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This document contains Supplemental Material for the article “Bayesian infer-
ence on structural impulse response functions.” It contains a simulation study
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sion for the news shock application; technical details concerning SVMA likelihood
evaluation, reweighting, the Hamiltonian Monte Carlo routine, and posterior con-
sistency; and supplemental proofs.

Appendix C: Online appendix

C.1 Simulation study

To illustrate the workings of the SVMA approach, I conduct a small simulation study with
two observed variables and two shocks. I show that prior information about the smooth-
ness of the IRFs can substantially sharpen posterior inference. It is thus desirable to use
an approach, like the SVMA approach, for which prior information about smoothness is
directly controlled. I also illustrate the consequences of misspecifying the prior.

The illustration is based on the bivariate example from Section 2 with n = 2 and
q = 10; cf. Figure 1. The number of parameters is n2(q + 1) = 22(10 + 1) = 44, smaller
than the dimensionality of realistic empirical applications but sufficient to elucidate the
flexibility, transparency, and effectiveness of the SVAR approach.

C.1.1 Parameters, prior, and simulation settings I consider a single parametrization,
with a prior that is correctly centered but diffuse. The sample size is T = 200. The true
IRF parameters Θ are the noninvertible ones plotted in Figure 1. The true shock stan-
dard deviations are σ1 = 1 (monetary policy shock) and σ2 = 0�5 (demand shock). I first
show results for the prior specification in Figure 3 with ρij = 0�9 for all (i� j). The prior
is centered at the true values but it expresses significant prior uncertainty about the
magnitudes of the individual impulse responses. The prior on σ = (σ1�σ2) is median-
unbiased for the true values but it is very diffuse, with prior standard deviation of logσj

equal to τσj = 2 for j = 1�2.
I simulate a single sample of artificial data from the Gaussian SVMA model and then

run the HMC algorithm using the Whittle likelihood (I do not reweight the draws as in
Section C.3.2). I take 10,000 MCMC steps, storing every 10th step and discarding the first
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3,000 steps as burn-in.1 The full computation takes less than 3 hours in Matlab 8.6 on a
personal laptop with 2�3 GHz Intel CPU and 8 GB RAM. Below I provide graphical diag-
nostics on the convergence and mixing of the MCMC chain.

C.1.2 Baseline results Figure C.1 shows that the posterior for the IRFs accurately esti-
mates the true values and that the data serves to substantially reduce the prior uncer-
tainty. The posterior means are generally close to the truth, although the means for two
of the IRFs are slightly too low in this simulation. The 5–95 percentile posterior credible
intervals are mostly much narrower than the prior 90% confidence bands, so this prior
specification successfully allows the researcher to learn from the data about the magni-
tudes of the impulse responses. Figure C.2 shows the posterior draws for the shock stan-
dard deviations and compares them with the prior distribution. The posterior draws are
tightly centered around the true values despite the very diffuse prior on σ . Overall, the
inference method for this choice of prior works well, despite the noninvertibility of the
true IRFs.

To illustrate the importance of prior information about the smoothness of the IRFs,
I run the HMC algorithm with the same specification as above, except that I set ρij = 0�3
for all (i� j) in the prior. Figure C.3 summarizes the posterior distribution of the IRFs
corresponding to this alternative prior. Compared to Figure C.1, the posterior credible

Figure C.1. Summary of posterior IRF (Θ) draws for the bivariate SVMA model with prior
smoothness ρij = 0�9. The plots show true values and prior means (thick lines), prior 90% confi-
dence bands (shaded), posterior means (crosses), and posterior 5–95 percentile intervals (verti-
cal bars).

1The results are virtually identical in simulations with 100,000 MCMC steps.
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Figure C.2. Summary of posterior shock standard deviation (σ) draws for the bivariate SVMA
model with prior smoothness ρij = 0�9. The plots show the true value (thick vertical line), prior
density (curve), and histogram of posterior draws, for each σj , j = 1�2.

Figure C.3. Summary of posterior IRF (Θ) draws for the bivariate SVMA model with prior
smoothness ρij = 0�3. See the caption for Figure C.1.

intervals are much wider and the posterior means are less accurate estimates of the true
IRFs.

The higher the degree of prior smoothness, the more do nearby impulse responses
“learn from each other.” Due to the prior correlation structure in equation (7), any fea-
ture of the data that is informative about the impulse response Θij�� is also informa-
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tive about Θij��+k; more so for smaller values of |k|, and more so for larger values of the
smoothness hyperparameter ρij . Hence, a higher degree of prior smoothness reduces
the effective number of free parameters in the model. If the true IRFs are not smooth
but the prior imposes a lot of smoothness, posterior inference can be very inaccurate. It
is therefore important to use a framework, like the SVMA approach, where prior smooth-
ness is naturally parametrized and directly controlled. SVAR IRFs also impose smooth-
ness a priori, but the degree of smoothness is implicitly controlled by the VAR lag length
and restrictions on the VAR coefficients.

C.1.3 Misspecified priors I now report results for modifications of the baseline simu-
lation above, considering varying degrees of misspecified, that is, inaccurately centered
priors. I consider four such experiments: one in which the shocks have less persistent ef-
fects than the prior indicates, one in which the true IRF of the output gap to a monetary
policy shock is zero everywhere, one that combines the previous two experiments while
increasing the prior variance, and finally one where the data generating parameters are
observationally equivalent with the prior mode but economically very different. In the
first three cases, the inaccurate prior is overruled by the data, delivering reasonably ac-
curate posterior inference. This happens because the implied prior distribution of the
ACF is inconsistent with the true ACF. Since the data is informative about the latter, the
posterior distribution puts more weight than the prior on parameters that are consistent
with the true ACF, as shown formally in Section 5.2. In the fourth experiment, the pos-
terior inference is necessarily misleading, since the prior mode and the true parameters
are associated with the same ACF.

I first consider an experiment in which the prior overstates the persistence of the
shock effects, that is, the true IRFs die out quicker than indicated by the prior means
μij�� in Figure 3. The true IRFs are set to Θij�� = cije

−0�25�μij�� for all (i� j� �), where cij > 0
is chosen so that max� |Θij��| = max� |μij��| for each IRF. The true shock standard devia-
tions, the prior (ρij = 0�9), the sample size, and the HMC settings are exactly as in Sec-
tion C.1.2. Figure C.4 compares these true IRFs to the prior distribution. The figure also
summarizes the posterior distribution for the IRFs, for a single simulated data set. The
posterior is not perfectly centered but is much closer to the truth than the prior is. Fig-
ure C.5 shows why this is the case: The prior distribution on (Θ�σ) implies a distribu-
tion for auto- and cross-correlations of observed variables that is at odds with the true
ACF. Since the data is informative about the ACF, the posterior distribution for IRFs puts
higher weight than the prior on IRFs that are consistent with the true auto- and cross-
correlations.

The second experiment considers a prior that misspecifies the cross-correlations be-
tween the observed variables. I set the true IRFs equal to the prior means in Figure 3, ex-
cept that the true IRF of the output gap to a monetary policy shock equals zero, that is,
Θ21�� = 0 for 0 ≤ � ≤ q. The true shock standard deviations, the prior (ρij = 0�9), the sam-
ple size, and the HMC settings are as above. Figure C.6 shows that posterior inference
is accurate despite the misspecified prior. Again, Figure C.7 demonstrates how the data
corrects the prior distribution on auto- and cross-correlations, thus pulling the posterior
on IRFs toward the true values (although here the true ACF is not estimated as accurately
as in Figure C.5).
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Figure C.4. Summary of posterior IRF (Θ) draws for the bivariate SVMA model with a prior that
is too persistent relative to the true parameter values. The plots show true values (thick lines),
prior 90% confidence bands (shaded), posterior means (crosses), and posterior 5–95 percentile
intervals (vertical bars). The prior means (not shown) are the midpoints of the prior confidence
bands, as in Figure 3.

The third experiment combines the previous two while increasing the prior variance.
As true parameters, I use the IRFs from the first experiment (misspecified persistence)
except that the IRF of the output gap to the monetary policy shock is set to zero at all
horizons (misspecified cross-correlations, as in the second experiment). I use the base-
line prior (ρij = 0�9) from Section C.1.2, except that the prior standard deviations τij�� are
50% larger to illustrate the consequences of having a more diffuse prior. The true shock
standard deviations, the sample size, and the HMC settings are as in the baseline. Fig-
ure C.8 shows that the FFR IRFs are less accurately estimated in this experiment, yet the
credible intervals are not misleading even through the prior is poorly centered and quite
diffuse.

The last experiment illustrates that the ability of the data to correct a misspecified
prior is limited, as must necessarily be the case due to partial identification (cf. Sec-
tions 2.4 and 5). In this experiment with a grossly misspecified prior, I choose the true
IRFs and shock standard deviations to be observationally equivalent with—but econom-
ically very different from—the prior mode. This is accomplished by flipping a root of the
SVMA polynomial and applying a rotation (cf. the terminology in Appendix A.2). The
Matlab code that accompanies this paper provides the details of the chosen values of Θ
and σ . The prior (ρij = 0�9), the sample size, and the HMC settings are as in the baseline
experiment in Section C.1.2. Figure C.9 plots the chosen true IRFs as well as the poste-
rior distribution, for a simulated data set. Due to the observational equivalence of the
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Figure C.5. Posterior auto- and cross-correlation draws for the bivariate SVMA model
with a prior that misspecifies the persistence of the IRFs. The displays plot draws of
Corr(yi�t � yj�t−k|Θ�σ), where i indexes rows, j indexes columns, and k runs along the horizon-
tal axes. The top right display, say, concerns cross-correlations between the FFR and lags of the
output gap. The plots show true values (thick lines), prior means (dashed lines) and 5–95 per-
centile confidence bands (shaded), and posterior means (crosses) and 5–95 percentile intervals
(vertical bars).

true parameters to those used in Section C.1.2, the posterior distribution in Figure C.9 is
very similar to Figure C.1. Because the ACF of the data here cannot distinguish between
the true parameters and the prior mode, the data does not meaningfully correct the mis-
taken prior beliefs: As in all partially identified models, there exist very inaccurate priors
that yield very inaccurate conclusions.

C.1.4 MCMC diagnostics I report diagnostics for the baseline ρij = 0�9 bivariate simu-
lation in Section C.1.2, but diagnostics for other specifications in this section are similar.
The average HMC acceptance rate is slightly higher than 0�60, which is the rate targeted
by the NUTS algorithm when tuning the HMC step size. The score of the posterior was
evaluated about 382,000 times. Figures C.10 and C.11 show the MCMC chains for the IRF
and log shock standard deviation draws. Figures C.12 and C.13 show the autocorrelation
functions of the draws.

C.2 Application: Additional results and discussion

This subsection presents additional details, results, and discussion related to the news
shock application in Section 4. First, I detail the data construction. Second, I summarize
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Figure C.6. Summary of posterior IRF (Θ) draws for the bivariate SVMA model with a prior that
misspecifies the cross-correlations between variables. See the caption for Figure C.4.

Figure C.7. Posterior autocorrelation draws for the bivariate SVMA model with a prior that
misspecifies the cross-correlations between variables. See the caption for Figure C.5.
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Figure C.8. Summary of posterior IRF (Θ) draws for the bivariate SVMA model with a prior that
misspecifies both the persistence and cross-correlations of variables, while increasing the prior
standard deviations by 50% relative to the baseline. See the caption for Figure C.4.

Figure C.9. Summary of posterior IRF (Θ) draws for the bivariate SVMA model with a grossly
misspecified prior whose mode is nevertheless observationally equivalent with the true IRFs. See
the caption for Figure C.4.



Supplementary Material Bayes inference on IRFs 9

Figure C.10. MCMC chains for each IRF parameter (Θ) in the ρij = 0�9 simulations in Sec-
tion C.1.2. Each jagged line represents a different impulse response parameter (two of them are
normalized at 1). The vertical dashed line marks the burn-in time, before which all draws are
discarded. The horizontal axes are in units of MCMC steps, not stored draws (every 10th step is
stored).

Figure C.11. MCMC chains for each log shock standard deviation parameter (logσ) in the
ρij = 0�9 simulations in Section C.1.2. See the caption for Figure C.10.

the posteriors for long-run (cumulative) impulse responses. Third, I demonstrate the
economic importance of noninvertibility. Fourth, I use the Kalman smoother to draw
inference about the shocks. Fifth, I examine the sensitivity of posterior inference to the
choice of prior. Sixth, I assess the model’s fit. Seventh, I compare my empirical results
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Figure C.12. Autocorrelation functions for HMC draws of each IRF parameter (Θ) in the
ρij = 0�9 simulations in Section C.1.2. Each jagged line represents a different impulse response
parameter. Only draws after burn-in were used to computed these figures. The autocorrelation
lag is shown on the horizontal axes in units of MCMC steps.

Figure C.13. Autocorrelation functions for HMC draws of each log shock standard deviation
parameter (logσ) in the ρij = 0�9 simulations in Section C.1.2. See the caption for Figure C.12.

to the literature. Finally, I show that the SVMA procedure accurately estimates IRFs on

simulated data.
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C.2.1 Data construction TFP growth equals 100 times the log growth rate of TFP and
is taken from the data appendix to Fernald (2014).2 The remaining data is from the St.
Louis Federal Reserve’s FRED database.3 Real GDP growth is given by 100 times the log
growth rate of seasonally adjusted GDP per capita in chained dollars, as measured by the
Bureau of Economic Analysis (NIPA Table 7.1, line 10). My real interest rate series equals
the nominal policy interest rate minus the contemporaneous inflation rate.4 The nom-
inal policy rate is the average effective federal funds rate, expressed as a quarterly rate.
The inflation rate equals 100 times the log growth rate in the seasonally adjusted im-
plicit price deflator for the nonfarm business sector, as reported by the Bureau of Labor
Statistics.

I detrend the three data series to remove secular level changes that are arguably un-
related to the business cycle. Following Stock and Watson (2012), I estimate the trend
in each series using a biweight kernel smoother with a bandwidth of 100 quarters; the
trends are then subtracted from the raw series. The data is plotted in the Online Supple-
mental Material.

Figure C.14 plots the raw data and estimated trends.

C.2.2 Long-run responses Figure C.15 plots the posterior distribution of long-run (i.e.,
cumulative) impulse responses

∑q
�=0 Θij�� for each variable-shock combination (i� j).

C.2.3 Economic significance of noninvertibility The noninvertibility of the estimated
IRFs is economically significant. Figure C.16 summarizes the posterior distribution of
those invertible IRFs that are closest to the actual (possibly noninvertible) IRFs. Specif-
ically, for each posterior draw (Θ�σ) I compute the parameter vector (Θ̃� σ̃) that min-
imizes the Frobenius distance ‖Θdiag(σ) − Θ̃diag(σ̃)‖ over parameters for which Θ̃ is
invertible and (Θ̃� σ̃) generates the same ACF as (Θ�σ).5 While the invertible IRFs for
the productivity and monetary policy shocks are similar to the unrestricted IRFs, the in-
vertible news shock IRFs look nothing like the actual estimated IRFs.6 Thus, no SVAR
identification scheme can deliver accurate inference about the effects of technological
news shocks in this dataset.

2The TFP measure is based on a growth accounting method that adjusts for differing marginal products
of capital across sectors as well as changes over time in labor quality and labor’s share of income. Fernald
(2014) also estimates utilization-adjusted TFP, but the adjustment is model-based and reliant on estimates
from annual regressions on a separate dataset, so I prefer the simpler series. Data downloaded July 14, 2015.

3FRED series codes: A939RX0Q048SBEA (real GDP per capita), FEDFUNDS (effective federal funds rate),
and IPDNBS (implicit price deflator, nonfarm business sector). Data was downloaded August 13, 2015.

4If agents form inflation expectations under the presumption that quarterly inflation follows a random
walk, then my measure of the real interest rate equals the conventional ex ante real interest rate.

5According to Appendix A.2, (Θ̃� σ̃) is obtained as follows. First, apply transformation (ii) in Proposi-
tion 2 several times to (Θ�σ) in order to flip all roots outside the unit circle. Denote the resulting invert-
ible parameters by (Θ̌� σ̌). Then Θ̃diag(σ̃) = Θ̌diag(σ̌)Q, where Q is the orthogonal matrix that minimizes
‖Θdiag(σ)− Θ̌diag(σ̌)Q‖. This is an “orthogonal Procrustes problem,” whose solution is well known.

6Figure C.16 cannot be interpreted as the posterior distribution corresponding to a prior which truncates
the prior from Figure 5 to the invertible region. It is difficult to sample from this truncated posterior, as es-
sentially none of the unrestricted posterior draws are invertible, so an accept–reject scheme is inapplicable.
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Figure C.14. Raw data on TFP growth, GDP growth, and the real interest rate (IR), along with
estimated time-varying trends (smooth curves). The final data used in the empirical analysis are
differences between the raw series and the trends.

Figure C.15. Histograms of posterior draws of long-run impulse responses
∑q

�=0 Θij�� for each
(i� j), news shock application. Curves are prior densities. Histograms and curves each integrate
to 1.
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Figure C.16. Posterior distribution of the invertible IRFs that are closest to the actual IRFs,
news shock application. The figure shows posterior means of actual IRFs from Figure 6 (thick
lines), posterior means of the closest invertible IRFs (crosses), and posterior 5–95 percentile in-
tervals for these invertible IRFs (vertical bars).

C.2.4 Inference about shocks Figure C.17 shows the time series of posterior means
for the structural shocks. For each posterior draw of the structural parameters (Θ�σ),
I compute E(εt |Θ�σ�YT ) using the smoothing recursions corresponding to the Gaus-
sian state-space representation in Section C.3.1 (Durbin and Koopman (2012, p. 157)),
and then I average over draws. If the structural shocks are in fact non-Gaussian, the
smoother still delivers mean-square-error-optimal linear estimates of the shocks. If de-
sired, draws from the full joint posterior distribution of the shocks can be obtained from
a simulation smoother (Durbin and Koopman (2012, Chapter 4.9)). It is also straightfor-
ward to draw from the predictive distribution of future values of the data using standard
methods for state-space models.

C.2.5 Prior sensitivity Here, I consider the sensitivity of posterior inference with re-
spect to local and global changes in the prior.

To gauge the local robustness of posterior inference with respect to the choice of
prior, I compute the sensitivity measure “PS” of Müller (2012). This measure captures
the first-order approximate effect on the posterior means of changing the prior mean hy-
perparameters. Let θ denote the vector containing all impulse responses and log shock
standard deviations of the SVMA model, and let ek denote the k-th unit vector. Because
my prior for θ is a member of an exponential family, the Müller (2012) PS measure for
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Figure C.17. Posterior means of standardized structural shocks (εjt/σj) at each point in time,
news shock application.

parameter θk equals

PSk = max
ν :

√
ν′ Var(θ)−1ν=1

∂E(θk|YT )

∂E(θ)′
ν =

√
e′
k Var(θ|YT )Var(θ)−1 Var(θ|YT )ek� (C.1)

This is the largest (local) change that can be induced in the posterior mean of θk from
changing the prior means of the components of θ by the multivariate equivalent of 1
prior standard deviation.7 PSk depends only on the prior and posterior variance matri-
ces Var(θ) and Var(θ|YT ), which are easily obtained from the HMC output.

Figure C.18 plots the posterior means of the impulse responses along with ±PSk

intervals (where the index k corresponds to the (i� j� �) combination for each impulse
response). The wider the band around an impulse response, the more sensitive is the
posterior mean of that impulse response to (local) changes in the prior. In economic
terms, most of the posterior means are seen to be insensitive to changes in the prior
means of magnitudes smaller than 1 prior standard deviation. The most prior-sensitive
posterior inferences, economically speaking, concern the IRF of GDP growth to a news
shock, but large changes in the prior means are necessary to alter the qualitative features
of the posterior mean IRF.

As an indication of global prior sensitivity, I additionally present posterior results
for an alternative prior which differs from the baseline by doubling the prior standard
deviation of the IRFs of the real interest rate to technology and monetary policy shocks.
I thank a referee for pointing out that the priors on these two IRFs may be too tight for

7In particular, PSk ≥ maxb |∂E(θk|YT )/∂E(θb)|
√

Var(θb). Whereas PSk is a local measure, the effects of
large changes in the prior can be evaluated using reweighting (Lopes and Tobias (2011, Section 2.4)).



Supplementary Material Bayes inference on IRFs 15

Figure C.18. PSk measure of the sensitivity of the posterior IRF means with respect to changes
in the prior means of all parameters (cf. (C.1)) in the news shock application. The symmet-
ric vertical bars have length 2PSk and are centered around the corresponding posterior means
(crosses).

some readers. Figure C.19 shows that the posterior inference is mostly unchanged under
this less informative prior, although the posterior credible intervals are somewhat wider,
particularly for the IRFs of the real interest rate to news and monetary policy shocks.
The mixing of the MCMC chain is slower with this prior, as the posterior appears to
be slightly multimodal; hence, I here report results based on 30,000 MCMC steps after
burn in (storing every 10th draw), which seems sufficient to explore the full posterior
distribution.

C.2.6 Posterior predictive analysis I conduct a posterior predictive analysis to identify
ways to improve the fit of the Gaussian SVMA model (Geweke (2010, Chapter 2.4.2)).
For each posterior parameter draw produced by HMC, I simulate an artificial data set of
sample size T = 213 from a Gaussian SVMA model with the given parameters. On each
artificial dataset I compute four checking functions. First and second, the skewness and
excess kurtosis of each series. Third, the long-run autocorrelation of each series, defined
as the Newey-West long-run variance estimator (20 lags) divided by the sample variance.
Fourth, I run a reduced-form VAR regression of the three-dimensional data vector yt on
its 8 first lags and a constant; then I compute the first autocorrelation of the squared VAR
residuals for each of the three series. The third measure captures persistence, while the
fourth measure captures volatility clustering in forecast errors.

Figure C.20 shows the distribution of checking function values across simulated
datasets, as well as the corresponding checking function values for the actual data. The
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Figure C.19. Summary of posterior IRF (Θ) draws, news shock application, alternative prior.
The plots show prior 90% confidence bands (shaded), posterior means (crosses), and posterior
5–95 percentile intervals (vertical bars).

Figure C.20. Posterior predictive checks, news shock application. Observed variables along
rows, checking functions along columns. Histograms show the distribution of checking func-
tion values on simulated data sets based on the posterior parameter draws; thick vertical lines
mark checking function values on actual data. Checking functions from left to right: skewness;
excess kurtosis; Newey–West long-run variance estimate (20 lags) divided by sample variance;
first autocorrelation of squared residuals from a VAR regression of yt on a constant and 8 lags.
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Gaussian SVMA model does not capture the skewness and kurtosis of GDP growth; es-
sentially, the model does not generate recessions that are sufficiently severe relative to
the size of booms. The model somewhat undershoots the persistence and kurtosis of
the real interest rate. The fourth column suggests that forecast errors for TFP and GDP
growth exhibit volatility clustering in the data, which is not captured by the Gaussian
SVMA model.

The results point to three fruitful model extensions. First, introducing stochastic
volatility in the SVMA model would allow for better fit along the dimensions of kurtosis
and forecast error volatility clustering. Second, nonlinearities or skewed shocks could
capture the negative skewness of GDP growth. Finally, increasing the MA lag length
q would allow the model to better capture the persistence of the real interest rate, al-
though this is not a major concern, as I am primarily interested in shorter-run impulse
responses.

C.2.7 Comparison with the literature My conclusion that technological news shocks
are not important for explaining business cycles is consistent with the literature, but
my method is the first to allow for noninvertibility without additional assumptions.
Forni, Gambetti, and Sala (2014) estimate small effects of technological news shocks in
a factor-augmented SVAR. Their empirical strategy may overcome the noninvertibility
issue if technological news are well captured by the first few principal components of
their large macroeconomic panel data set. They confirm that low-dimensional systems
(without factors) are noninvertible. Papers that estimate fully-specified DSGE models
with news shocks also tend to find a limited role for technological news, cf. the review
by Beaudry and Portier (2014, Section 4.2.2). Unlike these papers, I do not dogmatically
impose restrictions implied by a particular structural model.

Several SVAR papers on news shocks have used stock market data in an attempt to
overcome the invertibility problem; cf. Beaudry and Portier (2014, Section 3). Such SVAR
specifications may be valid if the stock market is a good proxy for the news shock, i.e., if
the market responds immediately and forcefully upon arrival of technological news. On
the other hand, if market movements are highly contaminated by other types of shocks,
incorporating stock market data may lead to biased SVAR estimates.

C.2.8 Consistency check with simulated data I show that the SVMA approach, with the
same prior and HMC settings as in Section 4, can recover the true IRFs when applied to
data generated by the log-linearized Sims (2012) DSGE model. I simulate data for the
three observed variables from an SVMA model with i.i.d. Gaussian shocks. The true IRFs
are those implied by the log-linearized Sims (2012) model (baseline calibration) out to
horizon q = 16, yielding a noninvertible representation. The true shock standard devi-
ations are set to σ = (0�5�0�5�0�5)′. Note that the prior for the IRF of TFP growth to the
news shock is not centered at the true IRF, as explained in Section 4. The sample size is
the same as for the actual data (T = 213).

Figures C.21 and C.22 summarize the posterior draws produced by the HMC algo-
rithm when applied to the simulated data set. The posterior means accurately locate
the true parameter values. The equal-tailed 90% posterior credible intervals are tightly
concentrated around the truth in most cases. In particular, inference about the shock
standard deviation parameters is precise despite the very diffuse prior.
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Figure C.21. Summary of posterior IRF (Θ) draws, simulated news shock data. See the caption
for Figure C.1.

Figure C.22. Summary of posterior shock standard deviation (σ) draws, simulated news shock
data. See the caption for Figure C.2.

C.3 Exact likelihood and reweighting

I now describe the Kalman filter for SVMA models and the reweighting procedure for
translating Whittle posterior parameter draws into draws from the exact Gaussian pos-
terior.
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C.3.1 Kalman filter The state space representation of the SVMA model is

yi�t = Ψiαt� i = 1� � � � � n� t = 1� � � � �T�

αt =
(

0 0
Inq 0

)
αt−1 +

(
ε̃t
0

)
� ε̃t

i.i.d.∼ N(0� In)� t = 2�3� � � � �T�

α1 ∼ N(0� In(q+1))�

where Ψi is the n(q + 1)-dimensional i-th row vector of Ψ = (Ψ0�Ψ1� � � � �Ψq) (with Ψ� =
Θ� diag(σ)), ε̃t is the n-dimensional standardized structural shock vector (each element
has variance 1), and αt = (ε̃′

t � ε̃
′
t−1� � � � � ε̃

′
t−q)

′ is the n(q+ 1)-dimensional state vector.
I use the “univariate treatment of multivariate series” Kalman filter in Durbin and

Koopman (2012, Ch. 6.4), since that algorithm avoids inverting large matrices. For my
purposes, the algorithm is as follows.

1. Initialize the state forecast mean a1�1 = 0 and state forecast variance Z1�1 = In(q+1).
Set t = 1.

2. For each i = 1� � � � � n:

(a) Compute the forecast error vi�t = yi�t −Ψiai�t , forecast variance λi�t =ΨiZi�tΨ
′
i , and

Kalman gain gi�t = (1/λi�t)Zi�tΨ
′
i .

(b) Compute the log likelihood contribution: Li�t = − 1
2(logλi�t + v2

i�t/λi�t).

(c) Update the state forecast mean: ai+1�t = ai�t + gi�tvi�t .

(d) Update the state forecast variance: Zi+1�t = Zi�t − λi�tgi�tg
′
i�t .

3. Let ãn+1�t denote the first nq elements of an+1�t , and let Z̃n+1�t denote the upper left
nq× nq block of Zn+1�t . Set

a1�t+1 =
(

0
ãn+1�t

)
� Z1�t+1 =

(
In 0
0 Z̃n+1�t

)
�

4. If t = T , stop. Otherwise, increment t by 1 and go to step 2.

The log likelihood logpY |Ψ (YT |Ψ) is given by
∑T

t=1
∑n

i=1 Li�t , up to a constant.

C.3.2 Reweighting An optional reweighting step may be used to translate draws
obtained from the Whittle-based HMC algorithm into draws from the exact Gaus-
sian posterior density pΘ�σ |Y (Θ�σ |YT ). The Whittle HMC algorithm yields draws
(Θ(1)�σ(1))� � � � � (Θ(N)�σ(N)) (after discarding a burn-in sample) from the Whittle pos-
terior density pW

Θ�σ |Y (Θ�σ |YT ). If desired, apply the following reweighting procedure to
the Whittle draws:

1. For each Whittle draw k= 1�2� � � � �N , compute the relative likelihood weight

wk = pY |Ψ
(
YT |Ψ (

Θ(k)�σ(k)
))

pW
Y |Ψ

(
YT |Ψ (

Θ(k)�σ(k)
)) ∝ pΘ�σ |Y

(
Θ(k)�σ(k)|YT

)
pW
Θ�σ |Y

(
Θ(k)�σ(k)|YT

) �
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2. Compute normalized weights w̃k =wk/
∑N

b=1 wb, k= 1� � � � �N .

3. Draw N samples (Θ̃(1)� σ̃(1))� � � � � (Θ̃(N)� σ̃(N)) from the multinomial distribu-
tion with mass points (Θ(1)�σ(1))� � � � � (Θ(N)�σ(N)) and corresponding probabilities
w̃1� � � � � w̃N .

Then (Θ̃(1)� σ̃(1))� � � � � (Θ̃(N)� σ̃(N)) constitute N draws from the exact posterior distri-
bution. This reweighting procedure is a Sampling-Importance-Resampling procedure
(Rubin (1988)) that uses the Whittle posterior as a proposal distribution. The reweight-
ing step is fast, as it only needs to compute the exact likelihood—not the score—for N
different parameter values, where N is typically orders of magnitude smaller than the
required number of likelihood/score evaluations during the HMC algorithm.

C.4 Hamiltonian Monte Carlo implementation

I here describe my implementation of the posterior simulation algorithm. First, I outline
my method for obtaining an initial value. Then I discuss the modifications I make to
the Hoffman and Gelman (2014) algorithm. The calculations below require evaluation
of the log prior density, its gradient, the log likelihood, and the score. Evaluation of the
multivariate Gaussian log prior and its gradient is straightforward; this is also the case
for many other choices of priors. Evaluation of the Whittle likelihood and its score is
described in Appendix A.3.

C.4.1 Initial value The HMC algorithm produces draws from a Markov Chain whose
long-run distribution is the Whittle posterior of the SVMA parameters, regardless of the
initial value used for the chain. However, using an initial value near the mode of the
posterior distribution can significantly speed up the convergence to the long-run dis-
tribution. I approximate the posterior mode using the following computationally cheap
procedure:

1. Compute the empirical ACF of the data.

2. Run q steps of the Innovations Algorithm to obtain an invertible SVMA rep-
resentation that approximately fits the empirical ACF (Brockwell and Davis (1991,
Prop. 11.4.2)).8 Denote these invertible parameters by (Θ̂� σ̂).

3. Let C denote the (finite) set of complex roots of the SVMA polynomial correspond-
ing to (Θ̂� σ̂), cf. Proposition 2.

4. For each root γj in C (each complex conjugate pair of roots is treated as one root):

(a) Let (Θ̌(j)� σ̌(j)) denote the result of flipping root γj , i.e., of applying transformation

(ii) in Proposition 2 to (Θ̂� σ̂) with this root.

(b) Determine the orthogonal matrix Q(j) such that Θ̌(j) diag(σ̌)(j)Q(j) is closest to the
prior mean E(Θdiag(σ)) in Frobenius norm, cf. Footnote 5.

8In principle, the Innovations Algorithm could be run for more than q steps, but this tends to lead to
numerical instability in my trials. The output of the first q steps is sufficiently accurate in my experience.
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(c) Obtain parameters (Θ̃(j)� σ̃(j)) such that Θ̌(j) diag(σ̌(j))Q(j) = Θ̃(j) diag(σ̃(j)), i.e.,
apply transformation (a) in Proposition 2. Calculate the corresponding value of the prior
density π(Θ̃(j)� σ̃(j)).

5. Let j̃ = argmaxj π(Θ̃
(j)� σ̃(j)).

6. If π(Θ̃(j̃)� σ̃(j̃)) ≤ π(Θ̂� σ̂), go to Step 7. Otherwise, set (Θ̂� σ̂) = (Θ̃(j̃)� σ̃(j̃)), remove
γj (and its complex conjugate) from C, and go back to Step 4.

7. Let the initial value for the HMC algorithm be the parameter vector of the form
((1 − x)Θ̌ + xE(Θ)� (1 − x)σ̌ + xE(σ)) that maximizes the posterior density, where x

ranges over the grid {0�0�01� � � � �0�99�1}, and (E(Θ)�E(σ)) is the prior mean of (Θ�σ).

Step 2 computes a set of invertible parameters that yields a high value of the likelihood.
Steps 3–6 find a set of possibly noninvertible parameters that yields a high value of the
prior density while being observationally equivalent with the parameters from Step 2
(I use a “greedy” search algorithm since it is computationally prohibitive to consider all
combinations of root flips). Because Steps 2–6 lexicographically prioritize maximizing
the likelihood over maximizing the prior, Step 7 allows the parameters to shrink toward
the prior means.

C.4.2 Modifications to NUTS algorithm I use the HMC variant NUTS from Hoffman
and Gelman (2014), which automatically tunes the step size and trajectory length of
HMC. See their paper for details on the NUTS algorithm. I downloaded the code from
Hoffman’s website.9 I make two modifications to the basic NUTS algorithm, neither of
which are essential, although they do tend to improve the mixing speed of the Markov
chain in my trials: step size jittering and diagonal mass matrix adaptation. These mod-
ifications are also used in the NUTS-based statistics software Stan (Stan Development
Team (2015)).

Each step I draw a new HMC step size from a uniform distribution over some interval
(Neal (2011, Section 5.4.2.2)). The jittering is started after the stepsize has been tuned as
described in Hoffman and Gelman (2014, Section 3.2). For the applications in this paper,
the step size is chosen uniformly at random from the interval [0�5ε̂�1�5ε̂], where ε̂ is the
tuned step size.

I allow for a diagonal “mass matrix,” where the entries along the diagonal are esti-
mates of the posterior standard deviations of the SVMA parameters (Neal (2011, Sec-
tion 5.4.2.4)). I first run the NUTS algorithm for a number of steps with an identity mass
matrix. Then I calculate the sample standard deviations of the parameter draws over a
window of subsequent steps, after which I update the mass matrix accordingly.10 I up-
date the mass matrix twice more using windows of increasing length. Finally, I freeze the
mass matrix for the remainder of the NUTS algorithm. In this paper, the mass matrix is
estimated over steps 300–400, steps 401–600, and steps 601–1,000, and it is fixed after
step 1,000.

9http://matthewdhoffman.com.
10The sample standard deviations are partially shrunk toward 1 before updating the mass matrix.

http://matthewdhoffman.com
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C.5 Asymptotic analysis

Here, I provide supplemental discussion and results concerning posterior consistency
of the ACF or Wold parameters, as well as a more abstract consistency lemma.

C.5.1 Posterior consistency: Autocovariance function I now show that the posterior
consistency assumption for the reduced-form parameter Γ in Lemma 1 is satisfied in
almost all stationary time series models for which Γ can be chosen to be the ACF, such
as the SVMA model. The result below supposes that the posterior measure for the ACF is
computed using the Whittle likelihood, but posterior consistency obtains under general
model misspecification.11

To state the posterior consistency result, I first define the posterior measure. Let
Tn�q be the space of ACFs for n-dimensional full-rank nondeterministic q-dependent
processes, and let pW

Y |Γ (YT |Γ ) denote the Whittle approximation to the likelihood of
a stationary Gaussian process with ACF Γ (these objects are defined in detail in Sec-
tion C.5.2). Let ΠΓ (·) be a prior measure on Tn�q. The associated Whittle posterior mea-
sure for {Γ0(k)}0≤k≤q is

PW
Γ |Y (A|YT )=

∫
A
pW
Y |Γ (YT |Γ )ΠΓ (dΓ )∫

Tn�q

pW
Y |Γ (YT |Γ )ΠΓ (dΓ )

� (C.2)

for any measurable subset A of Tn�q.

Lemma C.1. Let Assumption 3 hold. Assume that {Γ0(k)}0≤k≤q is in the support of ΠΓ (·).
Then the Whittle posterior for {Γ0(k)}0≤k≤q is consistent, i.e., for any neighborhood U of

{Γ0(k)}0≤k≤q in Tn�q, we have PW
Γ |Y (U |YT )

p→ 1 as T → ∞, under the true probability mea-
sure of the data.

The SVMA model with Gaussian shocks is an example of a model with a station-
ary Gaussian and q-dependent likelihood. Hence, when applied to the SVMA model,
Lemma C.1 states that if the prior measure on the SVMA parameters induces a prior
measure on Γ that has the true ACF {Γ0(k)}0≤k≤q in its support, then the model-implied
Whittle posterior for Γ pins down the true ACF in large samples. Lemma C.1 places no
restrictions on the prior ΠΓ (·) on the ACF, except that the true ACF Γ0 lies in its support.

Posterior consistency for the true ACF (up to lag q) holds even for time series that are
not Gaussian or q-dependent. This is true even though the measure PW

Γ |Y (A|YT ) is com-
puted using the Whittle likelihood and, therefore, exploits the working assumption that

11In the case of i.i.d. data, posterior consistency in misspecified models has been investigated in de-
tail; see Kleijn and van der Vaart (2012), Ramamoorthi, Sriram, and Martin (2015), and references therein.
Shalizi (2009) proved posterior consistency under misspecification with dependent data, placing high-level
assumptions on the prior and likelihood. Müller (2013) discussed decision theoretic properties of Bayes
estimators when the model is misspecified. Tamaki (2008) derived an asymptotic approximation to the
Whittle posterior under correct specification.
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the data is Gaussian and q-dependent. The only restrictions placed on the true distribu-
tion of the data are the stationarity and weak dependence conditions in Assumption 3.
Lemma C.1 is silent about posterior inference on autocovariances at lags higher than q.

C.5.2 Whittle likelihood for a q-dependent process I now define the Whittle ACF likeli-
hood for q-dependent processes used in Section C.5.1. Consider the spectral density for
a q-dependent process parametrized in terms of its ACF:

f (ω;Γ ) = 1
2π

(
Γ (0)+

q∑
k=1

{
e−ıkωΓ (k)+ eıkωΓ (k)′

})
� Γ ∈ Tn�q�

Tn�q =
{{

Γ (k)
}

0≤k≤q
: Γ (·) ∈R

n×n�Γ (0) = Γ (0)′�

inf
ω∈[0�π)

det

(
Γ (0)+

q∑
k=1

{
e−ıωkΓ (k)+ eıωkΓ (k)′

})
> 0

}
�

Let Γ̂ (k) = T−1 ∑T−k
t=1 yt+ky

′
t , k= 0�1� � � � �T − 1, be the k-th sample autocovariance, and

set Γ̂ (k) = Γ̂ (−k)′ for k= −1�−2� � � � �1 − T . Define the periodogram

Î(ω) = 1
2πT

(
T∑
t=1

e−ıtωyt

)(
T∑
t=1

eıtωy ′
t

)
= 1

2π

T−1∑
k=−(T−1)

e−ıkωΓ̂ (k)� ω ∈ [−π�π]�

The Whittle ACF log likelihood is (up to a constant) given by

logpW
Y |Γ (YT |Γ )= − T

4π

∫ π

−π
log det

(
f (ω;Γ )

)
dω− T

4π

∫ π

−π
tr

{
f (ω;Γ )−1Î(ω)

}
dω�

As in Appendix A.3, it is common to use a discretized Whittle log likelihood that replaces
integrals with corresponding discretized sums. The proof of Lemma C.1 shows that pos-
terior consistency also holds when the discretized Whittle likelihood is used.

C.5.3 Posterior consistency: Wold parameters The proof of Lemma C.1 relies on the
following posterior consistency result for the Wold IRFs and prediction covariance ma-
trix. The result in this subsection concerns (invertible) reduced-form IRFs, not (possibly
noninvertible) structural IRFs.

Fix a finite q ∈ N, and let β0(L)= In +∑q
�=1 β0��L

� and Σ0 denote the MA lag polyno-
mial and prediction covariance matrix, respectively, in the Wold decomposition (Han-
nan (1970, Thm. 2′′, p. 158)) of a q-dependent stationary n-dimensional process with
ACF (out to lag q) given by {Γ0(k)}0≤k≤q ∈ Tn�q. That is, β0 = (β0�1� � � � �β0�q) ∈ Bn�q and

Σ0 ∈ Sn are the unique parameters such that Γ0(k) = ∑q−k
�=0 β0��+kΣ0β

′
0�� for 0 ≤ k ≤ q,

defining β0�0 = In. Here Sn denotes the space of symmetric positive definite n× n matri-
ces, while

Bn�q = {
β = (β1� � � � �βq) ∈R

n×nq : det
(
�(z;β)) �= 0 ∀|z| ≤ 1

}
�
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�(z;β) = In +
q∑

�=1

β�z
�� z ∈C�

Define the MA spectral density parametrized in terms of (β�Σ):

f̃ (ω;β�Σ) = 1
2π

�
(
e−ıω;β)

Σ�
(
eıω;β)′

� ω ∈ [−π�π]� (β�Σ) ∈ Bn�q × Sn�

Using the notation in Section C.5.2 for the periodogram Î(ω), the Whittle MA log likeli-
hood is (up to a constant) given by

logpW
Y |β�Σ(YT |β�Σ) = − T

4π

∫ π

−π
log det

(
f̃ (ω;β�Σ))dω

− T

4π

∫ π

−π
tr

{
f̃ (ω;β�Σ)−1Î(ω)

}
dω�

The result below also holds for the discretized Whittle likelihood (cf. Section C.5.2).
I now state the posterior consistency result for (β0�Σ0). Let Πβ�Σ(·) be a prior mea-

sure for (β0�Σ0) on Bn�q × Sn. Define the Whittle posterior measure

PW
β�Σ|Y (A|YT ) =

∫
A
pW
Y |β�Σ(YT |β�Σ)Πβ�Σ

(
d(β�Σ)

)
∫
Bn�q×Sn

pW
Y |β�Σ(YT |β�Σ)Πβ�Σ

(
d(β�Σ)

)

for any measurable set A ⊂ Bn�q × Sn. Note that the lemma below does not require the
true data distribution to be Gaussian or q-dependent.

Lemma C.2. Let Assumption 3 hold. Assume that the pseudo-true parameters (β0�Σ0) ∈
Bn�q ×Sn are in the support of the prior Πβ�Σ(·). Then, for any neighborhood Ũ of (β0�Σ0)

in Bn�q × Sn, we have PW
β�Σ|Y (Ũ |YT )

p→ 1 under the true probability measure of the data.

C.5.4 Posterior consistency: General lemma Following Ghosh and Ramamoorthi (2003,
Theorem 1.3.4), I give general sufficient conditions for assumption (ii) of Lemma 1.
These are used in the proof of Lemma C.2.

Let ΠΓ (·) denote the marginal prior measure for parameter Γ , with Euclidean pa-
rameter space ΞΓ . Let pY |Γ (YT |Γ ) denote the (possibly misspecified) likelihood func-
tion. The posterior measure is given by

PΓ |Y (A|YT ) =

∫
A
pY |Γ (YT |Γ )ΠΓ (dΓ )∫

ΞΓ

pY |Γ (YT |Γ )ΠΓ (dΓ )

for measurable sets A ⊂ΞΓ .
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Lemma C.3. Define the normalized log likelihood ratio φ̂(Γ ) = T−1 log pY |Γ (YT |Γ )
pY |Γ (YT |Γ0)

for all

Γ ∈ ΞΓ . Assume there exist a function φ : ΞΓ → R, a compact neighborhood K of Γ0 in
ΞΓ , and a scalar ζ < 0 such that the following conditions hold.

(i) supΓ ∈K |φ̂(Γ )−φ(Γ )| p→ 0.

(ii) φ(Γ ) is continuous at all Γ ∈ K.

(iii) φ(Γ ) < 0 for all Γ �= Γ0.

(iv) supΓ ∈Kc φ̂(Γ ) < ζ w.p.a. 1.

(v) Γ0 is in the support of ΠΓ (·).

Then for any neighborhood U of Γ0 in ΞΓ , PΓ |Y (U |YT )
p→ 1.

C.6 Supplemental proofs

C.6.1 Proof of Proposition 2 As in Lippi and Reichlin (1994, p. 311), define the rational
matrix function

R(γ�z) =
⎛
⎝ z − γ

1 − γ̄z
0

0 In−1

⎞
⎠ � γ� z ∈C�

Transformation (ii) corresponds to the transformation Ψ̌ (z) = Ψ(z)QR(γk� z)
−1 if γk is

real. If γk is not real, the transformation corresponds to Ψ̌ (z) = Ψ̃ (z)Q̌, where Ψ̃ (z) =
Ψ(z)QR(γk� z)

−1Q̃R(γk� z)
−1 and Q̌ = Ψ̃ (0)−1J is a unitary matrix. I proceed in three

steps.

Step 1 Consider the first claim of the proposition. Let f (ω;Γ ) = (2π)−1 ∑q
k=−q Γ (k) ×

e−ıkω, ω ∈ [−π�π], denote the spectral density matrix function associated with the ACF
Γ (·). Since Ψ(z) = Θ(z)diag(σ) with (Θ�σ) ∈ S(Γ ), we must have Ψ(e−ıω)Ψ(e−ıω)∗ =
2πf(ω;Γ ) for all ω by the usual formula for the spectral density of a vector MA pro-
cess (Brockwell and Davis (1991, Example 11.8.1)). Because R(γ�e−ıω)R(γ�e−ıω)∗ = In
for any (γ�ω), it is easy to verify that Ψ̌ (z)—constructed by applying transformation
(i) or transformation (ii) to Ψ(z)—also satisfies Ψ̌ (e−ıω)Ψ̌ (e−ıω)∗ = 2πf(ω;Γ ). Hence,
Ψ̌ (z) = ∑q

�=0 Ψ̌�z
� is a matrix MA polynomial satisfying

∑q−k
�=0 Ψ̌�+kΨ̌

∗
� = Γ (k) for all k =

0�1� � � � � q. In Step 2 below I show that Ψ̌ (z) is a matrix polynomial with real coefficients.

By construction of Θ̌(z) = ∑q
�=0 Θ̌�z

� and σ̌ , we then have
∑q−k

�=0 Θ̌�+k diag(σ̌)2Θ̌′
� = Γ (k)

for all k= 0�1� � � � � q, so (Θ̌� σ̌) ∈ S(Γ ), as claimed.

Step 2 I now show that transformation (ii) yields a real matrix polynomial Ψ̌ (z). This
fact was asserted by Lippi and Reichlin (1994, pp. 317–318). I am grateful to Professor
Marco Lippi for providing me with the proof arguments for Step 2; all errors are my own.

Ψ̌ (z) is clearly real if the flipped root γk is real (since η and Q can be chosen to be real
in this case), so consider the case where we flip a pair of complex conjugate roots γk and
γk. Recall that in this case, Ψ̌ (z) = Ψ̃ (z)Q̌, where Ψ̃ (z) = Ψ(z)QR(γk� z)

−1Q̃R(γk� z)
−1
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and Q̌ is unitary. It follows from the same arguments as in Step 1 that the complex-

valued matrix polynomial Ψ̃ (z) = ∑q
�=0 Ψ̃�z

� satisfies
∑q−k

�=0 Ψ̃�+kΨ̃
∗
� = Γ (k) for all k =

0�1� � � � � q.

Let ¯̃
Ψ(z) = ∑q

�=0 Ψ̃�z
� denote the matrix polynomial obtained by conjugating the

coefficients of the polynomial Ψ̃ (z). By construction, the roots of det(Ψ̃ (z)) are real or

appear as complex conjugate pairs, so det( ¯̃
Ψ(z)) has the same roots as det(Ψ̃ (z)). Fur-

thermore, for k= 0�1� � � � � q,

q−k∑
�=0

¯̃
Ψ�+k

¯̃
Ψ�

∗ = Γ (k) = Γ (k) =
q−k∑
�=0

Ψ̃�+kΨ̃
∗
� �

By Theorem 3(b) of Lippi and Reichlin (1994), there exists a unitary n× n matrix ˜̃
Q such

that ¯̃
Ψ(z) = Ψ̃ (z)

˜̃
Q for z ∈ R. The matrix polynomial Ψ̃ (z)Ψ̃ (0)−1 then has real coeffi-

cients:12 For all z ∈R,

Ψ̃ (z)Ψ̃ (0)−1 = (
Ψ̃ (z)

˜̃
Q

)(
Ψ̃ (0) ˜̃

Q
)−1 = ¯̃

Ψ(z)
¯̃
Ψ(0)−1 = Ψ̃ (z)Ψ̃ (0)−1�

Consequently, with the real matrix J defined as in the proposition, Ψ̌ (z)= Ψ̃ (z)Ψ̃ (0)−1J

is a matrix polynomial with real coefficients. Note that, since ˜̃
Q is unitary, the matrix

Ψ̃ (0)Ψ̃ (0)∗ = ( ¯̃
Ψ(0) ˜̃

Q
)( ¯̃
Ψ(0) ˜̃

Q
)∗ = Ψ̃ (0)Ψ̃ (0)∗

is real, symmetric, and positive definite, so J is well-defined.

Step 3 Finally, I prove the second claim of the proposition. Suppose we have a fixed
element (Θ̌� σ̌) of the identified set that we want to end up with after transforming the
initial element (Θ�σ) appropriately. Define Ψ̌ (z) = Θ̌(z)diag(σ̌). Since (Θ�σ)� (Θ̌� σ̌) ∈
S(Γ ), the two sets of SVMA parameters correspond to the same spectral density, i.e.,
Ψ(e−ıω)Ψ(e−ıω)∗ = Ψ̌ (e−ıω)Ψ̌ (e−ıω)∗ for all ω ∈ [−π�π]. As in the proof of Theorem 2 in
Lippi and Reichlin (1994), we can apply transformation (ii) finitely many (say, b) times
to Ψ(z), flipping all the roots that are inside the unit circle, thus ending up with a poly-
nomial

B(z)= Ψ(z)Q1R(γk1� z)
−1 · · ·QbR(γkb� z)

−1Qb+1

for which all roots of det(B(z)) lie on or outside the unit circle. Likewise, denote the
(finitely many) roots of det(Ψ̌ (z)) by γ̌k, k= 1�2� � � � , and apply to Ψ̌ (z) a finite sequence
of transformation (ii) to arrive at a polynomial

B̌(z) = Ψ̌ (z)Q̌1R(γ̌ǩ1
� z)−1 · · · Q̌

b̌
R(γ̌

ǩ
b̌
� z)−1Q̌

b̌+1

for which all roots of det(B̌(z)) lie on or outside the unit circle. Since det(B(z)) and
det(B̌(z)) have all roots on or outside the unit circle, and we have B(e−ıω)B(e−ıω)∗ =

12Ψ̃ (0) is nonsingular because det(Ψ(0)) �= 0.
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B̌(e−ıω)B̌(e−ıω)∗ = 2πf(ω;Γ ) for all ω, there must exist an orthogonal matrix Q such
that B̌(z) = B(z)Q (Lippi and Reichlin (1994, p. 313), Hannan (1970, p. 69)). Thus,

Ψ̌ (z)= Ψ(z)Q1R(γk1� z)
−1 · · ·QbR(γkb� z)

−1Qb+1QQ̌∗
b̌+1

R(γ̌
ǩ
b̌
� z)Q̌∗

b̌
· · ·R(γ̌

ǩ1
� z)Q̌∗

1�

and

det
(
Ψ̌ (z)

) = det
(
Ψ(z)

)(z − γ̌
ǩ1
) · · · (z − γ̌

ǩ
b̌
)(1 − γk1z) · · · (1 − γkbz)

(z − γk1) · · · (z − γkb)(1 − γ̌
ǩ1
z) · · · (1 − γ̌

ǩ
b̌
z)

�

so any root of det(Ψ̌ (z)) must either equal γk or it must equal 1/γk, where γk is some
root of det(Ψ(z)). It follows that we can apply a finite sequence of transformation (ii)
(i.e., an appropriate sequence of root flips) to Ψ(z) to obtain a real matrix polynomial
˜̃
Ψ(z) satisfying det( ˜̃

Ψ(z)) = det(Ψ̌ (z)) for all z ∈ C. Theorem 3(b) in Lippi and Reichlin

(1994) then implies that Ψ̌ (z) can be obtained from ˜̃
Ψ(z) through transformation (i) (i.e.,

an orthogonal rotation, which clearly must be real). Finally, obtain (Θ̌� σ̌) from Ψ̌ (z) by
transformation (a).

C.6.2 Proof of Lemma 2 Suppressing the arguments (Ψ), let Lk = log det(fk) + ỹ∗
k ×

f−1
k ỹk. Then

∂Lk

∂
(
f ′
k

) = f−1
k − f−1

k ỹkỹ
∗
kf

−1
k = Ck�

Writing f ′
k = Ψ̃kΨ̃

′
k, we have

∂ vec
(
f ′
k

)
∂ vec(Ψ�)

′ = (Ψ̃k ⊗ In)e
ıωk� + (In ⊗ Ψ̃k)K

′
ne

−ıωk��

where Kn is the n2 × n2 commutation matrix such that vec(B′) = Kn vec(B) for any n× n

matrix B (Magnus and Neudecker (2007, Ch. 3.7)). Using vec(ABC) = (C ′ ⊗A) vec(B),

∂Lk

∂ vec(Ψ�)
′ = ∂Lk

∂ vec
(
f ′
k

)′
∂ vec

(
f ′
k

)
∂ vec(Ψ�)

′ = vec
(
CkΨ̃ke

ıωk� +C∗
kΨ̃keıωk�

)′
�

Since C∗
k = Ck, we get ∂Lk/∂Ψ� = 2 Re(CkΨ̃ke

ıωk�), so

∂ logpW
Y |Ψ (YT |Ψ)

∂Ψ�
= −1

2

T−1∑
k=0

∂Lk

∂Ψ�

= −
T−1∑
k=0

Re

(
Ck

q+1∑
�̃=1

e−ıωk(�̃−1)Ψ�̃−1e
ıωk�

)

= −
q∑

�̃=0

Re

(
T−1∑
k=0

Cke
−ıωk(�̃−�)

)
Ψ�̃�
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Finally,
∑T−1

k=0 Cke
−ıωk(�̃−�) = ∑T−1

k=0 Cke
−ıω�̃−�k = C̃�̃−� for �̃≥ �, and

∑T−1
k=0 Cke

−ıωk(�̃−�) =∑T−1
k=0 Cke

−ıωk(T+�̃−�) = ∑T−1
k=0 Cke

−ıωT+�̃−�k = C̃�̃−� for �̃ < �.

C.6.3 Proof of Lemma C.1 The proof exploits the one-to-one mapping between the
ACF Γ0 and the Wold parameters (β0�Σ0) defined in Section C.5.3, which allows me to
use Lemma C.2 to infer posterior consistency for Γ0 under the Whittle likelihood.

Let M : Tn�q → Bn�q ×Sn denote the function that maps a q-dependent ACF Γ (·) into
its Wold representation (β(Γ )�Σ(Γ )) (Hannan (1970, Theorem 2′′, p. 158)). By construc-
tion, the map M(·) is continuous (and measurable). The inverse map M−1(·) is given

by Γ (k) = ∑q−k
�=0 β�+kΣβ

′
� (with β0 = In) and so also continuous. The prior ΠΓ (·) for the

ACF Γ induces a particular prior measure for the Wold parameters (β�Σ) on Bn�q × Sn

given by Πβ�Σ(A) =ΠΓ (M
−1(A)) for any measurable set A. Let PW

β�Σ|Y (·|YT ) be the pos-

terior measure for (β�Σ) computed using the induced prior Πβ�Σ(·) and the Whittle MA
likelihood pW

Y |β�Σ(YT |β�Σ), cf. Section C.5.3.

I first show that the induced posterior for (β0�Σ0) is consistent. Let Ũ be any neigh-
borhood of (β0�Σ0) = M({Γ0(k)}0≤k≤q) in Bn�q × Sn. Since M(·) is continuous, M−1(Ũ)
is a neighborhood of {Γ0(k)}0≤k≤q in Tn�q. Hence, since {Γ0(k)}0≤k≤q is in the support
of ΠΓ (·), (β0�Σ0) is in the support of Πβ�Σ(·): Πβ�Σ(Ũ) = ΠΓ (M

−1(Ũ)) > 0. Due to As-
sumption 3 and the fact that (β0�Σ0) is in the support of Πβ�Σ(·), Lemma C.2 implies

that Pβ�Σ|Y (Ũ |YT )
p→ 1 for any neighborhood Ũ of (β0�Σ0) in Bn�q × Sn.

I now prove posterior consistency for Γ0. Since f̃ (ω;M(Γ )) = f (ω;Γ ) for all ω ∈
[−π�π] and Γ ∈ Tn�q, we have pW

Y |β�Σ(YT |M(Γ )) = pW
Y |Γ (YT |Γ ) for all Γ ∈ Tn�q. Conse-

quently, PW
Γ |Y (A|YT ) = PW

β�Σ|Y (M(A)|YT ) for all measurable sets A. Let U be an arbitrary

neighborhood of {Γ0(k)}0≤k≤q in Tn�q. Since M−1(·) is continuous at (β0�Σ0), the set
Ũ =M(U) is a neighborhood of (β0�Σ0) in Bn�q × Sn. It follows that

PW
Γ |Y (U |YT )= PW

β�Σ|Y (Ũ |YT )
p→ 1�

The proof of Lemma C.2 shows that the discretized Whittle posterior is also consistent.

C.6.4 Proof of Lemma C.2 The proof closely follows the steps in Dunsmuir and Han-
nan (1976, Section 3) for proving consistency of the Whittle maximum likelihood es-
timator in a reduced-form identified VARMA model. Note that the only properties of
the data generating process used in Dunsmuir and Hannan (1976, Section 3) are covari-
ance stationarity and ergodicity for second moments, as in Assumption 3. Dunsmuir

and Hannan also need T−1yty
′
t+T−k

p→ 0 for fixed t and k, which follows from Markov’s
inequality under covariance stationarity. Where Dunsmuir and Hannan (1976) appeal to
almost sure convergence, I substitute convergence in probability.

Define the normalized log likelihood ratio

φ̂(β�Σ)= T−1 log
pW
β�Σ(YT |β�Σ)

pW
β�Σ(YT |β0�Σ0)

�
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By the Kolmogorov–Szegö formula, for any (β�Σ) ∈ Bn�q × Sn,

1
2π

∫ π

−π
log det

(
f̃ (ω;β�Σ))dω= log det(Σ)− n log(2π)� (C.3)

Hence,

φ̂(β�Σ) = 1
2

log det
(
Σ0Σ

−1) + 1
4π

∫ π

−π
tr

{[
f̃ (ω;β0�Σ0)

−1 − f̃ (ω;β�Σ)−1]Î(ω)
}
dω� (C.4)

Define also the function

φ(β�Σ) = 1
2

log det
(
Σ0Σ

−1) + 1
4π

∫ π

−π
tr

{
In − f̃ (ω;β�Σ)−1f̃ (ω;β0�Σ0)

}
dω�

φ(β�Σ) is continuous. By the argument in Dunsmuir and Hannan (1976, p. 342) (see
also Brockwell and Davis (1991, Prop. 10.8.1), for the univariate case), we have φ(β�Σ) ≤
φ(β0�Σ0)= 0 for all (β�Σ) ∈ Bn�q × Sn, with equality if and only if (β�Σ) = (β0�Σ0).

The remainder of the proof verifies the conditions of Lemma C.3 in several steps.

Step 1 I first show that there exists a compact neighborhood K of (β0�Σ0) in Bn�q × Sn

on which φ(β�Σ) is continuous and such that

sup
(β�Σ)∈K

∣∣φ̂(β�Σ)−φ(β�Σ)
∣∣ = op(1)� (C.5)

By definition of the Wold decomposition of a time series with a non-singular
spectral density, all the roots of z �→ det(�(β0;z)) lie strictly outside the unit cir-
cle. f̃ (ω;β�Σ)−1 = �(β;eıω)−1′Σ−1�(β;e−ıω)−1 is therefore uniformly continuous in
(ω�β�Σ) for all ω ∈ [−π�π] and (β�Σ) in a small compact neighborhood of (β0�Σ0).
Denoting this neighborhood by K, the discussion around Lemma 1 in Dunsmuir and
Hannan (1976, p. 350) implies (C.5).

Step 2 For any (β�Σ) ∈ Bn�q × Sn and z ∈C, define the adjoint of �(β;z) as

�adj(β;z) = �(β;z)−1 det
(
�(β;z))�

so f̃ (ω;β�Σ) = |det(�(β;e−ıω))|2�adj(β;e−ıω)−1Σ�adj(β;e−ıω)−1∗. The elements of
�adj(β;z) are polynomials in z, each polynomial of order at most κ ≤ q(n − 1) (Dun-
smuir and Hannan (1976, p. 354)). Write the matrix polynomial as �adj(β;z) = In +∑κ

�=1 βadj��z
�, and define �̃adj(β) = (

∑κ
�=1 ‖βadj��‖2)1/2.

For any c1� c2� c3 > 0, define the set

K̃(c1� c2� c3)= {
(β�Σ) ∈ Bn�q × Sn : λmin(Σ) ≥ c1�‖Σ‖ ≤ c2� �̃adj(β) ≤ c3

}
�

where λmin(Σ) is the smallest eigenvalue of Σ.
Then the proof of Theorem 4(i) in Dunsmuir and Hannan (1976, pp. 354–355) (see

also the beginning of the proof of their Theorem 3, pp. 352–353) shows that there exist
constants c1� c2� c3 > 0 and ζ1 < 0 such that

sup
(β�Σ)/∈K̃(c1�c2�c3)

φ̂(β�Σ)≤ ζ1 + op(1)�
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Step 3 Now define, for δ≥ 0,

f̃δ(ω;β�Σ) = (∣∣det
(
�

(
β;e−ıω

))∣∣2 + δ
)
�adj

(
β;e−ıω

)−1
Σ�adj

(
β;e−ıω

)−1∗
�

φ̂δ(β�Σ) = 1
2

log det
(
Σ0Σ

−1) + 1
4π

∫ π

−π
tr

{[
f̃ (ω;β0�Σ0)

−1 − f̃δ(ω;β�Σ)−1]Î(ω)
}
dω�

and

φδ(β�Σ) = 1
2

log det
(
Σ0Σ

−1) + 1
4π

∫ π

−π
tr

{
In − f̃δ(ω;β�Σ)−1f̃ (ω;β0�Σ0)

}
dω�

Because Î(ω) is positive semidefinite for each ω ∈ [−π�π], we have φ̂(β�Σ) ≤ φ̂δ(β�Σ)

for all (β�Σ) ∈ Bn�q × Sn and δ > 0.
The discussion surrounding Lemma 1 in Dunsmuir and Hannan (1976, p. 350) gives

sup
(β�Σ)∈K̃(c1�c2�c3)

∣∣φ̂δ(β�Σ)−φδ(β�Σ)
∣∣ = op(1)�

for the constants c1� c2� c3 > 0 found in Step 2. Moreover, for the set K found in Step 1,
the arguments on pp. 355–356 in Dunsmuir and Hannan (1976) imply

inf
δ>0

sup
(β�Σ)∈K̃(c1�c2�c3)∩Kc

φδ(β�Σ) < φ(β0�Σ0) = 0�

Hence, there exist constants δ > 0 and ζ2 < 0 such that

sup
(β�Σ)∈K̃(c1�c2�c3)∩Kc

φ̂(β�Σ)≤ sup
(β�Σ)∈K̃(c1�c2�c3)∩Kc

φ̂δ(β�Σ) ≤ ζ2 + op(1)�

Step 4 Steps 2–3 imply that

sup
(β�Σ)/∈K

φ̂(β�Σ) ≤ max
{

sup
(β�Σ)∈K̃(c1�c2�c3)∩Kc

φ̂(β�Σ)� sup
(β�Σ)/∈K̃(c1�c2�c3)

φ̂(β�Σ)
}

≤ ζ + op(1)�

where ζ = max{ζ1� ζ2} < 0.

Step 5 Steps 1 and 4 imply that the sufficient conditions in Lemma C.3 hold. I conclude

that PW
β�Σ|Y (Ũ |YT )

p→ 1 for any neighborhood Ũ of (β0�Σ0) in Bn�q × Sn.

Remark. Finally, I prove an assertion in Section C.5.3: Lemma C.2 holds for the dis-
cretized Whittle likelihood that replaces integrals (2π)−1 ∫ π

−π g(ω)dω in the definition of

logpW
Y |β�Σ(YT |β�Σ) with sums T−1 ∑T−1

k=0 g(ωk), ωk = 2πk/T .

The proof of Theorem 4(ii) of Dunsmuir and Hannan (1976, p. 356) shows that steps
1–3 above carry through if the integral in expression (C.4) is replaced with a discretized
sum. The only other effect of discretizing the integrals in the Whittle likelihood is that
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the discretized version of the Kolmogorov–Szegö formula (C.3) does not hold exactly.
Instead,

T−1
T−1∑
j=0

log det
(
f̃ (ωj;β�Σ)

) = log det(Σ)− n log(2π)+ T−1
T−1∑
j=0

log
∣∣det

(
�

(
β;e−ıωj

))∣∣2
�

The posterior consistency result for the discretized Whittle posterior follows from steps
1–4 above if I show

T−1∑
j=0

log
∣∣det

(
�

(
β;e−ıωj

))∣∣2 ≤ 2nq log 2 (C.6)

for all (β�Σ) ∈ Bn�q × Sn and, furthermore,

T−1∑
j=0

log
∣∣det

(
�

(
β;e−ıωj

))∣∣2 = op(1) (C.7)

uniformly in a small neighborhood of (β0�Σ0) in Bn�q × Sn.
For any β ∈ Bn�q and z ∈ C, write det(�(z;β)) = det(In + ∑q

�=1 β�z
�) = ∏nq

b=1(1 −
ab(β)z) for some complex scalars {ab(β)}1≤b≤nq that depend on β and satisfy |ab(β)| < 1
(Brockwell and Davis (1991, p. 191)). From the Taylor series log(1 − z) = −∑∞

s=1 z
s/s

(valid for z ∈C inside the unit circle) we get, for all β ∈ Bn�q,

T−1∑
k=0

log det
(
�

(
e−ıωk;β)) = −

T−1∑
k=0

nq∑
b=1

∞∑
s=1

(
ab(β)e

−ıωk
)s

s
= −

nq∑
b=1

∞∑
s=1

(
ab(β)

)s
s

T−1∑
k=0

e−ıωks�

Since
∑T−1

k=0 e
−ıωks equals T when s is an integer multiple of T , and equals 0 otherwise,

T−1∑
k=0

log det
(
�

(
e−ıωk;β)) = −

nq∑
b=1

∞∑
s=1

(
ab(β)

)sT
s

=
nq∑
b=1

log
(
1 − (

ab(β)
)T )

�

Hence,

T−1∑
k=0

log
∣∣det

(
�

(
e−ıωk;β))∣∣2 =

T−1∑
k=0

log det
(
�

(
e−ıωk;β)) +

T−1∑
k=0

log det
(
�

(
e−ıωk;β)∗)

=
nq∑
b=1

log
∣∣1 − (

ab(β)
)T ∣∣2

≤ nq log 4�

where the inequality uses |1 − (ab(β))
T | < 2. Claim (C.6) follows. For β in a small neigh-

borhood of β0, maxb |ab(β)| is uniformly bounded away from 1. This implies claim (C.7).
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C.6.5 Proof of Lemma C.3 I follow the proof of Theorem 1.3.4 in Ghosh and Ra-
mamoorthi (2003). Fix the neighborhood U , assumed open without loss of generality.
Define κ2 = supΓ ∈K∩Uc φ(Γ ). Notice that φ̂(Γ0) = 0 and assumption (i) together imply
φ(Γ0) = 0. By assumptions (ii)–(iii) and compactness of K∩Uc , we therefore have κ2 < 0.
Moreover, we can find a small neighborhood V of Γ0 in ΞΓ such that κ1 = infΓ ∈V φ(Γ )

satisfies max{κ2� ζ} < κ1 < 0. We may shrink V to ensure that it also satisfies V ⊂ U ∩ K.
Choose δ > 0 such that κ1 − δ > max{κ2 + δ�ζ}. Write

PΓ |Y (U |YT ) =
(

1 +

∫
Uc

eTφ̂(Γ )ΠΓ (dΓ )∫
U
eTφ̂(Γ )ΠΓ (dΓ )

)−1

≥
(

1 +

∫
Kc

eTφ̂(Γ )ΠΓ (dΓ )+
∫
Uc∩K

eTφ̂(Γ )ΠΓ (dΓ )∫
V
eTφ̂(Γ )ΠΓ (dΓ )

)−1
�

Assumptions (i) and (iv) imply that the following three inequalities hold w.p.a. 1:

inf
Γ ∈V

φ̂(Γ ) > κ1 − δ� sup
Γ ∈Uc∩K

φ̂(Γ ) < κ2 + δ� sup
Γ ∈Kc

φ̂(Γ ) < ζ�

We then have

PΓ |Y (U |YT ) ≥
(

1 +

∫
Kc

eζTΠΓ (dΓ )+
∫
Uc∩K

e(κ2+δ)TΠΓ (dΓ )∫
V
e(κ1−δ)TΠΓ (dΓ )

)−1

≥
(

1 + eζT + e(κ2+δ)T

ΠΓ (V)e(κ1−δ)T

)−1

w.p.a. 1. Since ΠΓ (V) > 0 by assumption (v), and κ1 − δ > max{κ2 + δ�ζ}, I conclude that

PΓ |Y (U |YT )
p→ 1 as T → ∞.
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