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Abstract

This paper analyzes panic buying of storable consumer products accompanied by

disasters, using a novel consumer-search theoretic equilibrium model where consumers

follow (S, s) inventory policies. We show that, even if consumers are fully rational,

an anticipated temporary increase in consumer shopping costs (as well as conventional

demand and supply shocks) can trigger an upward spiral of hoarding demand and

result in serious shortages. Due to congestion externalities, panic buying leads to the

misallocation of storable products and substantial welfare loss. The model is calibrated

using survey data and reveals that the timing of recognizing the shopping-cost rise is

crucial for the severity of panic buying. Some policy options, such as purchase quotas

and future sales-tax reductions, are suggested to mitigate panic buying.
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1 Introduction

Panic buying of necessity goods (such as toilet paper, hygiene products, and canned foods)

has occurred historically in anticipation of and in response to various types of emergencies,

e.g., the recent COVID-19 pandemic.1 This paper analyzes how emergencies (i.e., changes in

fundamentals) trigger panic buying even in the absence of irrational consumers and misin-

formation. To this end, we develop a novel dynamic model of a market of storable necessities

that takes into account search externalities (Diamond, 1982) and calibrate the model using

household survey data. We find that panic buying occurs inevitably when an emergency

makes a shopping search more costly. We quantify the welfare cost attributable to panic

buying and discover that panic buying becomes much more severe if the emergency is antic-

ipated. Furthermore, we quantitatively evaluate the effectiveness of various policies to curb

panic buying.

Our model considers atomistic consumers who consume a storable product at a constant

rate, incur holding costs, and face small search frictions in their shopping. Search frictions

require consumers to spend time on costly shopping searches. Consequently, consumers

who optimally manage their inventory follow (S, s) inventory policies, leading to periodic

shopping where they determine the timing and quantity of their purchases based on expected

time and costs associated with shopping searches.2 Products are served on a first-come-

first-served basis, and each consumer’s shopping decision affects the product availability for

other consumers. Specifically, when individuals intensify their hoarding demand, it results

in heightened market congestion. This makes it less probable and more time-consuming

1During the COVID-19 pandemic, English-language media reports collected from 20 countries and regions
by Arafat, Kar, Menon, Kaliamoorthy, Mukherjee, Alradie-Mohamed, Sharma, Marthoenis, and Kabir (2020)
indicate that there were 214 news reports using the keyphrase “panic buying” published through May 22,
2020. The majority of the media reporting on panic buying was from the United States (40.7 percent), the
United Kingdom (22 percent), and India (13.6 percent).

2Several studies, following the works of Caplin (1985), Grossman and Laroque (1990), and Caballero and
Engel (1991), have developed models based on the (S, s) inventory policies to analyze the demand for durable
or storable consumer products (e.g., Berger and Vavra, 2015; Baker, Johnson, and Kueng, 2021, for recent
studies). However, our model differs from these studies in the nature of the adjustment process. While
previous models assume that agents can choose when to adjust their stock, in our model, search frictions
prevent consumers from choosing exactly when to adjust their stock.
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for other consumers to make a purchase. In essence, even though each consumer behaves

rationally, they fail to internalize the effects of market-congestion externality. Consequently,

while defensive hoarding is optimal for individuals, it leads to an inefficient “panic” in society

as a whole.

Using the model, we identify an increase in shopping costs, i.e., non-pecuniary costs as-

sociated with shopping search, as a potential trigger for panic buying. When these shopping

costs experience a temporary surge, consumers tend to make larger purchases to reduce

the frequency of their shopping trips. This hoarding behavior amplifies market demand

and depletes in-store stock. In anticipation of potential stockouts, consumers rush to se-

cure products before they run out, further exacerbating the scarcity. In this manner, the

shopping-cost shock leads to a spiral in which individual consumers, acting in their own self-

interest, escalate hoarding out of fear of running out of necessities. As a result, the products

become misallocated, with some consumers facing a higher risk of stockout and spending

more time searching, while others incur a higher storage cost due to excessive hoarding. The

2020 toilet paper shortage in the United States, occurring in the absence of supply disrup-

tions or demand increases, is a compelling example of how mobility restrictions during the

COVID-19 pandemic raised shopping costs and led to shortages (see Online Appendix C for

evidence from Global Mobility Report).3

Notably, our model of panic buying differs from self-fulfilling panic models (such as the

classic bank-run model of Diamond and Dybvig (1983)) in that shortages and excessive

hoarding only occur in response to adverse fundamental shocks. This property is consistent

with reality since panic buying has been observed frequently during emergencies but rarely

during normal times.4 Rather, the structure of our model is similar to the dynamic debt-

3Keane and Neal (2021) present cross-country evidence of how movement restrictions announced during
the COVID-19 pandemic have affected panic buying. They measure the extent of these restrictions using
data on the closure of primary and secondary schools, restrictions on gatherings, encouragement of remote
work, limitations on public spaces, and the closure of retail and entertainment businesses.

4For example, shortages of essential goods have been observed during the 1962 Cuban missile crisis
(George, 2003), the 1973 oil crisis (Malcolm, 1974), the 2008 global rice crisis (Dawe, 2010; Hansman, Hong,
de Paula, and Singh, 2020), the 2011 Christchurch earthquake (Lauder, 2011; Forbes, 2017), the 2011 East
Japan earthquake (Hori and Iwamoto, 2014), the 2017 Hurricane Irma (Alvarez, 2017), and Brexit (Coleman,
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runs model proposed by He and Xiong (2012) in that a coordination problem exists between

consumers acting at different times.5

For the quantitative analysis, we present innovative numerical techniques to simulate

the dynamic response to a shock. Our model accounts for the heterogeneity of consumers in

their stock quantities, and this feature necessitates computing the joint equilibrium dynamics

of (i) consumer shopping behavior, (ii) the distribution of consumer stock, and (iii) market

conditions. To achieve this, we utilize a continuum of consumers in a continuous-time setting

and employ a mean-field game (MFG) representation, customizing the numerical method

developed by Achdou, Han, Lasry, Lions, and Moll (2022).6 Our methods can effectively

simulate the dynamic response to a range of shocks, including increases in shopping costs,

shifts in preferences, and supply disruptions.

The model is calibrated to align with purchase and inventory behaviors documented in a

household survey by Kano (2018), which specifically examines toilet paper consumption, pur-

chase, and inventory. Our quantitative experiments demonstrate that a month-long increase

in shopping costs can induce panic buying, revealing two key features.

First, excessive hoarding is more likely to occur when the shock is anticipated, and the

degree to which consumers recognize the shopping-cost increases in advance has a crucial

impact on the severity of panic buying. Specifically, our simulations indicate that (i) the

severity of panic buying has a non-monotonic inverse U-shaped relationship with the time

lag between realization and recognition of the shock, and (ii) severe panic buying occurs

when consumers recognize the increase about a few weeks before its occurrence.

Second, in our welfare analysis, we distinguish the welfare cost that results from the

market-congestion externality and the welfare cost that stems directly from the increased

Dhaif, and Oyebode, 2022).
5Specifically, search frictions play a significant role in preventing consumers from making simultaneous

purchases, and the market-congestion externality causes the dynamic coordination problem and serves to
amplify the impact of adverse shocks.

6Originally developed for analyzing income and wealth distribution in dynamic general equilibrium models
with uninsured idiosyncratic risk, this approach has found extensive application in diverse macroeconomic
models with heterogeneous agents (e.g., Kaplan, Moll, and Violante, 2018; Ahn, Kaplan, Moll, Winberry,
and Wolf, 2018; Fernández-Villaverde, Hurtado, and Nuño, 2023).
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shopping costs. We find that, when severe panic buying occurs, the externality effect of

congestion on social welfare is much greater than the direct impact of the underlying shock.

In our calibration, the externality exacerbates the welfare impact by more than 5 times.

Using our model and numerical method, we evaluate different policy options for reducing

panic buying. Our findings suggest that purchase quota policies, implemented by many

stores during the COVID-19 pandemic, can be effective. We also propose tax policies as a

potential solution. For instance, announcing a future reduction in sales tax can encourage

consumers to delay their purchases and break the spiral of hoarding. Another option of the

government is to distribute the product directly to households. This policy alleviates market

congestion and enhances the ex-ante value of all consumers, even if the government is unable

to reach the entire population.

Contributions to the Literature Our research contributes to the literature on the pur-

chasing behavior of storable consumption goods and panic buying phenomena. Numerous

empirical studies (e.g., Neslin, Henderson, and Quelch, 1985; Erdem, Imai, and Keane, 2003;

Hendel and Nevo, 2006a,b, 2013) emphasize the practical importance of intertemporal de-

mand effects of storable consumption goods. Recently, Keane and Neal (2021) and Prentice,

Chen, and Stantic (2020) underscore the relevance of these effects in explaining panic buying,

citing that the announcement of government measures to combat the COVID-19 pandemic

triggered panic buying. The intertemporal demand effects emphasized in the literature play

a crucial role in our model. Amid the heightened attention on panic buying behavior during

the COVID-19 pandemic, various models explaining the phenomenon have been developed.

For instance, Awaya and Krishna (2021) demonstrate how price flexibility influences panic

buying using a two-period model, while Klumpp (2021) develops a consumer-inventory model

where stockpiling behaviors accelerate supply shortages. Our model offers three notable ad-

vantages compared to theirs: (i) it explicitly considers consumers’ decisions on when to go

shopping and elucidates how they rush to stores, (ii) our continuous-time model framework
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can analyze how the market dynamically responds to various fundamental shocks, and (iii)

it derives quantitative implications by tying to micro-data evidence.

Our study draws a parallel between panic buying of necessities and bank runs. Specifi-

cally, our panic buying model shares similarities with the classical bank-run model developed

by Diamond and Dybvig (1983), as the sequential service constraint (Wallace, 1988, 1990)

plays a critical role in both.7 However, our model characterizes panic buying as a phe-

nomenon that amplifies changes in fundamentals due to the coordination problem, akin to

the dynamic debt runs of He and Xiong (2012), rather than a self-fulfilling panic.

Distinct from He and Xiong (2012), our model considers the intensive margin (the quan-

tity per purchase), which is essential for analyzing the propagation of shopping-cost shocks.

Our model also shares similarities with the bank-runs model developed by Gu (2011) that

features herding effects due to information externality. While her model emphasizes the

nature that a consumer’s decision depends on the other consumers’ past actions, our model

emphasizes that it depends on other consumers’ future actions resulting from search exter-

nality. This feature is crucial in explaining why panic buying is more likely to occur under

announced emergencies.

Structure of the Paper The rest of the paper is organized as follows. Section 2 lays out

the model. Section 3 defines the equilibrium with rational expectations and describes the

stationary equilibrium. Section 4 calibrates the model, and Section 5 studies the dynamic

responses to shopping-cost shocks and investigates policy interventions. Section 6 analyzes

other shocks that cause panic buying, and Section 7 provides sensitivity analyses and model

extensions. Section 8 offers concluding remarks.

7The literature on banking crises broadly consists of two views: the first view is that crises are based on
panics, i.e., random events, while the second view argues that crises occur due to poor fundamentals (see,
e.g., Allen and Gale, 2009). Our panic-buying model falls into the latter category.
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2 Model

We consider a consumer-search model for a storable necessity product (e.g., toilet paper) in

continuous time with an infinite horizon. Let t ∈ [0,∞) index time. In this economy, there is

a unit mass of consumers. Nonnegative random variable ki(t) ≥ 0 stands for the stock of the

product held in the consumer i’s private inventory at time t and G(t, k) =
∫
i∈[0,1] 1{ki(t)≤k}di

for k ≥ 0 is the distribution function of consumers’ private stock at time t.

We assume, as in the model in Blanchard (1985), that consumers stochastically exit from

the economy at a Poisson rate θ > 0 and a mass θ of new consumers enters per unit of time

so that total population size is kept at one. We further assume that the consumers who exit

take their stock away and newly entered consumers start with initial stock ko > 0, which is

drawn from a (time-invariant) distribution function Gnew that has a density function gnew.
8

There is a marketplace in which a store sells storable products. The store can hold the

product in its warehouse. Let S(t) ≥ 0 denote the store’s stock in the warehouse at time t.

The product is replenished to the warehouse at an exogenous rate s > 0 every time.

To purchase the product, the consumers have to travel to the marketplace and locate

a store. However, due to search frictions, locating it takes time and is costly. In practice,

shopping incurs travel costs, costs of acquiring product information, and opportunity costs

of the time spent shopping. In this paper, we collectively refer to these costs as shopping

costs. The size of shopping costs c(t) is assumed to be common to all consumers while it

may change over time. Note that shopping costs in our model are flow costs incurred while

conducting a shopping search, rather than one-time fixed costs.

Let p(t) denote the unit market price of the product at time t. We assume that, in the

long-run stationary equilibrium, the market price is established so that supply and demand

flows are balanced, but this is not the case when the economy is out of the stationary

equilibrium. The intertemporal pricing policy for storable products is complex (see Su, 2010,

8This exit-and-reentry structure is commonly used as “stabilizing forces” to ensure the existence of a
unique stationary distribution (See Online Appendix F for the proof). See for example Gabaix, Lasry, Lions,
Moll, and Qu (2016, Online Appendix D) for detailed descriptions of other specifications of stabilizing forces.
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who characterizes an optimal pricing strategy of the monopolistic seller), and modeling the

pricing policy in emergency situations is beyond the scope of this study.9 Thus, we instead

treat the price as an exogenous variable.

2.1 The Consumer’s Problem

The consumer’s stock ki(t) changes over time as a result of consumption and purchases from

the store in the marketplace. As the product is storable, any unconsumed quantity can be

set aside for future consumption. Reselling of the product is not allowed.10 Depreciation of

the product is not explicitly considered, since we focus on the short-term behavior of the

economy. At every time t, a consumer chooses (i) the flow consumption xi(t) ∈ R+, (ii)

whether to do a shopping search Ai(t) ∈ {0, 1}, and (iii) how much to buy upon finding

available stock at the store, qi(t) ∈ R+.
11

To purchase the product, a consumer has to engage in a costly shopping search (Ai(t) =

1). We assume that during this search, a consumer locates the store at a Poisson rate of

α > 0. This Poisson shock structure, within the context of our continuous-time framework,

prevents instantaneous purchases by consumers and results in only a very small fraction of

consumers having the opportunity to make a purchase within a short time interval. This

feature allows us to focus on the coordination problem between consumers who make a

purchase at different times, as in the dynamic debt-runs model of He and Xiong (2012).

With the assumptions made above, a mass α
(∫

i∈[0,1]Ai(t)di
)
dt of consumers locates the

store within each time interval [t, t + dt]. In what follows, we refer to the consumers who

arrived at the store as buyers. Upon reaching the store, they are served according to the

9Recent evidence suggests that the price dynamics of consumer products during emergency situations
differs from those in normal times, partly due to fairness considerations that result in an increased reluctance
to raise prices in emergency situations (Cavallo, Cavallo, and Rigobon, 2014; Gagnon and López-Salido, 2019;
Hansman et al., 2020; Cabral and Xu, 2021). See Rotemberg (2005) for a model of price adjustment that
incorporates customers’ reactions based on fairness considerations.

10In their empirical analysis, Hansman et al. (2020) find that hoarding during the 2008 Global Rice Crisis
was mostly for the consumer’s own use. They argue that this seemed to be the case for hoarding during the
COVID-19 pandemic as well, referring to media reports at the time.

11Total spending on the product is assumed to be relatively small compared to total expenditures.
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sequential service rule—the buyers are randomly sorted into a queue for purchasing and

are allowed to purchase the desired quantity qi(t) ≥ 0 in order of the queue as long as the

store’s supply lasts. We emphasize that even if locating a store, she is not necessarily able to

make a purchase there, as the store may have depleted its stock before her turn arrives. Let

R(t) ∈ (0, 1] be the fraction of the buyers at time t who are actually able to make a purchase.

That is, the individual buyer faces an idiosyncratic event zi(t) that determines whether the

store has supplies or not. Here, zi(t) is an independent Bernoulli random variable with

success probability R(t), i.e., zi(t) ∼ Ber(R(t)).

Taken together, a searching consumer faces two types of idiosyncratic risk: (i) whether

she can locate a store and (ii) whether, after locating a store, she can make a purchase there.

Accordingly, the time-evolution equation of the consumer’s inventory is given by

dki(t) = −xi(t)dt+ Ai(t) · [dNi(t) · zi(t)] · qi(t), (1)

where Ni(t) represents the process of the independent Poisson shock of locating a store,

i.e., Prob(dNi(t) = 1) = 1 − e−α·dt. In the right-hand side of (1), the first term represents

consumption, while the second term represents the purchase of the product. Note that ki(t)

is a càdlàg process (right continuous with left limit). When the consumer makes a purchase,

the amount of her private stock jumps to k̄i(t) = ki(t
−) + qi(t), where ki(t

−) := lims↑t ki(s)

is the amount of the product she held in her inventory just before making a purchase.

We turn to the decision making faced by the consumers. Each consumer discounts the

future at a rate of ρ > 0 and seeks to maximize the expected present value of her total payoff

E
[∫∞

0
e−rsdπi(s)

]
, with r = ρ+ θ being the effective time-discount rate.12

The instantaneous payoff is given by

dπi(t) = [u(xi(t))− bi(t)− Ai(t) · c(t)] · dt− (Ai(t) · dNi(t) · zi(t)) · p(t) · qi(t),
12Recall that θ is the exogenous exit rate. Here, we assume that the payoff after exiting is zero.
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where u(xi(t)) is the flow utility from consumption and bi(t) is the flow cost of storing the

product in the private inventory. We posit bi(t) = b̄ · ki(t) with b̄ > 0 being the storage cost

per unit of the product, the size of which would depend on the cost of storage space, the

degree of shrinkage, the foregone interest income, and so on. We use the flow utility function

that takes the following form:

u(xi(t)) =


0, xi(t) ≥ 1;

−a < 0, xi(t) < 1.

(2)

Considering that the product is a daily necessity and not substitutable, the “need” is highly

inelastic: a consumer only needs a unit of the product for a unit of time, but she receives a

large disutility a ≫ 0 if she fails to consume it. We assume that a is sufficiently large, ensuring

consumers initiate shopping searches at least when they are out of stock (see Assumption 2

presented in Section 3 for the formal condition).

Given this flow utility function (2), it is clearly optimal to choose the flow consumption

xi(t) = 1 whenever the consumer has some stock of the product.13 Thus,

xi(t) = x(ki(t)) =


1, ki(t) > 0;

0, ki(t) = 0,

and the net flow gain from holding stock k, defined as h(k) := u(x(k))− b̄ ·k, is concave in k.

Accordingly, each consumer uses ki(t) as an idiosyncratic state variable to decide whether

to search and how much to purchase.

13This constant-consumption-rate policy has been widely employed in the literature of dynamic inventory
models (e.g., Neslin et al., 1985; Hendel and Nevo, 2006a).
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2.2 Aggregate Dynamics of Store Stock

We turn to the aggregate dynamics (see Online Appendix D for a detailed description of a

large-market limit of a finite economy in the continuous-time limit). Let dD(t) =
∫
i∈[0,1]Ai(t)·

dNi(t) · qi(t)di represent the total amount of the products demanded by the consumers who

arrived at the store over the infinitesimal time interval [t, t + dt]. Hence, the flow rate of

demand at time t, d(t) := dD(t)/dt is explicitly given by

d(t) = α

(∫
i∈[0,1]

Ai(t) · qi(t)di
)
.

Recall that only the fraction R(t) of such consumers are able to make a purchase. We refer

to R(t) as the availability (of the product in the market) at time t. Hence, the total amount

of the product actually purchased over [t, t+ dt] is R(t)dD(t) = R(t)d(t)dt. In this respect,

we refer to d(t) as the potential demand flow, as distinguished from the amount purchased.

According to the store’s selling rules described above, the availability R(t) is determined

by the following rationing rule:

R(t) =


1, S(t) > 0;

min

{
s

d(t)
, 1

}
, S(t) = 0.

(3)

This rule shows that rationing (i.e., R(t) < 1) occurs if and only if the store is out of

stock (S(t) = 0) and the potential demand flow exceeds the flow of the store’s supply

(d(t) > s). When rationing occurs, the total amount purchased is limited by the store’s

supply: R(t)d(t) = s. Otherwise, the “flow supply” (which is infinity if the store is in stock,

S(t) > 0) is larger than the flow demand, and therefore, all consumers arriving at that

moment confront plenty of stock.
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Finally, the time-evolution equation of the store’s stock is given as follows:

dS(t)

dt
= s−R(t)d(t), (4)

with an initial condition S(0) = So > 0. That is, the store’s stock at time t is the amount of

products left unsold by time t. Note that S(t) ≥ 0 for all t ≥ 0 since dS(t) ≥ 0 if S(t) = 0.

3 Rational-Expectations Equilibrium

In this section, we formulate the consumer’s optimization problem and the equilibrium dy-

namics with rational expectations.

3.1 Consumers’ Optimization

Let Y (t) = (S(t), G(t, k))′ be the set of endogenous aggregate state variables.14 Given Y (t),

consumers form a belief about the future path of product availability {R(τ)}τ≥t using the

belief functions ΓY and ΓR: Ẏ (t) = ΓY (Y (t)) and R(t) = ΓR(Y (t)). Let V (Y (t), ki(t)) be

the value function for a consumer who has stock ki(t) at time t. The consumer’s problem

can be formulated as the following optimal stopping-time problem:

V (Y (t), ki(t)) = sup
T≥0

E
[∫ t+T

t

e−r(s−t)h(ki(s))ds+ e−rTV ∗(Y (t+ T ), ki(t+ T ))

]
, (5)

where ki(τ) = ki(t)−
∫ τ

t
x(ki(s))ds for τ ∈ [t, t+T ) and V ∗(Y (τ), ki(τ)) is the expected value

of conducting a shopping search at time τ ≥ t.15 V ∗ satisfies the Hamilton-Jacobi-Bellman

14Throughout this paper, we do not consider aggregate uncertainty. Thus, take Y (t) to be the deterministic
path for a set of endogenous aggregate state variables.

15See, for example, Stokey (2009) for the formulation of the Bellman equation for optimal stopping-time
problems.
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Figure 1: The dynamics of a consumer’s stock k, which is characterized by the go-shopping
threshold k∗ and the target stock k̄. For every k > 0, the rate of consumption is 1.

(HJB) equation:

rV ∗(Y (τ), ki(τ)) =h(ki(τ))− c(τ) + αR(τ)
[
V A(Y (τ), ki(τ))− V ∗(Y (τ), ki(τ))

]
+

∂V ∗(Y (τ), ki(τ))

∂Y
Ẏ (τ)− ∂V ∗(Y (τ), ki(τ))

∂k
x(ki(τ)),

where R(τ) is given by the belief functions ΓY and ΓR, and V A(Y (τ), k) is the value right

after purchasing at time τ :

V A(Y (τ), k) = max
k̄≥k

V (Y (τ), k̄)− p(τ) · (k̄ − k). (6)

The optimal stopping-time problem (5) induces the optimal stopping-time policy T (Y (t), k).

We define the action region as the set of the stock levels at which the consumer engages in

a shopping search: A(Y (t)) = {k ∈ R+ | T (Y (t), k) = 0}. Since she has a stronger incen-

tive to go shopping as the stock in her inventory gets smaller, the optimal policy exhibits a

threshold behavior: A(Y (t)) = [0, k∗(Y (t))]. We refer to k∗ as the go-shopping threshold.

The maximization problem (6) derives the decision rule on the purchase quantity. Let

k̄(Y (t), k) be the solution of (6). It is clear that, if k̄(Y (t), k) ≥ k, all searching consumers

desire to increase their stock to the same level k̄(Y (t)) regardless of the current stock ki(t).
16

In what follows, we refer to k̄(Y (t)) as the target stock.

16The consumers who choose k̄(Y (t), k) = k clearly do not search since there is no gain from searching.
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In the end, the consumers’ decision rule can be characterized by two variables: the go-

shopping threshold k∗(Y (t)) and the target stock k̄(Y (t)). As illustrated in Figure 1, they

engage in a shopping search if and only if their inventory stock is smaller than k∗(Y (t)):

once they find an open store, they stock up to k̄(Y (t)).

3.2 Law of Motion for the Aggregate State

Given the consumers’ decision, we derive the (actual) law of motion for the aggregate vari-

ables. First, the consumers’ optimal strategy induces a mapping Ψd from the aggregate state

Y (t) to the potential demand d(t) as d(t) = Ψd(Y (t)) := α
(∫

k∈[0,k∗(Y (t))]
q(Y (t), k)g(t, k)dk

)
,

where q(Y (t), k) := max{k̄(Y (t))−k, 0} represents the optimal purchase quantity and g(t, ·)

is a generalized probability density function of the distribution function G(t, ·).17 Recall that

the availability R(t) is determined by d(t) and S(t) according to (3). Therefore, R(t) can

also be written with a mapping ΨR as R(t) = ΨR(Y (t)).

Then, given the consumer’s decisions, the Kolmogorov forward (KF) equation for the

measure of consumers g can be written as

∂g(t, k)

∂t
=



∂g(t, k)

∂k
x(k) + θ [gnew(k)− g(t, k)]− αΨR(Y (t))g(t, k) for k ∈ A(Y (t)),

∂g(t, k)

∂k
x(k) + θ [gnew(k)− g(t, k)]

+ αΨR(Y (t))G(t, k∗(Y (t)))δ(k − k̄(Y (t)))
for k /∈ A(Y (t)).

From (4), the law of motion for S(t) can be written as: Ṡ(t) = (s − Ψd(Y (t))ΨR(Y (t))).

Therefore, the law of motion for Y (t) can be written as: Ẏ (t) = ΨY (Y (t)). Accordingly, the

consumer’s decision rules and the aggregation formulas induce a mapping from the perceived

law of motion for the aggregate state variables to an actual law of motion for them.

17Note that G may have mass points at the boundary (k = 0) or in the interior. Thus, we define a
generalized probability density function g that satisfies (i)

∫
k′∈R+

g(t, k′)dk′ = G(t, k) and (ii) g(t, k) =

ĝ(t, k) +
∑

i=1,...,I m(t, κi)δ(k − κi), where ĝ(t, ·) is a probability density function (a Lebesgue-integrable
real-valued function), m(t, κi) is the probability mass at κi ∈ R+, and δ(·) is the Dirac delta function.
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3.3 Equilibrium Definition

Definition 1 (Rational-Expectations Equilibrium). A rational-expectations equilibrium (REE)

is defined by a path of the aggregate state variables Y = (S,G), a perceived law of motion

ΓY , ΓR, and the consumer’s decision rules {k∗, k̄} with associated value functions {V, V ∗}

such that the following conditions hold:

(i) Consumer’s optimization: given the consumer’s beliefs ΓR and ΓY , the decision rules

{k∗, k̄} and the value functions {V, V ∗} solve the consumer’s optimization problem.

(ii) Aggregates are determined by individual actions and the aggregate state variables:

d(t) = Ψd(Y (t)), R(t) = ΨR(Y (t)), and Ẏ (t) = ΨY (Y (t)), for all Y (t).

(iii) Consumers’ beliefs are rational expectations: ΓY = ΨY and ΓR = ΨR.

In an REE, given the path of exogenous variables {c(t), p(t)}t≥0, consumers make optimal

decisions based on the perceived law of motion, and the perceived law of motion is consistent

with the actual one.

3.4 Stationary Equilibrium

As a benchmark of “normal times,” we first look at the situation where all exogenous

variables—the flow shopping costs and the price—are constant permanently, i.e., c(t) = c > 0

and p(t) = p for all t. We say that an REE is stationary if the endogenous variables are also

constant. The formal definition is as follows:

Definition 2 (Stationary Equilibrium). For c(t) = c, p(t) = p for all t, an REE is stationary

if the consumers’ policies and the distribution of consumers’ stock are time invariant, i.e.,

k∗(t) = k∗
o , k̄(t) = k̄o, G(t, k) = Go(k) for all t and k.

We consider a situation where consumers can easily purchase the product during normal

times, as the flow supply s is sufficiently large to meet the flow demand (we will specify the
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exact value of s later). Given the flow supply is abundant, consumers rationally expect that

the product is fully available all the time, i.e., R(t) = 1 for all t.

Given the belief of R = 1, each consumer follows a time-invariant policy with k∗
o and k̄o

that solve the Hamilton-Jacobi-Bellman variational inequality (HJBVI, henceforth):

rVo(k) = max
{
h(k)− V

′

o (k)x(k), rV
∗
o (k)

}
, (7)

where V ∗ satisfies: rV ∗
o (k) = h(k) − c − V ∗′

o (k)x(k) + α

[
max
q>0

(Vo(k + q)− pq)− V ∗
o (k)

]
.18

Furthermore, the following lemma ensures that, when the consumers’ policies are time-

invariant, the distribution of consumers’ stock G(t, k) converges to a unique time-invariant

distribution Go(k), i.e., G(t, k) → Go(k) as t → ∞:

Lemma 1. For any k̄ and k∗ such that k̄ ≥ k∗ ≥ 0, with the exogenous exit θ > 0 and

Gnew = Go, the distribution of consumers’ stock in the stationary equilibrium converges to a

unique time-invariant distribution Go that satisfies the ordinary differential equations:

0 =


g′o(k)x(k)− αgo(k) for k ∈ [0, k∗],

g′o(k)x(k) + αGo(k
∗)δ(k − k̄) for k ∈ [k∗, k̄],

(8)

where go is the generalized probability density function for consumers’ stock.

The proof of Lemma 1 is in Online Appendix F.

Given consumers’ policy, k∗
o and k̄o, and the distribution Go, the flow demand rate is also

time invariant: d(t) = do. If s ≥ do, then the flow supply is always larger than the flow

demand, and therefore, R = 1 is actually the case.

Below, we show that there exists a unique stationary equilibrium satisfying R = 1 under

some reasonable parametric assumptions. The first specifies the flow supply rate s:

18Here, we restrict our attention to the case where V is continuous, and V ∗ is continuous and differentiable.
HJBVI (7) derives the action region Ao = [0, k∗o ], where h(k)− V

′

o (k)x(k) ≤ rV ∗
o (k) for k ∈ Ao. The target

stock k̄o is given by k̄o = argmax
q′>0

Vo(q
′)− pq′.
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Assumption 1 (Sufficient Supply). The flow supply rate coincides with the flow demand

rate given R = 1, i.e., s = do.

As mentioned earlier, we assume that s ≥ do to ensure that shopping during normal

times is convenient. If s > do, the store’s inventory will increase over time without bound.

Although our model does not directly consider the producer’s profit-maximization problem,

real-world firms aim to avoid overstocking and balance flow supply with demand in the long

run. To simplify our analysis, we assume that flow demand and supply are equal during

normal times (i.e., in the stationary equilibrium) instead of modeling the producer’s long-

run adjustment explicitly. Assuming Assumption 1 holds and a stationary equilibrium is

reached, the store’s stock will be time-invariant, that is, S(t) = So for all t, where So ≥ 0.

The second assumption ensures k∗
o > 0, meaning that the consumers are willing to conduct

shopping searches when their stock is small:

Assumption 2 (Large Out-of-Stock Disutility). Let V N be the value function for the con-

sumers that would be achieved if no control is exercised: V N(k) :=
∫∞
0

e−rsh (max{k − s, 0}) ds.

The flow disutility from running out of stock, a, is sufficiently large to satisfy

max
q≥0

V N(q)− pq +
a

r
>

c

α
.

Assumption 2 requires that consumers absolutely desire to avoid stockout (k = 0). If

the disutility is small (for example, because the product is substitutable), then consumers

may optimally choose not to consume it. Such a situation is excluded since we focus on the

market of an unsubstitutable necessity product.

The third assumption is that the market is not too frictional:

Assumption 3 (Small Search Friction). The matching rate α is sufficiently large such that

αp > b̄.

Recalling that the matching rate α captures the easiness of shopping during normal times,

Assumption 3 implies that shopping is an easy task during normal times.
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The following proposition states the characteristics of the stationary equilibrium:

Proposition 1. Suppose Assumptions 1, 2 and 3 hold. Then, there exists a unique stationary

REE that satisfies the following properties:

(i) Consumers engage in shopping periodically; i.e., 0 < k∗
o < k̄o < +∞ is satisfied.

(ii) The consumer’s go-shopping threshold k∗
o satisfies α

[
V A
o (k∗

o)− V ∗
o (k

∗
o)
]
= c.19

(iii) The consumer’s target stock k̄o satisfies

k̄o = k∗
o+

1

r
log

1 +
Ao

(
1− e−(α+r)k∗o

)
+ e−(α+r)k∗oa− p

b̄

r
+ p

 , with Ao =
αp− b̄

α + r
> 0.

(iv) The long-run stationary distribution for the consumer’s stock follows20

go(k) =


α

1+α(k̄o−k∗o)
e−α(k∗o−k), k ∈ (0, k∗

o ],

α
1+α(k̄o−k∗o)

, k ∈ [k∗
o , k̄o],

and has a mass point at k = 0 with Go(0) =
e−αk∗o

1+α(k̄o−k∗o)
.

(v) Shopping searches take 1/α on average.

The proof of Proposition 1 and the expressions for the value functions are provided in Online

Appendix F.

4 Calibration

The calibration of the model aims to ensure that the household inventory behavior in the

stationary equilibrium matches empirical evidence. Table 1 presents the chosen parameter

19This corresponds to the value matching condition: Vo(k
∗
o) = V ∗

o (k
∗
o). HJBVI (7) implies the smooth

pasting condition, or the high contact principle V ′
o(k

∗
o) = V ∗′

o (k∗o) (see Øksendal, 2003, Chapter 10).
20It is assumed that the distribution for the new entrant’s stock Gnew equals Go. In Online Appendix F ,

we generalize the specification of Gnew.

18



Table 1: Parameter Values

Parameters Value Reference/Target statistics

Parameters calibrated from external sources
ρ Weekly discount rate 0.01/52 Annual discount rate of 1%
θ Weekly exit rate 0.04/52 Annual replacement rate of 4%
p Market price of the product 10.0 Normalization
b̄ Storage cost per unit of the product 1.0 Hendel and Nevo’s (2006a) estimate
So Average store’s inventory stock 2.5 60% sales increase in March 2020 (Buchholz, 2020)

Parameters calibrated jointly
a Flow disutility from stockout 1069.23 (i) 2 weeks’ stock left at timing of purchase
α Shopping search intensity 2.29 (ii) Purchase interval of 4 weeks
c Flow shopping-search cost 14.63 (iii) 1% households have less than 3 days’ stock at the time of purchase

Note: The values of a, α, and c are collectively determined to fulfill the three conditions denoted as (i), (ii),
and (iii). These calibration criteria, (i), (ii), and (iii), are grounded in survey data presented by Kano
(2018).

values for the benchmark calibration, where a week is considered as one unit of time. The

weekly time-discount rate ρ is set to 0.01/52, implying an annual discount rate of 1 percent,

and the weekly exit rate θ is set to 0.04/52.21 To normalize the market price of the product,

we set p = 10, implying that the cost of a week’s worth of toilet paper is 10.22 We set the

per unit storage cost b̄ to 1, implying that the marginal cost of storing a unit of toilet paper

is 10 percent of its purchase price, which falls within the range of the estimate of laundry

detergent storage cost by Hendel and Nevo (2006a).23

We calibrate the three parameters, a, α, and c, aligning the household inventory behavior

with micro-survey evidence on consumer behavior. The parameter a represents the cost

associated with not having toilet paper for a week, while α and c govern the degree of

search frictions. Although data on household inventory is generally limited, the study by

Kano (2018) in Japan offers extensive evidence on the inventory holdings of consumers.24 We

utilize three pieces of evidence from the survey. First, the average inventory of toilet paper at

21We assume θ > 0 for technical reasons as described in Lemma 1. In Section 7, we demonstrate that the
model dynamics in the short run are not sensitive to the choice of θ value.

22Setting p = 10 is solely for normalization purposes. Consequently, scaling down the values of a, c, and
b̄ by a factor of p produces equivalent results.

23Hendel and Nevo (2006a) show that the median purchase price of a 64 oz. bottle of laundry detergent,
which is equivalent to about one month’s worth of use, is $3.89, whereas if a 128 oz. bottle is purchased
instead of a 64 oz. bottle, additional storage costs of approximately $0.20–0.75 are incurred.

24The survey was conducted from September to December 2015 on a large-scale consumer database op-
erated by INTAGE, a marketing company in Japan. Notably, this survey included questions about (i) the
timing of toilet paper purchases, (ii) the inventory level at the time of purchase, and (iii) daily consumption
of toilet paper, making it unique among household surveys.
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the time of purchase is 9.76 rolls (606.5 m). Considering that the average daily consumption

of each household is 0.72 rolls (43.9 m), this implies that households tend to repurchase when

they have 13.5 days’ worth of stock remaining. Second, the majority of households purchase

toilet paper every 3-4 weeks, and the days between purchases often fall in multiples of 7.25

Third, most households purchase additional toilet paper before exhausting their household

inventory.26 Based on this evidence, we target (i) households replenish when they have an

average of 2 weeks’ worth of stock remaining, (ii) the average purchasing cycle spans 4 weeks,

and (iii) the probability that households have less than 3 days’ stock at the time of purchase

is 1 percent. This induces (a, α, c) = (1069.23, 2.29, 14.63), implying that the stockout cost

is substantially large and shopping searches are fairly time-consuming and costly.27

Our definition of the stationary equilibrium does not determine the level of the store’s

inventory stock So. Thus, we externally set So = 2.5 to indicate that, during normal times,

the store holds inventory stock covering 2.5 weeks or 0.59 months of sales. This implies that

if the store’s inventory stock is sold out within a particular month, the monthly sales increase

by 59 percent. We chose this value based on the observation that toilet paper sales in the

United States in March 2020 increased by about 60 percent compared to the same month in

the previous year (Buchholz, 2020).28

25Such purchasing behaviors have also been observed in US household data. For instance, Hendel and
Nevo (2006a) find that the median interval between purchases of laundry detergents is four weeks. We also
note that, in the survey in Kano (2018), about 5-10 percent of respondents indicated that their purchase
interval was less than one week, suggesting that such households are in the habit of purchasing small rolls of
toilet paper at high frequency, without having a large household inventory. In Online Appendix E.3.3, we
provide a model extension that accounts for such household heterogeneity.

26Kano (2018) reports that about 93 percent of survey respondents purchase additional toilet paper even
when they have household stocks beyond the rolls currently in use. This suggests that the average household
is at very low risk of stockout, except for the 5-10 percent of respondents who reported purchasing toilet
paper at intervals of less than a week, maintaining only a small household inventory, and frequently buying
small rolls (see footnote 25).

27Taken literally, this means spending three days per shopping trip, which might sound too frictional (e.g.,
Petrosky-Nadeau, Wasmer, and Zeng, 2016, who report that the average total shopping time is 40-50 minutes
per day in the American Time Use Survey). Our calibration is reasonable, though, if we interpret the search
friction in our model to include the mismatch between retail stores’ hours of operation and leisure time.
According to the aforementioned household survey, many households make purchases on a particular day of
the week, which suggests that many households are in the habit of going shopping on their days off. Thus,
we interpret that the Poisson arrival rate α also captures variations in shopping cost due to idiosyncratic
shocks, which are abstracted for computational reasons.

28This choice is roughly consistent with the evidence that the average annual inventory turnover rate of
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(b) Consumers’ distribution: go(k)

Note: The horizontal axis represents the amount of the existing consumer’s stock. In Figure 2b, the
generalized density function go has a mass point at k = 0 (Go(0) = Go(k

∗
o)e

−αk∗
o ).

Figure 2: An Illustration of the Stationary Equilibrium

In Figure 2, we illustrate the consumer’s policy (Figure 2a) and the distribution of the

consumer’s stock (Figure 2b) in the stationary equilibrium under the parameter values given

in Table 1. In the stationary equilibrium, as in our daily life, consumers consume the product

in their private inventory at a constant rate (normalized to 1) and start a shopping search

when the stock goes down to k∗
o ≈ 2.4 (weeks). The searching consumer, upon finding a

store, purchases the product to stock up to the target stock, k̄o ≈ 6. That is, the amount

purchased is qo(k) = k̄o − k ≈ 6 − k. Therefore, no consumer has more than k̄o in stock,

and the fraction Go(k
∗
o) of consumers engage in shopping searches every time. The density

is flat for the inaction region k ∈ [k∗
o , k̄o], while it exponentially increases as k increases

for k ∈ (0, k∗
o ] as a result of the Poisson arrival process. Although extremely rare, some

consumers unluckily fail to shop and exhaust the stock held at home. With our parameter

choice, the share of such stockless consumers (Go(k
∗
o)e

−αk∗o) is around 0.05 percent. As such,

the risk of stockout is very low in the stationary equilibrium.

16.83 for US grocery stores, implying an average inventory period of 21.69 days (365/16.83) (Boigues, 2016,
Table 3.2).
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5 Dynamic Responses to a Shopping-Cost Shock

In this section, we explore the impact of a shock that temporarily increases the flow shopping

costs c(t). We assume that, until t = 0, the economy is on the stationary equilibrium where

all the model agents believe that c(t) = c forever, but they are informed of a one-time and

deterministic change in c(t) at time t = 0, as detailed in Section 5.1. In what follows, X(t)

denotes the value of a variable X after t time (weeks) after the awareness of the shock, and

G(t, k) denotes the distribution for the consumer’s stock at time t with G(0, k) = Go(k).
29

5.1 The Fundamental Shock and the Phases of the Emergency

The path of c(t) is specified by the four parameters (c̄, T S
c , T

L
c , T

E
c ) with c̄ > c and 0 ≤ T S

c <

TL
c < TE

c < ∞. As illustrated in Figure 3, we consider the following phases.

Pre-Disaster Phase (t < 0) Consumers, believing that all the exogenous parameters are

stationary, i.e., c(t) = c and p(t) = p forever, follow the stationary-equilibrium strategy.

Announcement (t = 0) At time 0, an event that (will) increase flow shopping costs c(t)

is recognized. Consumers immediately change their beliefs about the path of the exoge-

nous variables and the endogenous state variables. In response, they change their shopping

behavior at t = 0.

Preparation Phase (0 ≤ t < T S
c ) Although consumers know that the flow shopping costs

c(t) will increase later, c(t) has not yet increased, i.e., c(t) = c. Note that, when T S
c = 0,

there is no preparation phase, and the restricted-movement phase starts upon announcement.

Restricted-Movement Phase (T S
c ≤ t < TL

c ) Movements are restricted. The flow

shopping costs c(t) jumps up to c̄ at time T S
c , and it stays at that level until time TL

c .

29As illustrated in Online Appendix E.1.2, there would be no self-fulfilling panic in our model. Thus, in
the absence of any shifts in the model parameters, only R(t) = 1 for all t would be rationalized.
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Figure 3: An Illustration of the Phases of the Emergency

Restriction-Lifting Phase (TL
c ≤ t < TE

c ) The restrictions are gradually relaxed. The

flow shopping cost c(t) linearly decreases from the maximum level c̄ to the normal level c.

Post-Disaster Phase (TE
c ≤ t) The “lifting” is completed at time t = TE

c , and then the

flow shopping costs c(t) is returned to the normal level c permanently.

To summarize, the dynamics of the flow shopping costs c(t) is given by30

c(t) =



c, t ≤ T S
c ,

c̄, T S
c ≤ t ≤ TL

c ,

c̄

(
t− TL

c

TE
c − TL

c

)
+ c

(
1− t− TL

c

TE
c − TL

c

)
, TL

c ≤ t ≤ TE
c ,

c, TE
c ≤ t.

Note that shopping-cost shocks have no impact on the consumption and supply of the prod-

30In some simulation scenarios, we also analyze the exogenous shift in sales price p(t).
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uct in aggregate, and thus, full availability is surely maintained if all consumers keep the

stationary equilibrium shopping strategy.

5.2 Welfare Evaluation

We measure the welfare cost of panic buying by quantifying the degree to which consumers’

welfare is decreased due to the disruption of the purchase cycle. To this end, we first define

the average loss in consumer (annuitized) value from the risk that can be attributed to

stochastic shopping searches as follows:

ω(V (t, k), G(t, k); V̂o(k), Ĝo(k)) = −
(∫

k

rV (t, k)dkG(t, k)−
∫
k

rV̂o(k)dĜo(k)

)
,

where V̂o(k) and Ĝo(k) represent the consumer’s value function and the distribution of the

consumer’s stock, respectively, in the hypothetical economy where the shopping search pro-

cess is deterministic. In this economy, consumers can purchase the product with certainty

after 1/α weeks of costly shopping searches. Thus, each consumer has a constant purchase

cycle where they start searching for new stock when 1/α weeks of inventory is left, obtain

new stock exactly when they run out of the existing stock, and never become stockless.31

We define the gross welfare cost, denoted by Ω, as the percentage increase in ω relative

to the stationary equilibrium. Formally, we can express it as follows:

Ω =
ω(V (0, k), G(0, k); V̂o(k), Ĝo(k))− ω(Vo(k), G(0, k); V̂o(k), Ĝo(k))

ω(Vo(k), G(0, k); V̂o(k), Ĝo(k))
. (9)

In equation (9), the denominator represents the extent of idiosyncratic risk that consumers

face in the stationary equilibrium. On the other hand, the numerator indicates the extent

to which consumers suffer from increased shopping costs, which is measured by the average

change in their values at time 0.

In our welfare analysis, we disentangle the welfare cost attributable to congestion exter-

31See Appendix A for the expression of V̂o(k) and the associated policy functions.
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nality by splitting the gross welfare cost Ω into the direct and indirect effects. The direct

effect refers to the welfare cost that consumers would suffer from the shock if the full avail-

ability (R(t) = 1) were achieved for all t ≥ 0. It corresponds to the average change in

consumers’ value in the counterfactual ignoring the supply constraint on the product. We

label it ΩR=1, which measures the welfare cost directly suffered by consumers from the shock.

The gross welfare cost Ω takes into account the endogenous feedback effect of the market

condition, i.e., the change in product availability R(t). We can calculate the indirect welfare

cost suffered from the shock through the endogenous market behavior as ΩR<1 = Ω −

ΩR=1. Note that the equilibrium with R(t) < 1 arises from the consumer’s selfish purchasing

behavior, and ΩR<1 captures the welfare cost attributable to congestion externality.

5.3 Numerical Methods for Simulation Analysis

While the stationary equilibrium of the model is obtained in a closed form, we numeri-

cally compute the equilibrium transitional dynamics against fundamental shocks. We briefly

describe the scheme, with detailed procedures provided in Online Appendix G.

Our numerical method customizes the algorithms developed by Achdou et al. (2022) for

solving MFGs efficiently. It consists of two steps. In the first step, we apply the finite

difference method to solve the HJBVI equation in (7) and the KF equation in (8), which

allows us to obtain the stationary equilibrium in a discretized space.32 In the second step, we

compute the equilibrium transitional dynamics by extending the above algorithm to allow

for time-varying aggregate variables. Specifically, we find an REE path of R(t) using an

iterative scheme with an initial guess R(t) = 1 for all t ≥ 0. In Online Appendix E.1.1,

we present a detailed description of the procedure and illustrate how consumers form their

rational beliefs regarding R(t).33

32The advantage of this algorithm lies in its simultaneous solution of the HJBVI and KF equations,
leveraging the adjoint relationship between the HJB and KF operators. In this environment, the partial
differential equation (7) is reduced to a linear complementarity problem, which we solve using the routines
provided on Benjamin Moll’s personal website (https://benjaminmoll.com/codes/).

33The iterative process begins with the most optimistic guess about the availability, and thus, the equilib-
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5.4 Simulation Results: Benchmark

In this paper, we refer to the following scenario as the benchmark case.

Benchmark Simulation At time t = 0, there is an announcement that movement re-

striction will be implemented in one week (i.e., T s
c = 1). During the restricted-movement

phase, shopping costs increase by (c̄ − c)/c = 500 percent. The restricted-movement phase

will continue for six weeks (TL
c − T S

c = 6) and then will be lifted in phases over three weeks

(TE
c − TL

c = 3). The market price is fixed at p.34

Figure 4 displays the paths of selected variables in the equilibrium dynamics for bench-

mark simulation: the evolution of the search cost c(t) in the top-left chart (“Shock Process”);

the path of the availability R(t) in the top-middle chart (“R(t): Availability”); the paths of

the target stock k̄(t) and the go-shopping threshold k∗(t)—the key variables that character-

ize the consumers’ optimal strategy—in the top-right chart (“Consumer’s Policy”); the path

of the fraction of consumers engaging in a shopping search, 100 ·G(t, k∗(t)), in the lower-left

chart (“Searching Consumers (%)”); the paths of the fraction of hoarders who have a larger

stock than the maximum level held in the stationary equilibrium, 100 · (1−G(t, k̄o)), and the

fraction of stockless consumers who run out of stock, 100 ·G(t, 0) in the lower-middle chart

(“Misallocation (%)”);35 the path of the quantity of in-store stock S(t) in the lower-right

rium dynamics shown as a simulation result is unique and stable given the cognitive hierarchy starting from
R(t) = 1 for all t ≥ 0.

34One reason for considering the fixed price here is that price controls have been widely used in emergency
situations. The first state law prohibiting price gouging in the United States was enacted in New York in 1979
in response to rising winter heating oil prices in 1978-1979; these measures were subsequently adopted by
other states (Bae, 2009; Giberson, 2011). During the COVID-19 pandemic, 42 US states activated some form
of price-gouging regulations that restricted retailers from charging exorbitant prices on consumer products.
Among the 42 states, eight states (Alaska, Delaware, Maryland, Minnesota, Montana, New Mexico, Ohio,
and Washington) did not have price-gouging regulations before the pandemic but newly introduced the
regulations under their COVID-19 emergency declarations (Chakraborti and Roberts, 2023). In addition,
some recent empirical studies have shown that fairness considerations lead to a reluctance to raise prices in
times of emergency (e.g., Cavallo et al., 2014; Gagnon and López-Salido, 2019; Hansman et al., 2020; Cabral
and Xu, 2021), in line with Akerlof’s (1980) theory of social norms and the suggestions from Kahneman,
Knetsch, and Thaler’s (1986) questionnaire study.

35We select the two variables because they are the moments relevant for the efficiency of the allocation. The
welfare loss becomes larger as hoarders and stockless consumers increase because hoarders bear unusually
high storage costs and stockless consumers suffer large disutility from stock-out (a = 1, 069.23). Stockless
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Note: In all charts, the horizontal axis (t) represents the number of weeks after the announcement (t = 0).
The background color of the graph area illustrates the phase of the emergency: the pre-disaster phase
(white), the preparation phase (light gray), the restricted-movement phase (dark gray), the
restriction-lifting phase (medium gray), and the post-disaster phase (white).

Figure 4: Benchmark: S0 = 2.5, (c̄− c)/c = 5, T S
c = 1, TL

c − T S
c = 6, and TE

c − TL
c = 3.

chart (“S(t): Store’s Stock”).

Figure 4 clearly shows that panic buying begins when the announcement is made at t = 0:

the target stock k̄(t) jumps from 6.0 to 11.5 for avoiding shopping during the restricted-

movement phase, and the go-shopping threshold k∗(t) jumps from 2.4 to 5.5 for reducing the

risk of running out of stock. This sharply increases the fraction of searching consumers from

the pre-disaster level of 10.9 to 88.1 percent. The increased market demand rapidly reduces

and depletes the store’s stock. As a result, the availability R(t) decreases to less than 0.15 at

its worst. This dynamic response is in line with the observation that many regions suffered

from panic buying immediately after the announcement, rather than the implementation, of

movement restrictions during the COVID-19 pandemic (Keane and Neal, 2021).36

consumers exist even in stationary equilibrium, albeit in very small numbers.
36In New York City, an epicenter of COVID-19 infections, the state’s first case was confirmed on March 1,

a state of emergency was declared on March 7, and strict movement restrictions were imposed after March
15. The toilet paper shortage already became serious during the week ending March 14 (Wallace, 2020).
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Table 2: Welfare Costs of a Shopping-Cost Shock: Benchmark

gross welfare cost direct welfare cost indirect welfare cost

Benchmark Ω = 5.05 (%) ΩR=1 = 0.85 (%) ΩR<1 = 4.20 (%)

Note: See Section 5.2 for the definitions of Ω, ΩR=1, and ΩR<1.

Worse, the low availability persists in the restricted-movement phase (e.g., R(t) < 0.33

continues for 2.1 weeks) because the initial stockpiling demand is so large that many con-

sumers who start searching during the preparation phase cannot finish their shopping by

the end of the phase. Such consumers are desperate to shop, even bearing higher shopping

costs. As a result, more and more consumers experience stock-out at home and the fraction

of stockless consumers reaches 2.8 percent, which is more than 50 times the normal level.

At the same time, those who have purchased the product overstock it against shortages,

resulting in incurring extra storage costs. In sum, the product is misallocated, with some

incurring higher storage costs and others facing increased risk of stock-out at home and

conducting shopping searches at higher costs, which causes substantial welfare costs.

As shown in Table 2, the welfare cost of the shopping-cost shock is large: Ω = 5.05%,

meaning costs (including nonpecuniary costs) associated with shopping searches, storage,

and stock-out are 5 percent higher than in normal times. We emphasize that the large share

is attributable to the endogenous market-congestion effect rather than to increased shopping

costs due to the exogenous shock: ΩR=1 = 0.85%; ΩR<1 = 4.20%. This result implies that

the market-congestion effect amplifies the disaster damage considerably.

In sum, the shopping-cost shock leads to a severe and persistent shortage, even though

the shock itself has no impact on either aggregate consumption or aggregate supply of the

product. In other words, as there are sufficient resources to meet consumption in the ag-

gregate, full availability would be maintained if all consumers behaved as in the stationary

equilibrium. Nevertheless, in the decentralized equilibrium, defensive hoarding by selfish

consumers takes the product excessively from the market.
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Figure 5: Welfare Cost of a Shopping-Cost Shock

5.5 Timing of Awareness: Anticipated Versus Unanticipated Shock

In this section, we examine how the length of the preparation phase T S
c influences the sever-

ity of the panic. In practice, the length depends on the forecastability of the emergency.

For example, the landfall of a major hurricane can be forecast in advance, while earth-

quakes, massive blackouts, and terrorist attacks are virtually unpredictable. Furthermore,

when government policies cause a shopping-cost shock, the length varies depending on the

announcement’s timing. For example, at the onset of the global spread of COVID-19, many

governments placed movement restrictions on their residents after announcing their imple-

mentation in advance. Thus, in the context of the 2020 toilet paper shortage, the simulations

below examine the roles played by the timing of awareness of a future shopping-costs increase

to shortages.

29



Shopping Cost

0 2 4 6 8 10

1

2

3

4

5

c(t)=c R(t): Availability

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Consumer's Policy

7k(t)

k$(t)

0 2 4 6 8 10
0

2

4

6

8

10

12

Searching Consumers (%)

0 2 4 6 8 10
0

20

40

60

80

100
Misallocation (%)

0 2 4 6 8 10
0

20

40

60

80

100

0

1.2

2.4

3.6

4.8

6.0
Hoarder (left)
Stockless (right)

S(t): Store's Stock

0 2 4 6 8 10
0

1

2

3

4

5

Figure 6: Unanticipated Shopping-Cost Increase: T S
c = 0

Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case (TS

c = 1).

Figure 5 displays how the welfare cost of a shopping-cost increase varies depending on

the timing of awareness. It clearly shows that (i) anticipated shopping-cost increases are

more likely to have a greater impact on social welfare than unanticipated increases, and (ii)

a shopping-cost increase with two week-long grace period tends to trigger the most severe

shortages.

In Figure 6, we compare the dynamic responses to a shopping-cost increase that is to-

tally unanticipated (T S
c = 0) and anticipated one week in advance (T S

c = 1). In the case

where shopping costs rise immediately, while consumers increase their target stock k̄(t) for

stockpiling, they do not increase the go-shopping threshold k∗(t) (see the top-right chart)

because shopping costs are already higher when becoming aware of the shock. Therefore, the

number of searching consumers does not increase upon announcement (see the bottom-left

chart), which leads to a slower decline in the store’s stock S(t) and a higher availability R(t)

than in the benchmark case.

This implies that the very existence of a preparation phase plays an important role in
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amplifying panic buying. The preparation phase (as in the benchmark) lures consumers to

shop before shopping costs rise, causing a concentration of demand. By contrast, if there

is no preparation phase, it is too late to rush to the market, resulting in a mild increase in

market demand.37

Figure 5 also indicates that the extended duration of the preparation phase (e.g., T S
c = 3)

mitigates the impact of the shock. In this case, unlike the benchmark case, many consumers

do not rush to the market right after hearing the news because they find that stockpiling

too far in advance would be too costly for storage. Thus, depending on the initial stock of

private inventory, consumers react differently to the news: Some purchase a lot just before

the shopping costs increase, while others shop after the shortage of the product is nearly

eliminated. In this manner, the extended grace period could mitigate the concentration of

timing of purchases, resulting in a less severe shortage.

5.6 Policy Interventions

We discuss policy options for curbing panic buying. Given that we have demonstrated that

panic buying is an upward spiral of hoarding demand, it is natural to infer that breaking the

spiral is essential to curb panic buying. We evaluate the performance of the three different

policies: quotas on purchases, short-term sales-tax change, and non-market distribution.

5.6.1 Quotas on Purchases

Limiting the quantity purchased is one of the common measures implemented in many cases

of shortages. In practice, when faced with a sudden increase in demand, grocery stores often

limit the number of items that can be purchased by each shopper. Below, assuming that

such a quota is perfectly enforceable, we evaluate the performance of the following policy:

37It is somewhat difficult to find historical evidence for instances in which panic buying did not occur.
Nevertheless, no serious panic buying was reported in London after the July 7, 2005, bombings (Burney
and Jones, 2005), or in New York City after the September 11 attacks, even though these terrorist attacks
restricted the daily lives of the residents there. Considering that the restrictions on movement due to these
disasters were totally unanticipated, the response to an unanticipated shopping-cost shock is in line with
these experiences.
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Note: The horizontal axis represents the number of weeks after the announcement. The dotted lines show
the results for the benchmark case.

Figure 7: Purchase Quota: qi(t) ≤ 4 for t ∈ [0, TL
c ] = [0, 5]

Policy Simulation (Purchase Quota). Consumers are not allowed to purchase more than

4 units, i.e., qi(t) ≤ 4, for the first five weeks t ∈ [0, 5].

Under the purchase restriction policy, consumers are allowed to purchase only up to four

units, and those who want to purchase more must start a shopping search again. Therefore, as

can be seen from Figure 7, although the measure of searching consumers increases in response

to the awareness of rising future shopping costs, they cannot stock up to the (privately)

optimal level k̄(t) in the presence of the purchase quota.38 As a result, a serious shortage is

prevented, which reduces welfare costs of the shopping-cost shock: Ω = 1.40%. Furthermore,

in Online Appendix E.1.3.3, we confirm that a quota policy makes all consumers better off

in the sense that it increases the consumer’s value at t = 0, V (0, k), for all k.

Enforcing the purchase-quota policy in practice might not be fully feasible as consumers

can potentially violate the quotas without being tracked for their purchase history. For

38Note that the purchase-quota qi(t) is binding for most of the cases because the average purchasing cycle
of 4 weeks is one of our calibration targets, and consumers want to purchase more when the shock arrives.
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instance, upon finding a product in a store, consumers can repeatedly approach the cash

register as new customers to buy an excessive amount, even if the store has set limits on the

quantity allowed to be purchased by a single consumer at a time.

5.6.2 Tax Policies

We delve into the policy interventions that can be implemented via sales taxes. It is reason-

able to anticipate that raising the sales tax rate would discourage consumers from purchasing

excessive quantities, thus preventing excessive hoarding. Nonetheless, as detailed in Online

Appendix E.1.3.1, we find that the efficacy of a sales tax hike heavily relies on the timing of

implementation. Specifically, any delay in its implementation would limit its effectiveness,

as even a few days’ delay encourages consumers to buy before the tax hike. Given the im-

practicality of an immediate tax hike at least as of this writing, we contend that a short-term

sales tax hike is not a potent strategy to mitigate panic buying.39

Instead of an immediate tax hike, we propose a future tax reduction, which may spread

out the timing of purchases by incentivizing consumers to wait until the tax rate is lowered.

Concretely, we simulate the case where the government announces at t = 0 that it will

implement a month-long sales-tax cut in three weeks as follows.

Policy Simulation (Future Sales-Tax Reduction). The government announces at t = 0

that it will reduce sales-tax rate by τ percent for four weeks in three weeks. The after-tax

price is given by40

p̂(t) =


(
1− τ

100

)
· p if t ∈ [3, 7];

p otherwise.

Let GR =
∫∞
0

e−rt [p̂(t)− p(t)]R(t)d(t)dt denote the present value of government rev-

enues, evaluated at t = 0. Taking into account the decreased government revenues due to

39The growth of e-commerce retail sales has altered consumer shopping habits and supply chain efficacy,
which could have contributed to panic buying during the COVID-19 pandemic (Nielsen Holdings PLC, 2020).
The wider adoption of e-commerce may enable flexible modifications to the sales tax rate in the future.

40In this simulation, the market price is fixed at p(t) = p for all times.
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Table 3: Future Sales-Tax Reduction

Sales-tax reduction (%) Shortages (weeks) Welfare (%)
τ R(t) < 0.5 R(t) < 0.33 R(t) < 0.15 Gross (Ωtax) Tax Revenue (GR)

Benchmark (τ = 0) 3.72 2.12 0.31 5.05 0

8.0 3.85 2.09 0.30 5.08 −1.87
12.0 3.91 2.08 0.30 5.11 −2.83
16.0 3.98 2.07 0.29 5.16 −3.83
20.0 0.0 0.0 0.0 1.13 −9.64

Note: R(t) < 0.5, R(t) < 0.33, and R(t) < 0.15 indicate the duration (weeks) for which low product
availability (less than 50 percent, 33 percent, and 15 percent respectively) persists.

the tax reduction, the overall social welfare cost of the shopping-cost shock is evaluated by

Ωtax =

[
ω(V (0, k), G(0, k); V̂o(k), Ĝo(k))− rGR

]
− ω(Vo(k), G(0, k); V̂o(k), Ĝo(k))

ω(Vo(k), G(0, k); V̂o(k), Ĝo(k))
.

Table 3 presents the relationship between the percentage of the sales-tax reduction, the

duration of shortages, and social welfare. It shows that announcing future sales-tax reduc-

tions is successful in mitigating shortages and improving social welfare, provided that the tax

reduction is substantial enough. Our calibration suggests that the government must decrease

the sales tax rate by a minimum of approximately 20 percent. Failure to do so would not

resolve shortages, and the government would only incur a loss in tax revenues, resulting in

an increase in the overall social welfare cost Ωtax.

5.6.3 Non-Market Distribution

Governmental rationing of basic necessities was implemented during the COVID-19 pandemic

in some countries.41 In Online Appendix E.1.3.2, we explore policy simulations wherein the

government purchases the product from the market at the market price and distributes it

to consumers.42 Our simulations show that the policy is effective even if the government

41In Taiwan, the government distributed face masks by allowing each resident to purchase two masks in a
week in February 2020 (see https://www.nhi.gov.tw/english/Content_List.aspx?n=022B9D97EF66C076
for the detail of the rationing system). In Japan, government-sponsored face masks were mailed to each
household in April 2020.

42We assume that the government cannot target specific consumers in urgent need. This limitation arises
due to the unavailability of information on individual consumers’ stock levels (k) or their behavior, such as
whether they are searching or not.
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cannot distribute the product to the entire population. In other words, by accommodat-

ing only a portion of the population through non-market distribution, the government can

improve the welfare of the entire population. This is because the non-market distribution dis-

courages rationed consumers from rushing to the market, mitigating the market congestion.

Consequently, all consumers, including those who were not rationed, can easily purchase

products. Additionally, we demonstrate that even with a lag between government purchase

and distribution, non-market distribution could be effective during times of disaster.43

6 Other Sources of Panic Buying

This section examines other shocks that may cause panic buying. Although we have con-

centrated on shocks that increase shopping costs as the primary cause of panic buying even

when there are no resource shortages, the rise in shopping costs is not necessarily the sole

reason for panic buying. In practice, we have also observed instances of panic buying that

were most likely caused by a lack of resources, such as the scarcity of face masks during the

initial wave of the COVID-19 outbreak.

In Online Appendix E.2, we examine the impact of consumption shocks on panic buying.

Unlike shopping-cost shocks, which increase shopping costs, a consumption shock results

from an exogenous shift in consumer preferences that leads to a temporary increase in the

instantaneous consumption rate. Our simulations show that a consumption shock can also

trigger panic buying, regardless of whether it is anticipated or not, because it creates a

shortage of resources, leading consumers to compete for scarce products. In other words,

awareness of the shock’s timing is less critical in driving panic buying in the case of con-

sumption shocks.

Likewise, our model framework can analyze panic buying driven by various shocks and

examine how the characteristics of panic buying differ depending on its sources. Although we

43Despite criticisms regarding unequal distribution and slow delivery of government-sponsored face masks
in Japan (Eguchi, Kamizawa, and Okazaki, 2020), our findings suggest that this policy may have played a
role in mitigating panic buying.
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cannot list all possible scenarios due to space limitations, policymakers can use our approach

to evaluate and prepare for the impact of a wide range of disasters.

7 Robustness

Finally, we present sensitivity analyses and extensions. In Appendix B, we explore the

robustness of our quantification, comparing simulation behavior at different parameterization

schemes. Our results, presented in Table B.1, show that the model dynamics for shopping-

cost shocks and the magnitude of the market-congestion externality’s amplification effect

remain mostly unchanged regardless of the values of θ (exit rate) and b̄ (per unit storage

cost), as long as the three parameters, a, α, and c, are calibrated to match our calibration

targets.

In Online Appendix E.3.1, we investigate how the magnitude of the shopping-cost in-

crease affects the model’s results. Our analysis reveals a nonlinear S-shaped relationship

between the size of the shopping-cost increase (c̄) and the resulting welfare cost (Ω). Specif-

ically, we observe a significant increase in welfare costs when the shopping-cost increase

surpasses a certain threshold. Our model’s insights corroborate empirical observations that

panic buying is infrequent, yet once it occurs, it quickly escalate into a critical situation.

Consequently, policymakers should consider implementing policies to prevent panic buying

in disaster situations, especially if they involve prolonged periods of restricted mobility, as

shopping costs can exceed the threshold.

In Online Appendix E.3.2, we investigate the effects of price changes in contrast to

the simulations with a fixed price. In particular, we allow the market price to increase

at a constant rate in response to an increase in demand. Our findings demonstrate that

inflation exacerbates the impact of shopping-cost shocks, as expectations of future price

rises encourage consumers to buy storable products early and stockpile even more. This is

consistent with the occurrence of inflation-driven shortages during the 2008 global rice crisis
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(Hansman et al., 2020).

In Online Appendix E.3.3, we extend our model by incorporating heterogeneity in the

degree of product market friction faced by consumers. Although we target households that,

on average, maintain two weeks’ worth of stock at the time of purchase, we acknowledge the

significant diversity in purchasing behaviors among households. Notably, Kano (2018) docu-

ments that many households make purchases with as little as a week’s inventory, suggesting

that they have the habit of buying storable and non-storable products simultaneously.44 To

examine how the presence of these frequent shoppers affects the aggregate dynamics, we

incorporate heterogeneous households into our model.45 Our simulation results indicate that

these consumers maintain lower levels of private inventory during normal times and are more

susceptible to stock depletion when goods become scarce, which prompts increased hoarding

behavior.

8 Concluding Remarks

This paper has theoretically studied the panic buying of storable consumer products, which

has repeatedly occurred in times of disaster. We developed a dynamic consumer search model

of the market for storable daily necessities and numerical methods for the model simulations

to demonstrate how panic buying initiates, spreads, and reaches its peak, as well as how

it negatively impacts consumers. By using our model, we provided a plausible explanation

for the worldwide scarcity of consumer products observed during the COVID-19 pandemic,

along with some policy recommendations. We highlight the following results.

1. Panic buying can arise even when all consumers are fully rational, there is no mis-

information, and the disaster does not impact the consumption or production of the

44See her Figure 2a.
45In this model extension, we do not integrate multiple goods, such as storable and non-storable goods, into

our model because very large changes are necessary to fully incorporate them into the model. In particular,
it is challenging to deal with the optimal stopping-time problem in a multivariate setting. We leave the
formal analysis of the multiple-good model to future research.
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products. When shopping costs temporarily increases, the demand for hoarding is

amplified, resulting in excessive congestion in the retail market, which, in turn, spurs

additional defensive hoarding.

2. The presence of a market-congestion externality exacerbates shortages, leading to an

inefficient allocation of storable products among consumers, with some hoarding ex-

cessive amounts and others going without.

3. The severity of panic buying is heavily influenced by the timing of recognizing the

shopping-cost increase. If the increase is predicted at the last minute, there is a high

risk of severe panic buying. Therefore, it is essential for governments to make timely

policy announcements and implement purchasing regulations that prevent consumers

from concentrating their purchases over a short period of time.

Our framework possesses broad applicability across various scenarios and is amenable to

policy analysis. By adjusting the parameters that determine the market structure and the

characteristics of the underlying shocks, we can investigate the effects of different types of

shocks, such as natural disasters, wars, and terms-of-trade shocks, on markets for various

consumer products, including food, fuel, hygiene products, and medicine.
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Appendices

APPENDIX A Deterministic Shopping-Search Model

We provide the expressions for V̂o(k), which represents the consumers’ value function in the

stationary equilibrium of the deterministic shopping-search model. In this model, a shopping

search takes a fixed duration of 1/α weeks, meaning that each consumer is guaranteed to

make a purchase after 1/α weeks of initiating their shopping process.

We begin by demonstrating that every consumer starts a shopping search at k̂∗
o = 1/α.

First, it is obvious that consumers with k ∈ (1/α,∞) do not engage in shopping searches. If

they were to do so, there would exist products that are purchased and stored at a cost but

remain unconsumed. The problem faced by a consumer with k = 1/α is as follows:

sup
τ∈[0,k)

−b̄

∫ k

0

e−rs(k − s)ds− a

∫ 1
α
+τ

k

e−rsds+ e−rτ

e−
r
α V̂ A(0)− c

r

(
1− e−

r
α

)
︸ ︷︷ ︸
→ c/α as r→0


 ,

where τ is the time she start a shopping search and V̂ A(k) is the value right after making a

purchase with stock k: V̂ A(k) = supq≥0 V̂o(k + q) − pq = supk′≥k V̂o(k
′) − pk′ + pk. Note

that, V̂ A(k) ≤ 0 by construction of the consumer’s problem. Thus, as long as a > 0, she

chooses τ ∗ = 0, so she starts a shopping search at k̂∗
o = 1/α not to run out the inventory.

Hence, we can write the value function as follows:

V̂o(k) =


−b̄
∫ k

0
e−rs(k − s)ds− c

∫ k

0
e−rsds+ e−rkV̂ A(0) for k ∈ [0, 1/α]

−b̄
∫ k−1/α

0
e−rs(k − s)ds+ e−r(k−1/α)V̂o(1/α) for k > 1/α

.

Using V̂o(0) = V̂ A(0), we have

V̂o(k) =


− b̄

r

[
k − 1

r

(
1− e−rk

)]
− c

r

(
1− e−rk

)
+ e−rkV̂o(0) for k ∈ [0, 1/α]

− b̄
r

[
k − 1

r

(
1− e−rk

)]
− e−r(k−1/α)

[
c
r

(
1− e−

r
α

)]
+ e−rkV̂o(0) for k > 1/α

.
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Thus, for k > 1/α,

V̂ ′
o(k) = −e−rk

(
rV̂o(0)−B

)
− b̄

r
with B = re

r
α

[c
r

(
1− e−

r
α

)]
+

b̄

r
> 0,

which implies that V̂ ′
o(k) is continuous and monotonically decreasing in k with limk→∞ V̂ ′

o(k) =

−b̄/r < 0. With the parametric assumption ensuring V̂ ′
o(1/α) > p, V̂o(0) = sup

k≥0
V̂o(k)− pk

has an interior solution such that

V̂ ′
o(
ˆ̄k) = −e−rˆ̄k

(
rV̂o(0)−B

)
− b̄

r
= p =⇒ ˆ̄k =

1

r
log

(
B − rV̂o(0)

p+ b̄/r

)
,

where

V̂o(0) = V̂o(
ˆ̄k)− pˆ̄k.

APPENDIX B Sensitivity Analysis

Table B.1: Sensitivity Analysis

Parameters Shortages (weeks) Welfare (%)
θ a b̄ α c R(t) < 0.5 R(t) < 0.33 Gross (Ω) Direct (ΩR=1) Indirect (ΩR<1)

Benchmark
0.04 1069.23 1.0 2.29 14.63 3.72 2.12 5.05 0.85 4.20

Exit rate θ
0.03 1069.23 1.0 2.29 14.66 3.69 2.09 3.99 0.68 3.31
0.05 1076.92 1.0 2.29 14.76 3.69 2.09 6.00 1.02 4.98

Per unit storage cost b̄
0.04 553.51 0.5 2.29 7.44 3.68 2.08 5.03 0.86 4.18
0.04 2145.48 2.0 2.29 29.33 3.69 2.09 4.98 0.85 4.14

Note: The values for a, α and c are chosen to be k∗o − 1/α = 2.0, k̄o − k∗o = 4.0, and Go(3/7)/Go(ko) = 0.01.
R(t) < 0.5 and R(t) < 0.33 indicate the duration (weeks) for which low product availability (less than 50
percent and 33 percent, respectively) persists. See Section 5.2 for the definitions of Ω, ΩR=1, and ΩR<1.
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