (t, k) = V ∗(t, k) if rV (t, k) ≥ h(k) + (K V )(t, k) + (T V )(t, k).
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Using the above scheme along with the boundary condition, we can write

−∂kV (t, kℓ)x(kℓ) =


0, ℓ = 1

−V (t, kℓ)− V (t, kℓ−1)

∆k

= vℓ−1(t)ω+ + vℓ(t)ω−, ℓ = 2, . . . , L

where ω+ = 1/∆k and ω− = −1/∆k. Then, we can build a L×L sparse matrix K such that

Kv(t) =



0 0 0 · · · · · · · · · 0

ω+ ω− 0 0 · · · · · · 0

0 ω+ ω− 0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · 0 ω+ ω− 0

0 · · · · · · · · · 0 ω+ ω−





v1(t)

v2(t)

v3(t)
...

vL−1(t)

vL(t)


=



0

v1(t)ω+ + v2(t)ω−,

v2(t)ω+ + v3(t)ω−,
...

vL−2(t)ω+ + vL−1(t)ω−

vL−1(t)ω+ + vL(t)ω−


.

(G.2)

With notations introduced above, the approximation of (G.1) in the discretized space is

given by

min

{
rv(t)− h−Kv(t)− v(t+ dt)− v(t)

dt
,v(t)− v∗(t)

}
= 0,

In the similar way, we can find the expression for v∗(t) in the discretized space as follows:

(α + rR(t))v∗(t) = h− c(t)1L +Kv∗(t) +

(
v∗(t+ dt)− v∗(t)

dt

)
+ αR(t)vA(t). (G.3)

where vA(t) is the approximation of V A(t, k) in the discretized space.

For later use, we define a L× L sparse matrix M (t) that captures the rate of transition

of the consumer’s stock associated with the purchase of the good.4 Its (ℓ, n) element is given

by

M ℓ,n(t) =


−αR(t), for n = ℓ if kℓ ∈ A(t)
αR(t), for n = k̄(t) if kℓ ∈ A(t)
0, otherwise

,

where A(t) is the action region is the discretized space. The sum of each row of K and M(t)

equals to zero. Furthermore, we define a L × L diagonal matrix D all of whose diagonal

elements are −θ, which captures the rate of transition of the consumer’s stock associated

with exit.

We turn to the time evolution of the cross-sectional distribution of the stock level. We

4The matrix K, which is given by (G.2), can be interpreted as the rate of transition of the consumer’s
stock associated with consumption.
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denote g(t) = [g(t, k1), . . . , g(t, kL)]
′ and gnew = [gnew(k1), . . . , gnew(kL)]

′. Since the KF

operator is the adjoint operator of the HJB operator, the KF equation (8) in the discretized

space, can be written as

ġ(t) =
(
KT +M(t)T +DT

)
g(t) + θgnew.

where ġ(t) = [∂g(t, k1)/∂t, . . . , ∂g(t, kL)/∂t]
′ and AT , M (t)T , and DT are the transpose of

the intensity matrices A, M(t), and D, respectively.

In the following, we describe the algorithm to obtain the stationary distribution in Sec-

tion G.1 and the transitional dynamics in Section G.2.

G.1 Stationary Distribution

1. Set a concave function v0 as an initial guess for the value function. Specifically, we use

v0 such that rv0 = h+Kv0.

2. Given vn, find vn+1 by solving

min

{
vn+1 − vn

∆
+ rvn+1 − h−Kvn+1,vn+1 − v∗(vn)

}
= 0, (G.4)

where

v∗(vn) = Ba
−1

(
h− c1+ αvA(vn)

)
with Ba = (α + r)IL −K.

2-A. Define matrix B as

B =

(
r +

1

∆

)
IL −K.

Then, rewrite (G.4) into

min

{
Bvn+1 − 1

∆
vn − h,vn+1 − v∗ (vn)

}
= 0. (G.5)

Now, find that that solving (G.5) is equivalent to solving the following problem:

(
vn+1 − v∗(vn)

)′ (
Bvn+1 − 1

∆
vn − h

)
= 0

vn+1 − v∗(vn) ≥ 0

Bvn+1 − 1

∆
vn − h ≥ 0

(G.6)
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2-B. Define

zn+1 = vn+1 − v∗(vn) and yn = Bv∗(vn)− vn/∆− h.

Then, (G.6) is reduced to the following Linear Complementarity Problem (LCP):

(zn+1)′(Bzn+1 + yn) = 0

zn+1 ≥ 0

Bzn+1 + yn ≥ 0

Then, given vn (equivalently yn), the above problem solves zn+1 and therefore

vn+1.

3. Repeat the step 2 until vn+1 is sufficiently close to vn.

4. Find g

4-A. Set M . The (ℓ, n) elements are given by

M ℓ,n =


−α, for n = ℓ if kℓ ∈ A
α, for n = k̄ if kℓ ∈ A
0, otherwise

4-B. Find g such that

0 =
(
KT +MT +DT

)
g + θgnew,

or

g = −
(
KT +MT +DT

)−1
θgnew.

G.2 Transitional Dynamics

We describe the algorithm to find the transition of the equilibrium over time. First, we

discretize the time horizon as T = (t1, . . . , tτ , . . . , tT+1)
′ for τ ∈ Z with t1 = 0 and a large

integer T , using the equidistant grid points with distance ∆t = ∆k where ∆t = tτ − tτ−1

for all τ = 2, . . . , T + 1. Let v, v∗ and g denote the vectors for the value functions and the

density function for the consumer’s stock in the stationary equilibrium, respectively. We keep

the following notation: xℓ(τ) = x(tτ , kℓ) and x(τ) = (x(tτ , k1), . . . , x(tτ , kℓ), . . . , x(tτ , kL))
′.

1. Set v(T + 1) = v, v∗(T + 1) = v∗, g(1) = g, and initial store’s stock S(1) = So > 0.

2. Set initial guess R̃ = (R̃(1), . . . , R̃(T + 1))′ for the consumer’s brief R(t){t≥0}.
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3. Given R̃, find the paths {v(τ)}T+1
τ=1 and {M(τ)}T+1

τ=1 iteratively backward in time.

3-A. Set τ = T .

3-B. Given v(τ + 1), find ṽ(τ) such that

rṽ(τ) = h+Kṽ(τ) +
v(τ + 1)− ṽ(τ)

∆t

.

3-C. Given v∗(τ + 1) and ṽ(τ), find v∗(τ) such that

(α+rR̃(τ))v∗(τ) = h−c(τ)1L+Kv∗(τ)+
v∗(τ + 1)− v∗(τ)

∆t

+αR̃(τ)vA(ṽ(τ)).

3-D. Find v(τ) such that

v(τ) = max{ṽ(τ),v∗(τ)}

that is, v(τ) is the element-wise maximum of ṽ(τ) and v∗(τ). At the same time,

find the optimal policy, k∗(τ) and k̄(τ).

3-E. Set the transition intensity matrix M(τ) as in (G.3)

3-F. Repeat until τ = 1

4. Given {M (τ)}T+1
τ=1 , find the paths {g(τ)}T+1

τ=1 and {R(τ)}T+1
τ=1 forwardly.

4-A. Set τ = 1

4-B. Given g(τ) and the optimal policy, find D(τ) as follows:

D(τ) =
∑

ℓ=1,...,L

1{kℓ≤k∗(τ)}(k̄(τ)− kℓ)gℓ(τ).

4-C. Given g(τ) and S(τ), find R(τ) using the following rule:

R(τ) = min

{
S(τ) + s ·∆t

D(τ)
, 1

}
.

4-D. Given g(τ), find g(τ + 1) according to the rule: for some integer n ≥ 1 and

i = 0, . . . , n− 1

g(τ + (i+ 1)/n)− g(τ + i/n)

∆t/n
= (A+M (τ) +D)T g(τ + i/n) + θgnew.
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4-E. Given R(τ) and S(τ), find S(τ + 1) using the following rule:

S(τ + 1) = S(τ) + (s ·∆t −R(τ)D(τ)).

4-F. Repeat until τ = T and let R = (R(1), . . . , R(T + 1))′.

5. If ∥R − R̃∥ < ϵ, find the equilibrium transitional dynamics. Otherwise, update the

guess R̃ based on the following rule:

R̃← λR̃+ (1− λ)R.

with λ ∈ (0, 1), and repeat steps 3 and 4.
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